Probabilistic Bisimulation Metrics

Prakash Panangaden¹

¹School of Computer Science McGill University

Estonia Winter School March 2015

Outline

Introduction

Process Equivalence is Fundamental

- Markov chains:
- Lumpability
- Labelled Markov processes: Bisimulation
- Markov decision processes: Bisimulation
- Labelled Concurrent Markov Chains with τ transitions: Weak Bisimulation

But...

- In the context of probability is exact equivalence reasonable?
- We say "no". A small change in the probability distributions may result in bisimilar processes no longer being bisimilar though they may be very "close" in behaviour.
- Instead one should have a (pseudo)metric for probabilistic processes.

Bisimulation

• Let *R* be an equivalence relation. *R* is a bisimulation if: *s R t* if $(\forall a)$:

$$(s \stackrel{a}{\rightarrow} P) \Rightarrow [t \stackrel{a}{\rightarrow} Q, P =_R Q]$$

$$(t \stackrel{a}{\to} Q) \Rightarrow [s \stackrel{a}{\to} P, P =_{R} Q]$$

- *s*, *t* are bisimilar if there is a bisimulation relating them.
- There is a maximum bisimulation relation.

Properties of Bisimulation

- Establishing equality of states: Coinduction. Establish a bisimulation *R* that relates states *s*, *t*.
- Distinguishing states: Simple logic is complete for bisimulation.

$$\phi ::= \texttt{true} \mid \phi_1 \land \phi_2 \mid \langle a \rangle_{>q} \phi$$

- Bisimulation is sound for much richer logic pCTL*.
- Bisimulation is a congruence for usual process operators.

A metric-based approximate viewpoint

- Move from equality between processes to distances between processes (Jou and Smolka 1990).
- Formalize distance as a metric:

$$d(s,s) = 0, d(s,t) = d(t,s), d(s,u) \le d(s,t) + d(t,u).$$

Quantitative analogue of an equivalence relation.

• Quantitative measurement of the distinction between processes.

Summary of results

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- Equational and logical views coincide: Metrics yield same distances as real-valued modal logics
- Compositional reasoning by Non-Expansivity.
 Process-combinators take nearby processes to nearby processes.

$$\frac{d(s_1, t_1) < \epsilon_1, \quad d(s_2, t_2) < \epsilon_2}{d(s_1 \mid\mid s_2, t_1 \mid\mid t_2) < \epsilon_1 + \epsilon_2}$$

 Results work for Markov chains, Labelled Markov processes, Markov decision processes and Labelled Concurrent Markov chains with *τ*-transitions.

Criteria on Metrics

• Soundness:

$$d(s,t) = 0 \Leftrightarrow s, t$$
 are bisimilar

- Stability of distance under temporal evolution:"Nearby states stay close *forever*."
- Metrics should be computable (efficiently?).

Bisimulation Recalled

Let *R* be an equivalence relation. *R* is a bisimulation if: s R t if:

$$(s \longrightarrow P) \Rightarrow [t \longrightarrow Q, P =_{R} Q]$$
$$(t \longrightarrow Q) \Rightarrow [s \longrightarrow P, P =_{R} Q]$$
where $P =_{R} Q$ if
$$(\forall R - \text{closed } E) P(E) = Q(E)$$

A putative definition of a metric-bisimulation

• *m* is a metric-bisimulation if: $m(s, t) < \epsilon \Rightarrow$:

 $s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$ $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

- Problem: what is m(P,Q)? Type mismatch!!
- Need a way to lift distances from states to a distances on distributions of states.

A detour: Kantorovich-Wasserstein metric

- Metrics on probability measures on metric spaces.
- \mathcal{M} : 1-bounded pseudometrics on states.

$$d(\mu,
u) = \sup_{f} |\int f d\mu - \int f d
u|, f$$
 1-Lipschitz

• Arises in the solution of an LP problem: transshipment.

٥

An LP version for Finite-State Spaces

When state space is finite: Let P, Q be probability distributions. Then:

$$m(P,Q) = \max \sum_{i} (P(s_i) - Q(s_i))a_i$$

subject to:

$$\forall i.0 \leq a_i \leq 1 \\ \forall i,j. \ a_i - a_j \leq m(s_i,s_j).$$

The Dual Form

• Dual form from Worrell and van Breugel:

$$\min\sum_{i,j} l_{ij}m(s_i,s_j) + \sum_i x_i + \sum_j y_j$$

subject to:

$$\begin{aligned} \forall i. \sum_{j} l_{ij} + x_i &= P(s_i) \\ \forall j. \sum_{i} l_{ij} + y_j &= Q(s_j) \\ \forall i, j. \ l_{ij}, x_i, y_j &\geq 0. \end{aligned}$$

• We prove many equations by using the primal form to show one direction and the dual to show the other.

Example 1

- m(P,P) = 0.
- In dual, match each state with itself, $l_{ij} = \delta_{ij}P(s_i), x_i = y_j = 0$. So:

$$\sum_{i,j} l_{ij}m(s_i,s_j) + \sum_i x_i + \sum_j y_j$$

becomes 0.

• This clearly cannot be lowered further so this is the min.

Example 2

Let m(s,t) = r < 1. Let δ_s(δ_t) be the probability measure concentrated at s(t). Then,

$$m(\delta_s, \delta_t) = r$$

• Upper bound from dual: Choose $l_{st} = 1$ all other $l_{ij} = 0$. Then

$$\sum_{ij} l_{ij}m(s_i, s_j) = m(s, t) = r.$$

• Lower bound from primal: Choose $a_s = 0, a_t = r$, all others to match the constraints. Then

$$\sum_{i} (\delta_t(s_i) - \delta_s(s_i))a_i = r.$$

The Importance of Example 2

We can *isometrically* embed the original space in the metric space of distributions.

Example 3 - I

- Let P(s) = r, P(t) = 0 if $s \neq t$. Let Q(s) = r', Q(t) = 0 if $s \neq t$.
- Then m(P,Q) = |r r'|.
- Assume that r ≥ r'.
 Lower bound from primal: yielded by ∀i.a_i = 1,

$$\sum_{i} (P(s_i) - Q(s_i))a_i = P(s) - Q(s) = r - r'.$$

Example 3 - II

Upper bound from dual: $l_{ss} = r'$ and $x_s = r - r'$, all others 0

$$\sum_{i,j} l_{ij}m(s_i, s_j) + \sum_i x_i + \sum_j y_j = x_s = r - r'.$$

and the constraints are satisfied:

$$\sum_{j} l_{sj} + x_s = l_{ss} + x_s = r$$
$$\sum_{i} l_{is} + y_s = l_{ss} = r'.$$

Return from Detour

Summary of detour: Given a metric on states in a metric space, can lift to a metric on probability distributions on states.

Metric "Bisimulation"

• *m* is a metric-bisimulation if: $m(s, t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

$$t \longrightarrow Q \Rightarrow s \longrightarrow P, \ m(P,Q) < \epsilon$$

- The required canonical metric on processes is the least such: ie. the distances are the least possible.
- Thm: *Canonical least metric exists*. Usual fixed-point theory arguments.

Metrics: some details

• \mathcal{M} : 1-bounded pseudometrics on states with ordering

$$m_1 \leq m_2$$
 if $(\forall s, t) [m_1(s, t) \geq m_2(s, t)]$

• (\mathcal{M}, \preceq) is a complete lattice.

Maximum fixed point definition

• Let $m \in \mathcal{M}$. $F(m)(s, t) < \epsilon$ if:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

$$t \longrightarrow Q \Rightarrow \ s \longrightarrow P, \ m(P,Q) < \epsilon$$

- F(m)(s,t) can be given by an explicit expression.
- *F* is monotone on \mathcal{M} , and metric-bisimulation is the greatest fixed point of *F*.
- The closure ordinal of F is ω .

A Key Tool: Splitting

Let *P* and *Q* be probability distributions on a set of states. Let P_1 and P_2 be such that: $P = P_1 + P_2$. Then, there exist Q_1, Q_2 , such that $Q_1 + Q_2 = Q$ and

$$m(P,Q) = m(P_1,Q_1) + m(P_2,Q_2).$$

The proof uses the duality theory of LP.

What about Continuous-State Systems?

- Develop a real-valued "modal logic" based on the analogy: Program Logic Probabilistic Logic State s Distribution μ Formula ϕ Random Variable fSatisfaction $s \models \phi$ $\int f d\mu$
- Define a metric based on how closely the random variables agree.
- We did this *before* the LP based techniques became available.

Real-valued Modal Logic

$$f ::= \mathbf{1} \mid \max(f, f) \mid h \circ f \mid \langle a \rangle f$$

where h 1-Lipschitz : $[0,1] \rightarrow [0,1]$ and $\gamma \in (0,1]$.

•
$$d(s,t) = \sup_{f} |f(s) - f(t)|$$

• Thm: *d* coincides with the canonical metric-bisimulation.

Finitary syntax for Real-valued modal logic

q is a rational.

The role of γ

- γ discounts the value of future steps.
- $\gamma < 1$ and $\gamma = 1$ yield very different topologies
- The approximants defined last week converge in the metric $\gamma < 1$.
- The γ < 1 metric yields a topology in which many more sequences converge.
- For γ < 1 there is an LP-based strongly-polynomial (in the number of constraints, and the number of bits of precision required) algorithm to compute the metric.
- For $\gamma = 1$ the existence of an algorithm to compute the metric has been discovered by van Breugel et al.

Conclusions

- For a CSP-like process algebra (without hiding) the process combinators are all contractive.
- We can show that if one perturbs the probabilities slightly the resulting process is close to the unperturbed one.
- We have an asymptotic version of the metric.
- We can extend the LP-based theory to continuous state spaces using the theory of infinite dimensional LP.