
McGill University COMP251 Fall 2009 Instructor: Phuong Nguyen

Binary search tree and Red-Black tree

1 Binary search tree

Note: This section only serves as reference for the next section. For more details on BST refer to
your notes, or the textbook.

For insertion, we perform a search in the tree for a place of the new element, then insert it
there. This is to make sure that after the insertion the Binary search tree property is preserved. In
the algorithm BST-Insert(T, x) below we insert a new element x in to the tree T . We keep track
of the supposed parent of x (node z), and the supposed place of x (node y). Thus z is the parent
of y, and we move the pair (z, y) down the path that a search for x in T travels.

BST-Insert(T, x)

1. z ← NIL % parent of x

2. y ← T.root % place for x

3. while y 6= NIL do

4. z ← y

5. if x.key < y.key do

6. y ← y.left

7. else

8. y ← y.right

9. end if

10. end while

11. % now make x a child of z

12. x.parent← z

13. if z = NIL

14. T.root← x

15. else if x.key < z.key then

16. z.left← x

17. else

18. z.right← x

19. end if

1



Now for deletion. Suppose that we want to delete a node x from a binary search tree T . As
in the case of insertion, we have to make sure that the Binary search tree property is maintained
after deletion. We consider the following cases:

1. x has no left child, i.e., x.left = NIL: Then we can simply replace x by its right child. (Note
that this covers the case where x is a leaf, i.e., both its children are NIL.)

2. x has no right child, i.e., x.right = NIL: In this case we replace x by its left child.

3. x has two children. Then we find the successor y of x (using BST-Successor). Note that y is
the left-most descendant if x’s right child (in particular, y.left = NIL). Now there are two
subcases.

(a) y is the right child of x, then simply replace x by y and make the left child of x the

left child of y.

(b) y is not the right child of x, then first replace y by its right child, then put y into x’s
place (keeping x’s children and parent as children and parent of y) i.e., copy the key of
y (and all its satelite data, if there are any) into x’s location.

The “replacement” discussed above is performed by the following subroutine, BST-Transplant(T, u, v),
which replaces node u by node v: u’s parent becomes v’s parent, and v becomes the appropriate
child of u’s parent. (If u is the root of T then now v is the root of T .)

BST-Transplant(T, u, v)

1. if u.parent = NIL % if u is the root

2. T.root← v

3. else if u = u.parent.left

4. u.parent.left← v

5. else

6. u.parent.right← v

7. end if

8. if v 6= NIL

9. v.parent← u.parent

10. end if

The code for deletion is given below:

2



BST-Delete(T, x)

1. if x.left = NIL % Case 1

2. BST-Transplant(T, x, x.right)

3. else if x.right = NIL % Case 2

4. BST-Transplant(T, x, x.left)

5. else % Case 3

6. y ←BST-Successor(T, x)

7. z ← y.right

8. if y = x.right % Case 3(a)

9. BST-Transplant(T, x, y)

10. y.left← x.left

11. else % Case 3(b)

12. BST-Transplant(T, y, y.right)

13. % now make x’s parent/children y’s

14. y.left← x.left

15. y.right← x.right

16. y.parent← x.parent

17. if x.parent = NIL

18. T.root← y

19. else if x = x.parent.left

20. x.parent.left← y

21. else

22. x.parent.right← y

23. end if

24. end if

25. end if

3



2 Red-Black tree

A binary search tree in general can be very “unbalanced”; its height h can equal (n − 1), where
n is the number of nodes in the tree. Thus the queries that run in time Θ(h) are expensive. We
want a kind of BSTs that is guaranteed to have small height compared to the number of nodes.
Note that in the ideal case, a (perfect) balance binary tree (like a heap), the height of a binary tree
having n nodes is at most ⌈log2(n + 1)− 1⌉, i.e., roughly log2(n). The small height we want here
is c log2(n), for some constant c > 1. In other words, we want to have O(log2(n))-height.

This turns out be guaranteed by making sure that the lengths of the branches in the trees are
within a constant factor of each other. For example, it is shown in class that if the lengths of the
branches are within a factor of 2 of each other, then the height of the tree is at most 2 log2(n + 1),
i.e., O(log2(n)).

A Red-Black tree is a binary search tree that satisfies the above condition by maintaining the
following conditions on a coloring of its vertices by two colors red and black:

1. Every node in the tree is colored either black or red,

2. The root is black,

3. If a node is red, then its children (if there are any) are black,

4. The branches of the tree have the same number of black node,

5. If a node x has only one child y, then y is a leaf, and y is red.

Notes that if (1), (3), (4) and (5) are already satisfied then 2) can also be satisfied simply by
coloring the root black. Property (5) ensures that the binary tree is almost full, i.e., except for the
leaves and for the parents of the leaves, every node has exactly two children.

Now we see how insertion and deletion work for Red-black trees. Having a balance tree, every
time we insert a new node into it or delete a node from it we have to make sure that the tree
remains balance. In other words, we have to make sure that after each insertion and deletion, the
properties 1–5 above are maintained.

We will need to following subroutines: Left-rotate and Right-rotate. The intuition behind these
(see pictures drawn in class, or in the text book) is that they elevate a subtree when it becomes
“deeper” as a result of inserting a new node in it (or as a result of removing from another subtree).

The subroutine Left-rotate(T, x) rotates the link between x and its right child y to the left,
making y x’s parent, and x y’s left child.

Left-rotate(T, x):

1. if x 6= NIL and x.right 6= NIL

2. % moving the subtrees

3. y ← x.right

4. x.right← y.left

5. y.left← x

6. % now make x’s parent y’s parent, and fixing the pointer from y’s parent to y

4



7. y.parent← x.parent

8. if x.parent = NIL % x is the root

9. T.root← y

10. else

11. if x = x.parent.left

12. x.parent.left← y

13. else

14. x.parent.right← y

15. end if

16. end if

17. x.parent← y

18. end if

The procedure Right-rotate(T, x) works in the opposite direction. It rotates the link between
x and its left child y to the right, making x a right child of y. Details are left as an exercise.

2.1 Insertion

To insert a new node x into a tree T , first we do as insertion for an ordinary binary search tree.
Now there are two choice for coloring the new node: we can color it either black or red. Of course
some properties will be violated so we need to fix them up.

Coloring the new node black means that there is a branch which has more more black node
than all other branches, and this violates condition (4) and possibly (5). For example, consider
inserting a node with key 7 into the following Red-black tree. If we color the new node black then
to fix the violation of (4) we have to look at all the tree.

10

5 15

2

5



The other choice, i.e., coloring the new node red, results in only at most a single (local) violation
of property (3): there is at most a pair of vertices (x, x.parent) that are both red. (Note that if
x.parent is red, then its other children, if it exists, is black.) We can fix this violation by pushing
the pair up the tree. At the root (i.e., when x.parent is the root) it can be fixed simply by coloring
the root black. This is exactly what the procedure RB-Insert-Fix(T, x) does.

Now we give the details for RB-Insert. As mentioned above, we first perform the regular
insertion for BST, with additional task of coloring, then we call RB-Insert-Fix.

RB-Insert(T, x): % insert a new node x in to the red-black tree T

1. z ← NIL % parent of x

2. y ← T.root % place for x

3. while y 6= NIL do

4. z ← y

5. if x.key < y.key do

6. y ← y.left

7. else

8. y ← y.right

9. end if

10. end while

11. % now make x a child of z

12. x.parent← z

13. if z = NIL

14. T.root← x

15. else if x.key < z.key then

16. z.left← x

17. else

18. z.right← x

19. end if

20. x.color ← red

21. RB-Insert-Fix(T, x)

6



Now we discuss the fixing-up procedure RB-Insert-Fix(T, x). REFER TO YOUR LECTURE
NOTES, OR THE TEXTBOOK FOR THE ILLUSTRATIONS, OR DRAW YOUR OWN.

If x is at the root, we simply color it black (as required by property (2)). If x.parent is already
black, there is nothing to fix. So we work under the assumption that both x and x.parent are red
(this is the condition for the while-loop below).

If x.parent is already at the root, we just need to color it black and will be done. Otherwise
it has a parent, which must be black, and we consider two cases, depending on whether it’s a left
child (Case Left) or a right child (Case Right) of its parent. The two cases are symmetric, so we
focus on Case Left: the case where x.parent is the left child of its parent.

This case consists of subcases, depending on the color of x.parent’s sibling which we call y.
Below we consider the case where y is not NIL. The case where y is NIL (i.e., x.parent was a leaf)
is handled in the same way as case IIb.

• Case I: y is red. Then x.parent.parent must be black. We move the pair (x, x.parent) one
level up, by recoloring both x.parent and y black, and x.parent.parent red. The new value
of x is x.parent.

• Case II: y is black. In order to move the pair (x, x.parent) one level up (closer to the root)
we will do a right rotation at x.parent.parent. The rotation results in x.parent’s right child
being x.parent.parent’s left child. So we want to make sure that x is not the right child of
x.parent before rotating. We consider two subcases:

– Case IIa: x is the right child of x.parent. We will reduce this case to the next case (IIb:
x is the left child of x.parent) by a left rotation at x.parent.

– Case IIb: x is the left child of x.parent. We elevate x up by a right rotation at
x.parent.parent. Now the branches going through x has one less black node. We fix
this problem by recoloring x.parent black, and recoloring x.parent.parent (which by
this time is a right child of x.parent) red. (The algorithm terminates at this point.)

RB-Insert-Fix(T, x)

1. while x.parent 6= NIL and x.parent.color = Red do

2. if x.parent = T.root do x.parent.color ← Black

3. else

4. if x.parent = x.parent.parent.left % Case Left

5. y ← x.parent.parent.right

6. if y = NIL % similar to case IIb below

7. x.parent.parent.color← Red

8. x.parent.color ← Black

9. Right-rotate(T, x.parent.parent)

10. else if y.color = Red % Case I

7



11. x.parent.color ← Black

12. y.color ← Black

13. x.parent.parent.color← Red

14. x← x.parent.parent

15. else % Case II: now y’s color is Black

16. if x = x.parent.right % Case IIa

17. Left-rotate(T, x.parent)

18. x← x.parent

19. end if

20. % now case IIb

21. Right-rotate(T, x.parent.parent)

22. x.parent.parent.color← Red

23. x.parent.color ← Black

24. end if

25. else % Case R

26. CODE FOR CASE R HERE

27. end if

28. end if

29. end while

2.2 Deletion

For deletion, we perform the usual BST deletion, then as for insertion we need to take care of
possible violations of the Red-black tree properties. Recall the cases for BST deletion on page 2.
We will follow these cases and point out how to fix violations that arises in each case.

Suppose we are deleting node x. In each case we will take note of the “lost color”, i.e., the color
of the node that is removed from the tree (this is the color of either x or its successor y). If the
lost color is black, then we need to do a fixing up. Our fixing-up algorithm will start at a vertex z

with the assumption that

• if z 6= NIL then all branches going through z have one less black node than other branches
(this violates condition 4);

• if z = NIL then the parent p of z violates condition 5 (because after the deletion it p has a
single child which is not a red leaf).

8



In the first scenario, of course if z is red and is not the only child of its parent, the violation can
be resolved simply by coloring it black. So we will assume that z is black. By rotating we will
push this violation up to the root, and at that point it is no longer a violation, because there are
no other branches.

Because z can be NIL, we need to keep track of its parent p as well.

1. x has no left child, i.e., x.left = NIL. Then we replace x by x.right, so x.right’s parent
is now x.parent. If x’s color is black then we call fixing-up procedure for z = x.righ, with
p = x.parent.

2. x has a left child but it has no right child, i.e., x.left 6= NIL and x.right = NIL: Then
by condition 5 the left child must be a red leaf, and hence by condition 3 x must be a black
node. We simply replace x by its left child and color its left child black.

3. x has two children. Then we find the successor y of x (using BST-Successor). Note that y is
the left-most descendant if x’s right child (in particular, y.left = NIL). Now there are two
subcases.

(a) y is the right child of x, then simply replace x by y and make the left child of x the
left child of y. Also, we give y the color of x. So if y is black, we loose a black node
on the branches going through y’s right child. In this case we have to call the fixing-up
procedure for z = y.right and p = y.

(b) y is not the right child of x: first replace y by its right child, then put y into x’s place
(keeping x’s children and parent as children and parent of y) i.e., copy the key of y (and
all its satelite data, if there are any) into x’s location. We maintain the color of x, and
call the fixing up procedure for z = y.right and p = y.parent.

RB-Delete(T, x)

1. lost-color ← x.color

2. z ← x

3. p← x.parent

4. if x.left = NIL % Case 1

5. z ← x.right

6. BST-Transplant(T, x, x.right)

7. else if x.right = NIL % Case 2

8. z ← x.left

9. BST-Transplant(T, x, x.left)

10. else % Case 3

11. y ←BST-Successor(T, x)

9



12. z ← y.right

13. lost-color ← y.color

14. if y = x.right % Case 3(a)

15. BST-Transplant(T, x, y)

16. y.left← x.left

17. p← y

18. else % Case 3(b)

19. p← y.parent

20. BST-Transplant(T, y, y.right)

21. % now make x’s parent/children y’s

22. y.left← x.left

23. y.right← x.right

24. y.parent← x.parent

25. if x.parent = NIL

26. T.root← y

27. else if x = x.parent.left

28. x.parent.left← y

29. else

30. x.parent.right← y

31. end if

32. end if

33. end if

34. if lost-color = black

35. RB-Delete-Fixup(T, z, p)

36. end if

The procedure for fixing up: RB-Delete-Fixup(T, z, p). If z is already the root (i.e., p = NIL)
then simply make sure that z is black. Otherwise we consider the case where z = NIL and
z 6= NIL.

First, suppose that z 6= NIL. If z is red then color it black and we are done. So suppose that
z is black. Note that all branches going through z have one less black node than other branches.
There are two subcases:

10



• Case L: z is the left child of p,

• Case R: z is the right child of p.

The two cases are symmetric, so we discuss only Case L. This case is further divided into subcases
depending on the color of w, z’s sibling. (Note that z must have a sibling in this case; furthermore,
this sibling must have two children (Proof?).)

• Case I: w is red. Then by condition 3 p must be black. It can be deduced that both of w’s
children must be black. We do a left rotate at p, recolor w to black and p to red. This bring
us to case II below (with new w).

• Case II: w is black.

– Case IIa: w has two black children. We color w red. Then consider:

∗ Case IIa-1: p is black. Then make p the new value of z (and recursively go up the
path).

∗ Case IIa-2: p is red. Then color p black and we are done.

– Case IIb: w.right is black (and hence w.left is red). Then it can be shown that w.left

have two children who are both black. We reduce this to case IIc below (with a new
value of w), by rotating right at w, and recoloring w red and w.left (which now becomes
w’s parent) black.

– Case IIc: w.right is red. First we perform a left rotate at p. We let w have p’s color,
and color p black. Also color w.right black. (Verify that this preserves the number of
black nodes going through w.right as well as w.left and increases the number of black
nodes on branches going through z by 1.)

Now we consider the case where z = NIL (and the lost-color is black). Recall that this happens
in the following cases:

• x is a black leaf (and z is x.right, see case 1 of BST-Delete). In this case p is x.parent, and
z can be either left or right child of p. (If p 6= NIL, then it must have another child.)

• x has two children, and its successor y is a black leaf (and z = y.right, see case 3 of BST-
Delete). In this case p is y’s parent, and we know that p must have a right child.

We will consider the case LL where p.left is NIL (so p has a right child). Let w denote p.right.
The case RR where p.right = NIL is symmetric, and is left as an exercise.

We consider the following subcases of case LL:

• Case A: w is red. In this case p must be black, and w must have two children both of them
are black. As in case I above, we do a left rotate at p, recolor w to black and p to red. This
bring us to case B below (with new w).

• Case B: w is black. In this case, w cannot have a proper black descendant. (Prove this.) This
case is similar to but simpler than case II above. We consider the following subcases:

– Case B1: w is is a leaf. (So condition 5 is violated.) We color w red. Now if p is red we
color it black, and we are done. Otherwise, p is black, and call the fixing up procedure
recursively at p.

11



– Case B2: w has at least one child (which must be red leaf(s)).

∗ Case B2a: If w.right is NIL (then w.left 6= NIL) then right rotate at w, and recolor
w red, recolor w.left (which is now w’s new parent) black. Let the new value of w

be p.right. This takes us to case B2b below.

∗ Case B2b: w.right 6= NIL. This is similar to case IIc above. First, do a left rotate
at p. Then give w p’s color, and color p black. Also color w.right black, and we are
done.

The pseudo-code for the fixing-up procedure is as follows.
RB-Delete-Fixup(T, z, p)

1. while p 6= NIL

2. if z 6= NIL and z = p.left % Case L

3. w ← p.right

4. if w.color = Red % Case I

5. Left-rotate(T, p)

6. p.color ← Red

7. w.color ← Black

8. w ← p.right

9. end if % Case I is now reduced to Case II

10. if w.left.color = Black and w.right.color = Black % Case IIa

11. w.color ← Red

12. if p.color = Black % Case IIa-1

13. z ← p

14. p← z.parent

15. else % Case IIa-2

16. p.color ← Black

17. p← NIL % indicate that the while loop should end now

18. end if

19. else % Case IIb and IIc

20. if w.right.color = Black % Case IIb

21. w.color ← Red

12



22. w.right.color ← Black

23. Right-rotate(T, w)

24. w ← p.right

25. end if % Now we are in case IIc

26. w.color ← p.color

27. p.color ← Black

28. w.right.color ← Black

29. Left-rotate(T, p)

30. p← NIL % exiting the while loop

31. end if

32. else if z 6= NIL and z = p.right % Case R is symmetric and left as an exercise

33. DO CASE R HERE

34. else if z = NIL and p.right 6= NIL % Case LL

35. w ← p.right

36. if w.color = Red % Case A

37. Left-rotate(T, p)

38. p.color ← Red

39. w.color ← Black

40. w ← p.right

41. end if % Now case A is reduced to case B

42. if w.left = NIL and w.right = NIL % Case B1

43. w.color ← Red

44. if p.color = Red

45. p.color ← Black

46. p← NIL % indicate that the while loop stop now

47. else

48. z ← p

49. p← z.parent

13



50. end if

51. else % Case B2

52. if w.right = NIL % Case B2a

53. w.left.color ← Black

54. w.color ← Red

55. Right-rotate(T, w)

56. w ← p.right

57. end if % Now we are in case B2b

58. w.color ← p.color

59. p.color ← Black

60. w.right.color ← Black

61. Left-rotate(T, p)

62. p← NIL % exiting the while loop

63. end if

64. else if z = NIL and p.left 6= NIL Similar as above

65. DO CASE RR HERE

66. end if

67. end while

68. z.color ← Black

14


