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Process Equivalence is Fundamental

Markov chains:
Lumpability

Markov decision processes: Bisimulation

Labelled Concurrent Markov Chains with 7 transitions: Weak
Bisimulation

°
°
@ Labelled Markov processes: Bisimulation
°
°
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But...

@ In the context of probability is exact equivalence reasonable?

@ We say “no”. A small change in the probability distributions may
result in bisimilar processes no longer being bisimilar though they
may be very “close” in behaviour.

@ Instead one should have a (pseudo)metric for probabilistic
processes.
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Bisimulation

@ Let R be an equivalence relation. R is a bisimulation if: s R ¢ if (V a):
(s5P)= [t Q.P=x 0

(tQ)=[s = P,P =0
@ 5,1 are bisimilar if there is a bisimulation relating them.
@ There is a maximum bisimulation relation.
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Properties of Bisimulation

@ Establishing equality of states: Coinduction. Establish a
bisimulation R that relates states s, t.

@ Distinguishing states: Simple logic is complete for bisimulation.

¢ u=true |1 Ada | (a)>q0

@ Bisimulation is sound for much richer logic pCTL*.
@ Bisimulation is a congruence for usual process operators.
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A metric-based approximate viewpoint

@ Move from equality between processes to distances between
processes (Jou and Smolka 1990).

@ Formalize distance as a metric:
d(s,s) =0,d(s,t) =d(t,s),d(s,u) < d(s,t) +d(t,u).

Quantitative analogue of an equivalence relation.
@ Quantitative measurement of the distinction between processes.
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Summary of results

@ Establishing closeness of states: Coinduction
@ Distinguishing states: Real-valued modal logics

@ Equational and logical views coincide: Metrics yield same
distances as real-valued modal logics

@ Compositional reasoning by Non-Expansivity.
Process-combinators take nearby processes to nearby processes.

d(Sl,ll) < €1, d(Sz,lz) < €
d(si || s2,11 |[2) < e1 + €

@ Results work for Markov chains, Labelled Markov processes,
Markov decision processes and Labelled Concurrent Markov
chains with 7-transitions.
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Criteria on Metrics

@ Soundness:
d(s,t) =0 < s, are bisimilar

@ Stability of distance under temporal evolution:“Nearby states stay
close forever”

@ Metrics should be computable (efficiently?).
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Bisimulation Recalled

Let R be an equivalence relation. R is a bisimulation if: s R ¢ if:
(s —P)=1[— Q,P =]

(t—Q)=[s— P,P=¢ Q]

where P = Q if
(VR —closed E) P(E) = Q(E)
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A putative definition of a metric-bisimulation

@ m is a metric-bisimulation if: m(s,t) < e =
s—P=1t—Q, mP,Q)<e¢

t— Q= s— P, m(P,Q)<e

@ Problem: what is m(P, Q)? — Type mismatch!!

@ Need a way to lift distances from states to a distances on
distributions of states.
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A detour: Kantorovich-Wasserstein metric

@ Metrics on probability measures on metric spaces.
@ M: 1-bounded pseudometrics on states.

d(p,v) = sup]/fdu— /fdy\,f 1-Lipschitz
S

@ Arises in the solution of an LP problem: fransshipment.
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An LP version for Finite-State Spaces

When state space is finite: Let P, Q be probability distributions. Then:

m(P, Q) = max Z(P(s,-) — O(si))a;

i

subject to:
Vi,j. ai — aj < m(sj, s;).
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The Dual Form

@ Dual form from Worrell and van Breugel:

()
min E Lim(si, sj) + E Xi + E Yj
i,j i J

subject to:
Vi. Zj l,‘j +x = P(S,')
Vi i+ = 0(s;)
\V/i,j. l,'j,x,',yj > 0.
@ We prove many equations by using the primal form to show one
direction and the dual to show the other.
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Example 1

@ m(P,P) =0.
@ In dual, match each state with itself, [;; = 6;;P(s;),x; = y; = 0. So:

Z Lim(si, s;) + in + Z)’j
iy i F

becomes 0.
@ This clearly cannot be lowered further so this is the min.
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Example 2

@ Letm(s,t) = r < 1. Let 65(4,) be the probability measure
concentrated at s(¢). Then,

m(ds,0;) =1

@ Upper bound from dual: Choose I;; = 1 all other /;; = 0. Then
Zlijm(si,sj) =m(s,t) =r.
ij

@ Lower bound from primal: Choose a, = 0,a, = r, all others to
match the constraints. Then

> (6ilsi) = 85(si))ai = r.

1
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The Importance of Example 2

We can isometrically embed the original space in the metric space of
distributions.
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Example 3 - |

@ LetP(s)=r,P(t) =0ifs£1r. Let Q(s) =7,0(t) =0if s £ 1.
@ Thenm(P,Q) = |r—7/|.
@ Assume that r > r'.

Lower bound from primal: yielded by Vi.a; = 1,
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Example 3 - I

Upper bound from dual: /;; = ' and x;, = r — 7/, all others 0
Zlijm(s,-,sj) + Zx,- + Zyj =x,=r—r.
ij i Jj
and the constraints are satisfied:

lej+xs =lg+x,=r
J

Zlis + s = lss =r.
i
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Return from Detour

Summary of detour: Given a metric on states in a metric space, can lift
to a metric on probability distributions on states.
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Metric “Bisimulation”

@ m is a metric-bisimulation if: m(s,t) < e =
s—P=1t—Q, m(P,Q)<e

t— Q= s— P, m(P,Q)<e

@ The required canonical metric on processes is the least such: ie.
the distances are the least possible.

@ Thm: Canonical least metric exists. Usual fixed-point theory
arguments.
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Metrics: some details

@ M: 1-bounded pseudometrics on states with ordering
my = my if (Vs, 1) [my(s, 1) > my(s,1)]

@ (M, <) is a complete lattice.

°
Oifs=t
L) = { 1 otherwise
T(s,t) = 0,(Vs,1)
(M{m;}(s,1) = supm(s,1)
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Maximum fixed point definition

@ Letme M. F(m)(s,t) < eif:
s—P=1t—Q, m(P,Q)<ce

t— Q= s— P, m(P,Q)<e

@ F(m)(s,t) can be given by an explicit expression.

@ F is monotone on M, and metric-bisimulation is the greatest fixed
point of F.

@ The closure ordinal of F is w.
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A Key Tool: Splitting

Let P and Q be probability distributions on a set of states. Let P; and
P, be such that: P = P, + P,. Then, there exist Oy, 0,, such that

01+ Q> = Q and
m(Pa Q) = m(Plan) +m(P27Q2)‘

The proof uses the duality theory of LP.
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What about Continuous-State Systems?

@ Develop a real-valued “modal logic” based on the analogy:
Program Logic Probabilistic Logic
State s Distribution p
Formula ¢ Random Variable f
Satisfaction s |=¢ [ fdu

@ Define a metric based on how closely the random variables agree.
@ We did this before the LP based techniques became available.
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____________ Coniiousssiatesystems |
Real-valued Modal Logic

°
fu=1|max(f.f) [ hof | {a)f
°
1(s) =1 True
max(fi,f2)(s) = max(fi(s),fa(s)) Conjunction
hof(s) = h(f(s)) Lipschitz
(a) f(s) = 7 Juesf (') 7a(s,ds’)  a-transition

where h 1-Lipschitz : [0, 1] — [0, 1] and v € (0, 1].
© d(s,1) = supy |f(s) —f(1)]

@ Thm: d coincides with the canonical metric-bisimulation.
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Finitary syntax for Real-valued modal logic

1(s)
max (fi,f2)(s)
(1=1)(s)

fa(s)]
(@) f(s)

g is a rational.
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max(fi(s), f2(s))

1 —f(s)

{ q, fls)> q
f@s) . fls) <

VLesf Ta(s ds)

Metrics

True
Conjunction
Negation

Cutoffs

a-transition
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The role of v

@ ~ discounts the value of future steps.
@ v < 1 and v = 1 yield very different topologies
@ The approximants defined last week converge in the metric v < 1.

@ The v < 1 metric yields a topology in which many more
sequences converge.

@ For v < 1 there is an LP-based strongly-polynomial (in the number
of constraints, and the number of bits of precision required)
algorithm to compute the metric.

@ For v = 1 the existence of an algorithm to compute the metric has
been discovered by van Breugel et al.
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Conclusions

@ For a CSP-like process algebra (without hiding) the process
combinators are all contractive.

@ We can show that if one perturbs the probabilities slightly the
resulting process is close to the unperturbed one.

@ We have an asymptotic version of the metric.

@ We can extend the LP-based theory to continuous state spaces
using the theory of infinite dimensional LP.
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