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Abstract

We define an epistemic logic for labelled transition systems by intro-
ducing equivalence relations for the agents on the states of the labelled
transition system. The idea is that agents observe the dynamics of the
system modulo their ability to distinguish states and in the process learn
about the current state and past history of the execution. This is in the
spirit of dynamic epistemic logic but is a direct combination of Hennessy-
Milner logic and epistemic logic. We give an axiomatization for the logic
and prove a completeness theorem with respect to the class of models
obtained by unfolding labelled transition systems.

1 Introduction

Concurrency theory has been built upon the implicit assumption of omniscience
of all the agents involved, but for many purposes — notably security applications
— it is crucial to incorporate and reason about what agents “know” or do not
know. Tracking the flow of information is the essence of analyses of security
protocols. Equally crucial is the idea that different participants may have dif-
ferent views of the system and hence know different things. The purpose of this
paper is to meld traditional concurrency concepts with epistemic concepts and
define a logic with both dynamic and epistemic modalities.

Epistemic logic has been a major theme within distributed systems ever since
the groundbreaking paper of Halpern and Moses [HM84], but has been strangely
slow to influence concurrency theory. A few investigations have appeared but, as
far as we know, there has not been a thorough integration of epistemic concepts
with the traditional theory of labelled transition systems. Typically one sees a
multimodal logic closely tied to the syntax of some particular process calculus
with reasoning principles that are not proven complete in any sense [CDKO09].
Such logics are interesting and useful but their close tie to a particular pro-
cess formalism obscures the general principles. Another closely related strand



is, of course, dynamic epistemic logic [vDvdHKO8] which, as the name makes
manifest, is all about how knowledge evolves. However, the bulk of this work
is about actions that communicate information, perhaps through messages or
announcements, rather than about general transitions that could change basic
facts about the state. A few papers indeed deal with so-called fact-changing
actions but, as far as we know, the theory is still geared toward communication
actions. Our goals are to develop the theory for a suitable general class of la-
belled transition systems and to formulate axioms that are provably complete
with respect to this class of models. We provide more detailed comparisons with
related work in a later section after the presentation of our framework.

The standard route to modelling epistemic concepts is to use Kripke models:
these are sets of states equipped with indistinguishability (equivalence) rela-
tions [FHMV95]. We will equip the states with a labelled transition system
structure as well and impose coherence conditions between the two kinds of
relations. The resulting modal logic is a blend of Hennessy-Milner logic, epis-
temic logic and temporal modalities. The essential point is that one can reason
about how knowledge changes as transitions occur. There are many variations
that one could contemplate and the particular formalism that we have devel-
oped is geared toward representing the unfolding of a labelled transition system
through time taking into account different agents’ differing views of the labelled
transition system.

The paper is organized as follows. In the next section we review background
material on labelled transition systems and Hennessy-Milner logic. In Section 3
we define the class of transition systems that we work with; they are called
history labelled transition systems and are unfoldings of the usual labelled tran-
sition systems. In Section 4 we define the logic and its semantics. In Section 5
we prove the weak completeness theorem. There is an easy argument, which
we present in Section 5, that shows that a strong completeness theorem is not
possible. The final sections discuss related work and conclusions.

2 Background

We assume familiarity with basic concepts like labelled transition systems (LTSs)
and epistemic logic. For the benefit of readers who may not be familiar with
these ideas we give a brief overview in this section. An excellent exposition
of general modal logics is the text book by Blackburn et al. [BARV01] called
Modal Logic.

Definition 2.1. A [abelled transition system is a triple (S, 4, —C S x A x S),
where S is a set of states, A is a set of actions and — is a labelled transition
relation. We will write = as’ when (s,a,s') €—.

The idea is that S represents the possible states of a dynamical system. The
system can perform certain actions and these cause a change in the state. The
resulting state is not completely determined by the initial state and the action
so that one has a transition relation rather than a function. Some actions may



not be possible in some states, if an action a is possible from state s we say
that a is enabled in s.

There are various senses in which states may be deemed to be equivalent. A
canonical one is called bisimulation. The idea of bisimulation is that if the
actions possible from two states and their successors do not distinguish them,
they should be deemed equivalent. Here is a formal definition.

Definition 2.2. We say that an equivalence relation R on the state space S of
an LTS is a bisimulation relation if whenever sRt and — as’ then there exists
some #' such that - at’ with s'Rt’. We say that s and ¢ are bisimilar if there
is some bisimulation relation relating them.

Since R is required to be an equivalence relation it follows that the analo-
gous condition holds with the roles of s and ¢ exchanged. The properties
of bisimulation are discussed at length in the concurrency theory literature,
see, for example [Mil89, Mil90] or in the modal logic literature, see, for exam-
ple [Pop94].

There is a remarkable theorem due independently to van Benthem and to Hen-
nessy and Milner that gives a modal characterization of bisimulation. The logic
has come to be called Hennessy-Milner logic. The basic constructs are the
boolean connectives and a modal operator written (a) or its dual [a], where
the a’s appearing in the formulas are actions associated with the LTS being
studied. The definition of satisfaction for these formulas follows the standard
inductive construction due to Tarski with only the modal operator requiring
explicit explanation. This is given by s |= (a)¢ iff = as’ and s’ = ¢. The
fundamental theorem is the following.

Theorem 2.3. Assume that (5,4, —) is a labelled transition system with
the property that for a given s and a the set of §' such that - as’ is finite!.
Then two states s and ¢ are bisimilar iff they satisfy all the same formulas of
Hennessy-Milner logic.

The basic setup for modelling epistemic logic is due to Kripke [Kri63]; see
Reasoning About Knowledge by Fagin et al. [FHMV95]. Consider the set S of
possible states? of some system. We have a finite set of agents, typically written
Z ={i,j,...}. We define a modal operator — one for each agent — written Kj.
The idea is that the formula K;¢ means that the agent ¢ knows the fact ¢. The
axioms usually used are due to Hintikka [Hin62]:

0. All propositional tautologies.

1. Kip=0¢ Only truths can be known.
2. Ki(o=1v)= (Kip= K Deductive closure.

3. K;¢o=K;K;¢ Positive introspection.

4. K¢ = K;—K;¢ Negative introspection.

!Such systems are said to be image finite.
2They are often called possible worlds in the philosophical literature.



These are used together with the following rule of inference.

¢
K;¢

The semantics for this logic is given in terms of indistinguishability relations.
The idea is that a particular agent has only limited awareness of everything
that might be true in a state. In particular, an agent might not be able to
distinguish two states. We associate with each agent an equivalence relation
that models its ability to distinguish two states.

Definition 2.4. A Kripke structure is a set S of states, a finite set Z of agents,
a set P of primitive propositions, for each state s a set m(s) C P and for each
i € Z an equivalence relation ~; on S.

The meaning of an atomic proposition is built into the definition of the Kripke
structure: s |= p iff p € 7(s); the meaning of the boolean connectives is stan-
dard. We define the meaning of the modal formula as follows: s = K;¢ iff for
every state s’ such that s ~; §', s’ = ¢. The fundamental completeness theorem
is that a formula is provable from the Hintikka axioms iff it is true in all Kripke
structures.

3 Histories

The main contribution of this paper is to study how an agent’s knowledge
changes as transitions occur in a labelled transition system. The basic picture
is that the agent has a limited view of the states of the labelled transition
system and this is modelled by an equivalence relation on the states of the
system just as in a Kripke structure. The agent does not choose the actions to
perform but can see which action has happened and tries to deduce from this
where it is. Our temporal-epistemic logic will be designed to handle this type
of reasoning.

The semantics of the formulas will be given in terms of histories or runs, as
with the semantics of Halpern and Moses [HM84, HM90], but we view the runs
as coming from the executions of a labelled transition system (LTS). In fact, we
will view the set of runs as forming a labelled transition system in its own right.
This will give a “branching-time” logic rather than a linear-time logic. We will
use the box and diamond modalities of Hennessy-Milner logic [HM85] rather
than the “always” and “eventually” modalities of temporal logic. In this section,
we motivate the need for this particular combination of modalities.

The basic set up for a purely epistemic (static) logic is a set of states with
equivalence relations, one for each agent. If we wish to incorporate this into a
given labelled transition system the natural step is to define equivalence rela-
tions on the states of the labelled transition system. If one does this naively
one gets situations where one cannot say what an agent has learned from its
history.



Example 3.1. Consider the following simple labelled transition system:

where the wiggly line refers to the indistinguishability equivalence relation of
agent ¢ and the proposition p holds in the state s3 and in no other state. The
agent ¢ in state sg cannot tell whether he is in sg or on s;. Similarly, in so he
cannot tell whether he is in sg or in s3. However, if the agent is in sy and then
observes an a action then he “knows” he must have been in sg and further than
he is in s now. No purely state-based semantics can say this. It is only because
the agent “remembers” how he got there that one can say anything. Thus, a
purely state based semantics is not adequate for even the simplest statements
about evolving knowledge. &

The basic paradigm that we have in mind is that the agent is observing a tran-
sition system: the agent can see the actions and can remember the actions but
cannot control the actions nor see which actions are available at a given state.
The extent to which an agent can “see” the state is what the indistinguishability
relation spells out.

In order to give the semantics of the epistemic modalities we need to extend the
equivalence relation from states to histories. We formalize, labelled transition
systems, histories and this equivalence relation as follows.

Definition 3.2. A labelled transition system is a set of states, .S, a finite
set of actions A, and, for every a € A, a binary relation, written —s, on the
states. We write s —— s’ instead of (s,s’) €—%+. In addition, there is a finite
set of agents, denoted by letters like %, 7,.... For each agent ¢ there is an
equivalence relation, written ~; defined on S.

The relation — can be nondeterministic and does not have to be image-finite?.
We also assume that all actions are visible, there are no hidden actions com-
monly denoted by 7 .

Definition 3.3. A history is a finite alternating sequence of states and actions

50@181G283 . . . A4Sy,

a
where, for each [ € {0,...,n — 1}, s ELLLINEE

Given a pair of histories, an agent can tell immediately that they are not the
same if they do not have exactly the same action. In order to say this it will be
convenient to define the notation act(h) to mean the action sequence extracted
from the history h, it has an evident inductive definition. Given a history h, we
write h[n] for the n'® state in h. Thus if h = spa;s1a952a3s3, act(h) = ajasas

3“Image finite” means that for a given s and a the set {s'|s — s'} is finite.



and h[0] = sp while h[2] = so. We write |h| for the length of the sequence of
states in h.

Definition 3.4. We say that the histories hy and ho are indistinguishable
by agent i, written hy ~; he, if: (i) act(h;) = act(hz) and (ii) for all 0 < n <
|ha|(= |hal), ha[n] ~; ha[n].

The use of the same notation for indistinguishability of states and histories
should not occasion anxiety for the reader as the context will disambiguate
which we mean; this usage is meant to emphasize the tight connection between
the concepts.

It is useful to have both past and future modalities. We will define the syntax
precisely in the next section, for the moment we note that (—) means one step
in the past and (+), means possibly after an a-step into the future. Consider
the labelled transition system we have used for our example above. Suppose we
introduce the proposition @s to mean “at the state s” then we want to be able
to say things like spase = K;{(—)@so. Note that we cannot say sg = K;@sq, so
we need the past operator to express the idea that agent ¢ learns where he was,
or, in general, learns that a fact used to be true. Note that, for this example,
spasy E (—)K;@sp does not hold.

Note that every history has a beginning, every state has a finite number of
predecessors: in short the prefix order on histories is well founded. This will
cause most of the difficulties in the completeness proof.

Example 3.5. Why do we need the Hennessy-Milner like modalities indexed
by actions? Consider the following simple labelled transition system:

which is like the previous example except for the addition of the extra state
and transition and the fact that p is true in s9 instead of s3. We would like to
be able to say so = (+).K;p. Note that s4 can be distinguished by ¢ from any
other state.

&

The logic, though its semantics is given in terms of runs, is actually a branching
time logic. It is applied to a very specific type of transition system that arises
as the set of histories of general labelled transition system. The “states” are
histories and the transitions are of the form

a
S04181 .. .0pSp — S0A1S1 ... ApSpaAS

whenever s, — s is a transition of the underlying labelled transition system.
The key features of these labelled transition systems of histories are: a well



foundedness property for the backward transitions, determinacy for the back-
ward transitions and a few other properties? In the course of the completeness
proof we will spell out these properties and then proceed with the axiomatiza-
tion and completeness theorem.

Example 3.6. Here is an example about why the identity of actions is impor-
tant.

If this system starts out in sg and an a action occurs, then agent ¢ will not know
which state he is in, because s; and sy are equivalent for the agent. But if the
system does a b action, then the agent knows he is in s; because he observes
the b action and s; is the only state that a b action leads to. Similarly, if the
system does a ¢ action, then the agent knows that the system is in s5. &

Example 3.7. This example shows why we want to be able to combine epis-
temic modalities and (past or future) temporal modalities. Here p represents

some proposition.

If the system starts out in sy or si, then after an a action, the agent does not
know whether p is true, but he does know that if p is true now, then it must
have been true in the first state, and if p is false now, it must have been false
in the first state. &

Example 3.8.

If this system starts out in sg or s; and then an a action occurs, then after the
action, the agent does not know whether p is true, but he knows that if p is
true now, then it was true in the start state. But he also knows that if p is not
true now, then p may or may not have been true in the start state. &

4In fact, such transition systems arise naturally as unfoldings of general labelled transition
systems.



3.1 History Systems

First we will explain how to translate any LTS with equivalence classes into
an equivalent history LTS: an LTS with designated starting states, where the
entire history of any run starting from a starting state is determined by its
current state.

Definition 3.9. Given the LTS (Sy, A, Z, T), ~Y), where Sy is the set of states,
A is the set of actions, Z the set of agents, —>C So x A x Sy is the transition

relation and ~°C Sy x T x Sy is the 1ndlst1ngu1shab1hty relation, inductively
construct the unfolding (S1,.A,Z, — , ey~ D), where —>C S1 X

+
A x Sq, —C S1 x A x Sy, —:—)Q S1 X S1 and ——i—)Q S1 X S, as follows.

1. If s € 5y then s € 5.
2. If sg.a1.81.a2...5, € S1 and s, %) s then sg.aq...s,.a.s € S1 and sg.aq...s,

a
— S0.41...Sp,.G.S.
+
a
3. If sg.a1...8,, Sg.a1...8,.a.s € S7 then sg.aq...sp.a.8 — S0.a1...5,
*
4. If sg.a1...8p, S0.01...8n-Gp41...0.8 € Sp then sg.ay...8, —> $0.G1...85.Ap41...0.S.
+

*
5. If sg.aq...5n, S0.Q1...5n.Apy1...a.5 € Sy then sg.aq...8y.0p41...06.5 — S0.a1...5p

6. If s,t € Sy and SN?tthen SNZ1 t.

7. If s,t € S and s ~} t and s %) s.a.s" and t %) t.a.t’ and s ~0 ' then

! /

s.a.s ~; t.a.t.
Definition 3.10. An LTS with agent equivalence classes and with transition
relations ———>C S1x Ax Sy, —C S1x Ax Sy, —:—)C S1 % S7 and ———>C S1 xSy

is called a hzstory LTS if it satlsﬁes the following properties:

1. Forward and backward transitions are converse: s —J—r—> tiff t -2 s.

2. There is only one way to reach each state: if s % t then for all states s’

and all actions b, if s’ —Jbr—> t then s = s’ and a = .

3. If we let = Udsea %), then % is the transitive reflexive closure of
—.
+
4. If we let —= {Jzeu %, then — is the transitive reflexive closure of
—.

5. There are no infinite backward paths: it is impossible to have an infinite
chain sq s1 Sn

6. ~; is transitive, reflexive and symmetric for each agent 1.



7. If s1 ~; t1 and there exists a state sy and an action a such that sg %) s1

then there exists a state ¢y such that ¢ % t1 and sg ~; to.

These properties capture the idea that a history LTS is exactly what we get
when we unfold the paths of an LTS with agent equivalence relations; a formal
proof is straightforward. At each stage there is possible future branching but
the past is determined in a particular history. Thus the past modalities are like
LTL modalities but not the future modalities. The starred modalities give one
the power of “always” and “eventually” operators in temporal logics. A history
is assumed to have a starting point so it must be well founded.

4 The Logic and its Semantics

In this section we present the logic. It allows us to discuss what is true at a
certain state, what was true in the past, what agents know at at the current
state, and what may or must be true in the future.

We assume a finite set of agents Z, a finite set of actions A, and a countable set
of propositions Q. In the following definition, a € A, i € Z, and q € Q.
Definition 4.1 (Syntax).

¢ = Tlgl(F)a@ [ ()ad [ () [ (=) [ Kid | ) [d AP

As usual, we assume the boolean constants 1. = p A —p and T = =L and the
boolean operators =, V, <= . In addition we define

[=la¢ = (=)o [+]a¢ = ~(+)am¢,

[=]"¢ = (=) wﬁ, [+]"¢ = ~(+)*~¢,

(—)¢ = \/ (—)ad, (+)¢ = \/ (+)ad,
acA a€cA

[=lo = ~(=)¢, [+l¢ = ~{+)—9.

In order to define the semantics we consider the (oriented) labeled graphs over
A. These capture sets of histories as we defined them in the previous section.
The nodes of the graph are states and the transitions are labelled by actions in
A. A path through the graph is a history.

If G = (S, %).e4 is a labelled graph, we denote by — the relation U < and
acA

by —*, the reflexive-transitive closures of — respectively.
Definition 4.2 (Labelled forest®). A labelled forest over A is a labelled graph

G = (S, %)4e4 such that
1. for arbitrary s,s’,s” € S, s — s and s” — s implies s’ = s”;

2. there exists no infinite sequence sq, s1, .., Sk, .. € S such that s;11 — s;
for each ¢ € N; i.e. it is well-founded to the past.

5We call it labelled forest because it is a set of labelled trees.



The support of a forest F, denoted by supp(F), is the set of its nodes. Give a
labelled forest F, we say that an equivalence relation ~C supp(F) X supp(F)
reflects the branching structure if whenever s & t, the existence of a transition
s’ % s implies the existence of t' € supp(F) such that ' % ¢t and s’ ~ t'. Notice
that this is a backward bisimulation property; it is a backward preservation
property.

Definition 4.3 (Epistemic Frame). Given a set Z (of agents), an epistemic
frame is a tuple € = (F,(~;)icz), where F is a labelled forest over 4 and
(=i)iez is an indexed set of equivalence relations on supp(F) such that for each
1 € I, =; preserves the branching structure.

We call the relation =; the indistinguishability relation of agent ¢ € Z. Observe
that an epistemic frame defines a unique history-LTS and a history-LTS is
supported by a unique epistemic frame.

In the following definition we write s, t,r with or without subscripts for states,
p and variants for propositions, ¢, for formulas and a for actions and ¢ for
agents.

Definition 4.4 (Semantics). The semantics is defined for an epistemic frame
€ = (F,(=i)iex), a state s € supp(F) and an interpretation function Prop :
supp(F) — 2%, as follows.

sET for all s.

skEp if p € Prop(s).

s = (+)ap  if there exists a state t such that s — ¢ and t |= ¢.

s = (—)q¢  if there exists a state r such that 7 — s and r = ¢.

s = (+)«¢  if there exist sy, ..., s, € S and ay, ..., a, € A such that

al as as an—1 Qn
s s 81 S9 Sp—1 sp, and s, = ¢.
s = (—)«¢  if there exist sg,...,sp,—1 € S and ay, ..., a, € A such that
al as an—1 an
S0 $1 Sp—1 —= s and so = ¢.
s = K¢ if for all t such that s ~; ¢, t = ¢.
s E ¢ if it is not the case that s = ¢.

sE01 ANpe if s|E ¢ and s | ¢o.

Now we have defined our basic operators. For convenience, we also define other

10



operators as shorthand for certain combinations of these basic operators:

acA
(=)o = \/<*>a¢
acA
[+]a¢ = _‘<+>a_‘¢
[_]a¢ = _‘<_>a_‘¢
[Ho = N [Hao
acA
[_]¢ - /\[_]a¢
acA
[H]:0 = (F)md
[« == (=)
Lip = —K;~¢

Note that [+]¢ = —(+)—¢ and [—]¢ = =(—)—¢. The semantics of these derived
operators are:

s = L never.

s = [+]a¢ iff for any t € supp(F) s.t. s S t, t = ¢,
s |= []ao iff for any t € supp(F) s.t. t = s, t = ¢,
s = [+]*¢ iff for any t € supp(F) s.t. s N t, t = o,
s = [—]*¢ iff for any t € supp(F) s.t. t st E .

If we have an epistemic frame &, a valuation is a map p : supp(F) — 27
which provides an interpretation of the propositions in the states of £. If a
formula ¢ is true in a given epistemic frame £ and state s with a valuation p
we write £,s,p = ¢ and we say that (£, s, p) is a model of ¢. In this case we
say that ¢ is satisfiable. Given an arbitrary ¢ € L, if for any epistemic frame
E = (F,(~i)iex), any state s € supp(F) and any valuation p, £,s,p = ¢ we
say that ¢ is valid and write |= ¢. We also write £, s, p = ®, where  is a set of
formulas if it models every formula in the set ®. We write I' = ¢ if any model
of I' is a model of ¢.

Example 4.5. Here is a more complicated example with multiple agents® which
we describe as an illustration of our logic.

The situation is as follows: There are three agents, one diamond, and a bag. The
diamond can either be held by one of the agents or it can be in the box. Each
agent can perform two actions: reach into the bag and take the diamond if it is
there, and drop the diamond into the bag, or pretend to drop it. After dropping
or pretending to drop the diamond, the agent shows the other agents that his
hands are empty, so it is impossible to keep the diamond while pretending to
drop it. On the other hand, if the agent does not have the diamond, he can

5This example was developed by Caitlin Phillips.
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still pretend to drop it in the box. If the agent reaches into the box to take the
diamond, he will take it if it is there, and will not take it if it is not there.

Here is the transition system:

Py, P;,P;,Dj,Dy

P;,Pj,P,D;,D; ( ) P;,Pj,P,D;,Dy

The agents are ¢, 7, and [. In state IV, no one has the diamond, and in states
I, J, and L, agents i, j, and [ respectively have the diamond. Action P;
represents agent 7 picking up or pretending to pick up the diamond and action
D; represents agent ¢ dropping or pretending to drop the diamond.

The equivalence classes are as follows:
N ~;J~; L
N~j;I~; L
N~ I~ J.

We use as propositions @I, QJ, QL and @QN; each proposition is true only in
the corresponding state and in each state only the corresponding proposition is
true. For example, the only proposition true in state I is @QI. We write Prop
for this set of 4 propositions. Now we consider the formulas

T N X =KX
X €eProp

¢ = (=)p@QN

¢35 = \/ KX
X eProp

The first formula says that if any of the propositions are true then [ knows it: in
short [ knows where the diamond is. Of course this formula is not universally
true, it might or might not be true depending on the situation. The second
formula is true for a history where the immediately preceding action is P; (!
picks up the diamond) and in the immediately preceding state nobody had the
diamond (i.e. it was in the bag). In other words ¢2 describes the situation

12



where the diamond was in the bag and [ has just picked it up. The formula ¢3
says whatever the state happens to be, [ knows it. Here are two formulas that
are true in every state of the unfolded labelled transition system (the history
LTS):
¢2 = [+]"¢1 and @3 = [+]"¢1.

The first is true because [ has picked up the diamond and can now track its
movements precisely for all future moves since all actions are visible to him.
The second statement is slightly more general, it says that once [ knows where
the diamond is he can track its future exactly.

Here is another example of reasoning within this system. We define ¢4 to be
like ¢ except that we have K; instead of K; and ¢5 is like ¢1 except that K
replaces K;. Now we can conclude that the following formula is true in every

state
(=)p,(=)p,(=)p, = [+]"(d1 A b2 A ¢3).

What we cannot say in this logic is that the location of the diamond is common
knowledge. &

5 A Complete Axiomatization

We assume the axioms and rules of classical propositional logic. Because we
have 5 independent modalities in our logic (K, (+)a, (—)a, (+)* and (—)*) we
expect to have, in addition, five classes of axioms (one for each modality) re-
flecting the behaviour of that modality in relation to Booleans. In addition, we
will have a few other classes of axioms describing the relations between various
modalities. For instance, (+), and (—), are in a certain duality supported by
our intuition about time, so we expect to have some axioms relating these two.
Similarly between (+)* and (—)*. We also have some clear intuition about the
relation between time transition and knowledge update that will be character-
ized by some axioms combining dynamic and epistemic operators.

The axioms of L are presented in Table 1.

Many of the lemmas apply generically to () or [] modalities and the proofs
are essentially identical for the different variants. To streamline some proofs,
we use the tuple of symbols (<,0) to represent an arbitrary tuple of type
((=)as [Ja)s (Fas [Ha), (=), []), or ((+), [+]). Similaly, (0*, 07) represents
()Y, [+]*) or ((—)*,[-]*). We also use ($F,0%) to represent an arbitrary
tuple of type (—)as [la)s ((H)as[+la)s (=0 [=Ds (40, 4], ()%, [+]) or
((—)*,[=]*). With these notations, the axioms (Al),(A2), (B1), (B2), (Cl),
(C2) and (D1), (D2) cn be regarded as instances of (X1), (X2). Similarly, (C3),
(C4) and (D3), (D4) are instances of (X3), (X4).

(X1): FO%pADO%(¢p = 1p) = 0%
(X2): If F ¢ then - O%

(X3): F 0% « (¢ ADOO*9)

(X4): F0%(¢=09¢) = (¢p=0"9)

13



(Al):  F[+ad A[Hald = V) = [+
(A2): If ¢ then F [+].¢

(B1): F=lap A[=la(¢ = ¥) = [~]at
(B2): If F¢ then F[—].0

(B3):  F(=)aT = Apspl-lol

(B4):  F(=)ap =[]0

(ABl): + Qb = [+]a<*>a¢
(AB2): ¢ = [~]o(+)ad

(C1):  E[+H"oA[+H (¢ =) = [+]"
(C2): If ¢ then F [+]*¢

(C3):  F[+]"¢ & (o [+H][+]"0)

(C4):  F[+]"(¢=[+]d) = (¢ = [+]"¢)
(D1):  F[-JoA[-](¢=v) =[]
(D2): If + ¢ then F[—]*¢

(D3):  F[-]"¢<= (oA [-][-]"0)

(D4):  F[-]"(¢=[-]¢) = (¢ = [-]"¢)

(BD1): + (=)*[-]L

(E1):  +FKip AKi(d= ) = Kb
(E2): If ¢ then F Ko

(E3): +Kip= ¢

(E4): H sz) = Ksz<Z>

(BE1): F (=) K¢ = Ki(—)a¢

Table 1: Hilbert-style axiomatization for £

From (X1) and (X2) alone we can prove a lemma which can be instantiated to
all the particular instances. This is a standard lemma of modal logic.
Lemma 5.1. 1. If F ¢ = 1, then F O0%¢ = 0% and - O%¢ = O,

2. I+ ¢ = o, then F Ki¢p = K.
3. F(=)a¢ = [~lad and F (=)o = []o.
Proof. 1. From (X2), + ¢ = ¢ implies - O0%(¢ = ). If we use this with

F O%¢ = ¢) = (0% = O%)), which is equivalent to (X1), we obtain
O0%¢ = O%Y.

To prove the second implication, we start from - —) = —¢ and apply the
first result which gives us - O0%=¢ = O%—1). Using De Morgan we derive
FO%gp = OFh.
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2. It is proved in the same way as 1; in fact K is a box-like modality.

3. From (B4) we have - (—),¢ = /\[—]aqb which implies - (=)q¢ = [—]a¢. The

same axiom implies /\((—>a¢ = [—]¢) which is equivalent to \/(—)agi) =

[—]# which implies F (—)¢ = [—]¢. [ |

As usual, we say that a formula ¢ € L is provable, denoted by F ¢, if it can
be proved from the axioms in Tablel and boolean rules. We say that ¢ is
consistent, if —¢ is not provable from the axioms.

Given @,V C L, ¢ proves WV if from the formulas of ® and the axioms we can
prove each 1) € ¥; we write ® - U. Let [®] = {¢p € L | & F ¢}; this is the
deductive closure of ®. ® is consistent if it is not the case that ® - L.

For a sublanguage L C L, we call & L-maximally consistent if ® is consistent
and no formula of L can be added to it without making it inconsistent. The fol-
lowing lemma follows directly from the definition of maximal consistency.
Lemma 5.2. If I" is a consistent set of formulas then the following assertions
are true.

1. if O*T € [I'] and O%¢ & [I'], then {¢p € L | 0% € [I'|}U{—~¢} is consistent.
2. if O%¢p & [I'], then {¢ € L | 0% € [I']} U{—¢} is consistent.
Proof. Let A = {¢ € L | O%) € [I']}. Suppose that A U {—¢} is inconsistent.
Then there is a finite set {fi,..,fn} € A st. F fi Ao A f, = ¢. Hence,

FO*(fi A A fn) = 0% implying further - (0% fy A.. ADO% f,,) = O%¢. Hence,
0% € [I.

1. If O*T e [T, from O%¢ € [I'] we obtain &%¢ € [I'] - contradiction.
2. 0% ¢ [I'] is again contradictory. | |

A basic theorem that holds for the axiom system is the soundness property.
Theorem 5.3 (Soundness). The axiomatic system of £ is sound, i.e., for any
peL,

F ¢ implies | ¢.

The proof is a routine structural induction. It is sufficient to prove that each
axiom is sound and that each rule preserves the soundness.

The more interesting result is the completeness of the axiom system. More-
over, we will show that for each consistent formula a finite model can be con-
structed.

Recall that there are two notions of completeness: strong completeness and
weak completeness. Strong completeness says that

k¢ < Ik o
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An important easy consequence of strong completeness is the so-called compact-
ness property. A logic is said to be compact if every inconsistent set of formulas
has a finite inconsistent subset. Our logic is not compact. For example, the set
of formulas

{p, [+p, [+][+]p, [+]3p’ e 7_'[—*_]*17}

is not consistent but any finite subset is consistent. Therefore we cannot hope
to prove strong completeness. Instead we prove weak completeness

Eo¢ <—F ¢

Many of the basic completeness proofs in the literature are strong completeness
proofs and are much easier than weak completeness proofs. The proof that
we present shares many of the features of the weak completeness proof for
PDL.

Before proceeding with these proofs we establish some notation that will be
useful for future constructions.

We extend, canonically, all the logical operators from formulas to sets of for-
mulas. Thus for arbitrary &, ¥ C L, AV = {p A | ¢ € §,¢p € U},
(+)a® = {(+)a@ | ¢ € @}, and so on for all the modal operators.

If ® C L is finite, we use ® to also denote /\¢eq> ¢; it should be clear from the
context when ® denotes a set of formulas and when it denotes the conjunction
of its elements.

A key step in the proof is the construction of models by using maximally consis-
tent sets as states. However, because we are trying to prove a weak completeness
theorem we have to ensure that we are constructing finite sets of formulas. The
liberal notion of maximal consistency used in strong completeness proofs is not
available to us. If we wish to construct a model of a formula ¢, we need to de-
fine a special family of formulas associated with ¢ from which we will construct
maximal consistent subsets. Furthermore we need to ensure that the collection
of formulas we construct is finite. We adapt a construction due to Fischer and
Ladner [FL79] developed in the context of PDL.

For an arbitrary ¢ € L, let ~ ¢ = 1 whenever ¢ = - and ~ ¢ = ¢
otherwise.

For an arbitrary ¢ € L, let k;¢ = ¢ whenever ¢ = K;1) or ¢ = —K;1) and
ki¢ = K;¢ otherwise.

Definition 5.4. The (Fischer-Ladner) closure of ¢, written FL(¢), is defined
as a set of formulas such that:

d)v <7>ap7 <*>a—|— € f£(¢)7

if ¢ € FL(¢), then ~ ¢ € FL(¢), ksp and any subformula of v is in
FL(),

if (—)ath € FL(p) or (+)atp € FL(¢), then (=)1, (+)9 € FL(¢),
if O*o) € FL(4), then OO*Y € FL(9).
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The following lemma is immediate but important to state because we have to
ensure that we always have finite sets of formulas when we construct models
out of sets of formulas.

Lemma 5.5. For any ¢ € £, FL(¢) is finite.

In what follows we fix a consistent formula # € £ and we construct a finite model
for 6. This means that we construct an epistemic frame & = (Fp, (=;)iez), a
valuation p : supp(Fy) = 27 and we will identify a state s € supp(Fy) such
that s = 6.

Let Qg be the set of FL£(6)-maximally consistent sets. Because FL(#) is finite,
Qg and any I' € )y are finite sets. In the construction of the model we will use

Qg as the support set for Fy. The transitions on 2y are defined as follows. For
each a € A, let 5C Qy x Qp be defined by

[ % TV iff for any ¢ € £, [+],9 € [T] implies ¢ € [TV].

Now we prove a few properties of these transitions that will be important for
the rest of the proof.
Lemma 5.6. For arbitrary I', I € Qg the following are equivalent

1. for any ¢ € L, [+]q¢ € [I'] implies ¢ € [I"],
2. for any ¢ € £, [—]a¢ € [I"] implies ¢ € [T'].

Proof. (1) implies (2): Suppose that [—|,¢ € [I']. Then, TV = [—],¢ and using
axiom (AB1), F (+),[" = ¢. If we prove that (+),I" € [[], then ¢ € [['] and
the proof is done. Observe that (+),T € [I'] because otherwise =(+),T € [I']
implying [+],L € [['] and from the hypothesis we obtain L € [I”] - impossible.
Hence, (+), T € [I'] and if (+),I" & [['], from Lemma 5.2 instantiated to OF =
[+]a, we obtain that {¢ | [+],¢ € [[|} U {-I"} is consistent. But this is
impossible because, from the hypothesis, {¢ | [+]s% € [[]} C [IV].

(2) implies (1) Suppose that [+],¢ € [[']. Then, F I' = [+],¢ implying F
(—)al' = (—)a[+]ap. Now (AB2) guarantees that F (—),I' = ¢. In any normal
modal logic we have that - (O A OT) = Gtp. We use this with the previous
formula and we obtain F ([—]oI'A (=)o T) = ¢.

Note that (—), T € I'" because otherwise [—],L € I'" and, from the hypothesis
we obtain that L € [I'] - impossible. Now, if we prove that [—],[' € [I'], then
¢ € [I'"] and the proof is done. Now note that [—],I' € [I”] implies, using Lemma
5.2 instantiated with O% = [—],, that {¢ | [~]s¥ € [I']} U {-T'} is consistent.
But this is impossible because, from the hypothesis, {¢ | [-]a1 € [IV]} C [T]. R

This lemma tells us that we can define the transitions either using [+] or
(=]
Lemma 5.7. For arbitrary I' € Qy and [+],¢ € FL(0),

1. [+lap €T iffforany IV € Qy, T SHI" = ¢ € T7;
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(4+)a¢ € T iff there exists IV € Qp such that T % TV, ¢ € T,

a

2.
3. [~]a¢ € T iff for any T € Qg such that IV — T, ¢ € T;
4.

a

(—)a¢ € I iff there exists I'" € Qg such that IV — T',¢ € T".

Proof. 1. (=:) From the definition of .

(«<:) Let ¢ be such that ¢ € [I'] for each I € Qp with I' % IV. We need to
prove that [+],¢ € [I']. Note that a formula that is in [I'] and also in FL(0) is
automatically in I'.

Let A={I"€Qy |T T} andlet 6 = \/ I". Obviously, - § = ¢ implying
I"eA
F [+]ad = [+]a¢. Now, if we prove that [+],0 € [I'], the proof is done.

Suppose that [+],0 & [I']. Lemma 5.2 implies that AU{—=d} is consistent, where
A ={¢ | [+]a¥ € [T]}. But [+]a0 € [['] implies ¢ € T for each I € A and this
proves that A U {—J} cannot be consistent.

(2) is the De Morgan dual of (1).

(3) and (4) are proved in the same way as (1) and (2). ||

We draw the reader’s attention to a minor subtlety in the proof because it
recurs in several later proofs. We showed that a formula in FL(#), say ¢, is in
the deductive closure of a maximally consistent subset, say I', of FL(0), in other
words we showed that ¢ € [I']. From the fact that ¢ is itself in FL(0) we were
able to deduce that ¢ is in I' itself precisely because I' is maximal consistent as
a subset of FL(0).

We now need to establish the analogous results for the starred modalities. In
what follows, let —= U < and —* be its reflexive-transitive closure. This

acA
means that I' —* I if there exists a sequence I'1,..., T, € Qp such that

F:F1—>F2—>...—>Fk,1—>I‘k:F’;

Because —* is reflexive, k£ can be 1.

Lemma 5.8. For arbitrary I',T” € Qy the following are equivalent
1. for any ¢ € L, [+]*¢ € [['] implies ¢ € [I"],
2. for any ¢ € L, [—]*¢ € [I"] implies ¢ € [I],
3. T —=*T1.

Proof. (1) = (3): Let A={A€Qp |T —* A} and 5= \/ A.
AeA

By construction, if [+]¢ € [A] for some A € A, there exists A’ € A such that
¢ € [A’]. This entails F 6 = [+]0 which guarantees that = [+]*(0 = [+]9).
Using axiom (C4), we obtain - 0 = [+]*). But I € ¢ (because —* is reflexive),
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consequently = I' = 4. From here and the previous we derive - I' = [+]*§
implying [+]*¢ € [[']. Now using 1., § € [['] implying IV € A.

(3) = (1): Suppose that ' =T7 — ... = I'y = I and [+]*¢ € [[]. Axiom
(C3) guarantees that ¢ € [I'1] and [+][+]*¢ € [['1]. Hence [+]*¢ € [I'2] from the
definition of —. The same argument can be repeated for the k cases eventually
giving [+]*¢ € [I'x] = [I”] which implies, using axiom (C3), ¢ € [[V].

(2) & (3): It is proved in the same way using the axioms (D1) and (D2) in
instances of Lemma 5.1 and (D3), (D4) respectively. ||

Lemma 5.9. For arbitrary I € Qg and [+]*¢ € FL(6),

1. [+]*¢ € T iff for any IV € Qp such that ' —*T7, ¢ € T';
(+)*¢ € T iff there exists IV € Qp such that T —* I", ¢ € T;
[—]*¢ € T iff for any IV € Qg such that IV —*T',¢ € T';

(—)*¢ € I iff there exists I'' € Qp such that I' —*T',¢ € I,

W N

Proof. (1) =: From Lemma 5.8.

(«<:) Let ¢ be such that ¢ € [I”] for each IV € Qy with ' —* I. We need to
prove that [+]*¢ € [I].

Let A={I"€ Q| —*T"} andlet § = \/ I". Obviously, F § = ¢ implying
I"eA

F [+]*0 = [+]*¢. Now, if we prove that [+]*6 € [I'], the proof is done.

Suppose that [+]*§ & [[']. Lemma 5.2 implies that AU{—d} is consistent, where

A={y | [+]*¢ € [I']}. But [+]*¢ € [I] implies ¢ € I’ for each I" € A and this

proves that A U {—J} cannot be consistent.

(2) is equivalent to (1).

(3) and (4) are proved in the same way. ||

Now we can proceed with our construction of the model for 8. We start by
showing that (Qg, —)sca is a forest. For this we need to verify that the past
is unique and that the graphs have no loops. The precise statement is given in
the following theorem.

Theorem 5.10. If f € £ is consistent, then Fy = (Qp, =)sc4 is a forest over
A.

The proof of this theorem is broken down into two lemmas.

Lemma 5.11. For arbitrary I, T, Ty € Qp, if '} — I and T'y LN I', thena =05
and Fl = FQ.

Proof. To prove that a = b it is sufficient to observe that (—), T A (=) T is
inconsistent, result that is a direct consequence of axiom (B3).
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Now, from I'y = T and 'y - T' we prove that I'; = I's. Suppose that there
exists ¢ € FL(0) s.t. ¢ € I'; and —¢ € I's. Then, from axiom (AB1) we obtain
that [+]o(—)a® € 1] and [+]o(—)a—¢ € [[2]. Now I'y = T' guarantees that
(—)a¢ € [[] while Ty % T' guarantees that (—),—¢ € [[']. Further, using axiom
(B4) we obtain that [—]¢, [—]-¢ € [I'] implying [—]L € [I']. On the other hand,
(—)a¢ € [I'] implies (—), T € [I'] which is equivalent to =[—] L € [I'] - contradicts
the consistency of [I']. ||

Now we prove that in the graph (g, )sc4 there are no backwards infinite
sequences; this will conclude the proof that (g, i>)ae A is a forest over A.
Lemma 5.12. There exists no infinite sequence I'y,...,I's,.. € Qg such that

T —>Ty 1 —..—>IT1=T.

Proof. Suppose that there exists such a sequence. Axiom (BD1) guarantees
that (—=)*[—]L € [I'] and using Lemma 5.9 we obtain that there exists IV € Qy
such that I" —* I" and [—] L € I". Lemma 5.11 guarantees that I is one of the
elements of our sequence, hence —(—)T € I"". But this implies that there exists
no I'” € Qp such that IV —* I, this contradiction establishes the result. [ |

To complete the construction of the model for # we need to define the indis-
tinguishability relations on 2y that will eventually organize our forest as an
epistemic frame.

For each i € Z, let ~;C Qg x Qy be defined as follows:

I ~; I iff for any ¢ € £, K;¢ € [['] iff K;¢ € [I"].

By construction, =2; is an equivalence relation. Now, to finalize our construction,
we must prove that for each i € Z, =; preserves the branching structure of Fy
and finally that we have an epistemic frame.

Theorem 5.13. & = (Fy, (Xi)iez), where Fp = (Qg, —)ae and ~; are defined
as before, is an epistemic frame.

The proof is broken into a number of lemmas. The first lemma that we need is
the following.

Lemma 5.14. For arbitrary I', T € Qy, if for any ¢, K;¢ € [['] implies ¢ € [IV],
then for any ¢, K;¢ € [['] implies K;¢ € [IV].

Proof. Suppose that for any ¢, K;¢ € [I'] implies ¢ € [['] and let K;3p € [T].
From our hypothesis we obtain that if K;i ¢ [I], then K;K;v & [I']. From the
axioms (E3) and (E4), - K¢ <> K;K;v. Hence, K;v & [I'], this contradiction
completes the proof. [ |
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Now we can prove that for each ¢ € 7, =; preserves the backwards branching
structure of Fy.

Theorem 5.15. For arbitrary I', IV € Qp, if I ~; I and there exists 'y € Qy
such that Ty - T, then there exists 'y € Qg such that I, 417 and Iy~ To.

Proof. Because F T, using (E2) we obtain + K;T. Because K;T € [[g], we
obtain that (—),K;T € [['] and axiom (BE1) implies K;(—),T € [I']. Now,
from T’ =~; I, (=)o T € [IY]. From Lemma 5.7 we obtain that there exists
'y € Qp such that T'j — IV,

We prove now that I'{y ~ I'g. Suppose that K;¢ € [[o]. Then, (=), K;¢ € [I]
and axiom (BE1) implies K;(—)q¢ € [[]. Now from I' ~; I", (—)a¢ € [IV].
Now axiom (B4) implies [—]¢ € [I'] and because I'jj — I/, Lemma 5.7 implies
¢ € [Igl.

Hence, K;¢ € [I'g] implies ¢ € [I'j] and Lemma 5.14 concludes that K;¢ € [T
implies K;¢ € [['j]. Similarly can be proved that K;¢ € [I')] implies K;¢ € [Tg].
| |

Lemma 5.14 also establishes the next result that is needed for the proof of the
theorem.
Lemma 5.16. For arbitrary I € Qp and K;¢ € FL(0),

K;¢ € T iff for any I'" € Qp such that I' ~; I", ¢ € I

Proof. (=) This follows directly from Lemma 5.14.

(<) Let ¢ be such that K;¢ € FL(0) and ¢ € T for each TV € Qg with T =; T".
We need to prove that K;¢ € T

Let A ={I"e€ Qg | T =~ I"}, let A ={f1,...,fn} = ﬂ IV and let F =
I"eA

fin.. A fn. Then F F = ¢ implying - K;F' = K;¢. Consequently, if we prove

that K;F € [I'], the proof is done.

Suppose that K;F ¢ [['|. Then, there exists f; € A such that K;f; ¢ T.
Then, —K;f; € T' and axiom (E5) implies K;—K;f; € [I']. The definition of
~; guarantees that for any IV € A, K;~K;f; € [I'] and axiom (E3) entails
that for any I € A, —=K;f; € I'. Hence, - F = —K,f; which is equivalent
to K;fy = -F. But - F = f; implying - K;F = K;f;. Consequently,
F K;F = —F. But from axiom (E3), - K;F = F, implying - —=K;F. But
A is consistent and K;F ¢ [A], then a similar argument with the one used in
Lemma 5.2 (notice that K; is a normal modal operator of type O) shows that
AU {=F} is consistent, which is impossible. ||

This completes the proof of the theorem.

We are now ready to complete the construction of the model of 0. & is the
epistemic frame of the model and the we define a valuation pg : Qy — 27 by
po(I') = {p € P | p € T'}. With this definition we prove the Truth Lemma.
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Lemma 5.17 (Truth Lemma). If § € £ is consistent, & and py are defined as
before, then for any ¢ € FL(0) and I" € Qy,

peTiff T = ¢.

Proof. Induction on ¢.
[The case ¢ = p € P:] from definition of Propy.

[The case ¢ = —¢):] (=) Suppose that I' = =). Then I' = ¢ and from the
inductive hypothesis, ¢ € I', hence ¢ ¢ I

(<=) Suppose that I' = =) and =@ ¢ I'. Then, ¢ € T and the inductive
hypothesis guarantees that I' = ¢ - contradiction.

[The case ¢ = ¢1 A ¢pa:] ¢1 A pg € T iff ¢1, o € T' which is equivalent, using
the inductive hypothesis, to [I' = ¢1 and T’ = ¢2], equivalent to I' = ¢1 A ¢a.

[The case ¢ = (+)a9:] (=) If (+)¢ € T', Lemma 5.7 implies that there
exists IV € Qg such that I' = IV and ¢ € I'. From the inductive hypothesis,
I = ¢, implying T' = ¢.

(<=) T |= (4+)qt implies that there exists T € Qp such that T' % T" and T” |=
. From the inductive hypothesis, ¢ € IV and Lemma 5.7 implies (+),1% € T.

[The case ¢ = (—)q:] (=) If (=)4¢p € ', Lemma 5.7 implies that there
exists IV € Qg such that IV = I and ¢ € I". From the inductive hypothesis,
I = 4, implying T |= ¢.

(«<=) T |= (=)qt implies that there exists T € Qp such that I" % T and T" |=
. From the inductive hypothesis, 1 € IV and Lemma 5.7 implies (—),¢ € T.

[The case ¢ = (+)*¢:] (=) If (+)*¢ € T', Lemma 5.9 implies that there
exists IV € Qp such that I' —* IV and ¢ € I''. From the inductive hypothesis,
I = ¢, implying T' = ¢.

(<) T E (+)* implies that there exists I" € 0y such that I’ —* I and I |=
. From the inductive hypothesis, 1 € IV and Lemma 5.9 implies (+)*y € T.

[The case ¢ = (—)*y:] (=) If ()"t € T', Lemma 5.9 implies that there
exists IV € Qp such that IV —* I and ¢ € I, From the inductive hypothesis,
I = 4, implying T |= ¢.

(<) I' = (—)*¢ implies that there exists I € Qp such that I' —* T" and I" |=
1. From the inductive hypothesis, ¢ € IV and Lemma 5.9 implies (—)*y € T.

[The case ¢ = K;i:] (=) If K;9 € T', Lemma 5.16 implies that for any
I'" € Qp such that ' =; I", ¢ € T'. From the inductive hypothesis, I | v,
implying T" = ¢.

(<) I' E K;v implies that for any I € Qg such that I' ~; I, I” |= 4. From
the inductive hypothesis, 1 € I and Lemma 5.16 implies K;1) € T. [ |

A direct consequence of Truth Lemma is the finite model property.

Theorem 5.18 (Finite model property). For any consistent formula ¢ € £
there exists a finite model. Moreover, the size of the model is bound by the
structure of ¢.
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The finite model property in this context has two important consequences:
the weak completeness of the axiomatic system and the decidability of the
satisfiability problem.
Theorem 5.19 (Weak completeness). The axiomatic system of £ is complete,
i.e., for any ¢ € L,

= ¢ implies  ¢.

Proof. The proof is based on the fact that any consistent formula has a model.
We wish to show that = ¢ implies F ¢. Now we have shown that if ¢ is
consistent it has a model. Clearly then, if —¢ is consistent there is a model of
—¢. The last statement is equivalent to saying that if I/ ¢ then —¢ is satisfiable.
If —¢ is satisfiable it follows that not every model models ¢, i.e. F~ ¢. Thus we
have I/ ¢ implies [~ ¢, or taking the contrapositive, = ¢ implies - ¢. [ |

Observe that in the previous construction, the size of {2y depends on the number
and type of operators that 6 contains. In what follows we refer to the cardinality
|Q] of Qp as the size of 6.

The satisfiability problem is the problem of deciding, given an arbitrary formula
¢ € L, if ¢ has at least one model. The finite model property entails that the
satisfiability problem for our logic is decidable.

Theorem 5.20 (Decidability). The satisfiability problem for £ is decidable.

Proof. We have proved that 6 has at least one model iff it is consistent. And
if 0 is consistent we have proved that it has a model of size 29| € N. But the
class of models of size k € N is finite. Consequently, we can decide in a finite
number of steps if § does or does not have a model by checking all the models
of the appropriate sizes. [ |

6 Conclusions and Related Work

There seems to be a mysterious divide between concurrency theory, which is
primarily a European enterprise, and distributed systems theory which is in-
tensively explored in the United States, Israel and a few other places. This is
unfortunate because the two have much to learn from each other. Concurrency
theorists can learn sophisticated new tools like algebraic topology and deeper
problems whereas the distributed systems community could learn about, for ex-
ample, compositional reasoning. Epistemic logic is one of the areas where the
distributed systems community got an early start [FHMV95] in the mid 1980s
whereas the concurrency theory community is only just starting to use these
ideas. This schizophrenia is manifested even in the work of individuals! For
example, the third author of the present paper worked on common knowledge
in asynchronous distributed systems in the late 1980s [PT88, PT92] and later
on concurrency theory [SRP91] without making the connection. The present
work is intended to make epistemic logic more readily accessible to the con-
currency theory community by providing a combination of epistemic logic with
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the Hennessy-Milner logic that the concurrency community is accustomed to
using.

The ground breaking paper of Halpern and Moses [HM84, HM90] showed the
importance of common knowledge as a way of formalizing agreement proto-
cols in distributed systems. Very quickly variants of common knowledge were
developed [NT87, PT88] and many new applications were explored [NT90]. Ex-
tensions to probability [HT89] and zero-knowledge protocols [HMT88] quickly
followed. The textbook of Fagin et al. [FHMV95] made these ideas widely ac-
cessible and stimulated even more interest and activity. There are numerous
recent papers by Halpern and his collaborators, Parikh and his collaborators
and students, van Benthem and the Amsterdam school and by several other
authors as well. Applications of epistemic concepts range across game theory,
economics, spatial reasoning and even social systems.

In the concurrency theory community there is very little work on this topic. Two
striking examples are a recent paper by Chadha, Delaune and Kremer [CDK09]
and one by Dechesne, Mousavi and Orzan [DMOO07]. The former paper defines
an epistemic logic for a particular process calculus, a variant of the m-calculus
and uses it to reason about epistemic situations. The latter paper explores
the connection between operational semantics and epistemic logic and is closer
in spirit to our work which is couched in terms of labelled transition systems.
Neither of these paper really integrate Hennessy-Milner logic and epistemic
logic. A recent paper by Knight et al. [CKPP12] uses a rudimentary epistemic
logic to capture epistemic strategies for games on concurrent processes. A recent
paper by Pacuit and Simon [PS11] develops a PDL-style logic for reasoning
about protocols. They also prove a completeness theorem for their logic; it is
perhaps the closest in spirit to our work.
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