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Abstract

We show that a noisy parallel decision tree making O(n) queries needs Ω(log∗ n) rounds to compute OR of n
bits. This answers a question of Newman [IEEE Conference on Computational Complexity, 2004, 113–124]. We
prove more general trade-offs between the number of queries and rounds. We also settle a similar question for
computing MAX in the noisy comparison tree model; these results bring out interesting differences among the
noise models.

1 Introduction

There is a vast literature devoted to the impact of noise on computation and communication. Within the theory
of computing, noise has been studied in the context of decision trees [12, 25, 10, 8, 21], formulas and circuits [23,
14, 28, 17, 9] , various kinds of communication protocols [15, 26, 18, 11, 21], sorting networks [19], cellular
automata [13], quantum computation [3, 5], and other situations, e.g. [1, 7, 22, 16, 20, 29]. In this paper we will
be concerned with the noisy boolean decision tree and the noisy comparison tree models.

1.1 Noisy Boolean Decision Trees

A boolean decision tree represents an algorithm for computing a boolean function f(x1, . . . , xn) by adaptively
querying its variables. When a boolean decision tree is executed in a noisy environment, each reported answer
may be incorrect. Several models have been proposed to formalize the notion of noise. In the random noise model
with noise parameter ε ∈ [0, 1/2), the outcome of each query is incorrect independently with probability exactly ε.
We say that an algorithm computes f with error probability δ (for some δ ∈ [0, 1/2)) if on each input x ∈ {0, 1}n,
the algorithm outputs f(x) with probability at least 1− δ.

A noise-free boolean decision tree of depth d can be simulated by a noisy decision tree of depth O(d log d) with
arbitrarily small error: Each query of a variable in the noise-free setting is simulated by taking the majority of
Ω(log d) noisy queries of the same variable. Any n-variate function can be computed with at most n queries in the
noise-free setting, and thus can be computed with at most O(n log n) queries in the random noise model. Feige et
al. [12] showed that to compute MAJORITY and PARITY in the noisy decision tree model Ω(n log n) queries are
indeed necessary. In contrast, they showed that OR can be computed in O(n) queries in the noisy model.

There is a natural notion of parallelism for decision trees [30]. In each step (or round), the algorithm may
make many queries and the algorithm branches according to the ensemble of answers to all of the queries. In the
noise-free model, such an algorithm is called a parallel decision tree (PDT).

In this paper, we investigate parallel noisy decision trees (PNDTs), where each query answer is subject to
noise. See Section 2 for precise definitions. PNDTs were introduced by Newman [21], who used them to construct
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protocols for the noisy broadcast model of distributed computing. We are interested in the trade-off between the
the number of rounds and the total number of queries needed to compute ORn, the OR of n input bits. The
O(n)-query PNDT for OR of Feige et al. [12] uses O(log n) rounds. Newman reduced this to O(log∗ n) rounds,
and asked: Is there a noisy decision tree for OR using O(n) queries and O(1) rounds? In this paper we provide a
negative answer to this question and show that Newman’s protocol is essentially optimal by proving a rounds-query
trade-off lower bound.

Theorem 1 Let ε ∈ (0, 1/2). There is a positive integer C = C(ε) such that for any positive integers n, r with
r ≤ log∗1/ε n − C, any PNDT that solves ORn in r rounds with error probability less than 1/4 requires at least
1

100n log(r)
1/ε(n) queries.

In particular, any PNDT that solves ORn using O(n) queries needs log∗1/ε n−O(1) rounds.

It has been noted (e.g., [11]) that the unrealistic assumptions of the random noise model, that each query
experiences independent noise with the same probability, allow for artificial algorithms that exploit this regularity
of noise. Other models of noise have been proposed [11] that are more robust in that they model noise by a family
of possible distributions rather than as a single distribution, and a good PNDT for a problem must succeed against
any distribution in the family. For example, a minimal robustness requirement is that a good PNDT should still
succeed if all noise is eliminated. These more robust models are discussed in Section 2.1.

For upper bounds, one seeks to design PNDTs that tolerate noise in the most robust model possible. Since
our lower bound is proved for the least robust model, they hold for the other models as well.

Our lower bound for OR is deduced from a lower bound on a related problem, the “Which half?” problem.
Working with this problem substantially simplifies the proof. The input to the “Which half? problem is a 2n-bit
vector with exactly one bit set to 1. The goal is to determine whether the 1 is in the first or the second half of the
bits. We prove that if the location of 1 is chosen uniformly at random then this problem can’t be answered reliably
with a linear number of queries and a constant number of rounds. The proof is by induction on the number of
rounds. The induction step uses round elimination: we prove a lemma that after the first round of queries, with
high probability we are left with a problem that is at least as hard as a smaller (but not too much smaller) version
of the original problem.

1.2 Noisy Comparison Decision Trees

In the comparison tree model, the variables take values from an abstract totally ordered set U and a query
specifies two variables xi, xj and asks whether xi < xj , or xi > xj . (We assume for simplicity that the variables
have distinct values.) The parallel version of the model, parallel comparison trees (PCTs), was considered by
Valiant [30].

The random noise model (and the other more robust models) has a natural analog for comparison trees. Thus
we can define parallel noisy comparison trees (PNCTs). Such trees were considered by Feige et al. [12]. Among
other results, they showed that the function MAX, which determines the index of the maximum element, can be
computed in O(log n) rounds using O(n) comparaisons, even in the most robust noise model.

We are interested in the trade-offs between the total number of comparisons and the number of rounds used
by a PNCT computing the maximum function MAX. We briefly review some known results for MAX in the
noise-free setting. Valiant showed that for deterministic PCTs, Ω(log log n) rounds are essential if in each round
the algorithm can make at most O(n) comparisons. He gave a PCT with O(log log n) rounds and O(n log log n)
comparisons. This was improved to O(log log n) rounds and O(n) comparisons by Shiloach and Vishkin [27]. Thus
for deterministic PCTs Θ(log log n) rounds are necessary and sufficient if the total number of somparisons is O(n).
For randomized PCTs, Reischuk [24] gave an algorithm with O(1) rounds and O(n) comparisons. which is clearly
best possible.

Our first result for the noisy case gives a tight query-rounds tradeoff for randomized PNCTs.
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Theorem 2 There exists a constant ε0 ∈ (0, 1) such that for all positive ε ≤ ε0, Θ(log∗1/ε n) rounds are necessary
and sufficient to compute MAX of n variables by a randomized PNCT using O(n) comparisons. This holds for
each of the noise models.

The lower bound is proved by a reduction from OR; the upper bound adapts Reischuk’s [24] algorithm to the
noisy case.

Restricting to deterministic PNCTs, we obtain results that differentiate between the random noise model and
the more robust noise models. Indeed, in the random noise model, a deterministic PNCT can simulate access to
a sequence of O(n) ε-biased independent random bits by repeatedly querying a single variable. (This capability
is one of the unrealistic features of the random noise model). Since the randomized PNCT that gives the upper
bound in Theorem 2 uses only O(n1/3 log n) random bits, it can be simulated (with no significant overhead) by a
deterministic PNCT.

This is not possible for the more robust models. In these models, the comparison trees are required to be
correct even if all noise is eliminated, and so by Valiant’s lower bound any deterministic making O(n) comparisons
needs Ω(log log n) rounds.

As noted above, for the noise-free case, Shiloach and Vishkin [27] constructed a PCT meeting Valiant’s lower
bound. We adapt Shiloach and Vishkin’s algorithm to the noisy case with the most robust adverary to obtain:

Theorem 3 For any of the noise models of section 2.1. there is a deterministic PNCT computing MAX of n
variables in O(log1/ε log1/ε n) rounds and O(n) comparisons.

The upper bound in the above theorem is obtained by adapting the PCT of Shiloach and Vishkin [27] mentioned
above to the noisy case using techniques from [12]. The idea is that the PCT of [27] leaves enough room to adjust
its parameters so that one can make additional comparisons which make the PCT robust to the noise.

The rest of this paper is organized as follows. Section 2 contains a formal description of the PNDT model and
some definitions. In Section 3, we present a PNDT for ORn that is different from Newman’s, that meets the lower
bound of Theorem 1 and provides intuition for why there is no O(n) query, O(1) round protocol. In Section 4
we present the proof of Theorem 1. In Section 5 we present results for the comparison tree model. Section 6
concludes with some open problems.

2 Preliminaries

A boolean decision tree over boolean variables {x1, . . . , xn} is a rooted binary tree T where each internal node of
the tree is labeled by a variable, and each leaf is labeled 0 or 1. An execution of T determines a path from the
root as follows: starting from the root, the algorithm asks the query labeling the current node and follows the
branch indicated by the response to the next node. This is repeated until a leaf is reached. The output is the
label of the leaf.

In a noise-free execution, the response to each query is equal to the value of the queried variable and thus the
path followed is completely determined by the input.

In a noisy execution the response to each query may disagree with the input variable. In the random noise model
with parameter ε ∈ [0, 1/2), each response is answered incorrectly with probability ε, and the query responses are
mutually independent. Thus the path followed is a random variable depending on the noise.

We say that a decision tree computes a function f : {0, 1}n → {0, 1} against noise ε if for all inputs x, a noisy
execution on the tree outputs f(x) with probability ≥ 2/3, where the probability is taken over the random noise.
Of course, 2/3 is an arbitrary constant, and we could choose it to be any constant in (1/2, 1) using standard
amplification.

For noiseless executions, we generally assume without loss of generality that the tree does not query the same
variable more than once along any path. For noisy executions, this assumption is not made. A decision tree that
is being subjected to noisy execution (and may include multiple queries to the same variable) is called a noisy
decision tree (NDT).

3



A parallel boolean decision tree (PDT) is similar to a boolean decision tree, except that each internal node
v is labeled by a multi-set of variables corresponding to a collection of queries made in parallel. There are 2m

branches coming from v (where m is the cardinality of the multi-set), corresponding to the possible responses to
these queries. Noiseless and noisy executions of PDTs are defined in the obvious way. In the noiseless setting, the
collection of queries labeling a node may be taken to be a set (rather than a multi-set).

2.1 More robust noise models

As mentioned in the introduction, models of noise other than the random noise model have been proposed. Given
a PNDT, each query that appears in the PNDT is subject to noise, and we represent that noise by a random
variable. A noise distribution for the PNDT is any joint distribution over these variables. A general noise model
consists of a family of allowed joint distributions over the noise variables.

In the random noise model, the family consists of a single distribution in which each variable is chosen
independently to be 1 with probability ε.

In the static adversary model [11] (also called the fault tolerance model [21]), given the PNDT, the allowed
distributions are those for which the noise variables are mutually independent but the probability of noise for each
variable may be any number in [0, ε].

In the clairvoyant adversary model [11] the noise variables are not required to be mutually independent. The
allowed distributions are those that satisfy that for any noise variable and any setting of the other noise variables,
the conditional probability that the noise variable is 1 given that setting is at most ε.

The clairvoyant adversary model is the most robust, that is, the allowed distributions are more general than
the static adversary model.

2.2 Towers and iterated logarithms

Let b > 1 be a real number and k be a nonnegative integer.
The tower function Tower(k)

b (·) is defined recursively for s ≥ 1 by:

Tower(k)
b (s) =

{
s if k = 0,

bTower
(k−1)
b (s) if k ≥ 1.

We define log∗b(x) is defined to be the least integer r such that Tower(r)b (1) ≥ x.
The base b k-iterated log function is defined for real numbers x that satisfy log∗b(x) ≥ k by:

log(k)
b (x) =

{
x if k = 0,
logb(log(k−1)

b (x)) if k ≥ 1.

Observe that for each fixed k and b, Tower(k)
b (·) and log(k)

b (·) are inverse functions.
We state the following routine facts without proof:

Proposition 4 Let b > a > 1 be real numbers. There is a nonnegative integer T = T (a, b) with the property that
for all x ≥ 1 and 1 ≤ k ≤ log∗a(x)− T ,

1. log∗a(x)− T ≤ log∗b(x) ≤ log∗a(x).

2. log(k)
a (x) ≤ (loga(b)) log(k)

b (x).

3. For k ≤ log∗a(x)− T , log(k)
a (x2) ≤ 2 log(k)

a (x).
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2.3 Other notation

For a bit vector u ∈ {0, 1}n, |u| =
∑

i ui. For 1 ≤ i ≤ n let ei = en
i denote the vector with all except the ith bit

0. The all 0’s vector is denoted by 0 = 0n. The input is denoted x = (x1, . . . , xn). When the base is not specified
the base of the logarithm is 2. Notation O(.), Ω(.) may hide factors depending on ε. Set [n] := {1, . . . , n}. For
two sets A and B denote their symmetric difference by A∆B. X ∼ Y means that the random variables X and Y
are identically distributed.

3 Trade-off upper bounds for OR

In this section, we present a PNDT that essentially matches the lower bound trade-off stated in Theorem 1. As
mentioned earlier, Newman already gave such a PNDT. His PNDT has an additional property that on non-zero
input, with high probability it returns the minimum index i ∈ [n] such that x[i] = 1.

Here we give a different PNDT called FAST OR. FAST OR does not have the additional property but has
other advantages: (i) it is simpler, (ii) it reveals a computational bottleneck that leads to our tight lower bound,
and (iii) on any input x, with high probability it outputs a subset of indices that is “close” to {i ∈ [n] : xi = 1}.
We need this last property in the proof of Theorem 2 to design an efficient PNCT for MAX.

Both Newman’s PNDT and FAST OR are robust even against the most robust noise model.
For our algorithm, we assume that the noise parameter ε is at most 1/16. Given an algorithm that works with

noise parameter 1/16, we can convert it to one that works for any noise parameter ε < 1/2 by replacing each
query to a variable by the majority of a suitably chosen constant number of queries to that variable. This leaves
the number of rounds unchanged and changes the number of queries by a constant factor.

Given n and integer q ≥ 1, FAST ORn,q takes as input x1, . . . , xn and uses nq queries and a small number of
rounds. The definition of FAST ORn,q depends on two sequences (qj : j ≥ 1) and (λj : j ≥ 1) of parameters. We
define β = (1

ε )1/8 and for j ≥ 1,

qj := Tower(j−1)
β (q/2),

λj :=
q

qj+12j+1
.

FAST ORn,q constructs a sequence of sets [n] =: S0 ⊇ S1 ⊇ · · · . We write sj for the size of Sj . During round j
for j ≥ 1, the algorithm determines Sj from Sj−1 as follows: for each i ∈ Sj−1, the algorithm performs qj (noisy)
queries of xi and places i in Sj if at least qj/2 answers were 1. At the end of round j, FAST OR terminates with
output 0 if sj = 0, and terminates with output 1 if sj > λjsj−1, and otherwise it continues to round j + 1.

For each fixed input x, the behavior of the algorithm depends on the random noise present in each query re-
sponse. As we will see below, the algorithm is guaranteed to terminate. Let R be the random variable representing
the total number of rounds.

For x ∈ {0, 1}n, define A = A(x) := {i : xi = 1} and B = B(x) := {i : xi = 0}.

Theorem 5 For each ε ∈ (0, 1/16), there is a constant C = C(ε) such that the following holds. Let n, r, q be
positive integers satisfying r ≤ log∗1/ε n − C, and q = d80 log(r)

1/ε(n)e ≤ n. For any input x ∈ {0, 1}n, FAST ORn,q

uses at most qn queries and the number R of rounds is at most r. Furthermore, the final set SR satisfies: (1) for
each i ∈ A, Pr[i 6∈ SR] ≤ 1

40000 , and (2) |SR∆A| ≤ |A|/100 with probability at least 99/100.

Proof. The constant C(ε) will be specified by various conditions that arise in the argument.
For any j, if FAST OR has not terminated by the end of round j − 1 then:

1 ≤ sj−1 ≤ λj−1sj−2 ≤ λj−1n ≤
qn

qj2j
. (1)

5



Thus the number of queries in round j is at most qjsj−1 ≤ qn/2j and so the total number of queries is at most
qn.

We next show that FAST ORn,q uses at most r rounds. Suppose for contradiction that FAST ORn,q has not
terminated after r rounds. Then by (1) and the definition of qr+1, qn ≥ qr+1 = Tower(r)β (q/2), and so:

log(r)
β (qn) ≥ q/2 ≥ 40 log(r)

1/ε(n). (2)

By choosing the constant C(ε) large enough we can ensure by Proposition 4(3) that for q, r, n as hypothesized,
log(r)

β (qn) ≤ 2 log(r)
β (n). Using Proposition 4(2) and again choosing the constant C(ε) large enough, this is at most

32 log(r)
1/ε(n), which contradicts (2).

Next we consider the properties of the final set SR. For j ≤ R and for each i ∈ Sj−1, FAST OR computes the
majority of qj queries to xi. Let pj denote the probability that this majority value disagrees with xi (which, of
course, is independent of i). Then

pj ≤
(

qj

qj/2

)
εqj/2 ≤ 2qjεqj/2 ≤ εqj/4 ≤ (1/β)2qj ≤ 1/q2

j+1, (3)

where the third inequality uses ε ≤ 1/16.
For i ∈ A, Pr[i 6∈ SR] ≤

∑
i≥1 pi ≤

∑
i≥1 1/q2

i+1 ≤ 2/q2
2 ≤ 1/40000 (with room to spare) since ε ≤ 1/16 and

q ≥ 80.
We now bound Pr[|A∆SR| ≥ |A|/100] from above. Let Aj := A ∩ Sj and Bj := B ∩ Sj ; also let aj := |Aj |

and bj := |Bj |. Let C be the event that |A− AR| ≥ |A|/200 and for j ≥ 0 let Badj be the event (j ≤ R) ∧ (bj >
200(2j)pjbj−1).

It suffices to prove the following two claims: (i) If none of the events in the set {C} ∪ {Badj : j ≥ 1} occur,
then |A∆SR| ≤ |A|/100 and (ii) Pr[∪j≥1Badj ] ≤ 1/200 and Pr[C] ≤ 1/200.

To prove (i), assume that none of the given events occur. Write |A∆SR| = |A− AR|+ |BR|. Since C doesn’t
occur, |A − AR| ≤ |A|/200. It now suffices to show |BR| ≤ |A|/200. If FAST OR terminates with SR = ∅ then
|BR| ≤ |A|/200 is trivially satisfied. In the other case, the termination condition of FAST OR and the assumption
that BadR does not occur imply:

aR + bR ≥ λR(aR−1 + bR−1) ≥ λRbR−1 ≥
λR

200(2R)pR
bR ≥ qR+1

200(22R+1)
bR.

Clearly qR+1/(200(22R+1)) is minimized when R = 1, in which case it equals (1/ε)q/16/1600. Using ε ≤ 1/16
and q ≥ 80 this expression is more than 201 and it follows immediately that bR ≤ aR/200 ≤ |A|/200.

To prove (ii), we have first that E[|A−AR|] ≤ |A|/40000 (this we proved above) and Markov’s inequality imply
Pr[C] ≤ 1/200.

For each j ≥ 1, conditioned on the event that FAST OR executes at least j rounds and also conditioned on
the value of bj−1, the expectation of bj is pjbj−1. By Markov’s inequality:

Pr[Badj ] ≤
1

2j200
.

and therefore Pr[∪j≥1Badj ] ≤ 1/200. �

4 Trade-off lower bounds for OR

It is more convenient to prove the lower bound for the following problem:

Definition 6 The “Which Half? Problem” (WHPn).
Input: A 2n-bit vectors with a single 1.
Output: 0, if the 1 appears among the first n bits, and 1 otherwise.
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PNDT lower bounds for WHPn imply similar bounds for ORn:

Lemma 7 If there is a qn-query, r-round randomized PNDT for ORn with error probability at most δ then there
is a qn-query, r-round randomized PNDT for WHPn with error probability at most δ.

Proof. For a 2n-bit vector x with a single 1, WHPn(x) = ORn(xn+1, . . . , xn), so WHPn(x) can be solved using a
PNDT for ORn. �

Let WHPU
n denote WHPn with input chosen uniformly at random from x1, . . . , x2n. We will prove:

Theorem 8 Let ε ∈ (0, 1/2). There is a positive integer C = C(ε) such that for any positive integers n, r with
r ≤ log∗1/ε n−C, any (possibly randomized) PNDT that solves WHPU

n in r rounds with error probability less than

1/4 requires at least 1
100 log(r)

1/ε(n) queries.

Theorem 1 follows immediately.
It suffices to prove Theorem 8 for deterministic PNDTs, since a randomized PNDT can be viewed as a

probability distribution over deterministic PNDTs and the probability of error of a randomized PNDT running
on a fixed input distribution is a suitable average over deterministic trees run over the same input distribution.
(This is the easy direction of Yao’s lemma [32].)

4.1 The round elimination lemma

Let errn(r, t) be the minimum possible error probability of an r-round, deterministic PNDT for WHPU
n that uses

at most t queries. The round elimination lemma relates errn(r, t) to errn′(r − 1, t) for some n′ that is not much
smaller than n:

Lemma 9 (Round elimination) Let ε ∈ (0, 1/2) and θ ≥ 8. Let n, Q, r be positive integers such that Q ≥ n >
(1

ε )4θQ/n, and let n′ be a positive integer satisfying n′ ≤ n ε2θQ/n. Then:

errn(r, Q) ≥ errn′(r − 1, Q)(1− 4
θ
).

Proof. Let X be the random input to WHPU
n and let K be the (random) index such that XK = 1.

We want to show that any r-round, Q-query deterministic PNDT for WHPU
n has error probability at least

errn′(r−1, Q)(1− 4
θ ). The analysis is simplified by introducing an advisor who provides some additional information

to the PNDT. We show the desired lower bound holds for PNDTs with this advisor; since the advisor can only
reduce the probability of error, the lower bound applies to PNDT without advice.

After the first round, the advisor reveals the values of X at all but n′ locations of each half of the input, and
also provides some additional information about the unrevealed values. Let T be the event that the unique 1 is
revealed, and let T be the complementary event. The behavior of the advisor will ensure the following conditions:

1. Pr[T ] ≤ 4
θ .

2. The conditional distribution on K given T is uniform over the set of unrevealed locations.

These two conditions imply the theorem since by Condition 2, the conditional probability that the PNDT
makes an error given T is at least errn′(r − 1, Q), and thus by Condition 1, the probability of error is at least
errn′(r − 1, Q)(1− 4

θ ).
We now describe a strategy for the advisor that guarantees these two conditions. The first round of queries

of a PNDT for WHPn is specified by a vector (m1, . . . ,m2n), where mi is the number of times Xi is queried.
By hypothesis, m1 + . . . + m2n ≤ Q. Let B1 (resp. B2) consist of the bn/θc indices among the first half (resp.
second half) of the variables that are queried most often, breaking ties arbitrarily. Let A1 := [n] − B1 and
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A2 := [n + 1, 2n] − B2, and A := A1 ∪ A2. Note that for j ∈ {1, 2} and i ∈ Aj since mi ≤ mh for all h ∈ Bj , we
have

mi ≤
1

|Bj |+ 1

∑
h∈Bj∪{i}

mh ≤
Qθ

n
.

Define m = bQθ
n c; since the mi are integers, we have mi ≤ m for all i ∈ Aj .

We now describe the behavior of the advisor.

Step 1. The advisor reveals the values of (Xi : i ∈ B := B1 ∪B2). If K ∈ B, the computation ends.

Step 2. For each i ∈ A, the advisor provides answers to m−mi additional (noisy) queries to Xi. Thus for each
i ∈ A, the PNDT has m noisy values for Xi.

Step 3. For i ∈ A, let vi be the number of queries to Xi that reported 1. For j ∈ {1, 2}, let Sj := {i ∈ Aj :
vi = vK} and let sj := |Sj |. (Sj is the set of indices that “look the same” as K to the PNDT.) If s1 < n′

or s2 < n′ the advisor reveals the value at location K and the computation ends. Otherwise, the advisor
reveals the values of the variables outside S := S1 ∪ S2.

Step 4. The advisor chooses |s1 − s2| indices at random from the larger of S1, S2 and reveals those values. Let
R1, R2 be the subsets of S1, S2 that remain unrevealed.

Step 5. If K is unrevealed then |R1| = |R2| ≥ n′ and the conditional distribution of K is uniform over R1 ∪R2.
Finally, the advisor chooses a pair R′

1 ⊆ R1 and R′
2 ⊆ R2 of subsets uniformly at random from among

the pairs of subsets of size exactly n′ such that K ∈ R′
1 ∪ R′

2, and reveals all the values of locations in
(R1−R′

1)∪ (R2−R′
2). This maintains the property that K is unrevealed and the location of K is uniformly

distributed over R′
1 ∪R′

2.

It is clear from this description that Condition 2 is satisfied and it remains to verify Condition 1. For 1 ≤ i ≤ 5,
let Ei be the event that the advisor reveals the location of K during step i. The events Ei are disjoint and E2

and E5 are empty, so Pr[T ] = Pr[E1] + Pr[E3] + Pr[E4]. Since K is independent of the queries performed in the
first round

Pr[E1] = Pr[K ∈ B] =
|B|
2n

≤ 1
θ
.

It remains to give an upper bound on Pr[E3] + Pr[E4]. For any event F containing E3, Pr[E3] + Pr[E4] ≤
Pr[F ] + Pr[E4 ∧ F ] ≤ Pr[F ] + Pr[E4|F ]. We will choose such an event F and bound the two terms of this final
sum.

For a positive integer s and γ ∈ [0, 1], let B(s, γ) denote the sum of s independent 0-1 random variables, each
equal to 1 with probability γ. Let p(t) := Pr[B(m, ε) = t] =

(
m
t

)
εt(1 − ε)m−t. Observe that for any t ∈ [0,m],

p(t) ≥ εm. Define w(t) := E[B(n − bn
θ c, p(t))] = (n − bn

θ c)p(t). Let W = w(vK); thus W is a random variable
depending on vK . For j ∈ {1, 2} we define Fj to be the event that |sj −W | > W/θ and F to be the event F1 ∨F2.
To show that Condition 1 holds it now suffices to show:

Step 1 E3 ⊆ F .

Step 2 Pr[Fj ] ≤ 1
θ for j ∈ {1, 2}.

Step 3 Pr[E4|F ] ≤ 1
θ .

If E3 holds, then for some j ∈ {1, 2},

sj < n′ ≤ nε2m ≤ nεmp(vK) ≤ (1− 1
θ
)w(vK),
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which implies F . (The last inequality is very loose.)
Next, we bound Pr[Fj ] for j ∈ {1, 2}. Fix k ∈ {1, . . . , 2n} and t ∈ [0,m] arbitrarily. We show that Pr[Fj |(K =

k) ∧ (vK = t)] ≤ 1
θ from which Pr[Fj ] ≤ 1

θ follows immediately. For i ∈ [n], let Yi be the indicator of the
event i ∈ Sj . Thus sj =

∑
i∈Aj

Yi. We have Yk = 1 and, for i ∈ Aj − {k}, Yi ∼ B(1, p(t)). If k 6∈ Aj then
sj ∼ B(n − bn

θ c, p(t)), and otherwise sj ∼ B(n − bn
θ c − 1, p(t)) + 1; in either case we can write sj = Z + Y ,

where Z ∼ B(n−bn
θ c, p(t)) and Y is a random variable satisfying 0 ≤ Y ≤ 1. Noting that Z has variance Var[Z]

= (1− p(t))E[Z] ≤ E[Z] and using Chebyshev’s inequality we get:

Pr[Fj |(K = k) ∧ (vk = t)] = Pr
[
|sj − w(t)| > w(t)

θ

]
≤ Pr

[
|Z − w(t)| ≥ w(t)

θ
− 1

]
≤ Pr

[
|Z − w(t)| ≥ w(t)

2θ

]
≤ 4Var[Z]θ2

E[Z]2
≤ 4θ2

E[Z]
≤ 4θ2

εm(n− bn
θ c)

≤ 1
θ
.

The second inequality follows from w(t) ≥ 2θ, and this follows from w(t) ≥ (n − bn
θ c)ε

bθQ/nc together with the
hypotheses n ≥ (1/ε)4θQ/n, θ ≥ 8, ε < 1/2 and Q ≥ n. The final inequality also follows easily from these
hypotheses.

The event E4 occurs if xK is among the |s1−s2| variables of S1∪S2 that the oracle reveals. This happens with
probability at most |s1−s2|/s1+s2. Given F , W (1−1/θ) ≤ s1, s2 ≤ W (1+1/θ) which implies |s1−s2|/(s1+s2) ≤
1/θ.

Summing the above three upper bounds, we conclude that Pr[T ] ≤ 4/θ, as required to verify Condition 1. �

4.2 Proof of the lower bound part of Theorem 1

In this section we prove Theorem 1 using Lemma 9. To do this we extend Lemma 9.

Lemma 10 (Multiple-Round elimination) Let ε ∈ (0, 1/2) and θ ≥ 8. Let n, q, r be positive integers. Let b =
(1/ε)3θ. For i ≥ 0 define qi = Tower(i)b (q), and ni = b qn

qi
c. Let j be a nonnegative integer satisfying j ≤ r and

n ≥ q2j

j . Then

errn(r, qn) ≥ errnj (r − j, qn)(1− 8
θ
(1− 2−j)).

Proof. We proceed by induction on j; the case j = 0 is trivial. So assume 1 ≤ j ≤ r and n ≥ q2j

j , and assume
by induction:

errn(r, qn) ≥ errnj−1(r − j + 1, qn)(1− 8
θ
(1− 2−(j−1))).

We bound the left hand side by applying Lemma 9 with n, Q, θ, n′ in the lemma replaced by nj−1, qn, 2j−1θ, nj .
The hypothesis of Lemma 9 requires nj−1 ≥ (1/ε)4θqn/nj−1 and this follows easily from nj−1 = bqn/qj−1c and
n ≥ q2j

j . Therefore:

errnj−1(r − j + 1, qn) ≥ errnj (r − j, qn)(1− 8
2jθ

).

Combining the previous two inequalities and observing that (1 − 8
θ (1 − 2−(j−1)))(1 − 8

2jθ
) ≥ 1 − 8

θ (1 − 2−j)
yields the desired result.

�
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Corollary 11 Let ε ∈ (0, 1/2) and let b = (1/ε)48. Let q, r, n be positive integers such that n ≥ (Tower(r)b (q))2
r
,

then

errn(r, qn) ≥ 1/4.

Proof. We apply Lemma 10, with θ = 1/16 and j = r to get:

errn(r, qn) ≥ errnj (0, qn)(1− 1
2
(1− 2−j)) ≥

errnj (0, qn)
2

=
1
4
.

The last equality holds because nj ≥ 1 (by the hypothesis on n), and so errnj (0, qn) = 1/2 (since a 0-round
algorithm has only a 1/2 chance to guess the correct half). �

Theorem 8 follows readily from Corollary 11. Assume

r ≤ log∗1/ε n− C (4)

for some C to be chosen below depending only on ε. Suppose we have a deterministic algorithm that solves
WHPU

n with qn queries and r rounds with error at most 1/4. We want to show that q ≥ 1
100 log(r)

1/ε(n) (provided

that C is suitably chosen). By Corollary 11, we must have n < (Tower(r)b (q))2
r
, which implies q ≥ log(r)

b (n1/2r
).

By Proposition 4 (2), with x = n1/2r
and a = 1/ε, we have q ≥ log(r)

b (n1/2r
) ≥ 1

48 log(r)
1/ε(n

1/2r
) (Here we need

hypothesis of Prop. 4 that log∗1/ε(x) ≥ r + T (a, b) and this follows from (4) by choosing C(ε) large enough.

It now suffices to show that (4) implies log(r)
1/ε(n

1/2r
) ≥ 1

2 log(r)
1/ε(n). If r = 1, this is trivial so assume r ≥ 2.

Assumption (4) with C(ε) suitably chosen guarantees log1/ε n ≥ 22r and so log(r)
1/ε(n

1/2r
) = log(r−2)

1/ε (log(2)
1/ε(n) −

r log1/ε(2)) ≥ log(r−2)
1/ε (1

2 log(2)
1/ε(n)) ≥ 1

2 log(r)
1/ε n.

This last inequality follows by using assumption (4) and repeatedly applying log1/ε(x/2) ≥ 1/2 log1/ε x which
holds for all x ≥ 4.

5 Comparison Trees

In this section we prove Theorems 2 and 3.

5.1 Randomized Comparison Trees

Proof. (Sketch for Theorem 2)
Lower bound. As mentioned before, we prove the trade-off lower bound for MAX by reducing OR to it. Suppose
we have a PNCT for MAX. Given the input x = (x1, . . . , xn) for OR, we define the rational valued inputs
yi := xi + i/2n; note the yi are distinct. To compute OR(x), it is sufficient to determine MAX(y), since once the
index i for which yi is known, we can recover xi reliably by querying xi O(log n) times.

To find MAX(y) we simulate the comparison queries of the PNCT for MAX using the boolean queries: To
compare yi and yj we query xi and xj , call the returned values x′i and x′j , and return yi if x′i + i/2n > x′j + j/2n,
else return yj .

In the above simulation, the probability of error for the comparison query is not a fixed constant and may
depend on the values of xi and xj . E.g., if n = 2 and (x1, x2) = (0, 0), then (y1, y2) = (1/4, 1/2), and so y1 < y2.
The probability that y1 is the answer of comparison between x1 and x2 is ε(1 − ε) corresponding to the event
(x′1, x

′
2) = (1, 0). On the other hand, if (x1, x2) = (0, 1), then (y1, y2) = (1/4, 3/2), and so y1 < y2. But now

the probability that y1 is the answer of comparison between x1 and x2 is ε2, again corresponding to the event
(x′1, x

′
2) = (1, 0).

Since our PNCT for MAX is only guaranteed to work for the case when the probability of error of each
comparison is fixed, we need to modify the above simulation so that a comparison query is simulated by a fixed
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probability of error by boolean queries. To this end, we randomly perturb the answers of the above simulation
with small probabilities so that the errors for all comparison queries are the same.

The modified simulation requires four perturbation probabilities q00, q01, q10, q11 which we will specify below.
To simulate the comparison xi, xj for i < j we again perform noisy queries to xi and xj to get x′i and x′j . The
comparison query answers i with probability qx′i,x

′
j

and j with probability 1− qx′i,x
′
j
.

We want to choose the perturbation probabilities so that the probability of error α of comparison queries is
fixed and not too large. We have the following equations:

Equation (0, 0) α = q00(1− ε)2 + q01(1− ε)ε + q10(1− ε)ε + q11ε
2,

Equation (0, 1) α = q00(1− ε)ε + q01(1− ε)2 + q10ε
2 + q11(1− ε)ε,

Equation (1, 0) α = (1− q00)(1− ε)ε + (1− q01)ε2 + (1− q10)(1− ε)2 + (1− q11)(1− ε)ε,

Equation (1, 1) α = q00ε
2 + q01(1− ε)ε + q10(1− ε)ε + q11(1− ε)2.

Equation (u, v) corresponds to the case (xi, xj) = (u, v) and expresses the probability that the simulated
comparison incorrectly answers j. In each equation, there are four terms corresponding to the possible query
results (x′i, x

′
j). For example, in equation (0, 0), the first term comes from the fact that (x′i, x

′
j) = (0, 0) with

probability (1− ε)2 and then the probability that the response is i is q00.
Solving these equations for the qs gives:

q00 = q11 = (α− ε + ε2 − 2αε + 2αε2)/(1− 2ε)2,

q01 = (α + ε2 − 4αε + 2αε2)/(1− 2ε)2,

q10 = (1− α− 2ε + ε2 + 2αε2)/(1− 2ε)2.

We want to choose α to be small, so that these are all in the range [0, 1]. For example, α =
√

ε gives:

q00 = q11 =
√

ε + O(ε),
q01 = 1−

√
ε + O(ε),

q10 =
√

ε + O(ε).

These are all in [0, 1] provided that ε is small enough. We have shown that there is a constant ε1 ∈ (0, 1) such
that for all positive ε ≤ ε1 we can simulate a comparison query with a fixed probability of error

√
ε using two

boolean queries each with probability of error ε.
Using Theorem 1 this shows that any

√
ε-noisy comparison decision tree for MAX with O(n) queries must use

Ω(log∗1/
√

ε n) rounds. Since log∗1/ε n = Θ(log∗1/
√

ε n), an ε-noisy decision tree with O(n) queries needs Ω(log∗1/ε n)
rounds, completing the proof of the lower bound part of Theorem 2.
Upper bound. Our PNCT for MAX borrows the sampling idea of Reischuk [24], which he used to design a
noise-free PCT for MAX with O(1) rounds and O(n) queries. Let y1, . . . , yn denote the inputs, which are distinct
elements of the totally ordered set U .

The PNCT uses two subroutines TRIVMAX and APXM.
TRIVMAX takes as input a subset S of [n], and attempts to output the index i ∈ S for which yi is maximum.

For some constant C, for each pair of indices in S, it compares the pair C log n times and declares the “winner”
between the two to be the index that wins the majority of comparisons. For C large enough, the index of the
maximum of S will be the winner against all other indices with probability arbitrarily close to 1. This PNCT uses
one round and O(|S|2 log n) queries.

APXM takes as input a subset S of {1, . . . , n} and u ∈ {1, . . . , n} and returns a subset R of S such that with
probability at least 1− 1/90, max(S) ∈ R, and |R∆S≥u| ≤ |S≥u|/100 where S≥u is the set {i ∈ S : yi ≥ yu}.
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APXM(S, u) is derived from the PNDT for Theorem 5: We create a boolean input z1, . . . , zn for the PNDT
by setting zi = 1 if yi > x, and zi = 0 otherwise. Theorem 5 implies that APXM(S, x) has the properties claimed
with probability at least

1− 1/100− 1/40000 > 1− 1/90.
APXM uses O(|S|) queries and O(log∗ |S|) rounds.
Now we present our PNCT for MAX.

1 Uniformly randomly choose T1 ⊂ {1, . . . , n} of size n1/3.
m1 = TRIVMAX(T1).
T2 = APXM(T,m1).

2 Uniformly randomly choose T3 ⊂ T2 of size n1/3.
m2 = TRIVMAX(T3).
T4 = APXM(T3,m2).
If |T4| > 100 n1/3, HALT with ERROR.

3 Output TRIVMAX(T4).

We sketch the routine analysis. Since the elements of T1 are chosen uniformly randomly, with very high
probability, S>m1 has at most 50n2/3 elements, and the properties of APXM imply that with high probability
T2 contains the index of the overall maximum and has size at most 60n2/3. Similarly, with high probability T4

contains the index of the overall maximum and has size at most 1000n1/3.
The total number of comparisons is O(n) since TRIVMAX is run only on sets of size O(N1/3) and APXM takes

at most O(n) comparisons.
Finally, we remark on how the above algorithm can be implemented by a deterministic PNCT in the random

noise model. The above PNCT uses randomness for choosing T1 and T3. For each of these it needs O(log
(

n
n1/3

)
) =

O(n1/3 log n) random bits. It can be simulated by a O(n)-query, log∗1/ε n-round deterministic PNCT because it
has access to O(n) biased random bits (it can just query a single variable repeatedly to generate biased random
bits). This simulation can be done, for example, in the style of von Neumann’s procedure [31] for generating
perfectly random bits from biased random bits. �

5.2 Deterministic Comparison Trees

Proof. (sketch for Theorem 3) We describe a deterministic PNCT computing MAX in O(n) queries and O(log log n)
rounds in the fault-tolerance and clairvoyant adversary models. Our PNCT is obtained by modifying the PCT of
[27] for the same problem in the noise-free model.

The PNCT works in two phases. The first phase has 2 log log n rounds, and is similar to the NBA tournament
type PNCT of Feige et al. [12]. Divide the input variables into groups of size 2. For each group ask 3 times which
variable is greater. For each group choose the variable which is greater in the majority of comparisons. These
variables participate in the second round, where we again divide these variables into groups of size 2, and for each
group ask 5 queries, and so on. In general, in the ith round, each comparison is made 2i + 1 times. So after
2 log log n rounds we have n′ = n/(log n)2 variables.

For the second phase, consider a leveled rooted tree T (not to be confused with a decision tree) with n′ leaves.
In T an internal node with ` leaves as descendants has

√
` children. It is easy to see that such a tree has height

log log n′. In the second phase the PNCT assigns the n′ variables from the first phase to the n′ leaves of T . Now
the PNCT proceeds level by level starting from the leaves. Leaves have height 0. We inductively describe round
i of the second phase. From the previous rounds the PNCT has assigned a variable to each node in T at height
i − 1. For each node v at level i we have a group of variables which correspond to the children of v. Now the
PNCT will find the maximum of each group and assign it to the node at level i associated with the group. It
remains to specify how this maximum is found. This is done in the most simple way: For each pair make c1 log n
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comparisons for some constant c1, and choose the variable which comes out greater in the majority of comparisons
as greater. If it does not get a total order on the elements in a group then it halts with error. Else, if it gets
a total order on the elements of the group then choose the maximum variable in this total order. The variable
labeling the root is the answer.

Clearly the number of rounds taken by this PNCT is 2 log log n+log log n′ < 3 log log n. The number of queries
in the first phase is O(n), because in round i the number of queries is (2i + 1)n/2i. For each round in the second
phase, the number of queries is n′ log n. The number of rounds in the second phase is < log log n. So the total
number of queries in the second phase is < n′ log n log log n = n

(log n)2
log n log log n < n.

By the Chernoff bound the probability that the maximum gets eliminated in the ith round of the first phase is
≈ ci

2 for some small positive constant c2 < 1 which can be chosen to be small by choosing ε to be small. Hence the
probability of the maximum getting eliminated in the first round is ≤

∑
i≥1 ci

2 < 2c2 � 1. In the second phase, by
choosing c1 large enough, again by the Chernoff bound we get that the probability of error for any pair is ≤ 1/n5.
Since the total number of pairs being compared is O(n2), with probability 1 − O(1)/n3 answer for every pair is
correct, and for each group the right total order is found, and the maximum is computed correctly. Our PNCT is
robust to adversarial noise because it makes decisions based on majority voting. �

6 Future Work

There are several existing results in the literature about the NDT query complexity (without restriction on
rounds) for some specific boolean functions, e.g., MAJORITY and PARITY. This paper gives trade-off results
between rounds and queries for OR function. It would be nice to obtain analogous results for other functions.
More generally, one might hope to characterize the query/rounds trade-off for any boolean function in terms of
combinatorial properties of the function.

For the noisy comparison tree model, one can ask questions about for SELECTION similar to the ones we
studied above for MAX, Note that answers to these questions are known for the noise-free comparison tree model
by the work of Ajtai et al. [2] and Reischuk [24] for deterministic and randomized algorithms respectively.
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