
MCGILL UNIVERSITY – COMP 360

TEST 2 SOLUTION

Question 1 [10pt]
(a)[3] (i)[1]

B(1, V) =

{

w1 if V = v1

∞ otherwise

Comment: Most people put 0 instead of ∞ when V 6= v1. This is wrong.

(ii)[2]

B(i, V) =

{

B(i− 1, V) if V < vi

min{B(i− 1, V), wi +B(i− 1, V − vi)} otherwise

(b)[1] All-pairs shortest paths.

(c)[2] This is the same array as that of Bellman–Ford algorithm. So A is a two dimensional array of size
n× n, where n = |V |. A[i, v] is the smallest cost of going from vertex v to t using at most i edges.

(d)[2] A directed graph with two distinguished vertices s and t, so that for every other vertex v there is a
path from s to t via v. Also, there is no edge coming to s and no edge going out from t.

(e)[1] O(Cm) where m is the total number of edges of the network, and C is the total capacity of the
edges leaving s.

Comment: Several people say O(mn), etc. which are wrong.

(f)[3]

1. f ← 0-flow

2. ∆← largest power of 2 not exceeding the maximum capacity leaving s

3. while ∆ > 0 do

4. while there are st-path in Gf (∆) do

5. let P be an st-path in Gf (∆)

6. augment(f, P)

7. end while

8. ∆← ∆/2

9. end while

Comment: Many people left this blank. Many others gave only one while loop, which is not correct.

Question 2 [10pt]
(a)[2] A is a two dimensional array of size n×D, where D is the maximum of all di.

Sort the jobs in increasing order of their deadlines. So

d1 ≤ d2 ≤ . . . ≤ dn

For 1 ≤ i ≤ n and 1 ≤ d ≤ D, A[i, d] is the maximum number of jobs among jobs {1, 2, . . . , i} that can be
scheduled to be done at time d at the latest.

(b)[3] Assume without loss of generality that di ≥ ti for all jobs i, because any jobs with di < ti cannot
be scheduled anyway.

1

Initialization:

A[1, d] =

{

1 if t1 ≤ d ≤ d1

0 otherwise

Recurrence:

A[i+ 1, d] =

{

A[i, d] if d < ti+1 or d < ti+1

max{A[i, d], 1 +A[i,min(di+1, d)− ti+1]} otherwise

(c)[2]

1. sort the jobs so that d1 ≤ d2 ≤ . . . ≤ dn

2. D ← max{d1, d2, . . . , dn}

3. for d from 1 to t1 − 1 do A[1, d]← 0 end for

4. for d from t1 to d1 do A[1, d]← 1 end for

5. for d from d1 + 1 to D do A[1, d]← 0 end for

6. for i from 1 to n− 1 do

7. for d from 1 to ti+1 − 1 do A[i+ 1, d]← A[i, d] end for

8. for d from ti+1 to D do

9. A[i+ 1, d]← max{A[i, d], 1 +A[i, di+1 − ti+1]}

10. end for

11. end for

(d)[2]

1. S ← empty set (this is out solution set)

2. i← n− 1, d← D

3. while A[i+ 1, d] > 0 do

4. if A[i+ 1, d] = A[i, d] then i← i− 1

5. else

6. add (i+ 1, di+1 − ti+1) to S

7. i← i− 1, d← di+1 − ti+1

8. end if

9. end while

10. output S

(e)[1] Running time: O(nd). Space: O(nd).

Question 3 [8pt]
(a)[3] The flow network G consists of two vertices s, t, and the following vertices: there is a vertex vi for
each client i, and a vertex uj for each base station j. The edges and their capacities are:

2

• (s, vi) with capacity 1,

• (vi, uj) for all i, j such that the distance from client i to base j is at most r, i.e.,

√

(xi − aj)2 + (yi − bj)2 ≤ r

• (uj , t) with capacity L.

(b)[1] We need to compute the distance between every pair (client,base). There are nk such a pair. So
this takes time O(nk). Other edges require no computation. So total time for constructing the network is
O(nk).

(c)[1] Let f be a maximum flow in the network. We output YES if the value of f is equal to n, the number
of clients.

(d)[3] Each way of connecting all n clients to the base station (satisfying the load and range conditions)
gives a flow of value n, by letting the flow on edge (vi, uj) be 1 if and only if client i is connected to the
base station j, and letting a flow of 1 on all edges (s, vi), and letting a flow on (uj , t) be the total number
of clients that are connected to station j.

On the other hand, the maximum flow in the network has value at most n, because this is the sum of
capacities on the edges leaving s. Also, a flow of value n (with integer flow on the edges) defines a way of
assigning clients to station, by letting client i to be connected to station j iff the flow value on edge (vi, uj)
is 1.

3

