
McGill University COMP360 Winter 2011 Instructor: Phuong Nguyen

Assignment 6 Solution

Question 1 (10pt) Let S be a non-empty set. Then a non-empty family L of subsets of S is said
to be nice if it satisfies the following conditions:

1. Inclusion property: For every subsets A,B ⊆ S, if B ∈ L and A ⊂ B then A ∈ L as well.
(Note that the empty set ∅ is necessarily a member of L.)

2. Exchange property: If A ∈ L and B ∈ L and |A| < |B| (here |A|, |B| denote the cardinal-
ities of A and B, respectively), then there is some element x ∈ (B −A) such that A ∪ {x} is
an element of L.

A subset A in L is called a top set if there is no other subset B in L such that A ⊂ B.
Here are some examples:

1. The family of all subsets of S is nice.

2. S = {a, b, c, d} and L = {∅, {a}, {b}, {a, b}}. Then L is nice. But L′ = {∅, {a}, {b}, {a, b}, {a, b, c}}
is not nice, because it violates the Inclusion property: {b, c} ⊂ {a, b, c} and {a, b, c} ∈ L′ but
{b, c} 6∈ L′.

3. S = {a, b, c, d, e}. L1 = {∅, {a}, {b}, {a, b}} and L2 = {∅, {c}, {d}, {e}, {c, d}, {d, e}, {e, c}, {c, d, e}}
are both nice. But L3 = {∅, {a}, {b}, {a, b}, {c}, {d}, {e}, {c, d}, {d, e}, {e, c}, {c, d, e}} is not
nice, because it violates the Exchange property: {a, b} and {c, d, e} are both in L3 and
|{a, b}| < |{c, d, e}|, but there is not element x in {c, d, e} such that {a, b} ∪ {x} is a member
of L3.

Now suppose that S is a set of n elements, n > 0, and let L be a nice family of subsets of S.
Suppose that each element x of S has a positive weight w(x). The weight of a subset A of S is
defined to the be total weight of all elements in A:

w(A) =
∑

x∈A

w(x)

The problem here is to fine a subset in L that has maximum total weight. Notice that any such
subset is necessarily a top set.

You are asked to solve this problem efficiently by a greedy algorithm. Note that L can potentially
have up to 2n members, so we don’t want to go through all of them. In fact, your algorithm must
be a polytime algorithm (assuming that the function t(n) below is a polynomial).

a) Give a greedy algorithm that finds a subset in L of maximum total weight. Prove that your
algorithm is correct.

b) To analyze the running time of your algorithm, we assume that checking whether a subset A
is a member of L takes time t(n). What is the running time of your algorithm in terms of n
and t(n)? (State your answer using O notation.)

1

Solution
(a): The Algorithm [4pt] The idea of the greedy algorithm is to go through the elements of S
in non-increasing order of weight and including them in the output set if the resulted set belongs
to L.

1. Sort the elements of S in non-increasing order of their weights: w(1) ≥ w(2) ≥ . . . ≥ w(n).

2. A← ∅ % The output

3. For i = 1 to n do

4. If A ∪ {i} ∈ L then A← A ∪ {i} End If

5. End For

6. Return A

Proof of Correctness [5pt] Now we prove that the greedy algorithm does return a set in L of
maximum weight. Let Ai be the set A after the i-th iteration. In particular, A0 = ∅ and An is the
output of the algorithm.

We say that Ai is “promising” if there is a maximum weight subset in L that extends Ai using
only elements in {i+ 1, i+ 2, . . . , n}. We will show that Ai are promising, and the fact that An is
promising implies that it must be an optimal subset.

The proof is by induction on i.
Base case: i = 0. Since A0 = ∅, any subset in L extends A0 using only elements in {1, 2, . . . , n}.
Induction step: Suppose that Ai is promising, we show that Ai+1 is also promising.
Since Ai is promising, there is a maximum weight subset OPT in L that extends Ai using only

elements in {i+ 1, i+ 2, . . . , n}, i.e.,

Ai ⊆ OPT ⊆ Ai ∪ {i+ 1, i+ 2, . . . , n}

We show that there is a maximum weight subset OPT’ that satisfies

Ai+1 ⊆ OPT ′ ⊆ Ai+1 ∪ {i+ 2, i+ 3, . . . , n} (1)

We consider the following cases:
Case I: i+ 1 6∈ Ai+1 (i.e., Ai+1 = Ai).
This only happens when Ai∪{i+1} 6∈ L. Then i+1 6∈ OPT , since otherwise Ai∪{i+1} ⊆ OPT

and by the Inclusion Property, OPT ∈ L implies that Ai ∪ {i+ 1} ∈ calL, a contradiction.
So i+ 1 6∈ OPT , and so OPT extends Ai+1 using only elements from {i+ 2, i+ 3, . . . , n}.
Case II: i+ 1 ∈ Ai+1, i.e., Ai+1 = Ai ∪ {i+ 1}.
This implies that Ai+1 ∈ L. We consider two subcases:
Case IIa: i + 1 ∈ OPT . Then OPT also extends Ai+1 (using only elements from {i + 2, i +

3, . . . , n}), and we are done.
Case IIb: i+ 1 6∈ OPT . We show how to modify OPT to obtain OPT’ that satisfies (1). Let

x1, x2, . . . , xk be all elements in OPT −Ai, i.e.,

OPT = Ai ∪ {x1, x2, . . . , xk}

where i+ 2 ≤ x1 < x2 < . . . < xk.

2

Now apply the Exchange Property for Ai+1 and OPT , there must some xj so that Ai+1∪{xj} ∈
L. Apply the Exchange Property again for Ai+1 ∪ {xj} ∈ L and OPT, there must be another xℓ
so that Ai+1 ∪ {xj , xℓ} ∈ L. Doing this k − 1 times, we conclude that there is some xt so that
(Ai+1 ∪ {x1, x2, . . . , xk} − {xt}) ∈ L. Let OPT ′ = Ai+1 ∪ {x1, x2, . . . , xk} − {xt}, then

w(OPT ′) = w(OPT)− w(xt) + w(i+ 1) ≥ w(OPT)

(because w(i+1) ≥ w(xt)). Since OPT has maximum weight, it must be the case that w(OPT ′) =
w(OPT) and hence OPT ′ also has maximum weight. Clearly OPT ′ satisfies (1). QED

(b) [1pt] The sorting step takes time O(n logn). There are n iteration. Each iteration takes time
t(n). So in total the running time of the algorithm is O(n logn+ nt(n)).

Question 2 (10pt) Consider the following variant of the Load Balancing problem, called Weighted
Load Balancing problem here. The input is a set of k (normal) processors and m fast processors,
that can run twice as fast as the normal processors. There are n jobs where each job i has a duration
ti and needs to be processed on one processor. On a normal processor job i takes up a contiguous
duration of ti units of time, but on a fast processor it takes up only ti/2 units of time. The problem
is to schedule jobs on processors in such a way that minimizes the maximum processing time (that
is, the load) of the processors.

For example, suppose that there are one normal processor and one fast processor (i.e., k = m =
1), and there are three jobs with durations t1 = 15, t2 = 2, t3 = 6. The the best schedule is to have
job 1 on the fast processor, jobs 2 and 3 on the normal processor (maximum load is 8 here). On
the other hand, if we jobs 1 and 2 on the fast processor and job 3 on the normal processor, the
maximum load is 8.5.

You are asked to give a greedy approximation algorithm for this problem that achieves approx-
imation ratio 2. That is, the output schedule must have maximum load at most twice the optimal
maximum load. Prove that this is indeed the case. Your algorithm must run in time polynomial
in m, k, n and

∑n
i=1

log tn. (Here all ti are positive integers.)

Solution
The algorithm [5pt] We follow the approach for the Load Balancing problem discussed in class.
Note that here the load of a fast processor is half of the total duration of all jobs assigned to it.
The idea is to sort the jobs in non-increasing order of duration, and assign each job to the processor
that has smallest total load so far.

1. sort the jobs so that t1 ≥ t2 ≥ t3 ≥ . . . ≥ tn

2. for i from 1 to n do

3. assign job i to the processor with smallest load so far; if there are both fast and normal
processors with smallest load, break tie by choosing a fast processor

4. update the load of the processor

5. end for

3

The sorting can be done in polytime, and each loop can be done in polytime, so overall the
algorithm runs in polytime.

Proof of approximation ratio [5pt] Now we show that the output schedule has maximum load
at most twice that of the optimal value. First note that if the number of jobs is at most the number
of processor, then the algorithm assigns one job to each processor, with the longest jobs to the fast
processors. Therefore the output is an optimal schedule.

Now suppose that there are more jobs than processors. Let m be the number of processors,
and k be the number of fast processors. So there are (m − k) normal processors. Let opt be the
maximum load in an optimal schedule. We need to show that the maximum load in our schedule
is at most 2opt.

Observe that

opt(2k +m− k) ≥
n∑

i=1

ti

so

opt ≥
1

m+ k

n∑

i=1

ti

Suppose that processor 1 is the processor with maximum load in our schedule. Let tj be the last
job assigned to it, and suppose that at the time before tj is assigned, the load on this processor is
T . So T + tj is the total load on this processor, and we have to show that

T + tj ≤ 2opt

It suffices to show that T ≤ opt and tj ≤ opt.
For the first inequality, at the time before tj is assigned to processor 1, the total load on this

processor is the smallest among all processors, therefore the total duration of all jobs that have
been assigned so far is at least

(2k +m− k)T = (m+ k)T

Hence

(m+ k)T <

n∑

i=1

ti

so

T <
1

m+ k

n∑

i=1

ti

Consequently T < opt.
For the second inequality, note that the first m jobs are assigned one to each of the processors.

Therefore j ≥ m + 1. Now consider an arbitrary optimal schedule. Then there must be at least
one processor that are assigned at least two jobs from jobs 1, 2, . . . , j. If this processor is a normal
processor then its load is at least 2tj . Otherwise its load is at least 2tj/2 = tj . In any case, the
maximum load in this schedule is at least tj . In other words, tj ≤ opt. QED

4

