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Motivation

Exciting new developments in understanding Bayesian
inversion: Danos, Garnier, Dahlqvist, Clerc.
Much more sophisticated understanding of categorical
probability on Borel spaces.
Theoretical underpinnings of learning.
Categorical characterization of relative entropy for distributions
on finite sets: Baez, Fritz, Leinster.
Entropy plays a crucial role in rate of convergence of learning
processes.
First step: extend categorical characterization of relative
entropy to a more general class of spaces: standard Borel
spaces.
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Summary

Background: standard Borel spaces, Giry monad, SRel,
disintegration
Categorical setting
Relative entropy as a functor
Uniqueness
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Polish spaces and standard Borel spaces

Basic definitions of measure theory do not mention topology
but everything works best when the σ-algebra comes from the
topology of a metric space.
A Polish space is the topological space underlying a complete
separable metric space.
Start with a metric space as above and forget the metric but
remember the topology.
Note, a space like (0, 1) is Polish even though it is not
complete in its “usual” metric. It can be given a complete
metric and is homeomorphic to (0,∞).
A standard Borel space: take a Polish space, forget the
topology but remember the Borel sets.
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Categories

Pol: Objects Polish spaces, morphisms are continuous
functions.
StBor: Objects standard Borel spaces, morphisms are
measurable functions.
Obvious forgetful functor U : Pol −→ StBor is not full.
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The Giry monad on Mes I

Her name is actually Gìry; but I will just write Giry.
Actually proposed by Lawvere in 1964 in an unpublished
manuscript.
Mes: Objects are sets equipped with σ-algebra (X,σ),
morphisms are measurable functions.
Γ : Mes −→Mes γ((X,Σ)) = {p|p : Σ −→ [0, 1]}; here p is a
probability measure.
For A ∈ Σ define evA : Γ(X) −→ [0, 1] by evA(p) = p(A).
Give Γ(X) the smallest σ-algebra that makes all the evA
measurable.
f : (X,Σ) −→ (Y,Λ) maps to Γ(f) : Γ(X) −→ Γ(Y) by
Γ(f)(p)(B ∈ Λ) = p(f−1(B)).
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The Giry monad on Mes II

δx is the Dirac measure at x or point mass: δx(A) = 1 if
x ∈ A and 0 if x 6∈ A.
ηX : X −→ Γ(X) is given by ηX(x) = δx.
µX : Γ2(X) −→ Γ(X) is given by

µX(Ω)(A) =

∫
Γ(X)

evAdΩ.

This gives the “average” measure of A using Ω to do the
weighting.
Equations have to be checked; they all follow from the
monotone convergence theorem.
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The Giry monad on Pol

G : Pol −→ Pol. G(X) is the set of Borel probability measures
on X. We need to make it into a topological space.
The weak topology on G(X): given by an explicit base of open
sets. Basic open neighbourhood of p:

Bf1,...,fn;ε1,...,εn := {q :∈ G(X) : |
∫
fidp−

∫
fidq| < εi, i = 1, . . .n}

where fi are bounded continuous functions and εi are positive
real numbers.
pn ⇒ p if for any bounded continuous function f,∫
fdpn −→

∫
fdp. Weak convergence.

The integrals are what one can “see” about a measure.
Same η,µ as for Γ . One has to check that they are continuous
functions now.
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Relating G and Γ

Let B be the forgetful functor from Pol to StBor. It is clearly
faithful. There is a natural transformation θ : B ◦ G −→ Γ ◦ B.

Pol StBorG
B

Γ

The proof is not obvious; it follows from Theorem 17.24 of
Classical Descriptive Set Theory by Kechris.
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The Kleisli category of a monad

For a monad T : C −→ C, we define a new category CT with the
same objects as C.
A morphism f : A −→ B in CT is a morphism f : A −→ TB in C.

Compose A f−→ B
g−→ C in CT by composing

A
f−→ TB

Tg−→ T2C
µC−→ TC in C.

One can think of this as a category of “free” algebras.
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The Kleisli category of Γ

Morphisms h : (X,Σ) −→ (Y,Λ) are measurable functions
h : X −→ Γ(Y).
But Γ(Y) is Λ −→ [0, 1] (with some conditions).
So h : X×Λ −→ [0, 1] with h(·,B) a measurable function and
h(x, ·) a measure. Markov kernels.

Composition X h−→ Y
k−→ Z is, in terms of kernels

(k ◦ h)(x,C ⊂ Z) =
∫
Y

k(y,C)dh(x, ·).

Probabilistic relations, composing by integration.
Infinite-dimensional matrix multiplication.
This is what Lawvere defined in 1964: probabilistic mappings.
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Some notation

We write ◦̃ for Kleisli composition.
(k ◦̃ h)(x,C ⊂ Z) =

∫
Y k(y,C)dh(x, ·).

A measure on (X,Σ) can be viewed as a Kleisli arrow from the
one-point space 1 = {?} to (X,Σ).
If s : Y −→ Γ(X) and q : 1 −→ Γ(Y) we have

(s ◦̃ q)(?)(A ∈ Σ) =
∫
Y

s(y,A)dq.

This is just a measure on (X,Σ).
I am going to write X instead of (X,Σ) henceforth, unless it is
really necessary to emphasize the Σ.
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Radon-Nikodym theorem

If we have two measures p,q on a measurable space X we say
q is absolutely continuous with respect to p, if for any
measurable set A, p(A) = 0 implies that q(A) = 0. Notation:
q� p.

Given a measurable space (X,Σ) if a (σ-)finite measure q is
absolutely continuous with respect to a (σ-)finite measure p on
(X,Σ), then there is a measurable function f : X→ [0,∞), such
that for any measurable subset A ⊂ X, q(A) =

∫
A f dp.

The function f is unique up to a p-null set and is called the
Radon-Nikodym derivative, denoted by dq

dp .
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Disintegration

Disintegration

Let (X,Σ,p) and (Y,Λ,q) be two standard Borel spaces with
probability measures, where q is q := p ◦ f−1 and f is measurable
f : X→ Y. Then, there exists a family of probability measures
{py}y∈Y on X such that

(i) the function y 7→ py(B) is measurable for each B ⊂ X;
(ii) the fiber f−1(y) has py-measure 1: for q-almost all y ∈ Y;
(iii) for every Borel-measurable function h : X→ [0,∞],∫

X

h dp =

∫
Y

∫
f−1(y)

h dpydq.
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Kernels from disintegration

Write py(·) : Λ −→ [0, 1] as p(y, ·)
then view p : X×Λ −→ [0, 1].
Such a p is measurable in its first argument and a measure in
its second. It is exactly a kernel.
We will write py or p(y, ·) or p(y) as we find convenient.
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Overview

We follow Baez and Fritz’s approach first with finite sets.
We generalize to standard Borel spaces.
We use the Baez-Fritz result as a major building block.
Our work does not diminish or replace their work.
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Coherence

(X,σ,p), (Y,Λ,q) standard Borel spaces equipped with
probability measures.
A pair (f, s) with f : X −→ Y and s : Y −→ Γ(X) is said to be
coherent if
(i) f is measure preserving, i.e. q = p ◦ f−1, and
(ii) s(y)(f−1(y)) = 1. [Support condition]
(iii) If, in addition, p� s ◦̃ q, we say that (f, s) is absolutely
coherent.
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The category FinStat

Objects : Pairs (X,p) where X is a finite set and p a
probability measure on X.
Morphisms : Hom(X, Y) are all coherent pairs (f, s),
f : X→ Y and s : Y → Γ(X).
We compose arrows (f, s) : (X,p)→ (Y,q) and
(g, t) : (Y,q)→ (Z,m) as follows:
(g, t) ◦ (f, s) := (g ◦ f, s ◦̃fin t) where ◦̃fin is defined as

(s ◦̃fin t)z(x) =
∑
y∈Y

tz(y)sy(x).
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What it means

We think of X as the space we are investigating and Y as the
space of observations. f is the observation map and s then
describes what we think the distribution over X is given our
observation.
We say that a hypothesis s is optimal if p = s ◦̃fin q, or
equivalenty, if s is a disintegration of p along f .
We denote by FP the subcategory of FinStat consisting of the
same objects, but with only those morphisms where the
hypothesis is optimal.
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The category SbStat

Objects : Pairs (X,p) where X is a standard Borel space and
p a probability measure on the Borel subsets of X.
Morphisms : Hom(X, Y) are all coherent pairs (f, s),
f : X→ Y and s : Y → Γ(X).
We compose arrows (f, s) : (X,p)→ (Y,q) and
(g, t) : (Y,q)→ (Z,m) as follows:
(g, t) ◦ (f, s) := (g ◦ f, s ◦̃ t).
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A graphical notation

(X,p) (Y,q) (Z,m)

f

s

g

t

=========⇒
Composition

(X,p) (Z,m)

g◦f

s ◦̃ t

.
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Basic facts

Given coherent pairs the composition is coherent. If, in addition,
they are absolutely coherent, the composition is absolutely
coherent.
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Lawvere’s amazing category [0,∞]

Objects : One single object: •.
Morphisms : For each element r ∈ [0,∞], one arrow
r : • → •.
Arrow composition is defined as addition in [0,∞].
This is a remarkable category with monoidal closed structure
and many other interesting properties.
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Entropy

Given a probability distribution p on a finite set X, the
entropy of p is

H(p) = −
∑
x∈X

p(x) lnp(x).

In computer science we usually use log2 to count bits; it only
changes an overall multiplicative factor.
If we are transmitting information about the outcome of a
process that produces a result in X with distribution p, the
optimal code will use H(p) expected number of nits (bits).
We always assume 0 ·∞ = 0.
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Relative entropy

If we have two distributions p,q the relative entropy between
them is KL(p,q) = −

∑
x∈X p(x) ln

p(x)
q(x) .

Often called the Kullback-Leibler divergence.
It is always positive (Jensen).
It is not symmetric and does not satisfy the triangle inequality.
If you design your optimal code thinking that the correct
distribution is q when in fact it is p, KL(p,q) measures how
many extra nits (bits) you will need.
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Bayesian inference

Let X = {1, 2, . . . ,n} be a finite set of outcomes.
G(X) is the simplex ∆(n−1). We want to estimate an unknown
distribution p over X by taking samples and updating out prior
beliefs.
The prior belief is a distribution over G(X) i.e. an element of
G2(X); say µ.
After observing N samples we want to update µ. We use
Bayes’ theorem.
We denote by q the empirical distribution obtained by
sampling.
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Bayesian updating

Bayes

µ(p|q) =

Prior︷︸︸︷
µ(p) ·

Likelihood︷ ︸︸ ︷
µ(q|p)

µ(q)︸︷︷︸
Normalizing

.
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The role of relative entropy

The crucial quantity is the likelihood. How does it grow with N?

Likelihood growth

µ(q|p) ≈ e−N·RE(q,p).

The relative entropy controls the rate of convergence of the
learning process.
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Relative entropy on FinStat

The functor RE is from FinStat to [0,∞].
Objects : Maps every object (X,p) to •.
Morphisms : Maps a morphism (f, s) : (X,p)→ (Y,q) to
Sfin(p, s ◦̃fin q),
where

Sfin(p, s ◦̃fin q) :=
∑
x∈X

p(x) ln

(
p(x)

(s ◦̃fin q)(x)

)
.
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Relative entropy on SbStat

Again the target is [0,∞].
Objects : Maps every object (X,p) to •.
Morphisms : Maps every absolutely coherent morphism to
(f, s) : (X,p)→ (Y,q) to S(p, s ◦̃ q) , where

S(p, s ◦̃ q) :=
∫
X

log

(
dp

d(s ◦̃ q)

)
dp,

where dp
d(s ◦̃ q) is the Radon-Nikodym derivative and otherwise

maps to ∞.
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Prop: RE is indeed a functor

RE

(
(X,p) (Y,q) (Z,m)

f

s

g

t )
=

RE

(
(X,p) (Y,q)

f

s )
+ RE

(
(Y,q) (Z,m)

g

t )
.

Quite long, with some lemmas and calculations and tedious case
analyses.
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Localization of relative entropy

Given an arrow (f, s) : (X,p)→ (Y,q) in StBor and a point
y ∈ Y, we denote by (f, s)y, the morphism (f, s) restricted to
the pair of standard Borel spaces f−1(y) and {y}.
Equivalently,

(f, s)y := (f|f−1(y) , sy) : (f
−1(y),py) −→ ({y}, δy),

where δy is the unique probability measure on {y}.
(f, s)y is the local relative entropy of (f, s) at y.

RE((f, s)y) =

{∫
f−1(y) log

(
dpy

d(s ◦̃ q)y

)
dpy if py � (s ◦̃ q)y∞ otherwise.
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Convexity

Definition
A functor F from SbStat to [0,∞] is convex linear if for every
arrow (f, s) : (X,p)→ (Y,q), we have

F ((f, s)) =

∫
Y

F ((f, s)y) dq.

Theorem
RE is convex linear, i.e., for every arrow (f, s) : (X,p)→ (Y,q), we
have

RE((f, s)) =

∫
Y

RE ((f, s)y) dq.
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Lower-semicontinuity

Definition
A functor F from SbStat to [0,∞] is lower semi-continuous if for
every arrow (f, s) : (X,p)→ ({y}, δy) there is an admissible
topology on X such that whenever pn ⇒ p and sn ⇒ s, then

F

(
(X,p) ({y}, δy)

f

s )
6 lim inf

n→∞ F
(
(X,pn) ({y}, δy)

f

sn )
.

Note the awkwardness of dealing with topological and
measure-theoretic issues.
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Theorem

RE is indeed lower-semicontinuous.

Follows from well-known results in information theory [Posner].
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Baez and Fritz’s theorem

Theorem
Suppose that a functor

F : FinStat→ [0,∞]

is lower semicontinuous, convex linear and vanishes on FP. Then
for some 0 6 c 6∞ we have F(f, s) = cREfin(f, s) for all
morphisms (f, s) in FinStat.
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Our theorem

Theorem
Suppose that a functor

F : SbStat→ [0,∞]

is lower semicontinuous, convex linear and vanishes on FP. Then
for some 0 6 c 6∞ we have F(f, s) = cRE(f, s) for all morphisms.

Proof ideas: Our RE restricts to FinStat with the properties
required for the Baez-Fritz theorem. We exploit density of
finitely-supported measures, some tricky carving up of sets
(mimicking known ideas), weak convergence and
lower-semicontinuity.
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Conclusions

Functorial characterization of relative entropy on standard
Borel spaces.
Hope to link up with the theory of Bayesian inversion on such
spaces.
Ultimately hope to connect with learning.
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