McGill University COMP531 Winter 2010

Assignment 1

Due February 3 in lecture

The work you submit must be your own. You may discuss problems with each others; however, you should prepare written solutions alone. Copying assignments is a serious academic offense, and will be dealt with accordingly.

(It is helpful to give a high level description of a proof or an algorithm before giving the details.)

Question 1 (Exercise 2.6 (b) in the text) In this question we view each string $\alpha \in \{0,1\}^*$ as the encoding of a nondeterministic Turing machine M_{α} .

Show that there is an universal nondeterministic Turing machine U such that U accepts input (α, x) , if and only if M_{α} accepts x. Moreover, the machine U must run in time cT(|x|) for some constant c that depends only on M_{α} , where T(|x|) is the running time of M_{α} on x.

Question 2 Assume that DTIME(n) = NTIME(n). Show that $\mathbf{P} = \mathbf{NP}$.

Question 3 (Exercise 2.5 in the text) Let PRIME be the language of all prime numbers. This question is to show directly that PRIME is in $NP \cap co-NP$ without using the fact that PRIME is in P.

a) Show that PRIME is in *co*-**NP**.

b) Show that PRIME is in **NP** using the following theorem:

Lucas test: An integer n > 2 is prime if and only if there is an integer 1 < r < n such that $r^{n-1} \equiv 1 \mod n$ and for all prime divisor q of n-1, $r^{\frac{n-1}{q}} \not\equiv 1 \mod n$.

Question 4 (Exercises 2.10 and 2.29 in the text) (a) Let L_1, L_2 be two languages in NP. Show that $L_1 \cap L_2$ and $L_1 \cup L_2$ are both in NP.

(b) Let L_1, L_2 be two languages in **NP** \cap *co*-**NP**. Show that $L_1 \oplus L_2$ is also in **NP** \cap *co*-**NP**, where

$$L_1 \oplus L_2 = \{x : x \text{ is in exactly one of } L_1, L_2\}$$

Question 5 None of the two inclusions is known: $\mathbf{P} \subset DSPACE(n)$ and $DSPACE(n) \subset \mathbf{P}$, but using padding and the Space Hierarchy Theorem we can show that $\mathbf{P} \neq DSPACE(n)$. Complete the following steps:

(a) For every language L, let $L^* = \{x01^{|x|^2} : x \in L\}$. Show that if L^* is in **P**, then so is L.

(b) Show that there is a language $L \notin DSPACE(n)$ but $L^* \in DSPACE(n)$. Conclude that $\mathbf{P} \neq DSPACE(n)$.