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Summary

Labelled Markov processes are probabilistic transition
systems with continuous state spaces.
We had developed a theory of bisimulation, proved a
logical characterization theorem, defined metrics and
developed three approximation theories.
Proofs seemed to depend on subtle topological conditions.
Why?
Take a predicate transformer view and dualize everything.
Everything works like magic!
Bisimulation should never have been defined as a span!
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What is an LMP?

Probabilistic transition system with a (possibly) continuous
state space.

Model and reason about systems with continuous state
spaces or continuous time evolution or both.
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Some Examples

brownian motion, gas diffusion,...

population growth models,

changes in stock prices,

performance modelling,

probabilistic process algebra with recursion,

hybrid control systems; e.g. flight management systems.
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Labelled Markov Processes

Labelled transition systems where the final state is
governed by a probability distribution - no other
indeterminacy.

All probabilistic data is internal - no probabilities associated
with environment behaviour.

Interaction is by synchronizing on labels. For each label
there is a Markov process described by a stochastic kernel
(probabilistic relation).

We observe the interactions - not the internal states.
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The Formal Definition

A labelled Markov process

with label set A is a structure

(S,Σ, i , {τa | a ∈ A}),

where S is the set of states, i is the initial state, and Σ is the
σ-field on S, and

∀a ∈ A, τa : S × Σ −→ [0, 1]

is a transition sub-probability function.
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Transition Probability Functions

τ : S × Σ −→ [0, 1]

for fixed s ∈ S, τ(s, ·) : Σ → [0, 1] is a subprobability
measure;

for fixed A ∈ Σ, τ(·, A) : Σ → [0, 1] is a measurable
function.

This is the stochastic analogue of a binary relation so we
have the natural extension of a labelled transition system.
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LMPs as Coalgebras

There is a monad defined by Gìry in 1981:

Γ : Mes −→ Mes

given by

Γ((X , SigmaX )) = {ν|ν is a probability measure on ΣX}

and given f : (X ,ΣX ) −→ (Y ,ΣY )

Γ(f )(ν : Γ(X )) = λB : ΣY .ν(f−1(B)).

LMPs are coalgebras for this monad.
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Bisimulation as a Span

Define a zig-zag to be a measurable function between LMPs
(X ,ΣX , τa) and (Y ,ΣY , ρa) such that

τa(x , f−1(B)) = ρa(f (x), B).

�

�

�

�
This is exactly the notion of co-algebra homomorphism.

We say two systems are bisimilar if there is a span of zig-zags
connecting them.
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Is bisimulation transitive?

Ideally we would like to be able to construct pullbacks.

Unfortunately, they do not exist in general.

Weak pullbacks will do (works for example in ultrametric
spaces).

Unfortunately even weak pullbacks do not exist!

Edalat showed how to construct semi-pullbacks (with great
pain!)

and Doberkat improved and generalized the construction.
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Bisimulation à la Larsen and Skou

Let S = (S, i ,Σ, τ) be a labelled Markov process. An
equivalence relation R on S is a bisimulation if whenever
sRs′, with s, s′ ∈ S, we have that for all a ∈ A and every
R-closed measurable set A ∈ Σ, τa(s, A) = τa(s′, A).
Two states are bisimilar if they are related by a bisimulation
relation.
Can be extended to bisimulation between two different LMPs.
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Co-bisimulation

Define the dual of bisimulation using co-spans.

X

f ��?
??

??
??

Y

g��~~
~~

~~
~

Z

This always yields an equivalence relation because pushouts
exist by general abstract nonsense.

This seems to be independently due to Bartels, Sokolova and
de Vink and Danos, Desharnais, Laviolette and P.
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A Modal Logic

L ::== T|φ1 ∧ φ2|〈a〉qφ

We say s |= 〈a〉qφ iff

∃A ∈ Σ.(∀s′ ∈ A.s′ |= φ) ∧ (τa(s, A) > q).

Two systems are bisimilar iff they obey the same formulas of L.

This depends on properties of analytic spaces and quotients of
such spaces under “nice” equivalence relations.
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Modal Logic and Co-bisimulation

The theorem that the modal logic characterizes co-bisimulation
is (relatively) easy and works for general measure spaces.

It does not require properties of analytic spaces.

For analytic spaces the two concepts coincide.
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Provocative Slogan

Co-bisimulation is the real concept; it is only a coincidence that
bisimulation works for discrete systems.
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Finite Approximations 1

Our main result: A systematic approximation scheme for
labelled Markov processes.

The set of LMPs is a Polish space. Furthermore, our
approximation results allow us to approximate integrals of
continuous functions by computing them on finite approximants.
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Finite Approximations 2

For any LMP, we explicitly provide a (countable) sequence
of approximants to it such that:

For every logical property satisfied by a process, there is an
element of the chain that also satisfies the property.

The sequence of approximants converges – in a certain metric
– to the process that is being approximated.
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The Approximation Construction

Given a labelled Markov process S = (S,Σ, τ), an integer
n and a rational number ǫ > 0, we define S(n, ǫ) to be an
n-step unfolding approximation of S.

Its state-space is divided into n + 1 levels which are
numbered 0, 1, . . . , n.

A state is a pair (X , l) where X ∈ Σ and l ∈ {0, 1, . . . , n}.

At each level, the sets that define states form a partition of
S. The initial state of S(n, ǫ) is at level n and transitions
only occur between a state of one level to a state of one
lower level.
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Approximating the Transition Probabilities

What is the transition probability between A and B (sets of
states of the real system)?

ρ(A, B) = inf
x∈A

τ(x , B).

�

�

�

�
This is an under approximation.
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Improvements

Sometimes the approximation is “spectacularly dumb”; it
unwinds loops that should not be unwound.

Danos and Desharnais fixed this but their approximants
had measures that were not additive.

DDP fixed this by using averaging rather than under
approximating.

This required a very restrictive condition in order to get rid
of the problem that in measure theory things are defined
upto sets of measure 0.
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Dualize Everything!

An LMP is not to be thought of not as τ : X × ΣX −→ [0, 1] but,
rather as a function f 7→ τ(f ) where

τ(f )(x) =

∫
X

f (x ′)τ(x , dx ′).

In other words as a “function” transformer:

the quantitative analogue of a “predicate transformer.”
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Functions as Formulas

A function on the state space describes partial information
about the state of the system.

Example

The function 1B says that the state is somewhere in B.

Kozen’s Analogy

Logic Probability
s state P distribution

φ formula χ random variable
s |= φ

∫
χdP
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LMPs as Predicate Transformers

Given a Markov kernel τ on X we define a linear operator τ̂

on bounded real-valued functions as

τ̂(f )(x) =

∫
X

f (y)τ(x , dy).

Given a probabilistic predicate φ on X we interpret φ(x) as
the probability that x satisfies φ.

Then τ̂ (φ)(x) is the probability that after a transition x
satisfies φ.

In other words τ̂ is the weakest precondition.
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AMPs

An abstract Markov process on a probability space is a
linear operator on a space of almost-everywhere bounded
real-valued functions.

I am skipping the exact details but if you really want to
know it is L∞(X , P).

Note that there is now an underlying measure on the state
space.

We can forget the points and just think of everything
pointlessly!
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What is Averaging?

Given a real-valued function f defined on a probability space
(X ,Σ, P), we define the expectation (average) value of f to be

〈f 〉 =

∫
X

f (x)dP.

Here P is a probability distribution on X and f is assumed to be
measurable with respect to Σ.
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What Measurable Really Means

To say that f : (X ,Σ) −→ R is measurable means that f
does not vary “too fast.”

Imagine that there are some “minimal” measurable sets: f
must be a constant on them.

Of course Σ usually includes individual points but what if it
did not?
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Coarsening a σ-algebra

Suppose that we have Λ ⊂ Σ. Then a Λ-measurable
function has to be constant on minimal Λ sets.

Thus a smaller σ-algebra means that we do not have such
a refined view of the state space.

Constructing approximations means making coarser
σ-algebras rather than just clustering the points.
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Conditional Expectation

Suppose we have (X ,Σ, P) and Λ ⊂ Σ. Suppose that we are
given f , real-valued and Σ-measurable.

Theorem

There exists a Λ-measurable function, written E(f |Λ) such that
for any B ∈ Λ ∫

B

∫
fdP =

∫
B

E(f |Λ)dP.

In other words, there is a smoothed-out version of f that is too
crude to see the variations in Σ but is good enough for Λ.
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Co-spans Rule!

The definition of bisimulation naturally becomes dualized.

Bisimulation

Two AMPs are bisimilar if there is a cospan of zigzag
morphisms relating them.

It is fairly easy to show that bisimulation is transitive.

Much easier than when using spans!

Completely general: works for all measurable spaces.
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The Smallest Bisimulation

Given an AMP X , one can show the existence of a
smallest bisimilar process X̃ .

This is unique up to isomorphism.

The σ-algebra can be obtained from the modal logic.

Chaput, Danos, Panangaden, Plotkin Approximating Markov Processes, Again!
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Approximations

Let τ be an AMP on (X ,Σ) and we want to define an AMP Λ(τ)
on (X ,Λ).
The approximation scheme of DGJP (2000,2003) yields this
diagram:

(X ,Σ)

i
��

L+
∞

(X ,Σ)
τ // L+

∞
(X ,Σ)

EΛ

��
(X ,Λ) L+

∞
(X ,Λ)

(·)◦i

OO

Λ(τ)
// L+

∞
(X ,Λ)
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Our Scheme

We generalize the previous diagram to any measurable map α,
by constructing a functor E(·).

(X ,Σ)

α

��

L+
∞

(X ,Σ)
τ // L+

∞
(X ,Σ)

Eα

��
(Y ,Λ) L+

∞
(Y ,Λ)

(·)◦α

OO

α(τ)
// L+

∞
(Y ,Λ)
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Finite Approximants from the Logic

We use the logic as follows. Take a finite set Q of rationals
in [0, 1] and a natural number N.

Consider formulas with nesting depth up to N and using
only members of Q.

Take the sets denoted by these formulas and look at the
σ-algebra generated. This gives a finite σ-algebra which is
a sub-σ-algebra of Σ.

Use conditional expectations as described above to
produce the approximation.
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A Projective System

As we vary over Q and N we get a projective system.

Such systems have projective limits with nice properties
[Choksi 1958].

The projective limit is exactly the smallest bisimilar
process. [Our main technical result]
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What We Did

We dualized LMPs to AMPs and defined a category of
AMPs where the arrows behave as generalized
projections.
We defined a conditional expectation functor.
Bisimulation is defined by a co-span and
is characterized by a modal logic.
There is a smallest bisimilar process for any given AMP.
We gave an approximation scheme
that reconstructs the smallest bisimilar process as a
projective limit.
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What Is To Be Done?

We need to implement the approximation scheme.
Actually Philippe has done this using a Monte Carlo
scheme, but we do not yet have a proof that it works
correctly.

We would like to define metrics.

I would like to push the dual view of bisimulation to (all)
other settings.
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