
Brief notes on category theory

Prakash Panangaden

28th May 2012

Abstract

These are brief informal notes based on lectures I gave at McGill.
There is nothing original about them.

1 Basic definitions

A category consists of two “collections” of things called objects and mor-
phisms or arrows or maps. We write C for a category, C0 for the objects and
C1 for the morphisms. They satisfy the following conditions:

1. Every morphism f is associated with two objects (which may be the
same) called the domain and codomain of f . One can view a morphism
as an arrow from one object to another thus forming a directed graph.
We sometimes write cod(f) and dom(f) to denote these objects, more
often we give them names like A and B. We write f : A −→ B or A
f−−→ B.

2. Given A
f−−→ B and B

g−−→ C we say f and g are composable (i.e.
cod(f) = dom(g)). We define a binary operation, written ◦, on com-
posable maps so that g ◦ f is a morphism: dom(g ◦ f) = dom(f) and
cod(g ◦ f) = cod(g). In pictures

A

g◦f

��f // B
g // C

1

3. Composition is associative: (h ◦ g) ◦ f = h ◦ (g ◦ f) as shown below:

A

h◦(g◦f)

��

(h◦g)◦f

AA

g◦f
''f // B

g //

h◦g

77C
h // D

4. For every object A ∈ C0 there is a unique morphism 1A : A −→ A such
that for every f : A −→ B, f ◦ 1A = f and for every g : C −→ A,
1A ◦ g = g.

5. The collection of all the morphisms between A and B is denoted
C(A,B) or HomC(A,B) or just Hom(A,B).

We usually control the “logical size” of categories by demanding that for all
objects A and B the collection Hom(A,B) is a set; such a category is said
to be locally small. If the collection of all the objects forms a set we say that
the category is small. We will almost always be talking about locally small
categories. In such categories we call Hom(A,B) a homset.
Example 1. The collection of all sets with functions as the morphisms and
ordinary function composition as the operation. This is clearly not small
but is locally small. This category is written Set.
Example 2. The collection of all sets with binary relations as the mor-
phisms and relational composition as the operation. This shows that one
can have the same objects in two completely different categories. The mor-
phisms are crucial, more than the objects.
Example 3. The collection of all vector spaces over a given field (say the
complex numbers) with linear maps as the morphisms. This category is
written Vect. This is prototypical of categories of sets with algebraic struc-
ture. One can have categories of groups, monoids, rings, semi-rings, boolean
algebras, lattices, posets, modules etc. in the same vein. One can also define
categories where the objects have other kinds of structures, for example, the
category Top where the objects are topological spaces and the morphisms
are continuous functions.
Example 4. Any poset (or indeed any preorder) can be viewed as a category
where the homsets have at most one element.
Example 5. The objects are the types of a type theory function types. A
morphism from A to B is a term of type A ⇒ B. These are very special

2

categories.
Example 6. The objects are formulas of some logic and the morphisms are
proofs. Thus, a proof of B under the assumption A is an arrow from A to
B. Arrows need not be functions at all! Clearly the proof rules have to have
some reasonable properties.

1.1 Some special morphisms

A lot can just be done with just arrows and composition without talking
about sets and membership. We define some special types of morphisms:
monics or monomorphisms, epics or epimorphisms, isomorphisms, sections
and retractions.
Definition 7. A morphism m : A −→ B is a monic if for every pair of
morphisms g, h : C −→ A we have m ◦ h = m ◦ g implies h = g.

In the category Set a function is monic iff it is an injection. By flipping the
arrows we get a dual concept.
Definition 8. A morphism m : A −→ B is an epic if for every pair of
morphisms g, h : B −→ C we have h ◦m = g ◦m implies h = g.

In the category Set a function is epic iff it is a surjection.
Definition 9. A morphism f : A −→ B is called a section if it has a left-
inverse, i.e. there is a morphism g : B −→ A such that g ◦ f = 1A. In this
case g has a right-inverse and is called a retraction.

In any category a section is a monic and a retraction is an epic, but the
converses are false.
Definition 10. A morphism is that is both a section and a retraction is
called an isomorphism. If there is an isomorphism between two objects we
say that the objects are isomorphic.

In category theory we will usually only care about uniqueness up to isomor-
phism.

Exercise prove all the statements made without proof so far. Give an
example where a morphism is an epic and a monic but is not an isomorphism.
[Hint: think about topology.]

3

2 Duality

In category theory one gets two concepts for the price of one: from one
concept one can get another by flipping arrows. We saw this above with
epics and monics for example. If we take a category C we get a new category
just by reversing all the arrows; we call this Cop. The category Setop has as
objects sets; a morphism from A to B is a function from B to A! This is
called the dual category. In some cases the dual category is the “same” as
the original category, this happens with Rel for example. In some cases the
dual category is utterly different as happens with Set. For example, consider
the category of finite sets and functions. The opposite of this category is
finite boolean algebras.

3 Universal and couniversal properties

An absolutely central concept is that of a universal property and dually a
couniversal property. A precise statement will have to wait until we know
about functors. Roughly speaking a universal property states that a partic-
ular construction subsumes all other like constructions.

3.1 Initial and terminal objects

We say that an object I in a category is initial if for every object A there
is a unique morphism from I to A. In Set the initial object is the empty
set, the unique morphism is the empty function. In the category of groups
the initial object is the one-element group.

We say that an object T is terminal or final if for every object in the
category there is a unique morphism to T . In Set the final object is any
one-element set.

There may be many initial or terminal objects in a category but all the initial
objects will have to be isomorphic to each other and all terminal objects will
be isomorphic to each other.

4

3.2 Products and coproducts

A (binary) product of two objects A,B in a category C is another object,
traditionally written A × B, together with two morphisms πA : A × B −→
A, πB : A × B −→ B such that for any other object C and morphisms
f : C −→ A, g : C −→ B there exists a unique morphism, written 〈f, g〉 : C
−→ A × B such that the diagram below commutes, I have written h for
〈f, g〉:

C

f

		

g

��

h
��

A×B
πA

{{

πB

##
A B

This contains the crucial ingredient: universality. A product is an object
together with morphisms of the appropriate kind. The crucial property is
that if there is any other object claiming to be the product, as C does in the
above picture, we can factor C through the real product. Universality implies
that the product, when defined, is unique up to isomorphism.

In Set this is just the cartesian product. The morphisms πA and πB are just
the projections. The map 〈f, g〉 is given by 〈f, g〉(c ∈ C) = 〈f(c), g(c)〉.
Clearly this makes the diagram commute. Is it the only map that makes
the diagram commute? Let us call the dashed map h to signify that, for
the moment we do not know exactly what it is. Now h(c) has to produce
an element of A×B. Because the diagram must commute the first element
of this pair has to be f(c) and the second has to be g(c). Thus, the only
possible way for h to be defined so that the diagram commutes is for it to
be defined as we have done. In a poset viewed as a category the product is
the greatest lower bound.

Note that just naming something does not mean that it exists. Some cate-
gories have products, some do not. Some have products of some objects but
not for all pairs of objects. When we say a category has products we mean
that every pair of objects has a product. It then follows, by induction, that
every finite set of objects has a product. A category might or might not
have products of infinite collections of objects.

Exercise: Show that Rel has products.

Now we reap the benefits of duality. We get a new and interesting concept

5

by flipping the arrows. A coproduct for A and B is an object, A+B and
two morphisms ιA : A −→ A + B and ιB : B −→ A + B such that if C is
any object with morphisms f : A −→ C and g : B −→ C then there is a
unique morphism, written [f, g] : A+B −→ C such that the diagram below
commutes, I have written h for [f, g]:

C

A+B

h

OO

A

f

??

ιA
;;

B

ιB
cc

g

__

Here the analogue of the universal property is called the couniversal prop-
erty. In a poset the coproduct corresponds to a least upper bound. In Set
the coproduct of two sets is the disjoint union. The unique morphism is
defined as follows: [f, g](ιA(a)) = f(a) and [f, g](ιB(b)) = g(b); this looks
like a “case” statement and indeed it is.

Exercise Show that Rel has coproducts. What observation that we have
made before makes this exercise trivial?

3.3 Pullbacks and pushouts

Two very important constructions are pullbacks and pushouts. The pullback
is sometimes called the “fibred product” in topology.

The pullback is essentially a restricted version of the product. Given mor-
phisms f : X −→ Z and g : Y −→ Z, a pullback is an object U with
morphisms p : U −→ X and q : U −→ Y such that the diagram below
commutes, i.e. f ◦ p = g ◦ q

U
p //

q

��

X

f
��

Y g
// Z

and such that (here comes the universal property), if V is any object with
maps r : V −→ X and s : V −→ Y such that f ◦r = g ◦s (V is “masquerading

6

as the pullback”) then there exists a unique morphism h : V −→ U such that
the diagram below commmutes:

V

s

��

r

##
h

U

p //

q

��

X

f
��

Y g
// Z

In Set pulbacks are constructed as follows. The set U is {(x, y) ∈ X × Y | f(x) = g(y)}
and the maps are p(x, y) = x and q(x, y) = y. Given another set V and maps
r, s as shown in the diagram above we have h(v) = (r(v), s(v)). The scep-
tical reader should check that everything commutes and that this is indeed
the only way to define h.

A pair of maps f : X −→ Y and g : X −→ Z is called a span. Spans are a way
of defining relations in a category without talking about elements and sets
of ordered pairs. If one has “relations” of this kind how can one compose
them? The reader should be able to see that if the category has pullbacks
then there is a natural way to compose spans.

Now for a related concept; this is the pushout. It is the colimit of a span, so it
is not exactly the dual of the pullback which was the limit of a cospan.
Definition 11. Suppose that we have the following span

X
α

~~

β

Y Z

(1)

Then we say that the category has pushouts if there is an object W and
maps δ : Y −→W and γ : Z −→W such that the following diagram commutes

X
α

~~

β

Y

δ

Z
γ

~~
W

(2)

7

and, furthermore, (here comes couniversality) if there is any other commut-
ing square formed by an object U and maps f : Y −→ U and g : Z −→ U
then there is a unique map h : W −→ U such that the following diagram
commutes:

X
α

~~

β

Y

δ

f

��

Z
γ

~~

g

��

W

h
��
U

(3)

Theorem 12. The category Set has pushouts.

Proof . We construct W as follows. We form the disjoint union Y] Z; I
will denote elements of this set by y and z without showing the (implicit)
canonical injections from Y and Z to Y]Z. We define R a binary relation
on Y] Z by yRz if ∃x ∈ X st y = α(x) ∧ z = β(x). Now I define an
equivalence relation, ∼, on Y]Z as the least equivalence relation generated
by R. W is obtained as the quotient (Y] Z)/ ∼. The canonical surjection
from Y]Z to W is denoted by q. We define the maps γ and δ by composing
the canonical injections with q as shown in the diagram below:

X
α

{{

β

##
Y

ιY

##

δ

��

Z
ιZ

{{

γ

��

Y] Z
q

��
W

(4)

Clearly the square of Diagram 2 commutes by construction. I need to show
that the co-universality property of Diagram 3 holds.
Lemma 13. If we have the span of Diagram 1 and we have any commuting
square formed with this span and with U, f, g as shown in Diagram 3 then

1. if y ∼ y′ then f(y) = f(y′) and

8

2. if z ∼ z′ then g(z) = g(z′).

Proof . We proceed by induction on the number of steps required in the
transitive closure. The base case is when y ∼ y′ and there exist x, x′ ∈ X
such that α(x) = y, α(x′) = y′ and β(x) = β(x′) = z. Then we have

f(y) = f(α(x)) = g(β(x)) = g(z) = g(β(x′)) = f(α(x′)) = f(y′).

The same argument applies mutatis mutandis to the base case of part 2.

Suppose that y ∼ y′ because ∃x, x′ ∈ X such that α(x) = y, α(x′) =
y′, β(x) = z, β(x′) = z′ and z ∼ z′. By the inductive hypothesis we as-
sume that g(z) = g(z′). Now we have

f(y) = f(α(x)) = g(β(x)) = g(z) = g(z′) = g(β(x′)) = f(α(x′)) = f(y′).

Again the same argument establishes the inductive case of part 2.

I will now complete the proof of couniversality by describing how to construct
the h of Diagram 3. Note that α and β are not necessarily surjections. If
there is a y ∈ Y that is not in the image of α it will not be equivalent to
anything except itself; the same statement applies to Z. The elements of
W (which are equivalence classes of ∼) break into three disjoint subsets:
those of the form {y} where y ∈ Y \ α(X), those of the form {z} where
z ∈ Z \ β(X) and those of the form [y] = [z] where y ∈ Y and z ∈ Z. Note
that equivalence classes of the third type have to have representatives from
both Y and Z. On elements of the first two types we define h([y]) = f(y) and
h([z]) = g(z); clearly this is the only way to have the triangles commute. On
an element of W of the third type we define h([y]) = h([z]) = f(y) = g(z).
We need to verify that this last definition makes sense. We can always
choose representatives y, z such that ∃x ∈ X with α(x) = y and β(x) = z so
we will have f(y) = g(z) for these representatives. Suppose we had picked
any other representative y′, then y ∼ y′ and, by Lemma 13 we have that
f(y) = f(y′), similarly if we had chosen any other representative from Z.
Thus h is uniquely determined and by construction Diagram 3 commutes.

3.4 Limits and colimits

All the constructions shown so far are instances of limits (products, pull-
backs) or colimits (coproducts, pushouts).

9

Definition 14. Given an arbitrary commuting diagram D consisting of
objects (Xi | i ∈ I) and morphisms (αij : Xi −→ Xj | (i, j) ∈ J ⊂ I × I)1

in a category C, a cone over D is an object C and a family of maps φi : C
−→ Xi such that for every (i, j) ∈ J we have αij ◦ φi = φj .

In order to define a limit we need to state a universal proeprty.
Definition 15. A limit for a diagram D is a universal cone over D. More
explicitly, it is a cone (X,ψi) such that for any other cone (C, φi) there is a
unique map γ : C −→ X such that for every i we have φi = ψi ◦ γ.

Dually we can define a cocone and a colimit.

Exercise Define cocone and colimit. Explain what is the diagram for which
the initial object is a limit and the terminal object is a colimit.

I will show how to construct two very important examples in Set: these are
sometimes called inverse limits (or projective limits, they are limits in the
sense above) and direct limits (or inductive limits, they are just colimits in
the sense above).

We start by defining some auxiliary concepts.
Definition 16. A directed set S is a poset with the order relation ≤ such
that for every x, y ∈ S there exists z ∈ S with x ≤ z and y ≤ z.
Definition 17. A projective system, also called an inverse system, is
a family of objects {Xi | i ∈ I}, indexed by a directed poset I such that
whenever i ≤ j ∈ I there is a morphism φji : Xj −→ Xi such that

1. φii = 1Xi and

2. if i ≤ j ≤ k then φki = φji ◦ φkj .

Now we are ready to define a projective limit.
Definition 18. A projective limit is a limit for a projective system.
Theorem 19. Countable projective limits exist in Set.

Proof . This generalizes the product construction. Assume that we have a

projective system as defined above. We construct the set X =
∏
i∈I

Xi. We

write a typical member of X as (xi)I . We choose a subset U as follows

U := {(xi)I | ∀i ≤ j ∈ I.φji(xj) = xi}.

Now we define maps πj : U −→ Xj by πj((xi)I) = xj . It is easy to see that
this gives a cone and all the morphisms commute. If V is another set and

1There is not necessarily a morphism between every pair of objects.

10

ψi : V −→ Xi are maps such that we have another cone then we construct a
map β : V −→ U by

β(v) = (ψi(v))I .

It is easy to see that β is the only map making the entire diagram commute.

Exercise The dual concept is a direct limit or filtered colimit. Define
it and show that for countable filtered diagrams Set has filtered colimits.
[Hint: Mimic the construction used for pushouts.]

Here is a diagram for a particular example of a colimit

C

. . . X∞

OO

. . .

X0
φ0
//

ψ0

44
f0

66

X1
φ1
//

66

X2
φ2
//

==

X3
φ3
//

ψ3

OO

. . .
φn−1

// Xn
φn
//

ψn

hh

fn

ee

. . .

4 Biproducts in Vect and Rel

In the category Vect it turns out that products and co-products are the same
object: we call them biproducts. The same thing happens in Rel as well.
In retrospect, this is not a surprise as these are self-dual categories.

First we construct products in Vect as follows. Given vector spaces U, V
we define the product as a set to be U × V = {(u, v) | u ∈ U, v ∈ V }. We
make it a vector space by defining addition as

(u, v) + (u′, v′) = (u+ u′, v + v′)

and scalar multiplication by

r · (u, v) = (r · u, r · v).

In the diagram below we define all the maps just as in Set; one has to check

11

that all the maps are linear, but this is obvious in this case.

W

f

		

g

��

h
��

U × V
πU

{{

πV

##
U V

The vector space U × V is usually written U ⊕ V and called the direct sum
in linear algebra. We will now check that it is also the co-product. In the
diagram below

W

U × V

h

OO

U

f

??

ιU
;;

V

ιV
cc

g

__

the maps ιU , ιV are defined as ιU (u) = (u, 0) and ιV (v) = (0, v). In Set we
cannot do this as we do not have a preferred element like 0. Now we define
h as follows

h(u, v) = f(u) + g(v).

It is easy to see that all the maps are linear, the diagram commutes and
that h is the only map that makes it commute. We thus have something
that is both a product and a co-product, we call it a biproduct.

Note that the tensor product is not a categorical product. There is no
canonical map that one can define from U ⊗V to U or to V . This is exactly
what leads to the notion of entanglement. Tensor products are axiomatized
in a completely different way.

5 Functors

Category theory was originally invented to make sense of the notion of nat-
ural transformation. First we define functors: they are ways of moving from
one catgory to another. One can, in fact, make a category of categories with
functors as the morphisms. This category is called Cat.

12

Definition 20. Given categories C and D a (covariant) functor F from C
to D is a pair of maps F : C0 −→ D0 and F : C1 −→ D1 such that

1. Given a morphism f : A −→ B in C there is a morphism F (f) : F (A)
−→ F (B) in D.

2. F (1A) = 1F (A).

3. Given A
f−−→ B and B

g−−→ C in C we have

F (g) ◦ F (f) = F (g ◦ f).

Now for some examples.
Example 21. Suppose that C is a category with products. For each object
A we define a functor A× (·) as follows:

A× ((·))(B) = A×B;

this is, of course, not the complete definition. We must specify what happens
to arrows. Given f : B −→ C we have to define a morphism written A× f :
A×B −→ A×C. How do we do it without talking about elements? We use
universality as shown below.

A×B

1A

		

f◦πB

��

A×f
��

A× C
πA

{{

πC

##
A C

We need to check that the conditions for a functor are met of course, but
it should be clear that this will turn out to be the case after some simple
diagram chasing.

A functor defines a function from homests to homsets; these functions may
or may not enjoy standard set-theoretic properties.
Definition 22. We say that a functor F : C −→ D is faithful if the map
from C(A,B) to D(F (A), F (B)) is injective. We say that the functor is full
if the function is surjective.

The next example is fundamental.

13

Example 23. Given any category C there are functors from C to Set for
every object A in C. We define Hom(A, ·) : C −→ Set by

Hom(A, ·)(B) = Hom(A,B) and Hom(A, ·)(B f−−→ C) = λg ∈ Hom(A,B).f◦g.

Note that type of Hom(A, ·) : Hom(A,B) −→ Hom(A,C). This is a Set-
valued functor. As usual there are a number of things to verify, which I have
omitted.

What if we looked at arrows into an object A? Let us try it. On objects
we could still say Hom(·, A)(B) = Hom(B,A) but we have a problem with
the arrow part of the functor. If we have f : B −→ C there is no way we
can use this to construct a function from Hom(B,A) to Hom(C,A); we
cannot compose an arrow from B to C with an arrow from B to A. We
can, however, compose an arrow from B to C with an arrow from C to A!
This leads to a concept dual to that of functor; we call them contravariant
functors.
Definition 24. Given categories C and D a contravariant functor F from
C to D is a pair of maps F : C0 −→ D0 and F : C1 −→ D1 such that

1. Given a morphism f : A −→ B in C there is a morphism F (f) : F (B)
−→ F (A) in D.

2. F (1A) = 1F (A).

3. Given A
f−−→ B and B

g−−→ C in C we have

F (f) ◦ F (g) = F (g ◦ f).

We could have simply said that a contravariant functor from C to D is an
ordinary functor from Cop to D.
Example 25. The set-functor Hom(·, A) is a contravariant functor from C
or a functor from Cop to Set.
Example 26. We define an interesting contravariant functor from Vect to
itself. We fix some arbitrary field of scalars k. Let V be a vector space. We
define V ∗ to be the dual space of V , i.e. the space of linear maps from V
to k. We define a contravariant functor from Vect to itself by mapping V
to V ∗. What is the arrow part of this functor? Given a linear map λ : U
−→ V we need to define a linear map λ∗ : V ∗ −→ U∗; note the reversal of
direction. Let φ be an element of V ∗, we want λ∗(φ) to be an element of U∗,
i.e. it should assign an element of k to any u ∈ U . The types force our hand:
λ∗(φ)(u) = φ(λ(u)). It is easy to verify all the conditions for a functor.

14

Example 27. Here is an interesting functor from Set to itself. Given a set
X we define P(X) to be the power set of X. On arrows f : X −→ Y we
define P(f) : P(X) −→ P(Y) by P(A ⊆ X) := {f(x) | x ∈ A}. We can also
define a contravariant power set functor. We call it Q. It is the same as P
on objects but on arrows we define it by

Q(f : X −→ Y)(B ⊆ Y) := f−1(B).

Example 28. The next example is a little long but it provides one of the
fundamental examples of a functor: the fundamental group of a topological
space.

For convenience we work with pointed topological spaces, that is a topo-
logical space X with a distinguished point x0. A morphism between two
pointed spaces f : (X,x0) −→ (Y, y0) is a continuous function f from X to
Y such that f(x0) = y0. Pointed spaces and maps form a category that we
call Top•. We will define a functor π1 from Top• to Grp, the category of
groups. This functor will measure the “obstructions” to deforming loops in
a space.

A path in X is simple a continuous map γ : [0, 1] −→ X. Note that according
to this definition the parametrization matters; a path is not just the image
of [0, 1] under γ. A loop based at x0 is a path γ such that γ(0) = x0 = γ(1).

Fundamental group detect “holes” by deforming the loop. If there are no
holes any loop based at x0 can be deformed into any other loop based at
x0. In fact the x0 is not important if we assume that the space is path
connected; i.e. every two points can be joined by a path.

We need to define what is meant by deforming a loop. We will define an
equivalence relation called homotopy to formalize this. We assume that we
have two loops based at x0 i.e. γ1(0) = γ2(0) = γ1(1) = γ2(1) = x0. We
write γ1 ∼ γ2 if ∃Γ : [0, 1]× [0, 1] −→ X s.t. Γ is continuous and

Γ(s, 0) = γ1(s) Γ(s, 1) = γ2(s) ∀t.Γ(0, t) = x0 = Γ(1, t).

We refer to the Γ as a homotopy from γ1 to γ2 or a deformation from γ1 to
γ2.

It is clear that this relation is reflexive and symmetric. To show transitivity

we assume that we have homotopies, Γ and Γ′ as shown: γ1
Γ

Γ′′

77γ2
Γ′

γ3

15

and we have to construct a homotopy Γ′′. We proceed as follows:

Γ′′ =

{
Γ(s, 2t) if 0 ≤ t ≤ 1

2

Γ′(s, 2t− 1) if 1
2 < t ≤ 1

Now that we have an equivalence relation we can work with the equivalence
classes; of course we will generally work with representatives and check2 that
the result is well defined and independent of the choice of representatives.
We are going to make the set of equivalence classes – clearly a much smaller
set than the set of loops – into a group. We define a product on equivalence
classes

[γ1]× [γ2] = [γ1 × γ2]

by

γ1 × γ2 =

{
γ1(2t) if 0 ≤ t ≤ 1

2

γ2(2t) if 1
2 ≤ t ≤ 1.

We define the identity as the loop that just stays at x0. Inverse just reverses
the direction of the loop: γ−1(t) = γ(1 − t). It is straightforward to check
that this definition does not depend on the choice of representatives and that
the group axioms are satisfied. We have thus defined a group π1(X,x0). It
is not a functor unless we figure out a suitable transformation on morphisms
f : (X,x0) −→ (Y, y0). This is just

π1(f)(γ) = f ◦ γ.

We claim that (f ◦γ1) ∼ (f ◦γ2) so this is a well-defined map on the groups.
It is easy but annoying to check that π1(f) is a group homomorphism. A
crucial consequence of functoriality is that isomorphisms of objects in Top•
get mapped to isomorphisms of groups.

If the topological space is path connected then for any x1 and x2 the groups
π1(X,x1) and π1(X,x2) are isomorphic. The idea is to take a path σ from
x1 to x2 and define a map on loops based at x2 to loops based at x1 by
γ 7→ γ′ where

γ′(t)

σ(3t) if 1

3 ≥ t ≥ 0,

γ(3t− 1) if 1
3 ≤ t ≤

2
3

σ−1(3t− 2) if 2
3 ≤ t ≤ 1.

2Or just claim!

16

This actually defines an isomorphism of groups. Thus we can forget about
the point and talk about the fundamental group as a functor from Top to
Grp.

If two topological spaces are homomorphic, their fundamental groups are
isomorphic. One non-trivial consequence is Brouwer’s fixed-point theorem.
Here is a simple instance of it. Consider the closed unit disk in R2 and its
boundary circle S1. Now π1 of the disk is the trivial group 0 since every loop
can be shrunk to a point. The fundamental group of the boundary is Z; to
see this just note that a loop that it wound around the circle n times cannot
be unwound, it can be deformed to any other loop that is also wound around
n times. The number of times a loop winds around a circle is counted as
negative or postive depending on the sense of the winding. This is called the
winding number of a map into the circle. Clearly the fundamental groups of
the disc and its boundary are not isomorphic. This means that there cannot
be a continuous map of the disc onto its boundary. If there were, the two
fundamental groups would be the same.

This implies the fixed point theorem. Suppose that f is a continuous func-
tion from D to itself and ∀x : D.f(x) 6= x, then we can draw a straight line
from x, through f(x) and extend it until it hits the circle. However, if that
is the case, we have a continuous deformation of the circle onto its boundary
and hence their fundamental groups must be the same. This contradiction
shows that there is no such f , i.e. every f has a fixed point.

6 Natural transformations

Category theory was invented to formalize the intuitive notion of “natural-
ity.” In linear algebra we say that the finite-dimensional space V is iso-
morphic to its dual space V ∗ but not in a natural way: the isomorphism
depends on a choice of basis. On the other hand there is a “natural” iso-
morphism from V −→ V ∗∗. It is v � // Λv ∈ V ∗∗ where Λv(σ) = σ(v) with
σ ∈ V ∗.
Definition 29. Given two functors F,G : C −→ D, a natural transfor-
mation η from F to G is a correspondence between objects A of C and
morphisms ηA of D such that if f : A −→ B is a morphism in C the following

17

diagram commutes:

F (A)

F (f)
��

ηA // G(A)

G(g)
��

F (B) ηB
// G(B)

Example 30. We return to the example with which we began. Suppose
that V is a finite-dimensional vector space over some field k and V ∗ is the
dual space and V ∗∗ is the double dual. If {ei} is a basis for V we can define
{σj} by σj(ei) = δij , the dual basis of V ∗. If σ is any element of V ∗ we can
write σ =

∑
j σ(ej)σj so this is indeed a basis for V ∗. Now we can define the

iso ei 7→ σi, but this is basis dependant. We have already given the natural
isomorphism from V to V ∗∗. We now show how it fits the definition of
a natural transformation between the identity functor and the double-dual
functor.

Recall the contravariant functor (·)∗ from Vect to itself: on arrows it takes
λ : U −→ V to λ∗ : V ∗ −→ U∗ according to the rule λ∗(σ ∈ V ∗) = ((u ∈
U) 7→ σ(λ(u)). If Λ ∈ U∗∗ then λ∗∗(Λ)(σ ∈ V ∗) = Λ(u 7→ σ(λ(u)).

We define the natural transformation η : I −→ (·)∗∗ by ηU (u) = Λu, where
Λu = σ 7→ σ(u). Given a linear map between finite-dimensional vector

spaces: U
λ // V we need to show that the following diagram commutes.

U

λ
��

ηU // U∗∗

λ∗∗

��
V ηV

// V ∗∗

We have ηU (u ∈ U) = Λu and then

λ∗∗(Λu)(σ ∈ V ∗) = Λu(λ∗(σ)) = Λu(u′ 7→ σ(λ(u′))) = σ(λ(u)).

Going the other way we have ηV (λ(u))(σ) = σ(λ(u)) so the diagram com-
mutes. Thus we have a natural transformation.
Example 31. We will construct two functors F : set −→Mon and U : Mon
−→ Set and exhibit two common natural transformations. The functor U :
Mon −→ Set is defined by simply taking the underlying set of a monoid and
forgetting that there was an operation defined on it. The “U” is supposed to
make you think of “underlying.” On arrows it takes monoid homomorphisms
and views them as plain set theoretic functions.

18

The functor F is defined by starting with a set, say Σ, and constructing the
set of all finite words Σ∗. The binary operation is concatenation of words and
the identity element is the empty word ε. In this way we have manufactured
a monoid “freely” from Σ. Given a function f : Σ −→ Γ in Set we define a
monoid homomorphism f ! : Σ∗ −→ Γ∗ by f !(a1 . . . an) = f(a1) . . . f(an) and
f !(ε) = ε.

Now we have functors U◦F : Set −→ Set and F ◦U : Mon −→Mon obtained
by composing these functors. We will define two natural transformations:

FU
ε // Imon and Iset

η // UF .

The map ηΣ is defined by ηΣ(a) = a. Naturality is completely obvious in
this case. Though obvious, this is a very important example and this natural
transformation is often called “inclusion of generators.”

To define εM where (M,×, εM) is a monoid, we need a monoid homomor-
phism from M∗ to M . The monoid M∗ is obtained by first forgetting that
M is a monoid and then forming words out of the elements of M . What
could be more “natural” than to define

εM (m1m2...mn) = m1 ×m2 × ...×mn.

Once again it is completely clear that this is a natural transformation.

In order to prepare for adjunctions and to give another example of a universal
property we note the following. The map ηΣ : Σ −→ Σ∗ enjoys the following
universal property: given any f : Σ −→ UM , there exists a unique monoid

homomorphism Σ∗
h∗ //M such that the diagram

Σ
ησ //

f !!

Σ∗

Uh∗

��
UM

commutes. This homomorphism is given by

h∗(x1x2...xn) = f(x1)× f(x2)× ...× f(xn),

in other words it is just εM ◦ F (f). There is a similar couniversal property
going the other way3.

3What is it?

19

Functors and natural transformations form categories in their own right.
Proposition 32. Given categories C and D, the collection of all functors
from C to D forms a category, the morphisms are the natural transforma-
tions.

This kind of category is called a functor category and is written [C,D] or,
more commonly, DC . We write Nat(F,G) for the homsets in this cate-
gory.

7 Yoneda’a Lemma

A vital theorem about natural transformations is given by what is called
Yoneda’s Lemma.
Theorem 33 (Yoneda). Let F : C −→ Set be a functor and let Hom(A, ·) :
C −→ Set be the hom-functor which maps an object B of C to the homset
Hom(A,B). There is a natural bijection between Nat(Hom(A, ·), F), the
set of natural transformations between Hom(A, ·) and F , and F (A).

Proof . I will just exhibit the bijection. First, given an element a of F (A)
we need to associate to it a natural transformation ηa : Hom(A, ·) −→ F .
This means to every X in C we need a function ηaX : Hom(A,X) −→ F (X)
and given any morphism f : X −→ Y in C we need the following diagram to
commute:

Hom(A,X)
ηaX //

Hom(A,f)

��

F (X)

F (f)

��
Hom(A, Y)

ηaY

// F (Y)

The action of the function Hom(A, f) is given by Hom(A, f)(h : A −→
X) = f ◦ h as per the definition of the Hom-functor. The actions of the
components of the natural transformation are

ηaX(h : A −→ X) = F (h)(a) and ηaY (g : A −→ Y) = F (g)(a).

We check commutativity:

ηaY (Hom(A, f)(h)) = ηaY (f◦h) = F (f◦h)(a) = F (f)(F (h)(a)) = F (f)(ηaX(h)).

Thus for every element a of F (A) we have a natural transformation ηa.

20

Given a natural transformation η : Hom(A, ·) −→ F we get an element
ηA(idA) of F (A). Using naturality we have that the following square com-
mutes for any f : A −→ X:

Hom(A,A)
ηA //

Hom(A,f)

��

F (A)

F (f)

��
Hom(A,X) ηX

// F (X)

which says that

ηX(f) = ηX(f ◦ idA) = ηX(Hom(A, f)(idA)) = F (f)(ηA(idA)).

In other words the action of the natural transformation η is completely
determined by ηA(idA). It is easy to see that these correspondences are
inverses of each other.

Recall the definition of full and faithful functors. The Yoneda Lemma gives
as a corollary the following embedding of any category into a particular
functor category.
Corollary 34. The functor Y : C −→ SetC

op
given by Y(A) = Hom(·, A) is

a full and faithful embedding.

Proof . The functor Y defines a map, call it Y , from C(A,A′) to
Nat(Hom(·, A),Hom(·, A′)). Let f ∈ Hom(A,A′), then Y (f) is a natural
transformation from Hom(·, A) to Hom(·, A′). Explicitly, given B, an ob-
ject of C, we have the function Y (f)B : Hom(B,A) −→ Hom(B,A′) given
by g 7→ f ◦ g. Clearly if f = f ′ then Y (f) = Y (f ′). If Y (f) = Y (f ′) we
can use A for B and the identity for g to conclude that f = f ′. Hence
Y is injective. The proof of the Yoneda Lemma makes it clear that it is
surjective.

8 Adjoint Functors

We warm up with an example from posets. Recall that a poset is a category
in which every homset is either empty or has one element. A number of
ideas can be illustrated by first looking at the poset version. A functor
corresponds to a monotone function.

21

Definition 35. A Galois connection between two posets (P,≤P) and
(Q,≤Q) is a pair of monotone functions f : P −→ Q and g : Q −→ P such
that for every x ∈ P and y ∈ Q we have f(x) ≤Q y if and only if x ≤P g(y).

This says one can carry out the comparisons in either P or in Q. It follows
from this definition that x ≤ g(f(x)). To see this, note that f(x) ≤ f(x),
from the definition this immediately gives x ≤ g(f(x)). Similarly, f(g(y)) ≤
y. Taking y = f(x) in this last inequality we get f(g(f(x))) ≤ f(x), applying
g to both sides we get g(f(g(f(x)))) ≤ g(f(x)), but we also have g(f(x)) ≤
g(f(g(f(x)))), hence we get g ◦ f ◦ g ◦ f = g ◦ f . Thus g ◦ f is monotone,
increasing and idempotent; such a function is called a closure operator.
Similarly f ◦ g is montone decreasing and idempotent, such a function is
called a kernel operator.

When we boost all this to the categorical level we will need to compare
functors; we do this with natural transformations.
Definition 36. Let C and D be categories. An adjunction between C and
D is a pair of functors F : C −→ D and G : D −→ C such that for every object
X of C and Y of D there is a natural isomorphism between the homsets
C(X,GY) and D(FX, Y).

It is important to visualize this properly. The following picture is use-
ful.

X // GY of C

FX // Y of D
It shows the homsets that are isomorphic. In order to show that one has
an adjoint pair one has to construct a bijection between these two homsets.
The F appears on the left, it is called a left adjoint and G is called a right
adjoint. We say that F is a left adjoint and that it has a right adjoint.

The naturality condition can be made more explicit, but in order to do so
we need to introduce some notation for composing natural transformations
with functors.

Suppose that we have the following diagram of categories and functors

A U // C
F
&&

G

88�� η D V
// B

22

with a natural transformation η from F to G. One has composed functors
U ◦ G and U ◦ F with a natural transformation written ηU from U ◦ F to
U ◦G. Given an object A of A we have UA as object of C and a morphism
ηUA : FUA −→ GUA in D; we define this morphism to be ηUA. Similarly we
have a natural transformation, written V η, from V ◦ F to V ◦G. Given an
object C ∈ C we have a morphism ηC : FC −→ GC. Applying the functor
V to this morphism gives a morphism V ηC : V (FC) −→ V (GC) in B; we
define this to be (V η)C .

We now give an equivalent definition of an adjunction with the natural
transformations shown explicitly.
Definition 37. An adjunction between categories C and D is a pair of
functors F : C −→ D and G : D −→ C together with a pair of natural
transformations η : 1C −→ GF and ε : FG −→ 1D such that the following
equations hold

(Gε) ◦ (ηG) = 1G and (εF) ◦ (Fη) = 1F .

Here 1G and 1F are the identity natural transformations.

Finally, there is a third way of seeing what an adjunction is in terms of
universal properties. Suppose that we have a functor G from D to C. Then
for every object A of C there is a universal arrow from A to an object of the
form GX, this universal arrow is precisely the arrow ηA : A −→ GFA. What
is the universal property? Given any other object B of D and an arrow f : A
−→ GB there is a unique arrow f̂ from F (A)toB such that f can be written
as f = G(f̂) ◦ ηA. The correspondence between f and f̂ is precisely the
natural correspondence between homsets that defines the adjunction.

We have already seen examples of this concept. The functors F : Set
−→Mon and U : Mon −→ Set are an adjoint pair with the ε and η defined
there being exactly the natural transformations referred to in the definition
of an adjunction. Here F is the left adjoint and U is the right adjoint.

There are a number of important facts about adjunctions. First of all we
can compose them in the obvious way to get adjunctions. Second, if there
is an adjunction then one partner of the pair determines the other. Thirdly
and most important: right adjoints preserve limits, left adjoints preserve
colimits. The adjoint functor theorem gives conditions under which left
and right adjoints exist. Ignoring technical size conditions: a functor that
preserves limits has a left adjoint and a functor that preserves colimits has
a right adjoint.

23

9 Cartesian Closed Categories

10 The Curry-Howard-Lambek Isomorphism

11 Induction and Coinduction

The slogan is “initiality is induction.” In order to make sense of this we
need the categorical analogue of basic fixed point theory from posets.
Definition 38. Given a functor F : C −→ C we define a category of F -
algebras by taking the objects to be morphisms α : FA −→ A. A morphism
from α : FA −→ B to β : FB −→ B is a C morphism f such that the following
diagram commutes:

FA
α //

F (f)
��

A

f
��

FB
β
// B.

Why are these things called “algebras?” If, for example, FX) = X × X
then an F -algebra gives a binary operation on X so F -algebras generalize
the notion of set equipped with operations.
Theorem 39 (Lambek’s Lemma). An initial F -algebra ι : FI −→ I, if it
exists, defines an isomorphism between I and FI.

Proof .
FI

ι //

F (θ)
��

I

θ
��

F 2I
F (ι) //

F (ι)
��

FI

ι
��

FI ι
// I

In the diagram above we need to define a map θ as shown and prove that
ι and θ are inverses. Since F is a functor we can apply it to ι to obtain
the second row of the picture, which is an F -algebra. Since ι is an initial
F -algebra there is a unique arrow θ from I to FI such that the upper
square of the diagram commutes. The lower square commutes by inspection.
Composing the vertical maps we obtain that ι ◦ θ is a morphism in the
category of F -algebras from ι to itself, but since ι is initial there can be

24

only one morphism from ι to itself, namely the identity morphism. Thus
we have ι ◦ θ = idI . From functoriality and the fact that the upper square
commutes we have F (ι ◦ θ) = F (ι) ◦ F (θ) = θ ◦ ι. But ι ◦ θ is idI so
F (ι ◦ θ) = F (idI) = idFI ; thus θ ◦ ι = idFI . We have shown that ι and θ are
inverses.

What does this buy us? First of all let us explore the connection between
having an initial F -algebra and inductive definitions. I claim that the ini-
tiality condition automatically gives a scheme for inductive definitions on
the initial F -algebra. We will consider functors from Set to Set. We define
a functor called L (for List)as follows; we fix a set At of atoms:

L(X) = At×X]{NIL}, L(f : X −→ Y)(NIL) = NIL, L(f)(a, x) = (a, f(x)).

First we will construct the initial L-algebra by forming a suitable colimit,
one that we have seen before.

C

. . . L∞

OO

. . .

∅
φ0
//

ψ0

33
f0

55

L(∅)
φ1
//

55

L2(∅)
φ2
//

;;

L3(∅)
φ3
//

ψ3

OO

. . .
φn−1

// Ln(∅)
φn

//
ψn

hh
fn

ff

. . .

The set L(∅) contains just the single element NIL, which we assume to be
distinct from any of the atoms. If we take atoms to be the set {a, b}, then
the set L2(∅) = {NIL, (a,NIL), (b,NIL)} and the map from L(∅) to L2(∅)
is just the inclusion map. Similarly the set

L3(∅) = {NIL, (a,NIL), (b,NIL), (a, (a,NIL)), (a, (b,NIL)), (b, (a,NIL)), (b, (b,NIL))}.

We usually write these in the more pleasant display forms {NIL, a, b, aa, ab, ba, bb}
but mathematically (and in the implementation of lists!) they are nested
pairs as I have shown. The maps in the infinite horizontal line are inclu-
sions and, given the definition of colimit, the colimit object is then just the
union of all these sets. Thus L∞ is the collection of finite lists build up
inductively.

25

Now consider the object L(L∞). By applying the functor L to the diagram
formed by the above picture, excluding C and the arrows to C, we get

L(L∞)

. . . L∞

OO

. . .

∅
φ0
//

ψ0

33
θ0

55

L(∅)
φ1
//

55

L2(∅)
φ2
//

::

L3(∅)
φ3

//

ψ3

OO

. . .
φn−1

// Ln(∅)
φn

//
ψn

ii

L(ψn)

ff

. . .

Thus we get a cocone over the same diagram and by couniversality we get
a map from L∞ −→ L(L∞). This is not the arrow we need to make L∞ into
the carrier of an L-algebra.

Suppose that L has a special property: it commutes with colimits. This
means that if one constructs a colimiting diagram and X is the colimit
object then L(X) is the colimit of the diagram obtained by applying L to
every member of the original diagram. Our functor L has this property,
more on this later. For now, just assume that it does.
Definition 40. a functor F is said to be ω-cocontinuous if it commutes
with the formation of any countable colimit.

One needs general theorems about when functors have this property; we will
not prove them here.

Now the diagram obtained by applying L to the colimit diagram

∅
φ0
// L(∅)

φ1
// L2(∅)

φ2
// L3(∅)

φ3
// . . .

φn−1

// Ln(∅)
φn

// . . .

is just

L(∅)
φ1
// L2(∅)

φ2
// L3(∅)

φ3
// . . .

φn−1

// Ln(∅)
φn

// . . .

but we can always tack on the initial object in front, as the morphism from
it is unique, to get exactly the same picture as we had before. Since the
formation of colimits commutes with applying L we have that L(L∞) is also
the colimit, hence by uniqueness of colimits we have L(L∞) ' L∞. This
isomorphism gives us the map λ we want from L(L∞) to L∞.

There was nothing special about L in this example; any ω-cocontinuous
functor F would have been the same. It would have given us an object

26

F∞ with an isomorphism between it and F (F∞). So let us switch back to
speaking about a general such functor. We have to show that the F -algebra
we have just constructed is initial. Let α : FA −→ A be any F -algebra.
We can construct a cocone of arrows pointing into A as follows. We have
the unique arrow !A : 0 −→ A where 0 is the initial object of the category.
We apply F and get F (!A) : F (0) −→ F (A). Compose this with α to get
α ◦ F (!A) : F (0) −→ A. We can continue in this way to get the cocone we
want. Now couniversality gives us a unique morphism f from F∞ to A.
Since F (F∞) is also a colimit we get a unique morphism γ, from F (F∞) to
A. Now we have the following picture

F (F∞)
ι //

F (f)
��

γ

##

F∞

f

��
F (A) α

// A

and by uniqueness of γ we have

f ◦ ι = γ = α ◦ F (f).

In short we have constructed a unique morphism from ι to α.

Finally we want to see how to define functions from F∞ to other types by
induction. For this let us return to our list example. Suppose we have an L-
algebra α : LA −→ A. For definiteness we take A to be the natural numbers
N and α(NIL) = 0, α(a, l) = 1 + α(l). We then have a unique function, we
will call it len : L∞ −→ N given as follows:

len(NIL) = α(NIL) = 0, len(a.l) = α(a, l) = 1 + α(l).

This is precisely the inductive definition of the length function.

In general the map ι tells you how to put together elements of the colimit (it
encodes the constructors), the function f is defined inductively by match-
ing on the image of elements of F (F∞) (pattern matching), the map F (f)
followed by α gives the inductive definition and initiality promises that this
yields a well defined function f .

The amazing thing is that all this can be dualized to give coinduction. We
define a coalgebra for a functor F to be a morphism δ : D −→ FD. A
morphism of coalgebras is defined in the evident way. Lambek’s lemma
works with the obvious modification. In other words if we have a final

27

(terminal) coalgebra we get an isomorphism. In order to build the terminal
coalgebra we use the following diagram

. . . D∞

ss tt zz ��))

. . .

> F (>)
φ1

oo F 2(>)
φ2
oo F 3(>)

φ3
oo . . . Fn(>)

φn
oo . . .

φn+1

oo

where > is the terminal object and the maps are constructed by using finality
to get a unique map from F (>) to > and then using functoriality to get
the morphisms in the infinite horizontal row. Now we require functors to
preserve countable limits, such functors are called continuous.

Let us consider an example: we take the cartesian product functor with a
fixed set At, we will call this functor S. The terminal object is any one-
element set {•}. S(>) = {a•, b•} and

S2(>) = {aa, ab, ba, bb}

where I have stopped writing •. The map from S(>) −→ S(>) is the follow-
ing

aa 7→ a, ab 7→ a, ba 7→ b, bb 7→ b.

Thus each of the left pointing maps chops off the last element. How is

the limit constructed? We take sequences σ ∈
∏
i

Si(>) that satisfy the

consistency condition ∏
i

Si(>)

πn

��

π(n−1)

zz
S(n−1) Sn

φnoo

which means that such a σ is an infinite sequence of finite sequences each of
which is an extension of the previous one. Such a family of finite sequences
can be regarded as a single infinite sequence. In short we have constructed
the infinite lists! It is fascinating that the colimit gives the finite lists and
the limit gives the infinite streams.

The induction principle for finite lists is essentially initiality. What is the
dual coinduction concept? If we call the streams that we have just con-
structed St we have the map δ : St −→ At× St. What δ does is tell us how
to split a stream into a head and a tail; for lists we had constructors for

28

streams we have destructors. A better notation for δ is 〈hd, tl〉; it takes a
stream apart and gives back the head and the tail.

Suppose that we built streams out of another alphabet Σ; this would come
with its own similar destructors; let us call them hd′ and tl′. Now we can
define an S-coalgebra as follows, σ ∈ St and σ′ ∈ Σ∞:

t : Σ∞ −→ At× Σ∞, t(σ′) = (f(hd′(σ′)), tl′(σ′)),

where f is some function from Σ to At. The finality property now induces
a function from Σ∞ to St and this will be precisely the stream transducer
induced by f .

12 Stream programming examples

This section is based on a meeting with Ryan Kavanagh in my office and
was not given as a lecture. Ryan typeset the notes.

We will denote throughout the set of infinite streams of elements of a set S
by SN.

We recall that, for a set of atomic elements At and for an endofunctor F
given by F (X) = At×X and F (f)(a, x) = (a, f(x)), we have a terminal co-
algebra ι : AtN −→ F (AtN) given by ι(σ) = (hd(σ), tl(σ)), where hd and tl are
respectively the head and tail of the stream σ. Then co-inductively defining
a stream generator f consists of finding a F-coalgebra α : X −→ F (X) such
that the following diagram commutes.

AtN
ι
∼=
// At×AtN = F (AtN)

X

f

OO

α
// At×X = F (X)

F (f)

OO

Basic type-checking tells us that α is of the form x 7→ (a, x′) for x ∈ X.
Commutativity implies that (hd(f(x)), tl(f(x)) = ι(f(x)) = F (f)(α(x)) =
F (f)(a, x′) = (a, f(x′)), giving us the following pair of equalities:{

hd(f(x)) = π1(α(x))
tl(f(x)) = f(π2(α(x)))

(5)

We thus see that the stream generated by f(x), (a0, a1, a2, . . .), is co-inductively
defined by α, and we can give an inductive formula for the elements: with
x0 = x ∈ X, we let xn+1 = π2(α(xn)) and an = π1(α(xn)).

29

Throughout, we take ∧ to be lazy cons.

Integers starting at n We are interested in generating the stream (n, n+
1, n+ 2, . . .) for a given integer n. Let us define this stream using the mor-
phism nums from : N −→ NN given by nums from(n) = n ∧ nums from(n+1).
How do we co-inductively define this stream? That’s to say, what is the mor-
phism µ such that the following diagram commutes?

NN ι // N× NN = F (NN)

N

nums from

OO

µ
// N× N = F (N)

F (nums from)

OO

We need to have ι(nums from(n)) = F (nums from)(µ(n)), where ι(σ) is
as above. Letting µ(n) = (n, n + 1), we have that F (nums from)(µ(n)) =
F (nums from)(n, n+ 1) = (n,nums from(n+ 1)) = ι(nums from(n)), as we
wanted.

More generally, for stream generators of the form f : X −→ XN with
f(x) = h(x) ∧ f(ν(x)), giving a co-inductive definition of the stream gen-
erator simply entails exhibiting a co-algebra µ : X −→ X × X. This µ is
readily seen to be of the form µ(x) = (h(x), ν(x)).

Generalized Fibonacci sequence We would like to generate the gener-
alized Fibonacci sequence, that is to say, given integers a, b, we would like
to generate the stream (a, b, a + b, b + (a + b), (a + b) + (b + (a + b)), . . .).
This stream is generated by fib(a, b) = a ∧ fib(b, a+b). We see that µ(a, b) =
(a, (b, a+b)) is the co-algebra making the following diagram commute:

NN ι // N× NN = F (NN)

N× N

fib

OO

µ
// N× (N× N) = F (N× N)

F (fib)

OO

We can verify that this is correct by using equation (5). We have π1(µ(a, b)) =
hd(fib(a, b)) = a, agreeing with our above definition of µ. We also have
fib(π2(µ(a, b))) = tl(f(a, b)) = fib(b, a+ b), implying that π2(µ(x)) = (b, a+
b). Thus µ(a, b) is in fact (a, (b, a+ b)).

30

Merging streams Given two streams in XN, we wouldd like to merge
them, alternating between each. Thus, we have merge : XN × XN −→ XN

given by (σ, ρ) 7→ hd(σ) ∧merge(ρ, tl(σ)). The associated µ making the
diagram below commute is µ(σ, ρ) = (hd(σ),merge(ρ, tl(σ))).

XN ι // X ×XN = F (XN)

XN ×XN

merge

OO

µ
// X × (XN ×XN) = F (XN ×XN)

F (merge)

OO

Transducers Given an endomorphism t : X −→ X, we can co-inductively
define the “map” function common in functional programming. We have
map(t, σ) = t(hd(σ)) ∧map(t, tl(σ)) and need to find a β such that the
following diagram commutes:

XN ι // X ×XN = F (XN)

(X −→ X)×XN

map

OO

β
// X × ((X −→ X)×XN) = F ((X −→ X)×XN)

F (map)

OO

Using the same technique as the previous examples, we see that β(t, σ) =
(t(hd(σ)), (t, tl(σ))). Using map, we can now define all transducers on infi-
nite streams.

Similarly, we can co-inductively define “odd” and “even”, which respectively
take the the odd-indexed and even-indexed elements of a stream. The corre-
sponding βs are βo(σ) = (hd(σ), tl(tl(σ))) and βe(σ) = (hd(tl(σ)), tl(tl(σ)))
and the commutative diagram is:

XN βo //

odd
��

X ×XN = F (XN)

F (odd)
��

XN ι // X ×XN = F (XN)

XN
βe
//

even

OO

X ×XN = F (XN)

F (even)

OO

31

13 Monads

Whenever there is an adjunction F a U with F : C −→ D and U : D −→ C the
composite UF : C −→ C is a very special type of endofunctor on the category
C. It encodes the “free” construction of F but without leaving the category
C.
Definition 41. An endofunctor T : C −→ C is called a monad or triple if
there are two natural transformations η : I −→ T and µ : T 2 −→ T satisfying
the following commuting diagrams:

T 3X
µTX //

TµX
��

T 2X

µX
��

TX
ηTX // T 2X

µX
��

TX
TηXoo

T 2X µX
// TX TX.

I said earlier that monads come from adjunctions. In an adjunction F a U
as above, we have two natural transformations η : idC −→ UF and ε : FU
−→ idD. Clearly we have the natural transformation η as required in the
definition of a monad. Where does the natural transformation µ come from?
It cannot just be ε; that has the wrong type. However if we sandwich UF
between an F and a U we get FUFU which is T 2. Now it is clear that
µ = UεF . Using naturality of ε one can show that the diagrams for µ
and η given in the definition of a monad hold. We will record this as a
proposition.
Proposition 42. If (F,U, η, ε) is an adjunction then (UF, η, UεF) is a
monad.

Does every monad come from an adjunction? The answer is “yes”, but we
will look at some monads in their own right.

Here is an example of a monad that does not, on the face of it, look like
it came from an adjunction. This is the covariant powerset monad. The
functor is P : Set −→ Set which takes a set X to its powerset P(X); it
takes a function f : X −→ Y to the function P(f) : P(X) −→ P(Y) given
by P(f)(A ⊆ X) = {f(a) | a ∈ A}. It is easy to check that this really is a
functor. What are the natural transformations that show that it is a monad?
We define ηX(x) = {x}; this is indeed a map of type X −→ P(X). We define
µX : P(P(X)) −→ P(X) by

µX(A) =
⋃
A∈A

A.

32

HereA is a set of subsets of X, i.e. an element of P(P(X)); we just take their
union. These are very intuitive definitions and the fact that the equations
required of a monad hold is evident. As an exercise, the reader should verify
that the free monoid construction gives a monad on Set.

The dual concept is called a comonad.
Definition 43. A comonad on a category D is a triple (G, ε, δ)), where
G is an endofunctor on D and ε and δ are natural transformations: ε : G
−→ idD, δ : G −→ G2. They are required to obey the following equations:

G

δ
��

G
δ //

δ
��

G2

δG
��

G G2
εG
oo

Gε
// G G2

Gδ
// G3.

Of course a comonad on a category is the same thing as a monad on the
opposite category.

Every monad arises from an adjunction in at least two distinct ways. Given
a category C and a monad (T, η, µ) there are two ways of constructing a
category D and an adjunction between C and D that reproduce T . These two
constructions are called the Eilenberg-Moore construction and the Kleisli
construction. I will show the Eilenberg-Moore construction first.
Definition 44. Given a cateogry C and a monad (T, η, µ) on it we define
the category of Eilenberg-Moore algebras CT as follows. The objects are
morphisms from α : TA −→ A such that the following diagrams commute

A
ηA //

idA

TA

α
��

T 2A

Tα
��

µA // TA

α
��

A TA α
// A.

A morphism from α : TA −→ A to β : TB −→ B is a morphism f of C such
that the following daigram commutes

TA
α //

Tf
��

A

f
��

TB
β
// B.

33

Note that unlike the T −algebras that we introduced earlier which were de-
fined for any functor, these are defined only for monads and have additional
requirements. Of course, T -algebras for monads are also T -algbras in the
old sense. In this section, henceforth, I will always mean T -algebras for a
monad.

We always have some T -algebras: given any object A we have the map
µA : T 2A −→ TA which is required to exist for any monad. These are called
free T -algebras. Given any C-morphism f from A to B we have that Tf
is always a CT morphism by naturality of µ. Given any T -algebra α : TA
−→ A, α is also morphism from the free T -algebra to α since the definition
of T -algebra requires that the following diagram commutes

T 2A
µA //

Tα
��

A

α
��

TA α
// A.

We define an adjunction between C and CT as follows. We define a functor
F T : C −→ CT as follows: F T (A) = µA : T 2A −→ TA and F T (f : A
−→ B) = Tf . We omit the easy verification that F T is a functor. This will
be the left part of the adjunction. The functor in the other direction is the
forgetful functor GT : CT −→ C given by GT (α : TA −→ A) = A and it just
maps morphisms in CT to themselves but now viewed as morphisms of C. It
is immediate that GTF T = T . We have the natural transformation η given
by the monad to serve as the natural transformation η : idC −→ GTF T . We
still need the natural transformation ε : F TGT −→ idCT . Given an object
α : TA −→ A of CT we define the component of the natural transformation
εα to be simply α! Why does this make sense? Recall that GT (α) = A
and F T (A) = µA : TA −→ TA. A natural transformation from F TGT to
idCT must give, for every object α of CT a morphism of CT from F TGT (α)
to idCT (α), in other words from µA to α. But we have just noted above
that α is precisely such a morphism. It is an easy calculation to see that
GT εF T = µ showing that this adjunction indeed reproduces our original
monad.

It is instructive to work out what the T -algebras are for the monad that
sends X to X∗.

The other route to obtaining an adjunction is the Kleisli construction. Before
I give the construction let me motivate it a bit. Suppose that we have

34

a category D with an adjunction F a G with F : C −→ D and suppose
that our given monad (T, η, µ) arises as GF . Now consider the hom set
C(A, TB) = C(A,GFB) = D(FA,FB). This suggests that we can construct
a category D by using C objects but redefining the maps.
Definition 45. The Kleisli category CT of a monad (T, η, µ) has the same
objects as C and a morphism from A to B in CT is a morphism from A to
TB in C. The identity morphism of an object A is ηA and composition is
defined as follows: given morphisms f : A −→ B and g : B −→ C in CT we
define g ◦ f in CT by

µC ◦ Tg ◦ f.

It is straightforward to verify that this really is a category.

A very instructive exercise is to check that the Kleisli category of the pow-
erset monad is the category Rel.

References

[AHS90] Jiri Adamek, Horst Herrlich, and George E. Strecker. Abstract and
Concrete Categories: The Joy of Cats. Dover, 1990.

[Awo06] Steve Awodey. Category Theory. Oxford University Press, 2006.

[BW90] M. Barr and C. Wells. Category Theory for Computing Science.
prentice-Hall, 1990.

[HS73] Horst Herrlich and George E. Straeker. Category Theory. Allyn
and Bacon, Boston, 1973.

[Jac99] B. Jacobs. Categorical Logic and Type Theory. Number 141 in
Studies in Logic and the Foundations of Mathematics. North Hol-
land, Amsterdam, 1999.

[LS86] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical
Logic, volume 7 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 1986.

[Mac98] S. Mac Lane. Categories for the Working Mathematician. Number 5
in Graduate Texts in Mathematics. Springer-Verlag, 1998. Second
Edition.

35

[MM92] S. Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic.
Springer-Verlag, 1992.

36

