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Introduction

Process Equivalence is Fundamental

Markov chains:
Lumpability
Labelled Markov processes: Bisimulation
Markov decision processes: Bisimulation
Labelled Concurrent Markov Chains with τ transitions: Weak
Bisimulation
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Introduction

But...

In the context of probability is exact equivalence reasonable?
We say “no”. A small change in the probability distributions may
result in bisimilar processes no longer being bisimilar though they
may be very “close” in behaviour.
Instead one should have a (pseudo)metric for probabilistic
processes.
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Introduction

Bisimulation

Let R be an equivalence relation. R is a bisimulation if: s R t if (∀ a):

(s a→ P)⇒ [t a→ Q,P =R Q]

(t a→ Q)⇒ [s a→ P,P =R Q]

s, t are bisimilar if there is a bisimulation relating them.
There is a maximum bisimulation relation.
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Introduction

Properties of Bisimulation

Establishing equality of states: Coinduction. Establish a
bisimulation R that relates states s, t.
Distinguishing states: Simple logic is complete for bisimulation.

φ ::= true | φ1 ∧ φ2 | 〈a〉>qφ

Bisimulation is sound for much richer logic pCTL*.
Bisimulation is a congruence for usual process operators.
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Introduction

A metric-based approximate viewpoint

Move from equality between processes to distances between
processes (Jou and Smolka 1990).
Formalize distance as a metric:

d(s, s) = 0, d(s, t) = d(t, s), d(s, u) ≤ d(s, t) + d(t, u).

Quantitative analogue of an equivalence relation.
Quantitative measurement of the distinction between processes.
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Introduction

Summary of results

Establishing closeness of states: Coinduction
Distinguishing states: Real-valued modal logics
Equational and logical views coincide: Metrics yield same
distances as real-valued modal logics
Compositional reasoning by Non-Expansivity.
Process-combinators take nearby processes to nearby processes.

d(s1, t1) < ε1, d(s2, t2) < ε2

d(s1 || s2, t1 ||t2) < ε1 + ε2

Results work for Markov chains, Labelled Markov processes,
Markov decision processes and Labelled Concurrent Markov
chains with τ -transitions.
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Metrics for bisimulation

Criteria on Metrics

Soundness:
d(s, t) = 0⇔ s, t are bisimilar

Stability of distance under temporal evolution:“Nearby states stay
close forever.”
Metrics should be computable (efficiently?).
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Metrics for bisimulation

Bisimulation Recalled

Let R be an equivalence relation. R is a bisimulation if: s R t if:

(s −→ P)⇒ [t −→ Q,P =R Q]

(t −→ Q)⇒ [s −→ P,P =R Q]

where P =R Q if
(∀R− closed E) P(E) = Q(E)
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Metrics for bisimulation

A putative definition of a metric-bisimulation

m is a metric-bisimulation if: m(s, t) < ε⇒:

s −→ P⇒ t −→ Q, m(P,Q) < ε

t −→ Q⇒ s −→ P, m(P,Q) < ε

Problem: what is m(P,Q)? — Type mismatch!!
Need a way to lift distances from states to a distances on
distributions of states.
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Kantorovich and Wasserstein

A detour: Kantorovich-Wasserstein metric

Metrics on probability measures on metric spaces.
M: 1-bounded pseudometrics on states.

d(µ, ν) = sup
f
|
∫

fdµ−
∫

fdν|, f 1-Lipschitz

Arises in the solution of an LP problem: transshipment.
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Kantorovich and Wasserstein

An LP version for Finite-State Spaces

When state space is finite: Let P,Q be probability distributions. Then:

m(P,Q) = max
∑

i

(P(si)− Q(si))ai

subject to:
∀i.0 ≤ ai ≤ 1
∀i, j. ai − aj ≤ m(si, sj).
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Kantorovich and Wasserstein

The Dual Form

Dual form from Worrell and van Breugel:

min
∑

i,j

lijm(si, sj) +
∑

i

xi +
∑

j

yj

subject to:
∀i.
∑

j lij + xi = P(si)

∀j.
∑

i lij + yj = Q(sj)
∀i, j. lij, xi, yj ≥ 0.

We prove many equations by using the primal form to show one
direction and the dual to show the other.
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Kantorovich and Wasserstein

Example 1

m(P,P) = 0.
In dual, match each state with itself, lij = δijP(si), xi = yj = 0. So:∑

i,j

lijm(si, sj) +
∑

i

xi +
∑

j

yj

becomes 0.
This clearly cannot be lowered further so this is the min.
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Kantorovich and Wasserstein

Example 2

Let m(s, t) = r < 1. Let δs(δt) be the probability measure
concentrated at s(t). Then,

m(δs, δt) = r

Upper bound from dual: Choose lst = 1 all other lij = 0. Then∑
ij

lijm(si, sj) = m(s, t) = r.

Lower bound from primal: Choose as = 0, at = r, all others to
match the constraints. Then∑

i

(δt(si)− δs(si))ai = r.
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Kantorovich and Wasserstein

The Importance of Example 2

We can isometrically embed the original space in the metric space of
distributions.
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Kantorovich and Wasserstein

Example 3 - I

Let P(s) = r,P(t) = 0 if s 6= t. Let Q(s) = r′,Q(t) = 0 if s 6= t.
Then m(P,Q) = |r − r′|.
Assume that r ≥ r′.
Lower bound from primal: yielded by ∀i.ai = 1,∑

i

(P(si)− Q(si))ai = P(s)− Q(s) = r − r′.
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Kantorovich and Wasserstein

Example 3 - II

Upper bound from dual: lss = r′ and xs = r − r′, all others 0∑
i,j

lijm(si, sj) +
∑

i

xi +
∑

j

yj = xs = r − r′.

and the constraints are satisfied:∑
j

lsj + xs = lss + xs = r

∑
i

lis + ys = lss = r′.
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Back to metrics

Return from Detour

Summary of detour: Given a metric on states in a metric space, can lift
to a metric on probability distributions on states.
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Back to metrics

Metric “Bisimulation”

m is a metric-bisimulation if: m(s, t) < ε⇒:

s −→ P⇒ t −→ Q, m(P,Q) < ε

t −→ Q⇒ s −→ P, m(P,Q) < ε

The required canonical metric on processes is the least such: ie.
the distances are the least possible.
Thm: Canonical least metric exists. Usual fixed-point theory
arguments.
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Back to metrics

Metrics: some details

M: 1-bounded pseudometrics on states with ordering

m1 � m2 if (∀s, t) [m1(s, t) ≥ m2(s, t)]

(M,�) is a complete lattice.

⊥(s, t) =

{
0 if s = t
1 otherwise

>(s, t) = 0, (∀s, t)
(u{mi}(s, t) = sup

i
mi(s, t)
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Back to metrics

Maximum fixed point definition

Let m ∈M. F(m)(s, t) < ε if:

s −→ P⇒ t −→ Q, m(P,Q) < ε

t −→ Q⇒ s −→ P, m(P,Q) < ε

F(m)(s, t) can be given by an explicit expression.
F is monotone onM, and metric-bisimulation is the greatest fixed
point of F.
The closure ordinal of F is ω.
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Back to metrics

A Key Tool: Splitting

Let P and Q be probability distributions on a set of states. Let P1 and
P2 be such that: P = P1 + P2. Then, there exist Q1,Q2, such that
Q1 + Q2 = Q and

m(P,Q) = m(P1,Q1) + m(P2,Q2).

The proof uses the duality theory of LP.
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Continuous-state systems

What about Continuous-State Systems?

Develop a real-valued “modal logic” based on the analogy:
Program Logic Probabilistic Logic
State s Distribution µ
Formula φ Random Variable f
Satisfaction s |= φ

∫
f dµ

Define a metric based on how closely the random variables agree.
We did this before the LP based techniques became available.
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Continuous-state systems

Real-valued Modal Logic

f ::= 1 | max(f , f ) | h ◦ f | 〈a〉.f

1(s) = 1 True
max(f1, f2)(s) = max(f1(s), f2(s)) Conjunction
h ◦ f (s) = h(f (s)) Lipschitz
〈a〉.f (s) = γ

∫
s′∈S f (s′)τa(s, ds′) a-transition

where h 1-Lipschitz : [0, 1]→ [0, 1] and γ ∈ (0, 1].
d(s, t) = supf |f (s)− f (t)|
Thm: d coincides with the canonical metric-bisimulation.
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Continuous-state systems

Finitary syntax for Real-valued modal logic

1(s) = 1 True
max(f1, f2)(s) = max(f1(s), f2(s)) Conjunction
(1− f )(s) = 1− f (s) Negation

bfq(s)c =

{
q , f (s) ≥ q
f (s) , f (s) < q

Cutoffs

〈a〉.f (s) = γ
∫

s′∈S f (s′)τa(s, ds′) a-transition

q is a rational.
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Concluding remarks

The role of γ

γ discounts the value of future steps.
γ < 1 and γ = 1 yield very different topologies
The approximants defined last week converge in the metric γ < 1.
The γ < 1 metric yields a topology in which many more
sequences converge.
For γ < 1 there is an LP-based strongly-polynomial (in the number
of constraints, and the number of bits of precision required)
algorithm to compute the metric.
For γ = 1 the existence of an algorithm to compute the metric has
been discovered by van Breugel et al.
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Concluding remarks

Conclusions

For a CSP-like process algebra (without hiding) the process
combinators are all contractive.
We can show that if one perturbs the probabilities slightly the
resulting process is close to the unperturbed one.
We have an asymptotic version of the metric.
We can extend the LP-based theory to continuous state spaces
using the theory of infinite dimensional LP.
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