Characterizing relative entropy on standard Borel spaces categorically

Nicolas Gagné and Prakash Panangaden School of Computer Science McGill University

> Universidade do Minho Braga 26th May 2017

Motivation

- Exciting new developments in understanding Bayesian inversion: Danos, Garnier, Dahlqvist, Clerc.
- Much more sophisticated understanding of categorical probability on Borel spaces.
- Theoretical underpinnings of learning.
- Categorical characterization of relative entropy for distributions on finite sets: Baez, Fritz, Leinster.
- Entropy plays a crucial role in rate of convergence of learning processes.
- First step: extend categorical characterization of relative entropy to a more general class of spaces: standard Borel spaces.

- Background: standard Borel spaces, Giry monad, **SRel**, disintegration
- Categorical setting
- Relative entropy as a functor
- Uniqueness

Polish spaces and standard Borel spaces

- Basic definitions of measure theory do not mention topology but everything works best when the σ -algebra comes from the topology of a metric space.
- A Polish space is the topological space underlying a complete separable metric space.
- Start with a metric space as above and forget the metric but remember the topology.
- Note, a space like (0, 1) is Polish even though it is not complete in its "usual" metric. It can be given a complete metric and is homeomorphic to (0,∞).
- A standard Borel space: take a Polish space, forget the topology but remember the Borel sets.

- **Pol**: Objects Polish spaces, morphisms are *continuous functions*.
- **StBor**: Objects standard Borel spaces, morphisms are *measurable functions*.
- \bullet Obvious forgetful functor $U:\mathbf{Pol} \to \mathbf{StBor}$ is not full.

The Giry monad on $\operatorname{\mathbf{Mes}}$ I

- Her name is actually Giry; but I will just write Giry.
- Actually proposed by Lawvere in 1964 in an unpublished manuscript.
- Mes: Objects are sets equipped with σ -algebra (X, σ), morphisms are *measurable* functions.
- $\Gamma: \mathbf{Mes} \to \mathbf{Mes} \ \gamma((X, \Sigma)) = \{p | p : \Sigma \to [0, 1]\};$ here p is a probability measure.
- For $A \in \Sigma$ define $ev_A : \Gamma(X) \to [0, 1]$ by $ev_A(p) = p(A)$.
- Give $\Gamma(X)$ the smallest $\sigma\text{-algebra}$ that makes all the $e\nu_A$ measurable.
- $f: (X, \Sigma) \to (Y, \Lambda)$ maps to $\Gamma(f): \Gamma(X) \to \Gamma(Y)$ by $\Gamma(f)(p)(B \in \Lambda) = p(f^{-1}(B)).$

The Giry monad on $\operatorname{\mathbf{Mes}}$ II

• δ_x is the Dirac measure at x or point mass: $\delta_x(A) = 1$ if $x \in A$ and 0 if $x \notin A$.

•
$$\eta_X : X \to \Gamma(X)$$
 is given by $\eta_X(x) = \delta_x$.

•
$$\mu_X : \Gamma^2(X) \to \Gamma(X)$$
 is given by

$$\mu_{X}(\Omega)(A) = \int_{\Gamma(X)} e v_{A} d\Omega.$$

- This gives the "average" measure of A using Ω to do the weighting.
- Equations have to be checked; they all follow from the monotone convergence theorem.

The Giry monad on **Pol**

- $\mathcal{G} : \mathbf{Pol} \to \mathbf{Pol}$. $\mathcal{G}(X)$ is the set of Borel probability measures on X. We need to make it into a topological space.
- The *weak* topology on $\mathcal{G}(X)$: given by an explicit base of open sets. Basic open neighbourhood of p:

 $\mathsf{B}_{f_1,\ldots,f_n;\epsilon_1,\ldots,\epsilon_n} := \{q :\in \mathfrak{G}(X) : |\int f_i dp - \int f_i dq| < \epsilon_i, \ i = 1,\ldots n\}$

where $f_{\mathfrak{i}}$ are bounded continuous functions and $\epsilon_{\mathfrak{i}}$ are positive real numbers.

- $p_n \Rightarrow p$ if for any bounded continuous function f, $\int f dp_n \rightarrow \int f dp$. Weak convergence.
- The integrals are what one can "see" about a measure.
- Same η, μ as for $\Gamma.$ One has to check that they are continuous functions now.

Relating ${\mathcal G}$ and Γ

Let B be the forgetful functor from **Pol** to **StBor**. It is clearly faithful. There is a natural transformation $\theta : B \circ \mathcal{G} \to \Gamma \circ B$.

$$\mathfrak{G} \overset{}{\longrightarrow} \mathbf{Pol} \overset{B}{\longrightarrow} \mathbf{StBor} \overset{}{\frown} \mathsf{I}$$

The proof is not obvious; it follows from Theorem 17.24 of *Classical Descriptive Set Theory* by Kechris.

The Kleisli category of a monad

- For a monad $T: {\mathfrak C} \to {\mathfrak C},$ we define a new category ${\mathfrak C}_T$ with the same objects as ${\mathfrak C}.$
- A morphism $f: A \to B$ in \mathcal{C}_T is a morphism $f: A \to TB$ in \mathcal{C} .
- Compose $A \xrightarrow{f} B \xrightarrow{g} C$ in \mathcal{C}_T by composing

$$A \stackrel{f}{\longrightarrow} TB \stackrel{Tg}{\longrightarrow} T^2C \stackrel{\mu_C}{\longrightarrow} TC \text{ in } \mathcal{C}.$$

• One can think of this as a category of "free" algebras.

The Kleisli category of Γ

- Morphisms $h: (X, \Sigma) \to (Y, \Lambda)$ are measurable functions $h: X \to \Gamma(Y)$.
- But $\Gamma(Y)$ is $\Lambda \to [0, 1]$ (with some conditions).
- So $h:X\times\Lambda\to[0,1]$ with $h(\cdot,B)$ a measurable function and $h(x,\cdot)$ a measure. Markov kernels.
- Composition $X \xrightarrow{h} Y \xrightarrow{k} Z$ is, in terms of kernels

$$(k \circ h)(x, C \subset Z) = \int_Y k(y, C) dh(x, \cdot).$$

- Probabilistic relations, composing by integration.
- Infinite-dimensional matrix multiplication.
- This is what Lawvere defined in 1964: probabilistic mappings.

Some notation

- We write $\tilde{\circ}$ for Kleisli composition.
- $(k \circ h)(x, C \subset Z) = \int_Y k(y, C)dh(x, \cdot).$
- A measure on (X, Σ) can be viewed as a Kleisli arrow from the one-point space 1 = {*} to (X, Σ).
- If $s:Y\to \Gamma(X)$ and $q:\mathbf{1}\to \Gamma(Y)$ we have

$$(s \circ q)(\star)(A \in \Sigma) = \int_{Y} s(y, A) dq.$$

- This is just a measure on (X, Σ) .
- I am going to write X instead of (X, Σ) henceforth, unless it is really necessary to emphasize the Σ .

Radon-Nikodym theorem

• If we have two measures p, q on a measurable space X we say q is absolutely continuous with respect to p, if for any measurable set A, p(A) = 0 implies that q(A) = 0. Notation: $q \ll p$.

Given a measurable space (X, Σ) if a $(\sigma$ -)finite measure q is absolutely continuous with respect to a $(\sigma$ -)finite measure p on (X, Σ) , then there is a measurable function $f : X \to [0, \infty)$, such that for any measurable subset $A \subset X$, $q(A) = \int_A f dp$.

• The function f is unique up to a p-null set and is called the Radon-Nikodym derivative, denoted by $\frac{dq}{dp}$.

Disintegration

Disintegration

Let (X,Σ,p) and (Y,Λ,q) be two standard Borel spaces with probability measures, where q is $q:=p\circ f^{-1}$ and f is measurable $f:X\to Y.$ Then, there exists a family of probability measures $\{p_y\}_{y\in Y}$ on X such that

(i) the function $y \mapsto p_y(B)$ is measurable for each $B \subset X$; (ii) the fiber $f^{-1}(y)$ has p_y -measure 1: for q-almost all $y \in Y$; (iii) for every Borel-measurable function $h: X \to [0, \infty]$,

$$\int_X h \, dp = \int_Y \int_{f^{-1}(y)} h \, dp_y dq.$$

Kernels from disintegration

- Write $p_y(\cdot):\Lambda \to [0,1]$ as $p(y,\cdot)$
- then view $p: X \times \Lambda \rightarrow [0, 1]$.
- Such a p is measurable in its first argument and a measure in its second. It is exactly a kernel.
- We will write p_y or $p(y, \cdot)$ or p(y) as we find convenient.

- We follow Baez and Fritz's approach first with finite sets.
- We generalize to standard Borel spaces.
- We use the Baez-Fritz result as a major building block.
- Our work does not diminish or replace their work.

Coherence

- (X, σ, p), (Y, Λ, q) standard Borel spaces equipped with probability measures.
- A pair (f, s) with $f: X \to Y$ and $s: Y \to \Gamma(X)$ is said to be coherent if
- (i) f is measure preserving, *i.e.* $q = p \circ f^{-1}$, and
- (ii) $s(y)(f^{-1}(y)) = 1$. [Support condition]
- (iii) If, in addition, $p\ll s\ \tilde\circ\ q,$ we say that (f,s) is absolutely coherent.

The category **FinStat**

- **Objects** : Pairs (X, p) where X is a finite set and p a probability measure on X.
- Morphisms : Hom(X, Y) are all coherent pairs (f, s), $f: X \to Y$ and $s: Y \to \Gamma(X)$.
- We compose arrows $(f, s) : (X, p) \to (Y, q)$ and $(g, t) : (Y, q) \to (Z, m)$ as follows: $(g, t) \circ (f, s) := (g \circ f, s \circ_{fin} t)$ where \circ_{fin} is defined as

$$(s \ \tilde{\circ}_{\texttt{fin}} \ t)_z(x) = \sum_{y \in Y} t_z(y) s_y(x).$$

What it means

- We think of X as the space we are investigating and Y as the space of observations. f is the observation map and s then describes what we think the distribution over X is given our observation.
- We say that a hypothesis s is *optimal* if $p = s \tilde{\circ}_{fin} q$, or equivalenty, if s is a disintegration of p along f.
- We denote by **FP** the subcategory of **FinStat** consisting of the same objects, but with only those morphisms where the hypothesis is optimal.

The category SbStat

- **Objects** : Pairs (X, p) where X is a standard Borel space and p a probability measure on the Borel subsets of X.
- Morphisms : Hom(X, Y) are all coherent pairs (f, s), $f : X \to Y$ and $s : Y \to \Gamma(X)$.
- We compose arrows $(f, s) : (X, p) \rightarrow (Y, q)$ and $(g, t) : (Y, q) \rightarrow (Z, m)$ as follows: $(g, t) \circ (f, s) := (g \circ f, s \circ t).$

A graphical notation

Basic facts

Given coherent pairs the composition is coherent. If, in addition, they are absolutely coherent, the composition is absolutely coherent.

Lawvere's amazing category $[0, \infty]$

- Objects : One single object: •.
- Morphisms : For each element $r \in [0, \infty]$, one arrow $r : \bullet \to \bullet$.
- Arrow composition is defined as addition in $[0, \infty]$.
- This is a remarkable category with monoidal closed structure and many other interesting properties.

Entropy

• Given a probability distribution p on a finite set X, the **entropy** of p is

$$H(p) = -\sum_{x \in X} p(x) \ln p(x).$$

- In computer science we usually use log₂ to count bits; it only changes an overall multiplicative factor.
- If we are transmitting information about the outcome of a process that produces a result in X with distribution p, the *optimal code* will use H(p) *expected* number of nits (bits).
- We always assume $0 \cdot \infty = 0$.

Relative entropy

- If we have two distributions p, q the relative entropy between them is $KL(p, q) = -\sum_{x \in X} p(x) \ln \frac{p(x)}{q(x)}$.
- Often called the Kullback-Leibler divergence.
- It is always positive (Jensen).
- It is not symmetric and does not satisfy the triangle inequality.
- If you design your optimal code thinking that the correct distribution is q when in fact it is p, KL(p, q) measures how many extra nits (bits) you will need.

Bayesian inference

- Let $X = \{1, 2, \dots, n\}$ be a finite set of outcomes.
- G(X) is the simplex Δ⁽ⁿ⁻¹⁾. We want to estimate an unknown distribution p over X by taking samples and updating out prior beliefs.
- The prior belief is a distribution over $\mathcal{G}(X)$ i.e. an element of $\mathcal{G}^2(X);$ say $\mu.$
- \bullet After observing N samples we want to update $\mu.$ We use Bayes' theorem.
- We denote by q the empirical distribution obtained by sampling.

Bayesian updating

The role of relative entropy

The crucial quantity is the likelihood. How does it grow with N?

Likelihood growth

$$\mu(\mathbf{q}|\mathbf{p}) \approx e^{-\mathbf{N} \cdot \mathbf{R} \mathbf{E}(\mathbf{q},\mathbf{p})}.$$

The relative entropy controls the rate of convergence of the learning process.

Relative entropy on **FinStat**

- The functor RE is from **FinStat** to $[0, \infty]$.
- **Objects** : Maps every object (X, p) to •.
- Morphisms : Maps a morphism $(f,s):(X,p)\to (Y,q)$ to $S_{\texttt{fin}}(p,s\;\tilde{\circ}_{\texttt{fin}}\;q),$
- where

$$S_{fin}(p, s \, \tilde{\circ}_{fin} q) := \sum_{x \in X} p(x) \ln \left(\frac{p(x)}{(s \, \tilde{\circ}_{fin} q)(x)} \right).$$

Relative entropy on SbStat

- Again the target is $[0, \infty]$.
- **Objects** : Maps every object (X, p) to •.
- Morphisms : Maps every absolutely coherent morphism to $(f,s):(X,p)\to (Y,q)$ to $S(p,s\ \tilde\circ\ q)$, where

$$S(p,s \mathrel{\tilde{\circ}} q) := \int_X \log\left(\frac{dp}{\mathsf{d}(s \mathrel{\tilde{\circ}} q)}\right) \ \mathsf{d}p,$$

where $\frac{dp}{d(s\;\tilde{\circ}\;q)}$ is the Radon-Nikodym derivative and otherwise maps to $\infty.$

Prop: RE is indeed a functor

Quite long, with some lemmas and calculations and tedious case analyses.

Localization of relative entropy

- Given an arrow $(f, s) : (X, p) \to (Y, q)$ in **StBor** and a point $y \in Y$, we denote by $(f, s)_y$, the morphism (f, s) restricted to the pair of standard Borel spaces $f^{-1}(y)$ and $\{y\}$.
- Equivalently,

۲

$$(f,s)_{\mathfrak{Y}}:=(\left.f\right|_{f^{-1}(\mathfrak{Y})},s_{\mathfrak{Y}}):(f^{-1}(\mathfrak{Y}),p_{\mathfrak{Y}})\longrightarrow(\{\mathfrak{Y}\},\delta_{\mathfrak{Y}}),$$

where δ_y is the unique probability measure on $\{y\}$.

• $(f, s)_y$ is the local relative entropy of (f, s) at y.

$$\mathsf{RE}((f,s)_{\mathfrak{Y}}) = \begin{cases} \int_{f^{-1}(\mathfrak{Y})} \log\left(\frac{dp_{\mathfrak{Y}}}{d(s\,\tilde{\circ}\,q)_{\mathfrak{Y}}}\right) \, dp_{\mathfrak{Y}} & \text{ if } p_{\mathfrak{Y}} \ll (s\,\tilde{\circ}\,q)_{\mathfrak{Y}} \\ \infty & \text{ otherwise.} \end{cases}$$

Convexity

Definition

A functor F from ${\bf SbStat}$ to $[0,\infty]$ is convex linear if for every arrow $(f,s):(X,p)\to (Y,q),$ we have

$$F((f,s)) = \int_{Y} F((f,s)_y) dq.$$

Theorem

RE is convex linear, i.e., for every arrow $(f,s):(X,p)\to(Y,q),$ we have

$$\mathsf{RE}((f,s)) = \int_{Y} \mathsf{RE}\left((f,s)_{y}\right) \, \mathsf{d}q.$$

Lower-semicontinuity

Definition

A functor F from **SbStat** to $[0, \infty]$ is *lower semi-continuous* if for every arrow $(f, s) : (X, p) \to (\{y\}, \delta_y)$ there is an admissible topology on X such that whenever $p_n \Rightarrow p$ and $s_n \Rightarrow s$, then

$$F\left((X,p)\underbrace{\underbrace{}_{k}, \underbrace{}_{k}, \underbrace{}_{k},$$

Note the awkwardness of dealing with topological and measure-theoretic issues.

RE is indeed lower-semicontinuous.

Follows from well-known results in information theory [Posner].

Baez and Fritz's theorem

Theorem

```
Suppose that a functor
```

 $F: \mathbf{FinStat} \to [0, \infty]$

is lower semicontinuous, convex linear and vanishes on **FP**. Then for some $0 \leq c \leq \infty$ we have $F(f, s) = cRE_{fin}(f, s)$ for all morphisms (f, s) in **FinStat**.

Our theorem

Theorem

Suppose that a functor

 $F:\mathbf{SbStat}\to [0,\infty]$

is lower semicontinuous, convex linear and vanishes on **FP**. Then for some $0 \le c \le \infty$ we have F(f, s) = cRE(f, s) for all morphisms.

Proof ideas: Our RE restricts to **FinStat** with the properties required for the Baez-Fritz theorem. We exploit density of finitely-supported measures, some tricky carving up of sets (mimicking known ideas), weak convergence and lower-semicontinuity.

Conclusions

- Functorial characterization of relative entropy on standard Borel spaces.
- Hope to link up with the theory of Bayesian inversion on such spaces.
- Ultimately hope to connect with learning.