
Divide-and-Conquer algorithsm for matrix multiplication

A =

(

A11 A12

A21 A22

)

B =

(

B11 B12

B21 B22

)

C = A×B =

(

C11 C12

C21 C22

)

Formulas for C11, C12, C21, C22:

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

The First Attempt Straightforward from the formulas above (assuming that n is a power of 2):

MMult(A, B, n)

1. If n = 1 Output A×B

2. Else

3. Compute A11, B11, . . . , A22, B22 % by computing m = n/2

4. X1 ←MMult(A11, B11, n/2)

5. X2 ←MMult(A12, B21, n/2)

6. X3 ←MMult(A11, B12, n/2)

7. X4 ←MMult(A12, B22, n/2)

8. X5 ←MMult(A21, B11, n/2)

9. X6 ←MMult(A22, B21, n/2)

10. X7 ←MMult(A21, B12, n/2)

11. X8 ←MMult(A22, B22, n/2)

12. C11 ← X1 + X2

13. C12 ← X3 + X4

14. C21 ← X5 + X6

15. C22 ← X7 + X8

16. Output C

17. End If

Analysis: The operations on line 3 take constant time. The combining cost (lines 12–15) is

Θ(n2) (adding two n

2 ×
n

2 matrices takes time n
2

4 = Θ(n2)). There are 8 recursive calls (lines 4–11).
So let T (n) be the total number of mathematical operations performed by MMult(A, B, n), then

T (n) = 8T (
n

2
) + Θ(n2)

The Master Theorem gives us
T (n) = Θ(nlog

2
(8)) = Θ(n3)

So this is not an improvement on the “obvious” algorithm given earlier (that uses n3 operations).

1



Strassen’s algorithm is based on the following observation:

C11 =P5 + P4 − P2 + P6 C12 =P1 + P2

C21 =P3 + P4 C22 =P1 + P5 − P3 − P7

where

P1 = A11(B12
−B22)

P2 = (A11 + A12)B22

P3 = (A21 + A22)B11

P4 = A22(B21
−B11)

P5 = (A11 + A22)(B11 + B22)

P6 = (A12
−A22)(B21 + B22)

P7 = (A11
−A21)(B11 + B12)

Exercise Verify that C11, . . . , C22 can be computed as above.

The above formulas can be used to compute A×B recursively as follows:

Strassen(A, B)

1. If n = 1 Output A×B

2. Else

3. Compute A11, B11, . . . , A22, B22 % by computing m = n/2

4. P1 ← Strassen(A11, B12 −B22)

5. P2 ← Strassen(A11 + A12, B22)

6. P3 ← Strassen(A21 + A22, B11)

7. P4 ← Strassen(A22, B21 −B11)

8. P5 ← Strassen(A11 + A22, B11 + B22)

9. P6 ← Strassen(A12 −A22, B21 + B22)

10. P7 ← Strassen(A11 −A21, B11 + B12)

11. C11 ← P5 + P4 − P2 + P6

12. C12 ← P1 + P2

13. C21 ← P3 + P4

14. C22 ← P1 + P5 − P3 − P7

15. Output C

16. End If

Analysis: The operations on line 3 take constant time. The combining cost (lines 11–14) is
Θ(n2). There are 7 recursive calls (lines 4–10). So let T (n) be the total number of mathematical
operations performed by Strassen(A, B), then

T (n) = 7T (
n

2
) + Θ(n2)

2



The Master Theorem gives us
T (n) = Θ(nlog

2
(7)) = Θ(n2.8)

The best current upper bound for multiplying two matrices of size n× n is O(n2.32) (by using
similar idea, but instead of dividing a matrix into 4 quaters, people divide them into a bigger
number of submatrices).

Open question: Can we multiply two n× n matrices in time O(n2)?

3


