
On-Demand Documentation via Code Examples

Mathieu Nassif

School of Computer Science

McGill University, Montreal, Canada

August 12, 2024

A thesis submitted to McGill University in partial fulfillment of

the requirements of the degree of Doctor of Philosophy

© Mathieu Nassif, 2024

Contents

Contents i

Abstract vi

Résumé viii

Contributions x

Acknowledgements xiii

List of Figures xv

List of Tables xvii

List of Acronyms xix

1 Introduction 1

1.1 Thesis Organization . 4

1.2 Identifying Conceptual Dependencies . 5

1.2.1 Goal . 5

1.2.2 Motivation . 5

1.2.3 Research Design . 6

1.2.4 Summary of Findings . 7

1.3 Exploring Design Variations in Tutorials . 8

1.3.1 Goal . 8

1.3.2 Motivation . 8

1.3.3 Research Design . 9

1.3.4 Summary of Findings . 9

1.4 Designing an Interactive Documentation Format 9

i

1.4.1 Goal . 10

1.4.2 Motivation . 10

1.4.3 Research Design . 11

1.4.4 Summary of Findings . 12

2 Background and Related Work 13

2.1 Capturing Concepts Relevant to Software Projects 13

2.1.1 Concept Linking . 14

2.1.2 Knowledge Graphs . 15

2.1.3 Community Search . 16

2.2 Studies of Documentation Needs and Usage Patterns 17

2.2.1 Information Needs . 17

2.2.2 Documentation Usage Patterns . 18

2.2.3 Measuring Reading Behavior . 19

2.3 Designing Documentation Presentation Formats 20

2.3.1 Interactive Formats . 21

2.3.2 Paper-Inspired Interaction Features 22

3 Conceptual Dependencies of Software Documentation 23

3.1 Motivation and Problem Definition . 25

3.1.1 Research Problem . 27

3.1.2 Wikipedia as a Source of Information 28

3.1.3 Potential and Limitations of Wikification 29

3.2 Comparison Protocol for Wikifiers . 31

3.2.1 Types of Software Resources . 31

3.2.2 Sample Selection . 32

3.2.3 Preprocessing of Posts . 34

3.2.4 Selection Procedure for Wikifiers . 34

3.2.5 Selection Procedure for Configuration Parameters 35

3.2.6 Selected Wikifiers . 36

3.2.7 Data Annotation . 40

3.2.8 Annotation Task . 42

3.2.9 Annotators . 43

3.2.10 Annotation Sets . 44

3.3 Wikifiers Comparison Results . 46

ii

3.3.1 Wikifiers Performance . 46

3.3.2 Effect of Additional Parameters . 49

3.3.3 Correlation Between Wikifiers . 52

3.3.4 Validated List of Computing Concepts 55

3.3.5 Discussion . 58

3.3.6 Threats to Validity . 58

3.4 Concept Identification Approach . 61

3.4.1 Off-Line Preparation . 62

3.4.2 Explicit Concept Identification . 64

3.4.3 Implicit Concept and Topic Identification 65

3.4.4 Implementing the Sample Application 67

3.5 Scode Evaluation . 68

3.5.1 Study Design . 69

3.5.2 Precision of the Identified Concepts 70

3.5.3 Consistency of the Identified Concepts 73

3.5.4 Inclusion List of Computing Concepts 75

3.5.5 Wikification and Community Search Algorithms 75

3.5.6 Topic Cohesiveness . 76

3.5.7 Documentation or Source Code as Input 82

3.5.8 Discussion . 83

3.5.9 Threats to Validity . 84

4 Variations in Software Tutorial Design 87

4.1 Design Decisions . 88

4.2 Tutorial Organization . 90

4.3 Tutorial Content . 93

4.4 Towards a Systematic Approach to Tutorial Design 97

5 Casdoc: Code Examples with Interactive Annotations 100

5.1 The Casdoc Documentation Format . 104

5.1.1 Presentation Format . 104

5.1.2 Authoring Process . 108

5.1.3 Implementation . 109

5.2 Key Properties of Casdoc . 109

5.2.1 Focus on Code . 110

iii

5.2.2 Gradual Reveal . 112

5.2.3 Small Fragments . 113

5.2.4 Explicit Hints . 114

5.2.5 External Content . 115

5.3 Field Study Design . 116

5.3.1 Research Method . 116

5.3.2 Participants . 117

5.3.3 Documents . 118

5.3.4 Data Collection Infrastructure . 118

5.3.5 Data Preparation . 120

5.3.6 Study Design Trade-Offs . 121

5.4 Field Study Results . 122

5.4.1 Casdoc Usage Patterns . 123

5.4.2 Implications . 129

5.4.3 Sampling Bias and Differences Between Sections 130

5.5 Laboratory Study Design . 132

5.5.1 Study Environment . 132

5.5.2 Programming Tasks . 134

5.5.3 Documents Provided . 134

5.5.4 Data Collection and Analysis . 136

5.6 Laboratory Study Results . 140

5.6.1 Choice of Documentation Format (RQ 5.3) 142

5.6.2 Support of Navigation Actions (RQ 5.4) 145

5.6.3 Discussion . 146

5.6.4 Limitations . 147

5.7 Improving the Casdoc Format . 148

6 Discussion 151

6.1 Recurring Themes in Documentation Design 151

6.1.1 Adaptability of Documentation Guidelines to Various Contexts 152

6.1.2 Selection of Topics to Include in Documentation 153

6.1.3 Explicit Representations of Knowledge about Software Systems and

Development . 154

6.2 Future Work . 159

6.2.1 Casdoc as an Extensible Instrument for Studying Documentation . . 160

iv

6.2.2 Challenges of Creating Documentation 161

6.2.3 Further Improvements to the Casdoc Format 161

6.3 Documentation in the Age of Language Models 162

7 Conclusion 165

Bibliography 167

A Replication Data for Conceptual Dependencies 191

A.1 Wikifier Annotation Guide . 193

A.2 Sample of Wikification Annotations . 196

A.3 Scode Relatedness Annotation Guide . 205

A.4 List of Computing-Related Wikipedia Articles 208

A.5 Open Source Android Projects . 209

B Replication Data for Tutorial Design Variations 212

B.1 Android-Related Stack Overflow Tags Used in Our Study 213

B.2 List of Tutorial Pages . 215

B.3 Topic Coverage of Three Android Tutorials 216

C Replication Data for Casdoc 223

C.1 Documentation Resources About the JDBC API 224

C.2 Programming Tasks for the Laboratory Study 225

C.3 Reference Solutions to the Programming Tasks 228

C.4 Intervention Guide for the Investigator During the Study Sessions 233

C.5 Annotation Guide for the Session Recordings 233

v

Abstract

Software products have become increasingly reliant on smaller software components produced

by third-party organizations to accomplish specialized tasks. In this context, documentation

is a crucial component of software development to mediate the knowledge exchange between

developers who create reusable software components and those who rely on the components

for their projects. Creating and maintaining good documentation, however, is an effort-

intensive activity that is often overlooked in favor of working on the source code. Prior work

has addressed this issue by proposing various methods to generate or to retrieve relevant

information from a documentation set based on a query. These techniques focus on improving

the quantity, accuracy, or relevance of the documentation content.

In this thesis, we approach the multi-faceted challenge of documentation quality through

another perspective: the interaction between readers and the documents. Improving ways

to interact with documentation should help readers with varied backgrounds and subjective

preferences apply their own optimal strategies to navigate to the information they need.

Thus, considering the interaction between readers and documents as an essential aspect

of documentation design should contribute to an efficient knowledge exchange between

developers.

As a first contribution, we propose to automatically identify concepts that developers

should be familiar with prior to reading a software component’s documentation. This

investigation led to a better understanding of techniques to capture and represent concepts

with the use of knowledge bases such as Wikipedia. Our results benefit component users,

who may find gaps in their knowledge to address before trying to read complex documents.

Our results also benefit developers who want to review their software component or its

documentation to minimize the number of conceptual dependencies.

As a second contribution, we describe variations points observed in the design of high-

quality Android tutorials. We compared the content and organization of three tutorials to

identify design decisions that writers must take based on their judgment. As we compared

vi

only tutorials from reputable organizations and targeted at a similar audience, the identified

variation points suggest aspects of documentation for which the impact of alternative decisions

is not well understood. Thus, our results can help practitioners think more critically and

systematically about various documentation design decisions. For researchers, our results

highlight the need for further studies about specific documentation aspects.

As a third contribution, we designed a new format, called Casdoc, to present online

documentation. Casdoc improves upon the static presentations influenced by the historical

constraints of printed resources. Readers interact with documents to dynamically reveal

and hide information based on their needs. This interactivity allows documents to contain

more information without appearing bloated. In addition to creating a viable alternative

format for learning resources, we also used Casdoc to study how developers interact with

documentation to guide the development of further formats. The results demonstrate that

our participants could leverage the benefits of Casdoc to mitigate recurrent limitations of

static documents. These findings, together with the documentation design guidelines we

elicited, motivate a wider exploration of alternative formats to complement content-focused

research on documentation quality.

vii

Résumé

Les produits logiciels dépendent de plus en plus de composants tiers pour accomplir des tâches

spécialisées. Dans ce context, la documentation est un élément crucial du développement

logiciel, afin de soutenir l’échange de connaissances entre les développeurs qui créent des

composants logiciels réutilisables et les développeurs qui dépendent de ces composants dans

leurs projets. Cependant, créer de la bonne documentation est une activité laborieuse, souvent

ignorée en faveur du développement de code. La recherche a abordé ce problème en proposant

diverses méthodes pour générer ou extraire des information pertinentes à partir d’un ensemble

de documents. Ces techniques mettent l’accent sur l’amélioration de la quantité, de la

précision, et de la pertinence du contenu de la documentation.

Dans cette thèse, nous approchons le défi de la qualité de la documentation selon une autre

perspective : l’interaction entre les lecteurs et les documents. Améliorer les façons d’interagir

avec la documentation devrait aider les lecteurs avec des expertises variées et des préférences

subjectives à appliquer leur propre stratégies optimales pour localiser l’information dont ils

ont besoin. Par conséquent, considérer l’interaction entre les lecteurs et les documents comme

un aspect essentiel de la conception de document devrait contribuer à un échange efficace de

connaissances.

Comme première contribution, nous proposons d’identifier automatiquement les concepts

avec lesquels les développeurs devraient être familiars avant de lire la documentation d’un

composant logiciel. Cette recherche nous a mené à mieux comprendre des techniques pour

extraire et représenter des concepts à l’aide de bases de connaissances comme Wikipédia. Nos

résultats bénéficient aux utilisateurs de ces composants, qui pourront déterminer des lacunes

à leurs connaissances avant d’essayer de lire des document avancés. Nos résultats bénéficient

également aux développeurs qui veulent réviser leur composant logiciel ou sa documentation

pour minimiser le nombre de dépendances conceptuelles.

Comme seconde contribution, nous décrivons des points de variation observés dans la

conception de tutoriels de qualité à propos d’Android. Nous avons comparé le contenu et

viii

l’organisation de trois tutoriels pour identifier les décisions de conception que les auteurs de

documentation doivent prendre en fonction de leur jugement. Comme nous avons comparé

des tutoriels d’organisations réputées et qui s’addressent à un auditoire similaire, les points

de variation identifiés suggèrent des aspects de la documentation pour lesquels l’impact de

différentes décisions est flou. Ainsi, nos résultats peuvent aider les praticiens à réfléchir

critiquement et systématiquement à diverses façons de concevoir la documentation. Pour

les chercheurs, nos résultats illustrent le besoin d’études supplémentaires à propos d’aspects

spécifiques de la documentation.

Comme troisième contribution, nous avons conçu un nouveau format, nommé Casdoc,

pour présenter de la documentation en ligne. Casdoc diffère de présentations statiques dérivée

des contraintes historiques due à l’impression des documents. Avec Cadsoc, les lecteurs

interagissent avec des documents pour révéler et dissimuler dynamiquement l’information

dont ils ont besoin. Cette interactivité permet aux documents de contenir plus d’information

sans devenir trop volumineux. En plus de créer un format alternative viable pour des ressources

d’apprentissage, nous avons aussi utilisé Casdoc pour étudier comment les développeurs

interagissent avec des documents pour aider le développement de formats futurs. Nos résultats

démontrent que les participants ont pu profiter des avantages de Casdoc pour atténuer les

faiblesses de documents statiques. Ces résultats, avec les suggestions de conception concrètes

que nous avons trouvé, motivent l’exploration de formats alternatifs pour complémenter la

recherche sur la qualité de la documentation orientée sur le contenu.

ix

Contributions

This thesis contribute to the field of software documentation. It is organized around three

research projects, described in Chapters 3, 4, and 5.

Chapter 3 describes the investigation of conceptual dependencies, i.e., concepts related

to the development and usage of a software system. In this project, we studied different

techniques to extract, represent, and manipulate conceptual knowledge by associating software

documentation with entries from a knowledge base. This project contributes:

• results about the performance of six wikifiers applied to software-related documents that

can help researchers and practitioners select an appropriate wikifier and configuration

parameters for specific applications;

• detailed insights about heuristics to improve the performance of wikifiers for software-

related documents;

• a discussion of the combination of different community search techniques to estimate

the smallest maximally-connected community within a knowledge graph;

• a novel approach, Scode, to automatically identify concepts that developers must be

familiar with when contributing to a project, using a consistent and project-agnostic

terminology to express concepts;

• the results of an extensive empirical evaluation of Scode, including its end-to-end

performance and the individual performance of its components;

• a manually-curated list of over 6700 computing-related Wikipedia articles about software

development.

The contributions of this project were published in two articles: “Wikifying Software

Artifacts” (Empirical Software Engineering) [156] and “Identifying Concepts in Software

Projects” (IEEE Transactions on Software Engineering) [159]. The author of this thesis was

x

the principal investigator of this project. He designed Scode with advice from his supervisor.

He implemented Scode and the scripts necessary to collect and analyze data for the studies,

designed jointly with his supervisor. The data annotation step was split between the author

and his supervisor. The author wrote the original drafts of the articles, which were then

reviewed and edited by both the author and his supervisor.

Chapter 4 describes the investigation of design variations found in high-quality doc-

umentation. This smaller project bridges the other two research projects that constitute

this thesis. In this project, we compared the content and organization of three Android

tutorials to identify notable design decisions that can affect how readers find information in

the tutorials. This project contributes:

• a series of documentation design decisions, organized by variation points related either

to the content or the organization of the tutorial, that writers can use to critically

reflect on the design of their documents;

• guidelines that describe the rationale and trade-offs of each design decision;

• data-driven examples to illustrate and contextualize each design decision.

The contributions of this project were published in one article: “A Data-Centric Study of

Software Tutorial Design” (IEEE Software) [15]. The author worked jointly on this project

with another PhD student, Deeksha Arya. Both contributed equally, under the supervision

of their supervisor. The author and D. Arya designed the study with advice from their

supervisor, implemented the scripts to collect and analyze the study data, and discussed

preliminary findings to iteratively expand and refine the data collection procedure. The

author and D. Arya both contributed to the original draft of the article, which was then

reviewed and edited by them and their supervisor.

Chapter 5 describes the investigation of design strategies to create interactive docu-

mentation. In this project, we designed and implemented a new format of documentation.

We then used this format in a field study and a laboratory study to evaluate the impact of

interactive design features on the documents’ readers. This project contributes:

• the design of an innovative format, Casdoc, that embeds interactive annotations in

code examples;

• an online service that transforms annotated Java files into self-contained HTML files

that use the Casdoc format, to facilitate the creation of Casdoc documents;

xi

• a discussion of five documentation design aspects of Casdoc that were synthesized from

prior work on information needs and documentation usage behavior;

• a complete methodology for the design of a field study that maximizes the ecological

validity and reliability of the results in a context where the investigators have authority

over participants;

• a set of short programming tasks that elicit meaningful information needs, with the

material necessary to use these tasks in a controlled experiment on documentation

usage or programming behavior;

• guidelines for the design of interactive software documents, synthesized from the results

of our field and laboratory studies.

The contributions of this project are described in four articles. The initial implementation

of Casdoc was published in an article titled “Casdoc: Unobtrusive Explanations in Code

Examples” (International Conference on Program Comprehension, demonstration track) [154].

Preliminary results of the field study were published in an article titled “A Field Study

of Developer Documentation Format” (CHI Conference on Human Factors in Computing

Systems, late-breaking work track) [158]. A comprehensive report on the design of Casdoc

and the results of the field study is presented in an article titled “Non Linear Software

Documentation with Interactive Code Examples” (ACM Transactions on Software Engineering

and Methodology, accepted pending minor revisions, link to the ArXiv preprint in the

reference) [160]. The design and results of the laboratory study are presented in an article titled

“Evaluating Interactive Documentation for Programmers” (Empirical Software Engineering,

under review) [162].

The development of Casdoc was led by the author. His supervisor provided insights

about several design aspects and piloted several versions of Casdoc. Two undergraduate

research assistants, Zara Horlacher and Emily Shannon, contributed to the implementation

of Casdoc under the direction of the author and his supervisor (up to and including the

version described in Section 5.7). The field and laboratory studies were designed jointly by

the author and his supervisor. The author prepared the material for the laboratory study,

conducted the study sessions, and analyzed the collected data. The creation of the Casdoc

documents for the field study was split between the author and his supervisor. The author

implemented the infrastructure to deliver documents and collected interaction data for the

field study, and analyzed the collected data. For all articles, the author wrote the original

draft, and both the author and his supervisor edited and reviewed successive versions.

xii

Acknowledgements

Doing a PhD is hard. Doing my PhD was made many times easier, and more rewarding,

thanks to the many people that I have had the chance to interact with throughout my studies.

First and foremost, I am eternally grateful to my supervisor, Martin, for his unwavering

commitment to my studies, professional development, and love of research. From the first day

I joined his group as a research assistant, he has been an extraordinary mentor, sharing his

enthusiasm and care for meticulous research. I thank him for his encouragements to develop

my areas of expertise, his patience through many cycles of slow progress, his useful insight

into all aspects of the academic life, the time he devoted to our weekly meetings (and the

walks on the Mount Royal), and the right dose of cynicism at the right moments.

I thank Christoph, who contributed to my initiation to research all these years ago. I

am privileged to have worked under his co-supervision when he was a postdoc at McGill.

He helped me grow from writing a few lines of code to query the Stack Overflow API, to

writing my first research article. I also had the chance to work alongside Jin, who co-leads

our lab. Despite not having her as a co-supervisor, I benefited from her devotion to creating

and maintaining a great research environment. I also benefited from her ability to reveal

deep discussion points about my research that eluded me for months when I seek feedback

for an article or a presentation.

I am grateful for the exceptional environment we had in the Software Technology Lab

(and its predecessors). I enjoyed the interesting discussions and social events with Alexa,

Ziming, Alex, Cheryl, Kian, Fuyuan, Breandan, Justine, and all other current and past lab

members. A special thank you goes to the current lab regulars: Deeksha, for being the best

desk neighbor and sharing the high and (ridiculously) low points of academia; Bhagya, for

the company on the way home; Sara, for the company during late nights in the lab; Lanese,

for your generous food offers and great cooking skills; Linh, for keeping me humble about

Quebec’s culture; Jazlyn, for your insightful perspective on society, religion, politics, etc.;

Avinash, for always checking up how it’s going; and Divya, for accepting to go outside of your

xiii

comfort zone when I make suggestions. I thank you all for your strong support and for going

out of your way to make the lab a lively and stimulating place to work.

I also had the chance to work with many smart and motivated research assistants who

did a project in our lab. I thank Ashvitha and Alexa for their contribution to my master’s

work, DScribe; Zara and Emily for their work on the version of Casdoc presented in this

thesis; Tristan and Vivian for their contribution to the future of Casdoc; and Muhammad for

his diligent help with the collection of test convention data. You all provided invaluable help

to achieve my research objectives.

I was privileged to meet and work with Walid during a research internship. I thank him

for being a great host supervisor, for his concrete and useful advice on research, especially to

reach the end of my PhD, and for sharing his enthusiasm about research. I also thank Lloyd,

Abir, Tim, Volodymyr, Clara, and the other members of the MAST group for their warm

welcome and for the lively exchanges of research ideas and perspectives.

I am grateful for the structures in the School of Computer Science to help PhD students.

I thank the CSGS, which conveniently included many members of our lab, for promoting a

sense of community among CS graduate students. I also thank Corey, Ron, and Andrew for

diligently helping with any software or material issue, as well as Sheryl, Tricia, Ann, Diti,

Kamini, and other staff members in the administrative office for their work supporting the

entire department. Additionally, I thank the PhD Program Committee and my Progress

Committee, Comprehensive Exam Committee, Proposal Committee, Defense Committee,

and Thesis Examiners for their involvement in the evolution of my PhD. Beyond McGill, I

had the chance to be supported by NSERC, FRQNT, and Mitacs.

On a more personal note, I am grateful to Max and Deeksha for their deep friendship

throughout my PhD, supporting me in the difficult moments and celebrating with me the

victories. I thank Jessie for humoring me during the morning climbing sessions, and for her

help with the next stages of my career. I also thank Ariane, for making many hard periods

easier, and some easy periods harder, because life without challenge would be boring.

Dernièrement, je remercie ma famille, qui m’a toujours encouragé et soutenu dans mes

ambitions de recherche. J’ai une pensée particulière pour Louis, qui m’encourage à ne jamais

arrêter. “1, 2, 3, Go!”

To all these people, I express my sincere gratitude for their contribution, direct or indirect,

to my PhD.

xiv

List of Figures

3.1 Scode Badges Indicating the Relevant Topics for K-9 Mail 26

3.2 Excerpt from the Software system Wikipedia Article with Links to Other

Articles in Blue Boxes (as of December 2023). 29

3.3 Sample Sentence with a Gold Standard Wikification 40

3.4 Annotation Sets with their Respective Annotator(s) 45

3.5 Precision-Recall Curves of All Six Wikifiers 47

3.6 Impact of the Main and Secondary Numeric Parameters on the Precision and

Recall of DBpedia and JSI . 50

3.7 Precision-Recall Curves of DBpedia and JSI for Various Values, Equidistant

on a Logarithmic Scale, of their Secondary Numeric Parameter 51

3.8 Precision-Recall Curves for WAT with Two Different Tokenizers: Lucene and

OpenNLP . 53

3.9 Precision-Recall Curves of All Six Wikifiers with the Inclusion List Strategy

to Improve Precision . 56

3.10 Scode Approach to Identify a Set of Concepts Grouped by Topic from a

Software Project . 61

3.11 Identification of Computing-related Articles 63

3.12 Implicit Concept Identification Procedure . 66

3.13 Distribution of Concept Frequencies for Scode, EasyESA, and PengKG . . . 74

3.14 Sample for the Topic Cohesiveness Evaluation 77

3.15 Distributions of the Cohesiveness Scores on a Five-Point Ordinal Scale for each

Combination of Approach and Annotator . 80

4.1 Popularity and Coverage of Android Topics by Each Tutorial 94

4.2 Coverage of Each Tutorial for the 654 Most Common Topic Pairs 99

5.1 Initial View of a Casdoc Document . 105

xv

5.2 Revealing a Floating Casdoc Annotation . 105

5.3 Revealing a Nested Floating Casdoc Annotation 105

5.4 Revealing a Pinned Casdoc Annotation With Original Content and API

Reference Documentation . 106

5.5 Secondary Navigation Tools Included with Casdoc 106

5.6 Example of the Annotation Language to Create Casdoc Documents 108

5.7 Number of Code Examples (Documents) Accessed by Participants During

Each Section of the Course . 123

5.8 Requests to Each Type of Document Received by the Study Website During

Each Week of Section 2 . 126

5.9 Code Example Requests by Chapter from Participants and Non-Participants

During Section 2 . 130

5.10 Code Example Requests by Chapter from Participants of Both Sections . . . 131

5.11 Format of the Documents Provided to Participants 136

5.12 Post-Study Questionnaire . 137

5.13 Time Spent per Task for Each Participant 139

5.14 Participants’ Ratings of the Interactive and Expanded Formats 142

5.15 Example of a Document Using the Revised Version of Casdoc 149

xvi

List of Tables

3.1 Properties of the 500 Selected Stack Overflow Posts 33

3.2 Wikifiers Compared in this Study . 36

3.3 Agreement Between Annotators Using Cohen’s κ Statistic 44

3.4 Comparison of the Precision of Each Wikifier for Selected Recall Values . . . 48

3.5 Overlap Between the Correct Results of Each Wikifier 53

3.6 Kendall’s τb Correlation Coefficient and 0.95-Level Confidence Interval Com-

puted over the Overlap of each Pair of Wikifers 54

3.7 Concept Identification Precision for 100 Java Files 71

3.8 Examples of Concepts Identified by PengKG, EasyESA, and Scode 71

3.9 Success Rate of the Word Intrusion Task with Median (and Average) Cohe-

siveness Scores for Concepts Generated by the Four Techniques 81

4.1 Organization Design Dimensions with Sample Decisions and Their Impact on

the Readers . 89

4.2 Content Design Dimensions with Sample Decisions and Their Impact on the

Readers . 90

4.3 Properties of the Three Studied Tutorials Compared with Eleven Other Android

Tutorials for Context . 91

5.1 Presence of the Five Properties in Documents from Various Sources 111

5.2 Events Collected During the Field Study . 119

5.3 Summary Statistics of the Collected Data . 120

5.4 Summary Statistics of the Data After Preprocessing 123

5.5 Metrics and Results by Research Question 124

5.6 Metrics and Results by Research Question (Continued) 125

5.7 Eight Programming Tasks Used During the Laboratory Study 133

5.8 Topic of the Six Documents Provided to the Laboratory Study Participants . 135

xvii

5.9 Sample Session Events Transcribed During the First Analysis Phase 138

5.10 Overview of the Search Fragments From Each Participant 140

5.11 Excerpt from the Second Analysis Phase: Context of the Search Fragments

Performed by Participant P13 . 141

5.12 Excerpt from the Second Analysis Phase: Navigation Properties of the Search

Fragments Performed by Participant P13 . 141

5.13 Search Intentions and Formats Used During Search Fragments 143

5.14 Usage of Each Format to Look for Information of Each Type 144

6.1 Types of Knowledge Base to Support Software Documentation Tasks 155

A.1 Content of the Data Artifacts for Our Studies of Conceptual Dependencies . 192

B.1 Content of the Data Artifact for Our Study of Tutorial Design 212

C.1 Content of the Data Artifact for Our Laboratory Study of Casdoc 224

xviii

List of Acronyms

API Application Programming Interface

C2W Concepts to Wikipedia

Casdoc Cascading documentation

CSS Cascading Style Sheets

CVE Common Vulnerabilities and Exposures

ESA Explicit Semantic Analysis

HTML HyperText Markup Language

JDBC Java DataBase Connectivity

JSON JavaScript Object Notation

LDA Latent Dirichlet Allocation

Scode Software conceptual dependency

SQL Structured Query Language

UPGMA Unweighted Pair Group Method with Arithmetic mean

URL Uniform Resource Locator

xix

Chapter 1

Introduction

Software documentation is a crucial aspect of software development. As projects become more

complex, developers increasingly rely on components created by third-party organizations to

accomplish common operations. For example, as of March 2024, Maven Central hosts over 13

million packages for Java projects, and PyPI hosts over half a million projects for Python.

Developers use such software components through their application programming interface

(API). Because the developers who use an API may not have access to the developers

who created it, knowledge about the API must be transferred asynchronously, through

documentation.

Creating good software documentation that is effective in facilitating this knowledge

transfer is challenging. Many documents act only as passive containers of information. Under

this assumption, a high-quality document is expected to contain exactly the information

sought by its readers. Thus, past research on software documentation studied techniques

to generate more information [35, 121, 135], or to retrieve it from various sources [56, 233].

Yet, given that readers from various background will use documents to accomplish various

tasks, it is unsurprising that documentation still suffers from many issues, such as being too

verbose, too technical, or lacking relevant background information [5, 216].

With the transition to online documentation, where a plethora of learning resources

are accessible through search engines, the purpose of documents expands beyond being

information containers. Documents should encourage active reading and information seeking

behavior [221]. Thus, good documents should help readers navigate between document

fragments, adapting to the evolving needs and preferences of individual readers as they learn

about different topics.

1

CHAPTER 1. INTRODUCTION

This thesis explores how the design of documentation can capture the role of readers as

more than passive consumers in the exchange of knowledge. This problem is challenging, as

a departure from traditional documentation design strategies can increase both the creation

cost for writers and the adoption cost for readers. Nevertheless, exploring new documentation

design strategies can also reveal opportunities to create documents that better match how

developers look for information [30, 208]. For example, allowing readers to select their

preferred reading order and set of concept definitions can make the difference between a

document that provides a complete description of a topic and one that appears overly verbose.

As documentation can take many forms, we scoped our research to online documents to

learn about an unfamiliar software API, such as a tutorial that explains how to connect to a

database using Java’s JDBC API. More specifically, we restricted our studies to documentation

distributed as text-based web pages, as opposed to, e.g., documentation delivered inside

code editors and non-textual documents (e.g., video tutorials). We also excluded internal

developer documentation (e.g., code comments, tickets from issue tracking system) and

learning resources independent of specific technologies (e.g., basic programming courses).

Aside from tutorials, our scope includes API reference documentation and programming

forums, which are also online text-based resources used by programmers to learn how to use

a new API.

We approached our investigation of documentation design from three angles. First, we

studied the concepts that developers must know when using an API, and consequently

when reading its documentation. Documentation often describe technical usage information,

such as directives [33, 116] or usage scenarios [35, 185]. However, developers must also be

familiar with relevant concepts to correctly navigate and understand the documentation.

Thus, we refer to such concepts as conceptual dependencies. We studied techniques to identify

conceptual dependencies, which can help documentation writers and readers, as well as

researchers, reason about the match between the content of documents and the background

of individual readers.

Although conceptual dependencies are useful to critically assess what information is

or is not included in documentation, they provide little insight into how to structure the

information in a document. Thus, in a second phase, we studied design variations in tutorial

documentation. We observed that there is a lack of guidance about many decisions that

occur when designing tutorials. For example, there are no widely accepted recommendations

about the amount of content to include, the selection of topics to cover, or strategies to

integrate code examples within the prose of a tutorial. This gap in design knowledge prevents

researchers and tutorial writers from systematically reasoning about how readers can use

2

CHAPTER 1. INTRODUCTION

the documents. We compared three high-quality tutorials, all about the same domain and

targeted at the same audience, to elicit design decisions that serve as a basis towards a

standardized design framework for tutorials.

Finally, we explored in more depth the design space for a specific type of documents:

interactive code examples used as API learning resources. Despite the variations in documen-

tation design, most documents are delivered as (mostly) immutable web pages. Readers can

only interact with these documents through standard HTML features, such as hyperlinks

and the browser’s native text search tool. This limited design overlooks the potential of

digital documents to adapt to the needs of different developers [190]. Thus, we designed

and implemented a new interactive format for code examples that embeds a hierarchy of

explanations as annotations in the code. Readers access annotations on-demand by interacting

with subtle markers that indicate the presence of information. In addition to the intuitiveness

of the user interface for readers, we considered the authoring effort for writers as an important

factor when designing the format. When then evaluated our new format through two user

studies to understand how developers can benefit or be limited by interactive features in

software documentation.

As a whole, this thesis demonstrates the potential of revisiting the design of documentation

to address common limitations. We focus on intentional decisions that pertain to the design

of entire documents, as opposed to the quality of a document’s content. In particular, we

consider the selection of a cohesive set of topics to cover as part of the design, but not decisions

related to how individual topics are described. Thus, the recent developments in generative

artificial intelligence technologies (e.g., ChatGPT) do not solve the problems studied in this

thesis. Nevertheless, we discuss the impact of these technologies on documentation design in

Section 6.3.

We contribute detailed empirical insights into techniques to capture the conceptual

context of documents, and into current variation points of documentation that are not well

understood. We also contribute design insights into, and the implementation of, a novel

format of interactive documentation, which can serve as a starting point to investigate a

currently unexplored portion of the documentation design space. The results of our user

studies contribute to building an understanding of the strengths and limitations of interactive

documents, thus further supporting the exploration of this design space. Thus, with this

thesis, we hope to encourage documentation creators and researchers to investigate alternative

design strategies to improve documentation quality.

3

CHAPTER 1. INTRODUCTION

1.1 Thesis Organization

The remainder of this chapter introduces each part of this thesis: identifying conceptual

dependencies (Section 1.2), exploring design variations in tutorials (Section 1.3), and designing

an interactive documentation format (Section 1.4). In each section, we present the research

goal and its motivation. We then present an overview of the research design, and a summary

of the findings. As each section is intended as a brief overview of the research, we relegate

details about the research questions and contributions to later chapters, where they are most

relevant. We also synthesize the research questions and contributions at the end of the thesis.

Chapter 2 presents a discussion of related work. We discuss the general context that

motivates this thesis as a whole, as well as the work specifically related to each part.

Chapter 3 presents our investigation of wikification and community search techniques

to identify conceptual dependencies. We start with a precise definition and motivation of

the problem we address (Section 3.1). We then present the protocol we used to compare

state-of-the-art wikifiers (Section 3.2) and the results of this comparison (Section 3.3). These

sections are followed by a complete description of Scode, our approach to identify conceptual

dependencies (Section 3.4). The last section of the chapter presents the design and results of

our multi-faceted evaluation of Scode (Section 3.5).

Chapter 4 presents our investigation of variation points in Android tutorials. This smaller

research project bridges the work presented in the previous and next chapters. The chapter

starts with an overview of the design decisions and variation points we found (Section 4.1).

We then elaborate on the methodology and evidence gathered to elicit decisions about the

organization (Section 4.2) and the content (Section 4.3) of tutorials. The chapter concludes

with a discussion of the results and their significance to promote further exploration of tutorial

design alternatives (Section 4.4).

Chapter 5 presents our investigation of interactive presentation formats for API learning

resources. The chapter starts with a description of our novel format named Casdoc (Sec-

tion 5.1), followed by the key properties of the format that address limitations of traditional

formats found in prior work (Section 5.2). The next two sections present the design (Sec-

tion 5.3) and results (Section 5.4) of the field study. Similarly, the following two sections

present the design (Section 5.5) and results (Section 5.6) of the laboratory study. At the end

of the chapter, we present the improvements we made to Casdoc based on the results of our

studies (Section 5.7).

Finally, Chapter 6 presents a discussion of our findings, and Chapter 7 concludes this

thesis.

4

CHAPTER 1. INTRODUCTION

The data collected during the studies presented in this thesis, as well as the material

necessary to replicate the studies, are available online [14, 155, 157, 161]. Appendices A,

B, and C present the detailed content of each data artifact, for each part of this thesis.

Relevant files from the data artifacts, such as the data annotation guides, are replicated in

the appendices.

1.2 Identifying Conceptual Dependencies

We investigated the concepts that a developer must be familiar with when using a technology—

and therefore when reading its documentation. For example, the documentation of a library

to hash passwords is likely to mention concepts such as cryptographic salt, hash function,

and cipher. Developers should be familiar with those concepts, otherwise they may not

fully understand the documentation and misuse the library. We refer to these concepts as

conceptual dependencies.

1.2.1 Goal

The goal of this part of the research was to study techniques to automatically identify

conceptual dependencies of a software project, given its documentation as input. Generating

a list of relevant concepts, however, is a challenging task due to the intangible nature of

concepts and the often subjective and implicit understanding of prerequisite knowledge.

1.2.2 Motivation

Prior studies have found that developers without a sufficient background find it challenging

to make effective queries and judge the relevance of the documents they find when looking

for documentation [109], thus making the lack of background a common obstacle to learning

a new API [187]. To illustrate the importance of conceptual dependencies, we consider

the scenario of a novice developer reading a tutorial about Android development. As the

developer learns about data storage APIs in Android, they stumble over unfamiliar concepts,

such as SQLite, DAO, and data entity. For each term, the developer can guess its meaning

from the context or ignore the corresponding passage entirely, in both cases risking to miss

relevant information. Alternatively, the developer can stop reading the current tutorial and

look elsewhere for a description of these concepts, which may not be as trivial as reading

5

CHAPTER 1. INTRODUCTION

the Wikipedia page for the target concept [191]. Doing so too often will thus disrupt the

progression of the tutorial.

If, instead, the developer had access to a list of conceptual dependencies of the Android

data storage APIs, they could address gaps in their knowledge before reading the tutorial

and avoid those disruptions. Furthermore, such a list could be organized by domain (e.g.,

grouping SQLite, DAO, and data entity under the database domain). This structure could

support a more natural introduction to related concepts than learning about each concept

individually as they come up in the tutorial.

Such an explicit list of the conceptual dependencies could also allow writers to critically

review the concepts introduced in a document. Writers could ensure that new concepts

are defined in a prominent place, and insert links to other relevant documents that define

concepts assumed as prerequisite for the current document.

The development of concept linking and community search techniques from the computa-

tional linguistics and network science domains, respectively, provides the building blocks to

identify relevant concepts. The computational linguistics domain defines the concept linking

task as identifying mentions of concepts in a natural language text and linking them to entries

in a knowledge base [206, 217]. A common option is to use Wikipedia as the knowledge base,

using articles as the knowledge base entries. In this case, the concept linking task is also

called wikification, and automated tools to perform it are called wikifiers. In network science,

the community search problem consists of finding, given a graph and initial query nodes,

a densely-connected subgraph that contains all query nodes. Finding optimal solutions is

particularly difficult on large graphs, as the search process becomes computationally expensive.

However, researchers have proposed different techniques to approximate optimal solutions

within practical computational limits [68].

We combined wikification and community search techniques to approach the problem of

identifying conceptual dependencies. However, these techniques have been developed, and

evaluated, for general-purpose domains, e.g., identifying concepts in news articles, or friend

groups in social networks. Thus, it is unclear how well they can adapt to the idiosyncrasies

of software-specific documents. Furthermore, several pre-trained wikifiers are available, each

with different configuration parameters that affect their precision and recall.

1.2.3 Research Design

We started our investigation by comparing six state-of-the-art wikifiers, with multiple con-

figurations for each wikifier, on a sample of software documents. We labelled each concept

6

CHAPTER 1. INTRODUCTION

identified by the wikifiers as “correct” (i.e., true positive) or “incorrect” (i.e., false positive).

We considered the set of concepts missed by a wikifier but identified by any other wikifier,

and labelled as “correct”, as the set of false negatives. This data allowed us to compute

precision and recall values to compare all wikifiers and configurations.

We then implemented state-of-the-art community search algorithms to expand the wik-

ification results. The resulting tool, named Scode, takes as input the documentation of a

software project and outputs a list of related concepts, organized by topic.

We evaluated the end-to-end performance of Scode by applying it to a sample of Java

classes and manually validating its output. We compared its precision and consistency to

two other concept identification techniques.

Additionally, we assessed the impact individual design aspects of Scode, including the

cohesiveness of concept sets identified by the community search algorithms, the benefits

of using an inclusion list to filter the wikifier’s results, and the impact of using a project’s

documentation instead of its source code.

1.2.4 Summary of Findings

The comparison of wikifiers confirm the complexity of choosing an optimal wikifier and its

configuration for specific applications. Each wikifier outperformed the others for different

ranges of recall values. We observed that precision and recall was lower for software documents

than the values reported in the original articles for evaluations with general-purpose documents.

However, an analysis error patterns elicited some heuristics to improve their performance.

For example, matching the output of wikifiers against an inclusion list of concepts helps to

filter out false positives from common polysemous terms.

The evaluation of Scode revealed that it can consistently retrieve many concepts, but

the unfiltered results include many false positives. However, most of these false positives

are due to large communities surrounding general concepts, such as JSON. Removing large

communities leads to practical configurations of Scode with precision values that range from

25% to 66%. By grouping concepts into a practical number of topics (i.e., communities),

Scode can provide an overview of the conceptual dependencies of a project.

In addition to the design and evaluation of Scode, our results provide detailed insights

into the potential and pitfalls of two techniques (i.e., wikification and community search) to

capture the conceptual context of projects.

7

CHAPTER 1. INTRODUCTION

1.3 Exploring Design Variations in Tutorials

Due to the lack of empirically-validated guidance to evaluate and increase the quality of

documentation, technical writers must rely on their judgment to design effective documents.

As a result, the design of documentation from different organizations vary considerably.

Understanding the decision points in the design of a document, both related to the selection

of its content and its organization, is a necessary step to move towards a more systematic

evaluation of quality aspects.

1.3.1 Goal

The goal of this part was to elicit variation points in the design of software tutorial documen-

tation. We studied tutorials created by professional writers from reputable organizations to

focus on high-quality documents.

1.3.2 Motivation

There are many approaches to design documentation. When creating a new tutorial, writers

must take many decisions about what content to include and how to organize different parts

within and across documents. Despite past research on documentation design (e.g., [29, 138])

and the desires and constraints of developers (e.g., [57, 141]), many of these design decisions

are not well documented. Thus, it is difficult to find reliable guidance about the impact of

different decisions to improve tutorials.

Some design decisions may be the consequence of practical constraints. For example,

writing several blog posts that eventually culminate in a tutorial can ease the development

of the tutorial by breaking it into smaller, self-contained documents. Blog posts can also

focus on popular aspects of a technology to generate a faster return on investment and

sustain the development of posts about less popular aspects. This strategy may be desirable

for organizations who cannot commit to the larger effort investment required to plan a

single, comprehensive tutorial. However, other design decisions may not be easily linked to

development constraints. For example, how to interleave prose and code examples may not

affect as much the effort required to create a tutorial, yet it can impact how readers use the

tutorial. Thus, such decisions rely on the subjective judgment of expert writers.

Progressing towards a more systematic approach to tutorial design requires first to identify

these variation points. This initial step is necessary to support a rigorous empirical assessment

of the impact of different decisions on quality. An explicit list of variation points can help

8

CHAPTER 1. INTRODUCTION

writers consider more options when creating tutorials. Even without prescriptive guidelines,

raising awareness of alternative designs encourages a critical analysis of (possibly unconscious)

decisions.

1.3.3 Research Design

We conducted a case study of three high-quality tutorials on Android programming for

novice developers. We chose Android as the target domain as it is a popular development

framework with many available tutorials. Android development also requires to consider

many factors, such as the variety of hardware to support and constraints such as battery

usage and responsiveness. These considerations, which are typically less important in desktop

applications, add variety to the topics that tutorial writers can choose to cover.

For each tutorial, we automatically extracted structural features based on HTML tags,

such as the number of words, sections, code examples, and hyperlinks. We used Stack

Overflow tags as a dictionary of topics to capture the coverage of the tutorials’ content.

The data we collected highlighted key differences between the tutorials. We manually

investigated these differences to elicit design decisions they linked to and understand possible

causes and trade-offs of these decisions.

1.3.4 Summary of Findings

Our comparison of tutorials elicited eleven design decisions related to five variation points.

The variety of design strategies motivates future work to improve and standardize the creation

of tutorial documentation.

1.4 Designing an Interactive Documentation Format

We investigated the presentation of information in documentation. Although documentation

writers must address a variety of information needs, including too much content in a docu-

ment can overwhelm readers and hide or reduce the relative weight of the most important

information about the API. Interactive presentation formats can alleviate the negative impact

of verbose documents by showing readers only the information they need. However, to be

effective, interactive formats must support intuitive navigation behavior from readers to

justify the migration from the well-known static HTML pages. Additionally, they must not

overly increase the authoring effort for writers to facilitate its adoption.

9

CHAPTER 1. INTRODUCTION

1.4.1 Goal

The goal of this part is to understand how interactive documents can support common

navigation behavior reported in prior work, as well as to explore alternatives to structure

information within a document. We pursue this goal through the iterative design and

evaluation of a novel presentation format, called Casdoc.

1.4.2 Motivation

When reading tutorials, developers typically do not read every word. Instead, according to

Information Foraging Theory [174], they will scan different parts of a document, looking for

clues about the location of the information they need, and only read more thoroughly the

parts of a document that they estimate is more likely to contain such information. Developers

can even ignore the text of a tutorial entirely at first, starting directly at the code examples

provided in the tutorial [30]. Hence, developers reading a tutorial need to perform a series of

navigation actions (e.g., scrolling, scanning a paragraph, using a textual search tool) to reach

their target information more effectively.

Documents can include different features and navigational cues [151] to support an effective

navigation by its readers. For example, it can contain a table of content and hyperlinks

to different parts of the document. However, those navigational aids can only improve to

a certain extent the inherent navigability of its structure of information. As an extreme

example, a large document presented as a long uninterrupted paragraph of natural language

text is unlikely to be easy to navigate, even with many navigation features.

A more practical and common format consists of dividing the information into a sequence

of ordered sections. Such a linear format retains the ordering of information to provide a clear

starting point for readers, but breaks down the document into manageable fragments that

can be scanned or skipped by a reader.Even when different sections are independent, they are

presented in an explicit sequence that provides an inherent reading order. Other presentation

strategies exist too. For example, the structure of Java API reference documentation (i.e.,

Javadoc documentation) matches the hierarchical structure of the API, with no fixed order

across all API elements. However, non-linear formats are less common for learning resources

such as tutorials.

The growing amount of documentation resources available online accentuates the impor-

tance of designing effective presentation formats, as developers will look elsewhere if it takes

too much effort to locate the information they need in a document [174]. Thus, navigability

issues constitute an important threat to the value of a document, as even if a document

10

CHAPTER 1. INTRODUCTION

contains a large amount of information. However, without empirically validated guidelines to

structure documentation, it is challenging to detect and address these issues.

In particular, the digitalization of documentation created opportunities to design interac-

tive features that printed documents could not support. Interactive documents can adapt

to the needs of a diverse audience by showing tailored content to each reader. However,

designing interactive interfaces is costly, and it can reduce navigability if the interface is not

intuitive. Thus, eliciting guidelines to create interactive documents can help writers leverage

the potential benefits of interactivity while limiting the threat of introducing navigability

issues.

1.4.3 Research Design

We started with an exploration of the space of presentation strategies through the design and

implementation of a novel format, Casdoc. The design of Casdoc was informed by prior work

on common navigation patterns and information needs of programmers. We then conducted

two studies to investigate the strengths and limitations of Casdoc to support programmers

learning to use unfamiliar APIs.

We conducted a field study to collect quantitative evidence of the viability of Casdoc in a

realistic context. The study took place during two sections of an undergraduate course on

software design. Participants, i.e., students enrolled in the course, used Casdoc documents as

part of the course material, alongside other material such as the course’s textbook.

We instrumented the documents to asynchronously send interaction events when par-

ticipants used any feature of the documents. The data collection procedure was minimally

intrusive, both to preserve the ecological validity of the results and to avoid a potential

negative impact on the students’ learning objectives.

Throughout the field study, we collected over 18 000 interaction events from 326 partici-

pants. These events provided detailed insights into the usage of different features, highlighting

aspects of the format that worked well and others that needed improvements.

We complemented the field study with a laboratory study to directly observe how (and

why) programmers use different features of Casdoc when working on programming tasks. In

this study, participants completed a set of tasks in a controlled environment. Each participant

worked on the tasks during a single videoconference session with one of the investigators.

Participants were allowed to use any development technology they were used to, except

for online documentation other than the documents we provided. The provided documents

11

CHAPTER 1. INTRODUCTION

used a combination of Casdoc and a traditional, non-interactive format, which allowed us to

compare how well each format supported different navigation strategies.

We analyzed recordings of the sessions to elicit recurrent navigation patterns that partici-

pants used to find relevant information. We correlated these patterns to the usage of each

format to compare the formats’ strengths and limitations.

1.4.4 Summary of Findings

The field study showed the viability of Casdoc as a format for API learning resources. It

confirmed the benefits of allowing readers to selectively reveal and hide content to mitigate

the verbosity of documents. However, it also highlighted some aspects of interactive formats

that must be carefully designed to avoid navigability issues. For example, aesthetic choices

(e.g., the color of navigation hints) can impact the discoverability of information. Writers

should also be careful to place important information in prominent places that do not require

many user actions to locate. We synthesized these findings into five guidelines that can help

writers improve the design of documentation formats.

The laboratory study revealed several contextual factors of an information search that

make either an interactive or a non-interactive format more useful. For example, when trying

to get familiar with the concepts of a new domain, participants typically preferred to use

the non-interactive format, which allows them to scan surrounding paragraphs to estimate

the document’s coverage of the domain. In contrast, when trying to find a code example to

use as an initial solution to perform a specific action, participants typically preferred Casdoc

to look for short explanations about the details of the code example. Overall, the results

showed that the combination both formats, even if it requires duplicating the document’s

content, is useful to support a large variety of search strategies.

12

Chapter 2

Background and Related Work

Researchers and practitioners agree that documenting software is both important and challeng-

ing. The lack of high-quality documentation is a common obstacle to learning the usage of new

APIs [187, 189]. Yet, documentation is often missing, outdated, or untrustworthy [115, 141].

Even when up-to-date documentation is available, it can suffer from many other issues related

to, e.g., its readability, correctness, or elements such as code examples and diagrams [5].

Recurrent issues with software documentation motivated the development of many tech-

niques to reduce the burden of creating and maintaining documents (e.g., [36, 38, 84, 94, 243]),

as well as many studies to understand what information needs to be documented and how

best to document it (e.g., [54, 142, 148, 204]). This thesis contributes to this research effort

on software documentation. As increasing documentation quality is a multi-faceted challenge,

we focused on three aspects in our work: capturing and representing the intangible knowl-

edge shared through documentation, studying the documentation needs of developers, and

exploring different techniques and their impact to present information to developers.

Despite our focus on a specific type of documentation (i.e., API learning resources such

as tutorials), we discuss prior work related to any relevant type of documents, as there are

many cross-cutting challenges and concerns to improving documentation design. We present

further related work specific to each contribution of this thesis in their respective chapter.

2.1 Capturing Concepts Relevant to Software Projects

Extracting the concepts that are related to a software system is useful to support many devel-

opment tasks. In addition to using concepts for generating documentation [121], researchers

have used different representations of knowledge to aggregate similar bug reports [171] and

13

CHAPTER 2. BACKGROUND AND RELATED WORK

feature requests [169], recommend third-party libraries [45], compare API types and meth-

ods [122], and categorize the technology landscape discussed on Stack Overflow [163]. Even

closer to our work, prior work on requirements engineering proposed to use Wikipedia articles

and categories to resolve language ambiguities [65, 72]. Researchers have also studied the

problem of concept location, i.e., identifying locations in the source code of a software system

that relate to a query concept, for example to help developers resolve defects [60]. In particu-

lar, Latent Dirichlet Allocation (LDA) is an unsupervised technique to map documents to a

vector space based on latent topics, which has been extensively used in software engineering

research to represent the (implicit) semantic information about many software artifacts, from

source files to bug reports. For example, prior work has shown that LDA can help prioritize

test cases [212] and find permission-related security issues in Android applications [59].

The variety of development tools that leverage semantic information about a software

system demonstrates the potential that the identification of concepts can have on improving

development methodologies. Thus, although this thesis focuses on conceptual dependencies

for documentation, our results can also benefit other software engineering activities. In this

section, we discuss prior work that address the extraction, representation, and manipulation

of conceptual knowledge.

2.1.1 Concept Linking

In computational linguistics, research on the extraction of terms from an input document

evolved from two related sub-tasks: named entity recognition (NER) and named entity

disambiguation (NED). As the name implies, the two tasks focus on named entities, e.g.,

names of people, places, or organizations. Expanding this definition to the identification

and disambiguation of any concept defines the concept linking problem. This task requires a

knowledge base, whose entries constitute the dictionary of concepts that can be identified.

Different knowledge bases can be used, such as WordNet [179], DBpedia [114], and YAGO [184].

When Wikipedia is used as the knowledge base, concept linking is also referred to as

wikification.

A large number of different techniques exist to solve any of these problems [196, 236]. The

popularity of concept linking is in part due to several challenges and shared tasks developed

by the community, such as those of the Message Understanding Conferences (e.g., [205]),

Senseval/SemEval (e.g., [143, 164]), and CoNLL (e.g., [213]). In particular, the popularity

and extensive coverage of Wikipedia has motivated the development of many wikification

techniques [206]. Many wikification tools (i.e., wikifiers) are publicly available, with the

14

CHAPTER 2. BACKGROUND AND RELATED WORK

parameters of their underlying models pre-trained on general-domain document corpora

(e.g., [31, 149]).

The large amount of concept or entity linking techniques led to a community effort to

generate a standard terminology to discuss the variants of the concept linking task [217]. The

outcome of this community effort also includes a framework, GERBIL, to evaluate concept

linking techniques with a consistent methodology and metrics. However, the methodology

requires a gold standard against which to evaluate the results of the evaluated techniques.

This requirement increases the cost of evaluating techniques on new domains, as we did as

part of this thesis.

Despite the maturity of the research on concept linking, few software engineering re-

searchers have investigated their potential to support development tasks. The lack of

excitement for wikification techniques, relatively to other knowledge modeling techniques

such as LDA, is possibly due to the unpredictability of wikifiers on software documentation.

Software documents use a domain-specific terminology (e.g., without context, the term tree

more likely refers to a data structure than a type of plant) and can include code terms (e.g.,

API method and type names). Both aspects are challenging to handle for natural language

tools. Researchers have proposed named entity recognition techniques specific to the software

domain to address these limitations [240, 241]. A particular instance of this problem consists

of identifying code elements within natural language text [127, 186]. These techniques can

identify software-specific entities, such as names of programming languages, of libraries, or

of API types. Our work complements this effort by studying the problem of identifying

software-specific concepts, such as common data structures or design patterns.

2.1.2 Knowledge Graphs

To address the need for knowledge-aware software engineering techniques, researchers have

studied the construction and usage of knowledge graphs. Knowledge graphs can either be

used directly by developers when searching for information about a software system [172], or

they can support the design of other development tools (e.g., to support bug fixing [229, 246]).

The value of constructing accurate and extensive knowledge graphs is not unique to software

engineering [102]. Notable large knowledge graphs include Wikidata [226], DBpedia [114],

and BabelNet [165]. However, because these knowledge graphs are not specific to software

development, it is not trivial to adapt them for software engineering applications.

Researchers have proposed techniques to generate software-specific knowledge graphs

using association rule mining [44] or heuristics based on grammatical dependencies identified

15

CHAPTER 2. BACKGROUND AND RELATED WORK

by natural language parsers [245]. Another recurrent strategy for to generate code-specific

knowledge graphs is to extract relevant terms from source code identifiers and generate a

semantic structure based on further information in source code [67, 183]. However, these

techniques tend to generate an impractical number of concepts for large software systems. This

limitation can be mitigated by filtering out irrelevant terms and clustering similar concepts in

the output [1, 103, 239]. Related to knowledge graph construction is the problem of automated

glossary construction, which attempts to identify relevant terms specific to a project [9, 227].

Glossaries provide a basis for developers to precisely express and discuss requirements and

solutions of the software project. However, they are typically only relevant within the context

of a single project. Furthermore, techniques that generate extract knowledge from software

project artifacts tend to omit high-level concepts, such as relevant algorithms or design

patterns used implicitly in the project.

Our investigation of conceptual dependencies can help extend existing knowledge graphs

by linking software projects and their API to a project-independent source of knowledge, i.e.,

Wikipedia.

2.1.3 Community Search

Although large knowledge graphs are desirable to capture the semantic context of projects,

they can be hard to navigate and manipulate in specific applications. In particular, the graph

of Wikipedia articles is densely connected, but the meaning of a link between two articles is

not precisely defined, other than a relatedness relation. As a result, two seemingly unrelated

articles may be connected by only a few intermediate articles. For example, as of March

2024, the article Mozilla Thunderbird is connected to Julius Caesar though a single

common neighbor (French Armed Forces).

Nevertheless, it is possible to derive meaningful information from the large-scale structure

of the graph. In this thesis, we use community search algorithms to distinguish closely related

sets of articles from spurious relations. The community search task consists of identifying,

within a graph, a densely connected subgraph that surrounds a query node [68, 199]. As the

identified communities contain many links between related articles, by definition, they are

useful to exclude outlier relations, such as the link between an email client and a Roman

dictator.1 We discuss the technical details of the algorithms we used in Section 3.4.3, in the

context of our proposed approach for identifying conceptual dependencies.

1We also identify a software-specific subset of Wikipedia to filter out irrelevant articles.

16

CHAPTER 2. BACKGROUND AND RELATED WORK

Community search algorithms, and other techniques from the network science domain,

can help extract more knowledge from large knowledge graphs. In particular, graphs that

rely on knowledge inputs from large crowds of volunteers, or those that are constructed using

flexible approaches to identify arbitrary relations, typically contain a lot of information, but

with a proportional amount of noise. Thus, our work can encourage further exploration of

graph manipulation techniques to distinguish meaningful patterns.

2.2 Studies of Documentation Needs and Usage

Patterns

During an observational study, Maalej et al. found that developers prefer to look at source

code or ask their peers over consulting documentation, but attributed this preference to

recurrent documentation issues such as sparsity and a lack of trustworthiness [129]. Knowledge

elements such as rationale, intended usage, and real usage scenarios were also often missing

from documents.

To improve current practices, researchers have sought to better understand how developers

use documentation. Insights into developers’ perspective on documentation can guide the

effort spent on creating, maintaining, and researching software documentation. Prior work

has investigated this problem from different angles. We discuss information needs expressed

by developers, common actions to find information in documents, and quantitative techniques

to capture documentation quality.

2.2.1 Information Needs

Understanding what information developers look for is necessary to ensure documentation

address relevant needs. Thus, different researchers have collected evidence to synthesize needs

from various sources [27].

With over 24 million questions and 22 million users as of March 2024, the popular

question and answer forum Stack Overflow constitutes a valuable source of insights into those

information needs [200]. Researchers have applied topic modelling techniques to investigate

discussion trends on Stack Overflow [7, 192]. Their results can be used to derive taxonomies

and automated classification approaches to manage different types of information needs [24].

Recently, Liu et al. manually analyzed a sample of 266 Stack Overflow posts to define a

framework that categorizes information needs, subtypes of information to address those needs,

17

CHAPTER 2. BACKGROUND AND RELATED WORK

and how different API elements relate to those needs [120]. This line of research is useful to

systematically evaluate the benefits of documentation.

Other researchers directly observed developers in action to elicit questions that arose

during development tasks [62, 197]. They identified typical questions that developers tend to

ask about unfamiliar APIs. These question templates can serve as a fine-grained, empirically-

validated framework to evaluate and improve the coverage of documents. Contrary to studies

based on data from public forums, studies with direct contact with developers are sensitive

to information needs that are already addressed well in current documents. Other studies

involved interviews or surveys to gather insights from developers (e.g., [4]). For example, Head

et al. combined an analysis of log data and interviews with document readers and writers to

study not only information needs, but also constraints that limited documentation writers from

addressing these needs [88]. For example, they found that some writers preferred to exclude

non-functional information to keep documentation minimal and avoid misinterpretations

from readers.

There have also been studies to categorize the content of existing documentation to

complement research on information needs [10, 128]. For example, Cogo et al. compared

data from Stack Overflow and another question and answer forum with the official Rust

documentation to study how well the language’s documentation addresses demonstrable

needs of developers [51]. They found that the content of official documents corresponds well

to topics that developers ask about in general, but they also identified misalignments that

suggest weaknesses in the documentation.

2.2.2 Documentation Usage Patterns

Over 30 years ago, Curtis et al. studied different strategies for documenting the control flow

of small programs [55]. They found that using a constrained language was typically more

effective than natural language or ideograms, but the arrangement of the content (i.e., whether

it is shown sequentially, hierarchically, or using branches) did not have a considerable impact.

Since then, both documentation [218] and software systems have evolved greatly, yet few

researchers reassessed whether their findings still hold in the modern software development

landscape. A recent study of architectural documents [64] generated observations consistent

with Curtis et al.’s findings, but took into consideration modern formatting guidelines [50].

Aside from the impact of different document styles, prior work includes studies of the

strategies used by programmers to navigate documentation [108, 119, 191]. For example,

researchers have studied the opportunistic use of resources to satisfy specific needs that arise

18

CHAPTER 2. BACKGROUND AND RELATED WORK

when working on programming tasks [30]. They found that developers can use documents

to fulfill different purposes, from learning new technologies to recalling exact information

found in known locations. Such studies motivate the need to create flexible documents that

can address multiple purposes, and accommodate developers with different personalities and

preferences [106, 110].

Studies on document readability conducted outside the context of software development

can also help improve software documentation. Hornbæk and Frøkjær studied reading patterns

of students with scientific articles presented in three formats: a classic “linear” format, a

“fisheye” format that allows readers to expand and collapse parts of a document, and an

“overview+detail” format that shows a smaller version of the document in a left pane as

an overview of the content [95]. They reported several reading patterns, from participants

who preferred to carefully read through a document only once to others who jumped back

and forth between different sections. They also observed that participants took more time

on average to answer questions about the documents, but wrote better essays about the

documents and showed higher satisfaction. In contrast, the fisheye format led to faster

completion times, but also to more incorrect answers. These nuanced results suggest that the

quality of a format is multi-faceted and likely task-dependent.

Other researchers have investigated several other aspects, such as optimal, and personalized,

font choices [37]. Miniukovich et al. collected and synthesized guidelines described in the

literature for increasing the readability of web documents, with a focus on accommodating

dyslexia [147]. This effort produced a set of 61 guidelines, ranging from navigation features

(e.g., “Use a breadcrumb trail [...]”) to visual choices (e.g., “Avoid using italics in the main

body of the text”). They further refined these guidelines to a set of twelve core guidelines

supported by empirical evidence of their impact on the readability from average and dyslexic

readers. In particular, they found that the two groups benefit from different sets of guidelines,

demonstrating that the quality of a format is also reader-dependent.

2.2.3 Measuring Reading Behavior

More fundamental work can help build theories to better understand, measure, and predict

the quality of software documentation. For example, Sharafi et al. used neuroimaging to

identify differences between reading prose and code in brain activation patterns [195]. They

also found similarities between programming tasks, such as understanding data structure

manipulations, to seemingly unrelated mental exercises such as 3D spatial rotations. In

another vein, Hu et al. compared automated metrics used in documentation generation

19

CHAPTER 2. BACKGROUND AND RELATED WORK

evaluations (e.g., ROUGE, BLEU, METEOR) to human judgment along six quality factors

(e.g., naturalness, understandability) [98]. Although they found some correlation between the

metrics and human judgment, the automated metrics are not sufficient to completely capture

the quality of a document. Abid et al. demonstrated the usefulness of another technique,

eye-tracking, to study how developers read unfamiliar source code [2]. They were able to

distinguish, for example, that developers focus more on method calls than method signatures.

This line of research is crucial to support the collection of precise and fine-grained data in

software documentation research.

2.3 Designing Documentation Presentation Formats

There has been prior effort to improve the design of documentation. For example, Codelets

is an approach to create databases of reusable self-documenting code fragments, designed

in the context of web development [166]. A Codelet combines both the template code to

implement a specific programming task and documentation explaining the solution. It can

also be interactive, allowing programmers to update the code fragment using a form. This

approach to documentation has notable similarities with the format we propose, Casdoc:

both focus on code examples as the main documentation resource and rely on embedded

annotations to provide additional explanations. However, Codelets requires a specific software

infrastructure for developers to manage a database of information fragments and integrate

them in their code. In contrast, Casdoc documents only use common web technologies by

design, so they can be viewed with any web browser.

Closer to the context of our work, different techniques have been proposed to improve online

developer documentation. The ability to execute and modify code examples within a document,

without having to set up a suitable local development environment, encourages readers to

actively engage with the content of a document [144, 222]. Guo designed a visualization tool

to help novices follow step-by-step executions of programs [83]. The web-based tool includes

a visual representation of the program’s memory to help programmers understand and reason

about the operations in the code. Other techniques focus on facilitating the comparison

of code examples from various sources. For example, color highlights, distribution charts,

and interactive selections can help programmers compare code examples from alternative

libraries [79] or synthesize large sets of code examples [238] to accomplish a programming

task.

More innovative formats have been studied to improve how documentation is presented,

either for developers or other groups of users. For example, many researchers focused on new

20

CHAPTER 2. BACKGROUND AND RELATED WORK

documentation media, in particular video tutorials, as they became popular alternatives to

text-based documents [49, 131, 150, 219, 220]. However, in the context of this work, we focus

on primarily text-based documentation.

2.3.1 Interactive Formats

Many interactive formats proposed by researchers recently focus on the exploration and

visualization of machine learning models (e.g., [139, 242]). For example, Symphony is a

technique to create interactive interfaces to document machine learning models [22]. It relies

on reusable components that allow users, e.g., to modify and visualize the data sets and to

analyze properties of the generated models directly within the document. During three case

studies, users found Symphony useful to explore data sets and to teach machine learning

design principles. Similarly, Feng et al. found that live interactions with a machine learning

model can ease communication between different groups of stakeholders [69]. Allowing data

experts to influence the search space of hyperparameters through interactive dashboards can

also improve the performance of optimization algorithms in complex situations [91].

Researchers have also studied techniques to help readers interact with data presented in doc-

uments through tables (e.g., [107]) and figures (e.g., [90]). Techniques such as Chameleon [134]

and Charagraph [133] can overlay supplemental interactive figures on static images or generate

interactive graphs to visualize data described in non-interactive documents, respectively.

Such interactive figures can encourage readers to interact with the data and decrease the

effort required to answer queries [133]. Wang and Kim also proposed to generate concise facts

about data presented in documents to make such documents more relatable to blind and

low vision individuals [228]. In a formative study, they found that participants had different

preferences about the types of facts they are interested in, but participants were enthusiastic

about the generation of personalized facts.

Aside from data visualization, Dragicevic et al. discuss the creation of interactive scientific

articles that embed multiple data analyses, to allow readers to explore alternatives to what

the researchers initially present [61]. Head et al. studied the use of techniques, including

interactive ones, to help readers understand mathematical equations in documents [89]. Both

of these studies focus on the design of the new format. Among other findings, they provide

guidelines for creating, or facilitating the creation of, improved document formats.

21

CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.2 Paper-Inspired Interaction Features

A recurring theme in prior work has been the integration of physical paper’s affordances into

electronic documents, such as the ability to annotate documents [96], synchronize bookmarks

between printed and digital documents [18], or use natural pen-inspired gestures [78]. Chen

et al. discuss how different types of devices (e.g., PC, tablets, and e-readers) support various

reading actions, before proposing a system composed of multiple custom devices comparable

to e-readers and tablets [47]. Their evaluation study with twelve participants showed that such

a multi-device system can mitigate some limitations of electronic documents, but introduces

new interoperability challenges, such as a low practical limit to the number of devices. Hybrid

systems, which combine interaction on physical paper and on electronic devices, can address

some of these limitations. Han et al. reported on a literature review of those systems, and

discuss strategies to design and implement such systems [85]. Such work helps generate new

ideas to improve the design of interaction between readers and electronic documents.

22

Chapter 3

Conceptual Dependencies of Software

Documentation

Software documentation, in particular API reference documentation, often focuses on technical

aspects of an API. It typically contains information about which objects and methods are

related to a task or concept, for example, or about the constraints that the arguments of

a function must satisfy. Regardless of the quality of the content, however, this technical

knowledge is not sufficient to completely understand and correctly use an API. Developers

must also be familiar with concepts related to the domain of the API, such as computer

science theories, algorithms, and supporting technologies. For example, developers working

on an e-commerce application may have to learn concepts related to database management

systems and secure transactions, even if the application relies on third-party libraries to

implement these requirements. Without this prerequisite knowledge, a developer may not

understand the documentation at all, or miss important implicit assumptions of the domain

concepts.

We refer to a domain concept that a developer must know to properly use a library

or contribute to a software project as a conceptual dependency. Given the breadth of

programming concepts, software developers must constantly learn about various technical

concepts [30, 191]. However, identifying the conceptual dependencies of a software project,

beyond the most prominent concepts, is a difficult task. It requires to delineate the extent of

the knowledge involved in the project, partition this abstract and nuanced knowledge into

distinct concepts, and express the relevant concepts with recognizable labels. Nevertheless, a

precise mapping of concepts to the software project and its components can help developers

23

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

perform activities such as identifying the source of a feature [25, 60, 178], the cause of a

bug [113, 181], or a third-party library for a specific task [45].

In this chapter, we describe an investigation of heuristics to automate the identification of

the conceptual dependencies of a software project, based on computational linguistics [196]

and network science [68] techniques. This investigation culminated in the design of a novel

solution, named Scode,1 to automatically generate a set of candidate conceptual dependencies

for a project. Scode relies on wikification techniques to link mentions of concepts in natural

language text to relevant Wikipedia2 articles [196] and on community search techniques to

identify further related concepts [68]. The design and implementation of Scode required

several adaptations of these techniques to the software development context.

To better understand the merits and limitations of a concept identification strategy based

on wikification and community search techniques, we performed an extensive evaluation of

Scode. This evaluation includes a detailed comparison of state-of-the-art wikification tools on

software-related documents. We also evaluated both the end-to-end performance of Scode and

the performance if its components individually. The results of our investigation contribute

to a better understanding of knowledge modeling techniques for software projects. They

confirmed that parsing software documents has unique challenges that decreases the accuracy

of wikification techniques developed and evaluated on general-domain texts. As a results, the

tools’ performance was lower than what was reported in their associated research articles and

no tool was consistently better than any other, making it hard to choose an optimal option

for specific applications. The end-to-end performance of practical configurations of Scode

ranged from 25% to 66%, but identify recurring concepts more consistently than comparable

approaches. In total, we make the following contributions:

1. an assessment of the performance of wikification tools on software resources;

2. empirically grounded insights to improve the performance of wikifiers for the software

domain;

3. a novel approach to identify project-related concepts using a consistent and project-

agnostic terminology;

4. the results of an extensive empirical evaluation of Scode that provide nuanced insights

into concept identification strategies;

1Scode stands for Software conceptual dependency, and is used to represent both our novel approach and
its output.

2https://en.wikipedia.org/wiki/Main_Page

24

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

5. a curated list of over 6700 computing-related articles that represent the extent of

Wikipedia’s coverage of the software development domain.

We motivate and precisely define the problem addressed by Scode in Section 3.1. We

started our investigation with a comparison of wikification tools (Section 3.3). Based on

the results, we developed and implemented our novel approach to identify the conceptual

dependencies of a software project, presented in Section 3.4. We then describe our evaluation

procedure and report on its results for both the end-to-end and individual components’

performance of Scode (Section 3.5).

Publications Our investigation of conceptual dependencies was published in two articles.

The comparison of wikifiers was published in an article titled “Wikifying software artifacts”,

which appeared in Empirical Software Engineering [156]. The description of Scode and its

evaluation was in an article titled “Identifying Concepts in Software Projects”, which appeared

in IEEE Transactions on Software Engineering [159].

Study Data The data and material necessary to independently validate and replicate our

findings is available as two data artifacts (one for each published article) [155, 157]. The

artifacts contain the annotation guides, the raw data collected during the studies, and the

lists of computing-related articles about software-related topics. Appendix A presents the

content of the data artifacts in detail.

3.1 Motivation and Problem Definition

Prior studies have found that developers without a sufficient background find it challenging

to make effective queries and judge the relevance of the documents they find when looking

for documentation [109], thus making the lack of background a common obstacle to learning

a new API [187].

To illustrate the importance of conceptual dependencies, we consider the scenario of a

developer who wishes to contribute to the K-9 Mail Android application. This application is

an open source mail client for mobile phones. As such, its development requires familiarity

with concepts related to Android development (e.g., activities and intents, local data storage),

email exchange protocols (e.g., IMAP, SMTP), and authentication (e.g., OAuth, multi-

factor authentication), among others. If the developer is unfamiliar with some of these

concepts, they may make incorrect assumptions while working on the system, misunderstand

25

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

with a Wikipedia article provides a natural way to learn about the concept when necessary.

Finally, grouping concepts by topic, rather than presenting them as a flat list, helps developers

navigate efficiently through the required knowledge even if a large number of concepts are

presented.

3.1.1 Research Problem

We sought to retrieve concepts whose meaning is recognized beyond a specific project. We

argue that it is easier for developers to interpret such recognized concept than project-specific

concepts—or general concepts expressed using a project-specific terminology. We also sought

to identify not only explicit concepts mentioned in a project’s documentation, but also implicit

concepts related to the project’s domain. For example, a mention of the SHA-256 algorithm

likely implies that the project is related to the more general concept Cryptography. Hence,

Scode constitutes an alternative to prior work that synthesizes concepts from recurrent terms

(e.g., [67, 103]) to build glossaries (e.g., [9, 227]) and ontologies (e.g., [1, 183]). Instead, Scode

identifies concepts from an independent knowledge base, Wikipedia. We discuss the choice of

Wikipedia as the information source in Section 3.1.2.

The development of efficient wikification techniques in the last decade enables the use of

Wikipedia articles as proxies for concepts. Wikification refers to the task of linking mentions

of concepts in free-form text to relevant Wikipedia articles [53, 137, 206]. It is a variant of

the named entity recognition and disambiguation task, expanded to include unnamed entities,

i.e., concepts [217]. Several tools, called wikifiers, are now available to perform this task on

arbitrary texts. These tools are designed to retrieve the correct sense of a word in a text

(e.g., associate “map” with the data structure or the visual representation depending on the

context) and link synonyms to the same concept (e.g., associate “map”, “dictionary”, and

“associative array” to the same concept).

Wikifiers, however, cannot identify concepts that are only implied by a document. For

example, a text mentioning SHA-256 is also related to the implicit concept of Crypto-

graphic hash function. Implicit concepts are important to reduce the impact of variations

in the way software documentation is written when identifying related concepts. Community

search algorithms can help identify such implicit concepts. The community search task

consists of identifying, within a graph, a densely connected subgraph that surrounds a query

node [68, 199]. Thus, using Wikipedia articles as nodes and hyperlinks between them as

edges, we can apply community search algorithms to find further articles related to those

27

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

mentioned in the project’s documentation. The communities found by these algorithms can

also form the basis for aggregating concepts by topic.

Together, wikifiers and community search algorithms form the basis of our solution to

identify recognized concepts. However, both techniques were developed for the general domain.

Hence, the goal of our investigation consists of assessing the performance of these

techniques and designing heuristics to use them in a software-related context. We

ask the following research questions:

RQ 3.1 How do wikifiers compare to each other, in terms of performance, to wikify software

documents?

RQ 3.2 How do the additional parameters affect the performance of each wikifier?

RQ 3.3 To what degree do different wikifiers identify similar sets of articles?

RQ 3.4 How accurate are concepts identified by Scode?

RQ 3.5 How consistent are concepts identified by Scode?

RQ 3.6 How effective are the internal mechanisms of Scode?

RQ 3.7 How do concepts extracted from documentation differ from those extracted from

code identifiers?

We first studied RQs 3.1 to 3.3 by applying different configurations of six wikifiers to

Stack Overflow4 posts. We used the results of this comparison to inform the design of Scode.

RQs 3.4 and 3.5 evaluate the end-to-end performance of Scode along two metrics, accuracy

and consistency. Finally, RQs 3.6 and 3.7 assess several design decisions of Scode. Their

results provide deeper insight into automated techniques to extract, represent, and manipulate

software project knowledge.

3.1.2 Wikipedia as a Source of Information

With over six million articles, the extensive coverage of Wikipedia makes it a valuable

knowledge base of recognized concepts. Although there are software-specific knowledge bases

and glossaries (e.g., ISO/IEC/IEEE’s vocabulary of systems and software engineering [101]),

the subset of Wikipedia relevant to computing offers a more extensive and up-to-date coverage,

thanks to its vast community of contributors.

4https://stackoverflow.com/questions

28

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Figure 3.2: Excerpt from the Software system Wikipedia Article with Links to Other
Articles in Blue Boxes (as of December 2023).

Wikipedia is also a popular resource within the software development community. De-

velopers often include links to Wikipedia articles in Stack Overflow posts [20], source code

comments [86], and commit messages [235]. The practice of linking to Wikipedia articles is

common to help readers of a document find definitions of important concepts [191].

Aside from Wikipedia, Stack Overflow is also commonly used as a knowledge base in

software engineering research [45, 163]. Similar to Wikipedia, Stack Overflow is well-known

within the development community and actively maintained. Its set of over 65 000 tags (as

of August 2024) covers a wide range of software technologies and programming concepts.

However, the description of Stack Overflow tags is often missing [163], and they do not contain

as much structured information as Wikipedia articles, such as categories and hyperlinks

between articles.

3.1.3 Potential and Limitations of Wikification

Wikification is a prolific sub-area of computational linguistics that matured over the past

decades. The term wikification refers to the process of adding links to relevant Wikipedia

articles from a natural language document, so that the reader of the document can easily

find description of pertinent related concepts. The result of this process is similar to existing

Wikipedia articles (hence the name) which contain internal links to other articles. The

wikification process was originally a manual process: authors of Wikipedia articles would

explicitly add links to other articles. As the popularity of Wikipedia grew, and authors of

29

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

non-Wikipedia documents started to link to Wikipedia, e.g., from Stack Overflow and Reddit5

posts [224], researchers designed wikifiers to help with this activity. Wikifiers automatically

identify concepts mentioned in the text and associate them with a relevant Wikipedia article—

or, more generally, with an entry in a knowledge base. Organizations use wikifiers, for

example, on news articles to refer readers of the document to contextual or prerequisite

knowledge helpful to understand a news item.

For example, Figure 3.2 shows the first two paragraphs of the Wikipedia article Software

system,6 which contain fourteen mentions of eleven unique articles.7 In the context of

wikification, a mention represents the fragment of text in the document that is associated

with the Wikipedia article. In Figure 3.2, the first mentions in the first paragraph are system,

components, and software. Mentions can consist of multiple words, such as computer system.

In some cases, the Wikipedia article associated with a mention has a title that differs from the

mention, as is the case for the mention components, associated with Software component

(itself redirecting to Component-based software engineering). The objective of a

wikifier is to automatically discover the same mention–article links as those identified by

humans when given the raw text of the article as input.

Software engineering techniques can leverage mature wikification techniques to auto-

matically link technical documents to supporting resources, either to help readers better

understand the resource, or to improve other information retrieval techniques. However,

wikification research targets well-written and general-domain documents [31, 48, 92, 145],8

and it is unclear how well it can address the peculiarities of software-specific documents.

Recent work proposed software-specific techniques related to wikification [241], but no end-

to-end wikification technique exists yet for software resources, or even evaluations of general

techniques on a software-related dataset.

Software engineering terminology adds complexity to the wikification task, because many

common terms have a specific technical sense. For example, a “lock” in the software domain

can refer to a concurrent programming concept, or a file access restriction, but less likely

to the physical security device. Similarly, “Python” more often refers to the programming

language than a type of snake. The fast-growing list of technologies, many of them named

using common terms, makes the problem of terminology even more challenging [163].

A second challenge originates from the peculiar format of software resources. They often

include code fragments, either in distinct blocks or inserted directly in the text. Source

5https://www.reddit.com/
6https://en.wikipedia.org/wiki/Software_system
7We mark titles of Wikipedia articles with a different Font.
8There are a few exceptions of tools that target specific types of documents, such as Twitter messages [42].

30

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

code identifiers (e.g., names of variables and types) can also appear in the text without any

special formatting, and often in different morphological forms [46], which makes them hard

to distinguish from natural language words [240]. This mix of code and natural language

leads to an uncommon syntax and many out-of-vocabulary tokens, two challenging aspects of

natural language processing. Thus, the impact of the peculiar format of software resources

on wikification is hard to reliably estimate, which motivates a domain-specific evaluation of

the available wikifiers.

Typically, to evaluate wikification results, it is not sufficient to identify a set of related

Wikipedia articles. Wikifiers must also associate these articles to the correct mention. For

example, in Figure 3.2, a wikifier must associate the article System with the mention system,

and not other terms such as intercommunicating. However, Scode requires a variant of

the wikification task that focuses only on the identification of a set of related articles, and

disregards the mentions themselves. Thus, we consider the outcome of wikifiers as a set of

articles (e.g., System software, System, and so on), rather than a list of mention–article

pairs (e.g., <system, System>, <components, Software component>, and so on). Meij

et al. originally described this variant of wikification [137], and Cornolti et al. named it C2W,

for Concepts to Wikipedia [53].

We focus on C2W because it maps more naturally to potential applications in software

engineering. Once the wikifier identifies relevant articles, the exact mentions are not useful to

understand the concepts related to the software-related document. Therefore, these mentions

should not affect the study’s results. Nevertheless, when discussing the results of wikifiers,

we occasionally refer to the mention associated with an article, when the context requires it

(e.g., to interpret a result).

3.2 Comparison Protocol for Wikifiers

The preparation for the comparison of state-of-the-art wikification techniques required the

selection and preprocessing of a sample of Stack Overflow posts, as well as the selection of

the wikifiers to compare, and which of their parameters to experiment with.

3.2.1 Types of Software Resources

Software-related resources can take many forms, such as source files, code comments, various

forms of developer communications (e.g., emails, bug reports, forum posts), and technical

or end-user documentation. These forms differ widely in many aspects, such as the level of

31

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

explicit structure in the document, the formality and quality of the language, and the ratio

of natural language to code.

At one end of the spectrum, well-written and highly edited software resources aimed at a

general audience (e.g., end-user manuals) are similar to the general-domain documents, such

as news articles, used to develop and train wikification techniques. Thus, we can expect the

performance of wikifiers on these documents to be similar to the performance reported for

general-domain documents.

At the other end of the spectrum, software resources composed entirely of source code are

clearly outside the intended scope of wikifiers, which take natural language as input. Hence,

although the wikifiers may identify a few relevant concepts from identifiers in code artifacts,

source code does not constitute an appropriate input for evaluation. The results would reflect

the effectiveness of the preprocessing steps (e.g., identifier tokenization, aggregation into

sentences) rather than the performance of wikifiers.

As a middle ground, the evaluation set consists of Stack Overflow posts, which are mainly

written in natural language, but also contain code fragments. Some of the posts are long

and well-structured documents, edited many times by the community to improve the quality

of the language and add thorough descriptions of related concepts. These posts are similar

to smaller versions of technical documentation and end-user manuals. At the other end of

the spectrum, some posts are closer to fragments of informal discussions, with short replies

and grammatically incorrect sentences. Posts also vary in their natural language-to-code

ratio, from some that contain only text to others with only code, including posts with code

formatted as natural language. In terms of information content, Stack Overflow covers

virtually all computing domains. Finally, software engineering research often leverage Stack

Overflow as a source of knowledge [21, 175, 215], which makes the results of this study directly

applicable to techniques that use Stack Overflow posts as input data.

3.2.2 Sample Selection

Our evaluation set contains 500 Stack Overflow posts from the September 2019 Stack Exchange

archive.9 This set is a uniform random sample from all 44 016 828 posts (questions and answers

alike) with a nonnegative score,10 considering only the most recent version of each post. We

9https://archive.org/details/stackexchange
10The score of a Stack Overflow post is visible next to the post on Stack Overflow, and represents the

number of “upvotes” minus the number of “downvotes” attributed by Stack Overflow users based on the
usefulness and quality of the post.

32

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Table 3.1: Properties of the 500 Selected Stack Overflow Posts

Property Value

Type of post 186 questions, 105 accepted answers, 209 non accepted answers
Score min: 0 Q1: 0 Q2: 1 Q3: 2 max: 96 avg: 2.5
Words min: 0 Q1: 29 Q2: 54 Q3: 102 max: 459 avg: 72.9
Creation year 08-09: 21 10-11: 74 12-13: 95 14-15: 118 16-17: 112 18-19: 80
Edit (days) min: 0 Q1: 0 Q2: 0 Q3: 0 max: 3282 avg: 108

min = minimum value; Qn = n-th quartile; max = maximum value; avg = average;
Edit = number of full days between the creation of the post and its last editing

chose to discard posts with negative scores (3.9% of the population) to avoid the bias from

documents explicitly flagged as problematic.

Typically, in quantitative research, the sample size ensures that statistics computed on the

sample generalize to the population within a known error margin, at a predefined confidence

level. This was not possible in our study, because the statistics used to compare wikifiers

(precision and recall) measure proportions of Wikipedia articles, generated by wikifiers,

rather than posts.11 Because the articles are neither independent nor randomly generated,

they do not meet the necessary assumptions for statistical generalization. This situation is

not uncommon when evaluating wikification approaches. Prior work often reuses standard

annotated corpora, which are not random at all, but instead allow for direct comparison of

different approaches (e.g., [31, 149]). We discuss the implications of the sampling procedure

and the results of a sensitivity analysis with the threats to validity (Section 3.3.6).

Nevertheless, we designed our sample to be representative of the population, in the sense

that insights gained from this sample should apply to the whole population. With this regard,

despite its small size relative to the population, the sample is sufficiently large to contain a

non trivial number of posts related to the popular topics discussed on Stack Overflow, as well

as posts that exhibit common characteristics, such as long and short posts, posts with and

without code fragments, and posts that are more or less well written and formatted. Hence,

the sample size of 500 posts gives us reasonable confidence that our findings do not merely

reflect spurious relations.

Table 3.1 shows summary statistics for the 500 posts in the sample: the first row indicates

the number of questions and answers, the second and third rows, the distribution of score

and number of words (excluding code blocks) per post, and the fourth and fifth rows, the

11One alternative is to aggregate each statistic per post first, then average them over all posts. However,
this alternative gives more weight to small posts with few related articles, which would be detrimental to the
interpretation and generalizability of the results.

33

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

year in which the post was created, and the last time it was edited, in days, relative to its

creation date. Each type of post amounts to a non trivial proportion of the dataset. Almost

half (42.8%) of the posts have a score of 0. Posts contain an average of 72.9 words, with six

of them having no word (i.e., they contain only a code fragment). The sample contains posts

reasonably distributed among the years, although the early years of the forum unsurprisingly

contain fewer posts. Finally, a majority of posts (86.6%) were not further edited past one

day after their creation, with one notable outlier edited almost nine years after its creation.

Overall, these statistics show that the sample consists of posts that vary in length (from a

few words to multiple paragraphs) and time (they do not only reflect a specific period). Most,

but not all, posts are not heavily edited or highly scored, as would be, for example, popular

blog posts.

3.2.3 Preprocessing of Posts

The Stack Overflow archive stores the post bodies as HTML-formatted documents. Although

some wikifiers can take as input HTML documents, not all of them can. To perform an

equivalent comparison, we used the jsoup12 library, version 1.11.2, to convert the HTML

posts to plain text, and provided this text as input to all wikifiers.

Because wikifiers take natural language as input, not code, we removed code blocks

(identified by HTML pre tags) from the post bodies, but kept inline code fragments (identified

by HTML code tags without pre tags). The rationale behind this decision was to avoid

breaking up sentences, and because users do not consistently format inline code fragments

as such: some users use the “inline code” format option for terms other than code, such

as names of technologies, whereas others do not use this formatting option at all, even for

legitimate code fragments.

We excluded all other information, such as comments or edit messages, from the input.

In particular, we did not include question titles, to avoid inconsistencies between questions

and answers, and because most question bodies are self-contained.

3.2.4 Selection Procedure for Wikifiers

For this study, wikifiers must be able to generate a list of Wikipedia articles about concepts

mentioned in an input Stack Overflow post. Prior work has proposed a large number of wiki-

12https://jsoup.org/

34

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

fication techniques, but only a small subset of these techniques come with an implementation

that can wikify custom texts. We used the following criteria to select wikifiers:

1. The wikifier must be usable immediately, without an intervention from the user (other

than installing the necessary software and possibly writing short driver code). In

particular, the wikifier must not require the user to provide their own training set.

2. The wikifier must identify Wikipedia articles from an input consisting of plain text. If

the wikifier links concepts to another knowledge base, it must be possible to associate

(most) entries of this knowledge base with Wikipedia articles in a straightforward

manner.

3. The wikifier must be freely available (for non-commercial use), either as a web service,

packaged executable, or source code. For web services, requests can be limited to a

reasonable rate.

4. The wikifier must provide an interface that allows it to be programmatically integrated

as a component of a larger software system. In particular, the wikifier must not be a

tool for demonstration only or a replication package for a specific experiment. The

interface must be sufficiently well documented to be usable with reasonable effort.

5. The wikifier must not be deprecated by a more recent wikifier developed by the same

group.

3.2.5 Selection Procedure for Configuration Parameters

Each wikifier has a number of configuration parameters, used to tune their performance. Not

all parameters, however, should be tuned by the end users: for example, some hyperparameters

affect the training phase of the wikifier, and other parameters have their values optimized

during the training phase. For each wikifier, we carefully examined each of their parameters

to understand whether the parameter would likely be tuned by an end user, or be fixed to an

appropriate default value.

All wikifiers have at least one parameter that roughly estimates the confidence that an

article is mentioned in the post, and is expressed as a number in the unit interval. Although

this parameter has different names in different wikifier implementations, for consistency,

we refer to it as the confidence threshold, except when referring to a specific wikifier. The

confidence threshold is the main parameter that end users employ to tune the wikifier

performance, and our comparative analysis focuses primarily on variations of this parameter.

35

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Table 3.2: Wikifiers Compared in this Study

Wikifier Knowledge Base Confidence Additional Parameter

Ambiverse YAGO confidence NER: knowner/stanford
Babelfy BabelNet score MCS: on/off
DBpedia DBpedia confidence support
Illinois Wikipedia score –
JSI Wikipedia 1-pageRankSqThreshold pageRank
WAT Wikipedia/Wikidata rho tokenizer: opennlp/lucene

Some wikifiers also have a secondary numeric parameter that allows to filter results based

on a numerical property different from the confidence threshold. Other wikifiers have a binary

option to select which of two components to use to perform one of the wikification subtask,

or to enable or disable an optional algorithm. We studied the impact of these parameters on

the wikifiers performance as well.

Finally, some of the configuration parameters that must be tuned by the end user relate

to concrete and objective properties of the wikification task, such as the input language (e.g.,

English). Such parameters also include options to disable key components of the approach,

to perform ablation studies on the wikifier. For those parameters, we selected the most

appropriate value based on the sample of posts: we did not disable any key component, and

we selected values that fit the properties of Stack Overflow posts (e.g., they are written in

English).

We relied on the wikifier’s documentation and preliminary experimentation to distinguish

between parameters that should be tuned, parameters that should receive a fixed, appropriate

value, and training hyperparameters or parameters that should keep their trained value.

3.2.6 Selected Wikifiers

We identified six tools that respect the criteria presented in Section 3.2.4. Each tool can

be used on a computer with 16 Gb of memory and 400 Gb of storage. Table 3.2 shows, for

each wikifier, the knowledge base it resolves mentions to and the names of the confidence

threshold and additional tuning parameters studied. The following paragraphs describe each

wikifier and their parameters in more details. The versions of both the wikifiers and their

corresponding knowledge base is given when it is available. We also relate the performance

measures reported in the original articles that present each wikifier.

36

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

AmbiverseNLU13 (Ambiverse) is an open source natural language understanding Java

suite that resolves entities to the YAGO knowledge base [184]. It can be added as a Maven

dependency to Java projects, or run from a Docker container. Its entity recognition component,

KnowNER [194], uses several knowledge base derived features in a linear chain conditional

random field (CRF) model to improve the state of the art. Its disambiguation component,

AIDA [92], uses a linear combination of a prior probability based on popularity, a similarity

score, and a coherence metric. In this study, we used the Maven artifact, version 1.1.0,

with the database dump version aida_20180120_cs_de_en_es_ru_zh_v18. It is the most

resource-consuming wikifier, requiring 16 Gb of memory to parse English texts and a little

under 400 Gb to import the YAGO database. The performance of AIDA and KnowNER were

evaluated separately. Hoffart et al. reported a precision of 82% at the 100% recall level for

AIDA [92], and Seyler et al. reported F1 scores between 88% and 91% for KnowNER [194].

The confidence threshold of Ambiverse is named confidence. Ambiverse also has a

secondary numeric parameter, salience, which indicates the relevance of the named entity to

the document. However, because the salience is always 0 on non-named entities (i.e., concepts

such as Computer and Debugging), which constitute most of the mentions, we did not

consider it. Ambiverse also has a binary option: it allows users to use an alternative NER

component (stanford), instead of KnowNER (knowner).

Babelfy14 is an online wikifier with a REST API that resolves entities to BabelNet, which

also offers a REST API [149, 165]. To wikify a document, Babelfy first identifies a large set

of candidate entities for each (possibly overlapping) mention using string matching heuristics,

then leverages a densest subgraph algorithm to filter among the entities, so that the entities

retained form a coherent set. Both Babelfy and BabelNet APIs share a daily quota of 1000

daily requests by default (after registration). This project also has a commercial counterpart,

Babelscape. For this study, we used the non-commercial service. The version of the Babelfy

REST API is not available, but the website states that it uses version 3.0 of BabelNet. Moro

et al. reported an accuracy between 72% and 82% for Babelfy on the entity linking task,15

and an F1 score of 87% for the disambiguation task only [149].

The confidence threshold of Babelfy is simply named score. Babelfy also offers the binary

option to activate a fallback strategy, termed “most common sense” (MCS). When this option

is enabled, if the main disambiguation algorithm fails to identify a Wikipedia article for a

13https://github.com/ambiverse-nlu/ambiverse-nlu
14http://babelfy.org/
15They do not provide an explicit definition for accuracy.

37

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

mention, it uses its most common sense (i.e., the article with the highest prior probability).

All articles linked with the MCS strategy have a confidence value of 0.

DBpedia Spotlight16 (DBpedia) [58, 140] is an online wikifier that resolves entities to

DBpedia [114]. DBpedia Spotlight also identifies candidates using simple string heuristics,

then disambiguates between the candidates with a vector space model to represent knowledge

base entities. The wikifier uses a custom measure derived from tf-idf, called tf-icf (for

“inverse candidate frequency”) and the cosine similarity metric to weigh and compare vectors.

DBpedia Spotlight’s REST API does not impose any rate limit, but during our study, the

server was unstable and would often return HTTP 502 or 503 errors for valid requests. The

website does not mention the version of the wikifier, nor the backing knowledge base. Mendes

et al. reported a precision-recall plot of DBpedia, where precision varies between 40% and

82% for recall values between 12% and 61%, with a maximal F1 score of 56% [140].

Similar to Ambiverse, DBpedia’s confidence threshold is named confidence. However,

contrary to all other wikifiers, DBpedia’s confidence score must be set a priori. We used values

between 0 and 1, with 0.1 increment (i.e., 0, 0.1, 0.2, ..., 0.9, 1.0) to sample the parameter

space. DBpedia returns a secondary numeric parameter, support, which is a positive integer

that is a property of the entity (i.e., independent of the associated mention or input text).

Illinois Wikifier17 (Illinois) is an open source Java wikifier that resolves entities to

Wikipedia [48, 182]. To disambiguate mentions to articles, Illinois includes several local

and global features into a linear combination. Local features, which are defined between a

mention and a Wikipedia article, use the cosine similarity on tf-idf vectors of the mention

and the article. Global features use the pointwise mutual information (PMI) and normalized

Google distance (NGD) metrics on the Wikipedia link graph between all pairs of entities.

Finally, Illinois improves the results by using semantic relations, extracted from the input text,

between entities. Due to many dependencies to outdated maven artifacts, we experienced

some difficulty in importing the wikifier into our project. To solve our issues, we downloaded

a compiled distribution, version 3.0, that includes all dependencies. Cheng and Roth reported

F1 scores between 81% and 93% on four datasets for Illinois [48].

Similar to Babelfy, Illinois’ confidence threshold is named score. Illinois also offers several

predefined configurations, of which STAND_ALONE_NO_INFERENCE was the most

16https://www.dbpedia-spotlight.org/
17https://cogcomp.seas.upenn.edu/page/software_view/Wikifier

38

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

appropriate for custom text (the “with inference” configuration requires the commercial

Gurobi Optimizer software).

JSI Wikifier18 (JSI) is an online wikifier with a REST API that resolves entities to

Wikipedia [31]. At its core, JSI uses an augmented mention–entity graph of Wikipedia: first,

JSI constructs the bipartite graph with anchor text (mentions) on one side, and articles

(entities) on the other, and edges linking each anchor text to the article they point to. Then,

it augments this graph with edges between articles that are similar, according to a similarity

metric based on internal links. JSI computes pagerank values [168] on the nodes of this graph,

and returns the set of articles with the highest pagerank values. JSI’s REST API requires

registration, but does not impose any rate limit. It does not provide version information on

either the software or backing knowledge base. Brank et al. reported an F1 score of 59% for

JSI [31].

Instead of using an absolute pagerank value as its confidence threshold, JSI computes

the threshold as a proportion of the sum of the squares of all pagerank values. Thus, the

user-defined proportion constitutes the confidence threshold (named pageRankSqThreshold).

Because a lower proportion leads to a lower recall, for this study, the confidence threshold is

actually 1 - pageRankSqThreshold. JSI also returns pageRank values with the results, so we

considered them as a secondary numeric parameter.

WAT19 is an online wikifier with a REST API that resolves entities to Wikipedia and

Wikidata [173]. WAT is the successor of another wikifier, TagME [71]. To identify mentions

and candidates, WAT trained a binary classifier with features from Wikipedia articles, such

as redirect titles and anchor text of internal links. To disambiguate between candidates, WAT

leverages two algorithms. The “voting” algorithm developed for TagME computes the sum of

a relatedness measure between pairs of extracted entities, weighted by a priori probabilities.

The other algorithm is based on a mention–entity graph similar to that of JSI, but computed

only over mentions and entities extracted in the first step. Similar to JSI, WAT imposes

no rate limit, but requires registration. It also does not provide any version information.

Piccinno and Ferragina reported precision and recall values respectively between 46% and

49%, and between 51% and 59%, for different configurations of WAT [173].

WAT’s confidence threshold is named ρ (rho). The only other parameter (apart from the

input language) is the tokenizer to use: opennlp or lucene.

18https://wikifier.org/
19https://services.d4science.org/web/tagme/wat-ap

39

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Java programs are compiled before being executed.

Java (programming language)
Computer program

Execution (computing)

Titles in round boxes indicate the expected Wikipedia article that wikifiers should identify.20 Exact mentions
(in bold and underlined) are shown for better understandability, but are not evaluated.

Figure 3.3: Sample Sentence with a Gold Standard Wikification

A notable tool missing from this list is Milne and Witten’s Wikipedia Miner [145, 146].

This is one of the first available wikifiers, and it has served as a baseline for the evaluation of

many other wikifiers. However, the web service is no longer operational, and we could not

find the source code with pre-trained models.

3.2.7 Data Annotation

The evaluation of wikifiers consisted of executing all of them on the posts from the dataset,

collecting all generated pairs of articles and posts, and manually annotating each pair as

correct or incorrect. This procedure generated a reference set to assess the precision and

recall of each wikifier.

The usual method to evaluate a wikifier is to compare its output with a gold standard

(e.g., [31, 149]), which allows to automatically discriminate false positives (FP) from true pos-

itives (TP) and list all false negatives (FN). Figure 3.3 shows a sentence with a corresponding

gold standard.20 Three articles are expected to be found by the wikifiers. If a wikifier outputs

the two articles Java (programming language) (correct) and Compilation (album)

(incorrect), there would be one true positive, one false positive, and two false negatives.

From these counts, it is possible to compute the precision and recall.21 The wikifier in the

previous example would have a precision of 0.5 (i.e., 1/2) and a recall of 0.3 (i.e., 1/3). F1

scores22 are also commonly reported for wikifier evaluations, as a single objective function

that balances precision and recall. However, in the context of our study, a single arbitrary

20At the time of writing, Wikipedia did not have an article specifically on source code compilation, but
only an article about Compiler. For this study, we considered the distinction between the two concepts (a
process and tools to perform it) significant enough to reject the article Compiler for the mention compiled.

21precision = T P

T P +F P
; recall = T P

T P +F N

22F1 score is the unweighted harmonic mean of precision and recall, or 2×precision×recall
precision+recall

40

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

objective function would only hide the more precise information captured by precision and

recall, so we chose to present the latter metrics separately.

With such a method of evaluation, the most effort-intensive and critical task is to generate

the gold standard. Creating a high quality evaluation dataset is hard, especially when such

concepts are not named entities, as humans do not always agree on the concepts that should

be linked. Because of this difficulty, wikifiers are commonly evaluated against standard golden

datasets, such as AIDA-CoNLL, which consists of 1393 news articles manually annotated by

Hoffart et al. [92].23 For example, Brank et al. [31] used this dataset as a gold standard, and

Moro et al. [149] used six different gold standards, including AIDA-CoNLL.

None of these available gold standards are specific to software engineering, and in particular,

none of them uses Stack Overflow posts. To mitigate the cost of creating a new, high quality

evaluation dataset, we used a slightly different approach. We generated a reference set, rather

than a gold standard, to compare the relative, rather than absolute, performance of wikifiers.

We executed all wikifiers on each post, with parameters that maximize recall. We then

manually annotated each association between an article and a post as correct or incorrect

(without knowing which wikifier produced which associations).24 The reference set generated

with this procedure is sufficient to discriminate false positives from true positives, and have a

consistent list of false negatives across all wikifiers.

The precision values computed with this procedure are equivalent to those that would be

derived from a gold standard. However, recall values are only relative to all true positives

found by any of the six wikifiers, instead of all theoretically possible true positives. Thus, the

ratios of recall values between wikifiers is consistent with the ratios that would be derived

from a gold standard, but their absolute magnitudes are not.

Using this procedure, it is possible to accept multiple articles for the same mention, which

would not be possible with a gold standard. For example, for the sentence “Paypal is a

payment system.”, standard datasets would associate the mention payment system with either

Payment system or E-commerce payment system. But, using our reference set, both

of them are correct associations.

23The AIDA-CoNLL dataset only links proper nouns (i.e., named entities), but other datasets exist for
both named entities and concepts.

24The term “annotate”, in the wikification community, often refers to the wikification process itself, or a
variant. In this article, we use “annotate” (and its derivatives) only when referring to the manual annotation
of human experts to assess the correctness of an article–post pair.

41

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

3.2.8 Annotation Task

The annotation task consisted of answering, for each article–post pair, the single question

Is the concept represented by the Wikipedia article related to computing and

explicitly mentioned in the Stack Overflow post?

The above question is the result of an iterative process over a pilot set to mitigate the

subjectivity of the task as much as possible, so that the results would be objective and lead

to an unambiguous interpretation. It requires two conditions for an article–post pair to be

correct (i.e., for a positive answer to the question): the article must be explicitly mentioned

in the post, and it must be related to computing. The following paragraphs discuss in details

why we needed to include these conditions.

Condition 1 (Explicit Mention). Some concepts do not have an associated Wikipedia

article. For example, there is no article dedicated to the HTTP GET method (it is described

in a section of Hypertext Transfer Protocol). When concepts with no Wikipedia

article appear in a document, wikifiers sometimes link the mention to a related article

(e.g., linking GET to Hypertext Transfer Protocol). However, for the annotation

task, we require that related articles (including articles about hypernyms and holonyms)

be marked as “incorrect”. Only articles about concepts that are actually mentioned in the

post can be “correct”. This condition is necessary to avoid an ambiguous or subjective

definition of relatedness threshold, and favors wikifiers that link specific mentions (e.g., Java)

to specific articles (e.g., Java (programming language)) instead of general ones (e.g.,

Programming language).

Condition 2 (Related to Computing). The pilot annotation task revealed that wikifiers

often correctly identify mentions that are nonetheless irrelevant to the context, such as phatic

expressions (e.g., Thanks), figures of speech (e.g., idioms and metaphors), common functional

phrases (e.g., There exists), and terms related to the Q&A nature of Stack Overflow (e.g.,

question and answer). Typical wikification guidelines, such as those from the Wikipedia

Manual of Style on linking,25 suggest to only link relevant mentions, and avoid “everyday

words understood by most readers in context” [231]. However, relevance is often subjective.

To avoid this subjectivity, an article is considered relevant if and only if it is related to

25https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking

42

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

computing.26 Consequently, we reject genuinely relevant but non-computing articles, such

as Azimuth in a post about astronomy-related libraries,27 but such articles are rare in a

computing-related forum.28

To help annotators, we designed an extensive annotation guide that discusses corner

cases (e.g., different parts of speech, synonyms, and antonyms) and what exactly is related to

computing. Elements of this guide are motivated in part by the structure and conventions of

Wikipedia, and in part by the lessons learned during the pilot annotation task. The guide

also contains a curated list of five Stack Overflow posts from the pilot set, with all associated

concepts annotated jointly by the authors, to serve as an example for annotators. This

annotation guide is available in our online appendix, and replicated in Appendix A.1.

3.2.9 Annotators

Despite the extensive annotation guide, the annotation task still required a considerable effort

from the annotators. The difficulty of the annotation task arises from quality issues from the

Stack Overflow posts,29 as well as potentially misleading Wikipedia titles.30

These difficulties related to the annotation task result in a steep learning curve for the

annotators, and an increased threat of quality degradation that would be hard to detect if a

careless external annotator wishes to finish the task too quickly. Consequently, we could not

efficiently distribute the annotation task to many external annotators, and the two authors

annotated all pairs. After the initial learning curve, the authors were able to annotate roughly

1000 pairs per hour.

26We express our criterion in terms of computing-related articles, rather than only those specific to software
engineering, because the precise boundary of software engineering is less well defined than that of computing,
especially among Wikipedia articles.

27https://stackoverflow.com/questions/2348415
28There are concepts that can conceivably be related to computing in some contexts, but part of a general

body of knowledge in others. Blog is such a concept: We consider that, when referring to a specific post, the
concept is not a technical term, but when discussing the creation of a blogging platform, this term becomes
related to computing.

29In addition to making grammatical errors, post authors often use natural language shortcuts such as
abbreviations, acronyms, omissions, and ambiguous terms, which require additional effort from annotators to
resolve. The misuse of formatting options, such as formatting code blocks as inline code, also makes posts
harder to understand. For example, the scope keyword “until successful” can easily be misread as a preposition
and an adjective if it is not formatted as inline code (https://stackoverflow.com/questions/41998618).

30Annotators cannot assume the topic of a Wikipedia article only by its title. For example, the article
Java does not describe the programming language, but the Indonesian island. Also, although most titles
that consist only of three capital letters lead to disambiguation pages, the article URL does not. Redirect
titles further add to the possible disconnect between titles and article content. Thus, annotators must make
the effort to scan the article to verify what it actually describes.

43

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Table 3.3: Agreement Between Annotators Using Cohen’s κ Statistic

Author A Author B External 1 External 2

Author A — 0.83 (940) 0.72 (1007) 0.74 (1007)
Author B 0.83 (940) — 0.60 (569) 0.64 (569)
External 1 0.72 (1007) 0.60 (569) — 0.67 (1576)
External 2 0.74 (1007) 0.64 (569) 0.67 (1576) —

The number of common article–post pairs are shown in parentheses.

Investigator bias, common in situations where the investigators perform the annotation,

is minimal in this study, because it is an independent evaluation of already existing tools.

Nevertheless, we took great care to mitigate even the threat of this bias as much as possible.

Annotators were not able to discern which concept was produced by which wikifier, preventing

unintentional biases. Furthermore, the set of pairs to annotate was split into two mostly

disjoint sets, for efficiency reasons, but both annotators annotated a common, unmarked set,

to estimate their agreement on the complete set. Finally, we hired two additional annotators,

external to our research group, to re-annotate a subset of pairs, to better understand the

difficulty and subjectivity of the task, and further control any biases that could arise. Table 3.3

shows the agreement between each annotator, using Cohen’s κ statistic [52]. The agreement

between external coders and the authors are between 0.60 and 0.74, which Landis and Koch

consider “substantial” [112], and the agreement between both authors, who annotated the

complete dataset, is “almost perfect” (0.83).

Following the computation of the agreement scores, the authors jointly resolved all

conflicts in the overlapping sets by discussing each conflicting pair and deciding on the correct

annotation.

3.2.10 Annotation Sets

The wikification of all 500 posts produced 41 124 article–post pairs to annotate. We performed

the annotation in two phases. In the initial phase, we annotated the pairs from 385 posts.

To gain additional confidence in the reliability of our results, we then conducted a second

annotation phase, in which we annotated the pairs from the remaining 115 posts. These two

phases allowed us to assess the generalizability of our conclusions by observing the variation

in the performance of wikifiers when augmenting the sample by 29.9%. Indeed, we observed

very little variation (less than 2 percentage points of precision and recall).

44

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Dev

Author B (183 + 56)Author A (183 + 57)

A BC

D E

2 External annotators (20)

All Authors (25)
Empty No annotator (6)

F G
The letters identify each
partition, and the total
number of posts for each
annotation set is shown in
parentheses.

Figure 3.4: Annotation Sets with their Respective Annotator(s)

Pairs formed four (non disjoint) sets: one development set, two main sets, and one external

validation set.

To improve the efficiency of the annotation task, all pairs from the same post are put in

the same set, so that each annotator has fewer posts to read. Therefore, in the following, we

describe annotation sets by referring to the Stack Overflow posts they contain, rather than

the article–post pairs. Figure 3.4 summarizes these sets.

Six of the 500 posts (four from the first phase and two from the second phase) happened

to contain only a code block, which is removed at the preprocessing stage. Thus, these six

posts produced no article for any wikifier, and were naturally not considered when creating

the annotation sets.

Of the remaining 494 posts, 25 constituted the development (dev) set, used for the iterative

pilot. Both authors annotated this set to refine the annotation task and guide. In contrast

to many other evaluations, where development sets are discarded from the final results, the

results include the final annotations of this set, as they constitute valid information that

does not threaten the validity of the results. In fact, these annotations are possibly of higher

quality due to the many iterations to reach a consensus.

The empty and development sets are disjoint from the other sets. We split the remaining

471 posts into seven partitions: two large partitions of 163 posts each (A and B), three small

partitions of 10 posts each (C, D, and E), and two additional partitions of 57 and 56 posts for

the second phase (F and G). Author A annotated the first main set, consisting of partitions

A, C, and D in the first phase, and partition F in the second phase. Author B annotated the

second main set, consisting of partitions B, C, and E in the first phase, and partition G in

45

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

the second phase. Each external annotator annotated the same validation set, consisting of

partitions D and E. We designed this strategy so that the overlap between any two annotators

consists of all pairs from at least ten distinct posts, to compute the inter-rater agreement

scores shown in Table 3.3.

3.3 Wikifiers Comparison Results

Of all 500 posts, 41 (8.2%) did not link to any correct article, and the two posts with the

most links have 37 and 28 linked articles31 (average: 6.1, median: 5). We present the results

relating to RQ 3.1 in Section 3.3.1, RQ 3.2 in Section 3.3.2, and RQ 3.3 in Section 3.3.3.

A considerable artifact of this study is the outcome of the annotation task, a manually

verified list of 1098 computing-related Wikipedia titles, and 10 854 negative examples.32

Section 3.3.4 explores possible ways to use this list to further improve the performance of

wikifiers.

3.3.1 Wikifiers Performance

This section describes how wikifiers compare to each other, with the explicit objective of

helping software engineering researchers select a wikifier that best suits their need. For this

comparison, only the confidence threshold of each wikifier varies. Additional parameters are

set to optimal values, described in Section 3.3.2. To compare wikifiers, we use the precision

and relative recall metrics (see Section 3.2), which have an intuitive interpretation and are

not affected by true negatives, irrelevant in the context of wikification.

Figure 3.5 compares the performance of all six wikifiers, in terms of precision and recall,

for all confidence thresholds between 0 and 1. Each marker indicates an increment of 0.1 of

the confidence. In the case of Babelfy, no confidence score was below 0.7, which explains why

only four markers appear on the plot. The performance of all six wikifiers shows the difficulty

of wikifying software resources, with precision levels hardly reaching 70% even for low relative

recall values (10%), and rapidly decreasing under 50% for higher recall values. Interestingly,

no single wikifier completely outperforms another: each one achieves the highest precision for

a portion of the recall range. Therefore, before choosing a wikifier, it is important to decide

on the acceptable precision or recall values for the specific application, as the optimal wikifier

(and confidence threshold) depends on this decision.

31https://stackoverflow.com/questions/55893389 and https://stackoverflow.com/questions/21646135
32The number of distinct articles is slightly less than 1098 and 10 854, respectively, because some titles are

actually redirect pages to other articles.

46

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

●●
●

●
●

●●●●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6

recall

p
re

c
is

io
n

wikifier

● ambiverse

babelfy

dbpedia

illinois

jsi

wat

Figure 3.5: Precision-Recall curves of all six wikifiers. Markers indicate each 0.1 increment
of the confidence threshold (some markers overlap). For DBpedia, a linear interpolation
estimates precision and recall values for confidence values that are not exact multiple of 0.1.

Another interesting observation is the difference in the precision and recall ranges. Varia-

tions in the confidence threshold of some wikifiers, such as DBpedia and JSI, will greatly

affect the recall, with the expected degradation in precision as recall increases, whereas other

wikifiers, such as Babelfy and Illinois, have a much lower degradation in precision, but cannot

achieve the same recall. The former wikifiers can be used in more varied contexts, but the

latter wikifiers perform more consistently.

Finally, some wikifiers, including Illinois and JSI, exhibit a decline in precision for the

highest confidence values. This counterintuitive drop in precision is possibly due to these

wikifiers typically giving higher confidence values only to concepts from popular domains, due

to their high prior probability. For example, two of the articles associated with the highest

confidence values by JSI are Worldwide Exchange (about a television business news

program) and Midfielder (a position of football/soccer). Such concepts are more likely to

appear in news articles targeted to a general audience, which are used to train wikifiers, than

47

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Table 3.4: Comparison of the Precision of Each Wikifier for Selected Recall Values

Ambiverse Babelfy DBpedia* Illinois JSI WAT
Rec. CT Pr. CT Pr. CT Pr. CT Pr. CT Pr. CT Pr.

5 – – – – 0.98 82 – – 0.56 47 0.78 76
10 – – – – 0.87 65 – – 0.44 46 0.36 59
15 0.94 38 – – 0.59 56 0.52 61 0.37 46 – –
20 0.79 36 0.99 48 0.45 46 0.41 42 0.30 42 – –
25 0.66 36 0.93 46 0.39 39 0.13 41 0.26 40 – –
30 0.54 36 0.85 44 0.36 32 – – 0.22 39 – –
35 0.42 34 0.75 41 0.33 25 – – 0.18 36 – –
40 0.32 33 – – 0.31 18 – – 0.15 33 – –
45 0.20 31 – – – – – – 0.12 30 – –
50 – – – – – – – – 0.08 26 – –
55 – – – – – – – – 0.05 22 – –
60 – – – – – – – – 0.00 13 – –

For each recall level (Rec.), the corresponding confidence threshold (CT) and precision (Pr.) are
shown. Dashes (–) indicate that the wikifier did not achieve such recall. DBpedia values (marked
by an asterisk *) are linear interpolations. For each recall, the best precision among all wikifiers is
shown in bold. All precision and recall values are percentages.

computing concepts, so they are more likely to receive favorable biases during the training

phase of wikifiers.

Table 3.4 shows the value of the confidence threshold needed to achieve different recall

values (from 5% to 60%, in steps of 5%), with the associated precision. The highest precision

in each row is indicated in bold. For example, a user who wants to wikify Stack Overflow

posts with 25% recall should use Babelfy with a confidence of 0.93, and expect a precision

around 46%. Conversely, if the user requires a precision of at least 60%, they should choose

Illinois, with a confidence around 0.52, and expect a recall around 15%.

Findings: All wikifiers have a precision under 50% for relative recall values over 20%.

These values greatly differ from the performance reported in the original articles that

describe each wikifier. These differences are possibly due to the peculiarities of software

documents, such as the presence of polysemous terms with domain-specific definitions,

of technologies named after common terms, and of mentions of code elements within

paragraphs. For different recall values, all wikifiers in turn achieves the highest precision,

which means that no wikifier is irrelevant.

48

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

3.3.2 Effect of Additional Parameters

The previous section compares all wikifiers, varying only the confidence threshold. Additional

parameters allow to further fine-tune the wikifiers, but, as the result will show, at least in

the context of Stack Overflow posts, there is generally little incentive to modify the default

parameter values.

Secondary Numeric Parameters (DBpedia/support and JSI/pageRank). Both

DBpedia and JSI have a secondary numeric parameter, respectively support and pageRank,

that can further influence the balance between precision and recall. To visualize the effect of

these parameters, Figure 3.6 shows their effect, combined with the confidence threshold, on

precision and recall. When the wikifier did not return any Wikipedia article for all Stack

Overflow posts, we defined the precision (typically undefined) to be 0. The axes range from

the lowest to the highest value that impacts the results.

In the case of DBpedia (Figures 3.6a and 3.6b), we observe that applying a minimum

support threshold has little impact on the precision, but gradually reduces the recall. Around

a minimum support value of 10 000, the precision slightly increases, but at the cost of near-zero

recall. Similarly, for the highest confidence level, increasing the support threshold slightly

increases the precision, which reaches almost 100%, but again leads to a very low recall.

A possible explanation for the ineffectiveness of support to increase precision is that the

distribution of the support values of computing-specific articles, which are the focus of this

study, is too similar to the distribution of more general domain articles to be an effective

discriminating factor.

The case of JSI differs. Below 0.001, the minimum pageRank threshold barely affects the

precision and recall. However, between 0.1 and 0.001, increasing the pageRank threshold

leads to the expected increase in precision, with a corresponding decrease in recall. This

suggests that some combination of minimal pageRank and pageRankSqThreshold could allow

JSI to achieve precision levels similar to the other tools, without entirely sacrificing recall.

Figure 3.7 gives a different view of these phenomena by showing the effect of the secondary

parameters on the precision-recall curves from Figure 3.5. To keep the graphs readable, only

the most interesting portion of the secondary parameter range is shown, rather than the

same range as in Figure 3.6.

DBpedia’s curves strengthen the interpretation from the heatmaps. Increasing the

minimum support brings the curve more to the left (i.e., decreases the recall), without

considerably lifting it up (i.e., increasing precision). In the case of JSI, increasing the

49

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

10

100

1000

10000

1e+05

0.0 0.5 1.0

confidence

s
u
p
p
o
rt

0.00

0.25

0.50

0.75

1.00
precision

(a) DBpedia, Precision

10

100

1000

10000

1e+05

0.0 0.5 1.0

confidence

s
u
p
p
o
rt

0.0

0.1

0.2

0.3

0.4

recall

(b) DBpedia, Recall

0.1

0.001

1e−05

1e−07

0 0.5 1

sqthreshold

p
a
g
e
ra

n
k

0.00

0.25

0.50

0.75

1.00
precision

(c) JSI, Precision

0.1

0.001

1e−05

1e−07

0 0.5 1

sqthreshold

p
a
g
e
ra

n
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6
recall

(d) JSI, Recall

Figure 3.6: Impact of the Main and Secondary Numeric Parameters on the Precision and
Recall of DBpedia and JSI

pageRank threshold moves the curve closer to the left and up. This makes JSI a very flexible

wikifier, that can adapt to various needs. However, comparing Figure 3.7b with Figure 3.5,

the gain in precision is generally not worth the loss in recall, as other tools can achieve higher

recall for similar levels of precision.

Findings: A higher threshold for DBpedia’s support parameter does not increase precision

in most cases. We suggest keeping this value to 0.

50

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

2
1386567

3725

24474
0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4

recall

p
re

c
is

io
n

(a) DBpedia (secondary: support)

0.00151
0.00322

0.00686

0.0146

0.0312

0.0665

0.142

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6

recall

p
re

c
is

io
n

(b) JSI (secondary: pageRank)

Figure 3.7: Precision-Recall curves of DBpedia and JSI for various values, equidistant on a
logarithmic scale, of their secondary numeric parameter. The numeric labels on the graph
indicate the parameter value associated with each curve.

Findings: Using a minimum pageRank threshold for JSI, in addition to pageR-

ankSqThreshold, makes JSI a very flexible wikifier. However, when optimized for precision

(non zero pageRank threshold), JSI is still less precise than other wikifiers. We suggest

either using JSI with a pageRank minimum of 0, or other wikifiers.

Babelfy (MCS on or off). Because Babelfy’s MCS option is a fallback strategy that

links unmatched mentions to their most common sense, they do not affect results previously

matched by the main algorithm. Furthermore, because MCS matches do not have an

associated confidence score, it is impossible to filter among them: a user must either take all

or them, or none.

With MCS disabled, and with the lowest value for the confidence threshold, Babelfy

identified 2842 articles for the 500 posts, with a precision of 40% and a recall of 37%. Enabling

MCS adds an additional 2599 articles,33 nearly doubling the number of articles. However, the

precision of the MCS articles is only 5.9%. This means that the large decrease in precision

(40% to 23%) is balanced by only a small increase in recall (37% to 42%). Furthermore, with

MCS enabled, increasing the confidence threshold will actually decrease precision, which will

converge towards the precision of only the MCS matches, 5.9% (with a confidence threshold

33An additional 15 previously identified articles become MCS matches, due to unpredictable factors of the
wikification algorithms.

51

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

of 1, almost all articles are identified by the MCS strategy). Therefore, in most cases, the

slight increase from the MCS strategy is not worth the loss in recall.

Findings: Babelfy’s MCS option has very low precision. Because there is no way to

distinguish between the MCS matches, we suggest not to use this option.

Ambiverse (Stanford or KnowNER recognition). Ambiverse includes two components

to perform entity recognition: a Stanford NER tool and the KnowNER tool by the Ambiverse

authors. We observed that KnowNER leads to a better performance, but the difference is

minimal: for any given recall value, the precision with KnowNER is between 0.3 and 2.6

percentage points above that of Stanford NER. The superiority of KnowNER is consistent

over the range of recall. Both components achieve a maximum recall just under 47%.

Findings: Ambiverse’s KnowNER component performs slightly, but consistently, better

than the Stanford NER alternative.

WAT (OpenNLP or Lucene tokenizer). WAT offers a choice between two components

for the tokenization step: OpenNLP, which is the default option, and Lucene, which is

described as better suited for ill-formed text. Figure 3.8 shows the precision-recall curves

of both tokenizers. Contrary to the choice of NER component for Ambiverse, the choice of

tokenizer has a noticeable impact on the peformance of WAT. Lucene allows WAT to achieve

much greater recall, but quickly drops in precision, whereas OpenNLP generally retains a

higher precision, but at a much lower recall. Therefore, depending on which of the precision

or recall is preferred, both tokenizers can be relevant. However, when compared to other

wikifiers, Lucene’s gain in recall is not worth its loss in precision. Therefore, in most cases,

either OpenNLP is more appropriate, or another wikifier is.

Findings: WAT’s OpenNLP tokenizer achieves higher precision, whereas the Lucene

tokenizer leads to higher recall. However, the gain in recall is less impressive when compared

to other wikifiers. We suggest using WAT with OpenNLP, or other wikifiers.

3.3.3 Correlation Between Wikifiers

Although all six wikifiers claim to solve the same general task, wikification, it is not clear

whether all approaches converge towards the same results, or the results of one can cover the

52

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4

recall

p
re

c
is

io
n wikifier

● wat.lucene

wat.opennlp

Figure 3.8: Precision-Recall Curves for WAT with Two Different Tokenizers: Lucene and
OpenNLP

Table 3.5: Overlap Between the Correct Results of Each Wikifier

Ambiverse Babelfy DBpedia Illinois JSI WAT

1423 703 (533) 586 (605) 353 (370) 965 (867) 206 (179) Ambiverse
– 1123 596 (477) 432 (292) 824 (685) 252 (177) Babelfy
– – 1274 475 (332) 898 (777) 261 (161) DBpedia
– – – 780 529 (475) 229 (98) Illinois
– – – – 1827 324 (230) JSI
– – – – – 378 WAT

Parentheses show the expected overlap assuming a uniform random sampling.

blind spots of another. Understanding such correlation between the results of wikifiers can

help to improve each individual approach, as well as develop ensemble methods to mitigate

the blind spots of different wikifiers.

Table 3.5 presents, for each pair of wikifiers, the number of articles correctly identified by

both wikifiers (with a confidence threshold of 0), as well as the expected number of articles, in

parentheses. The expected value assumes that all wikifiers select independently and uniformly

randomly articles from the set of correct matches, keeping the recall constant. For example,

Ambiverse correctly identified 1423 of the 2997 articles (recall = 47.48%), and Babelfy correctly

identified 1123 articles (recall = 37.47%). Therefore, assuming independence, the number of

articles identified by both Ambiverse and Babelfy should be 47.48%× 37.47%× 2997 = 533.

53

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Table 3.6: Kendall’s τb Correlation Coefficient and 0.95-Level Confidence Interval Computed
over the Overlap of each Pair of Wikifers

Babelfy DBpedia Illinois JSI WAT

0.43 (±0.05) 0.37 (±0.05) 0.44 (±0.06) 0.19 (±0.04) -0.21 (±0.10) Ambiverse
– 0.33 (±0.06) 0.36 (±0.07) 0.22 (±0.05) -0.07 (±0.09) Babelfy
– – 0.04 (±0.07) 0.36 (±0.04) 0.01 (±0.09) DBpedia
– – – 0.09 (±0.06) 0.02 (±0.09) Illinois
– – – – -0.06 (±0.07) JSI

Typically, one could expect the actual overlap between wikifier results to be greater

than the expected overlap under the assumption of independence, because they attempt

to solve the same task. However, Ambiverse with both DBpedia and Illinois actually has

a smaller overlap than expected. This could suggest that Ambiverse’s results complement

those of DBpedia and Illinois, and that combining the ideas from Ambiverse and Illinois or

DBpedia into a mixed approach would result in a higher improvement than combining other

approaches. For other wikifiers, with an overlap larger than the expected value, a simple

ensemble approach, such as majority voting, can improve individual performances.

To further understand the correlation between wikifiers, Table 3.6 shows Kendall’s τb

statistic between each pair of wikifiers, computed over the overlap between the results of

the two wikifiers.34 Kendall’s τ coefficient is a non parametric rank correlation statistic

that estimates the probability that the two wikifiers will agree on which of two random

articles have a higher confidence score [104]. The probability value is rescaled from [0, 1] to

the [−1, 1] range to produce a correlation score. Therefore, τ = 0 indicates an agreement

probability of 50% (no correlation), τ = −1 indicates a 0% probability of agreement, or 100%

of disagreement (perfect negative correlation), and τ = 0.43, as for Ambiverse and Babelfy,

indicates a probability of 72% of agreement.35

Table 3.6 provides a more detailed insight into the complementarity of different wikifiers.

WAT shows a peculiar behavior, with correlation scores hovering around zero for most

wikifiers, except for Ambiverse, where the correlation is negative. This surprising result

34Instead of restricting the correlation to the overlap, another possible approach would have been to use all
articles, and assign a confidence of 0 to articles not found by wikifiers. This approach, however, is sensible to
noise due to differences in the knowledge bases (and their version) used to train the wikifiers. Using this
approach, we observed correlation scores all near zero. Therefore, we present the more useful results using
only the overlaps.

35The τb variant of the statistics is explicitly tuned to account for ties, which is especially important for
the discretized confidence scores of DBpedia’s results.

54

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

indicates that among articles correctly identified by both Ambiverse and WAT, those with a

high confidence Ambiverse score tend to have a low WAT score, and vice versa.

Apart from WAT, almost all pairs of wikifiers have a significant positive correlation,

ranging from 0.19 to 0.44. The only exception is Illinois, with DBpedia and JSI, which

has a near-zero correlation. In particular, Ambiverse with DBpedia and Illinois show a

strong positive correlation, despite having a smaller than expected overlap. These results are

encouraging, as they suggest that different wikifiers (with the exception of WAT) actually

have a similar objective. Therefore, choosing one over another is less likely to introduce

unwanted biases.

Findings: The confidence score used by all wikifiers is positively correlated, with the

notable exception of WAT. Confidence scores between Ambiverse and WAT are even

negatively correlated, which is a surprising result.

3.3.4 Validated List of Computing Concepts

The list of validated computing-related Wikipedia titles, obtained as a result of the annotation

task, is an important contribution of this study. Because we generated the list using six

state-of-the-art wikifiers configured to optimize recall, with a representative sample of a large

programming forum, it represents the current range of Wikipedia articles on computing and

can serve as a basis to precisely identify the full extent of computing articles.

We studied two approaches to use this list as a filter to improve the output of wikifiers. The

first approach uses the validated computing titles as an inclusion list, and rejects other articles.

The second approach instead uses negative examples (i.e., articles marked as “incorrect” by

the annotators) as an exclusion list of articles to reject. To allow others to use the same

strategies to improve the performance of wikifiers, we distribute the complete annotated

dataset in our online appendix (see Appendix A).

Computing Titles as an Inclusion List. The first strategy is to remove from the

output of wikifiers all articles not on an inclusion list, i.e., the validated list of computing-

related articles. In the ideal case, where the inclusion list contains all computing articles of

Wikipedia, this strategy will increase precision with no impact on recall, because it filters out

only non-computing, thus incorrect, articles.

To evaluate this strategy, we used the list of 1098 articles to filter the output of all six

wikifiers. Figure 3.9 shows the result of this strategy on the precision-recall curves. The

55

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

●

●

●

●

●

●

●
●

●●

●

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6

recall

p
re

c
is

io
n

wikifier

● ambiverse

babelfy

dbpedia

illinois

jsi

wat

Figure 3.9: Precision-Recall Curves of All Six Wikifiers with the Inclusion List Strategy to
Improve Precision36

inclusion list considerably augments the precision.36 For example, for a recall threshold of

20%, the precision of all wikifiers goes from less than 50% to over 74% (except for WAT,

which does not achieve such recall). Nevertheless, there is still a non trivial proportion of

computing-related false positives, especially for low confidence values (e.g., to achieve 60%

recall, JSI’s precision drop to 47%). For example, although Source code is often correctly

linked to the mentions source and code, it can be linked to misleading terms, for example

when source indicates the provenance of information in a post.37

A limitation of this approach is the need for an extensive inclusion list. Although our list

of 1098 articles is a good start, it may not contain articles about rarer computing concepts or

technologies. For example, we took a random sample of 30 articles marked as “incorrect” only

once, and found four computing articles among them: Message authentication code

(matched to HTML codes), 32-bit (matched to the number 32), Arithmetic overflow

36Note that the y axis in Figure 3.9 differs from Figure 3.5, to improve readability.
37https://stackoverflow.com/questions/16516936

56

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

(matched to HTML content overflow), and Graphics Environment Manager (matched

to Ruby’s gem command). To avoid the possibility of rejecting such articles, users can

combine two configurations (or two wikifiers): one optimized for recall that uses the inclusion

list, and the other optimized for precision which does not use the inclusion list.

Findings: Using the list of articles as an inclusion list showed a precision improvement,

reaching values between 74% and 89%. However, computing-related false positives are

still present in non-negligible ratios for configurations that optimize recall.

Negative Examples as an Exclusion List. To circumvent the limitations of the inclusion

list strategy, another strategy is to only reject articles from an explicit exclusion list. An

extensive list of all non-computing articles would be equivalent to an extensive inclusion

list. However, the exclusion list can focus on articles that are especially problematic for a

wikifier, i.e., articles that are most often false positives. The objective of this strategy is to

maximize the increase of precision by excluding common irrelevant terms (e.g., Canning,

which is often matched to the modal auxiliary verb can) and artifacts of the training phase

(e.g., Burmese language38 and On Your Toes39).

In addition to the list of 1098 computing articles, the annotation task generated a set

of 10 854 distinct articles marked as “incorrect” at least once. Articles that were rejected

the most often (e.g., 781 articles were rejected at least ten times) can serve as a basis to

create the exclusion list. However, even some of these most often rejected articles are related

to computing. For example, although This (computer programming) is a computing

concept, WAT with the Lucene tokenizer often associates it with the demonstrative pronoun

this, creating many false positives. Including these articles in the exclusion list can improve

precision at the cost of known blind spots, but this trade-off must be tailored to each wikifier

(e.g., associating This (computer programming) is not a common issue for other wikifiers

than WAT).

38The ISO two-letter code for the Burmese language is “my”, a homograph of the possessive determiner,
which appears in many posts.

39This musical is often linked to the word your, an obvious incorrect artifact from the training phase.

57

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Findings: An exclusion list does not prevent rarer articles from being detected. It

optimizes the gain in precision by targeting the weaknesses of wikifiers. However, some

computing articles are often confounded with other terms, and thus often marked as

“incorrect”. With a careful configuration, the exclusion list strategy can optimize the gain

in precision at the cost of known blind spots for such articles.

3.3.5 Discussion

Overall, the unpredictable relative performance of the six wikifiers confirm the difficulty of

selecting an optimal wikifier and its configuration for a given usage scenario. The wikifiers

vary considerably in the range of precision and recall values they can achieve for different

values of their confidence parameter. For example, modifying the confidence parameter of

Ambiverse will have a large impact on its recall, but not on its precision, while the inverse is

true for WAT.

We observed, however, that there are few benefits to modifying the default values of the

additional parameters of the wikifiers. In most cases, the default value already provides the

optimal performance. Thus, developers and researchers looking for an optimal configuration

can focus on the primary confidence parameter. To this end, Figure 3.5 provides a useful

starting point to find the optimal wikifier for a specific task.

Nevertheless, the low precision and recall limit the wikifiers’ usefulness in concrete

applications: To identify at least one out of every five related concepts (i.e., at least 20%

recall), no wikifier was able to produce more true positives than false positives (i.e., at

least 50% precision). This observation motivates the development of specialized techniques

to adapt wikification approaches to the software domain. In particular, the use of a list

of accepted software-related concepts to filter the output of wikifiers showed a promising

improvement to the precision, with a minimal impact on the recall.

3.3.6 Threats to Validity

Internal Validity. The dynamic nature of Wikipedia affects the internal validity of the

results. Because Wikipedia is in constant evolution, identifying an article by title is ambiguous,

as it can refer to multiple versions. This evolution impacts wikifiers trained with older versions

of Wikipedia, or with other knowledge bases which themselves rely on old Wikipedia versions.

In addition to being oblivious to more recent articles, these wikifiers may refer to articles that

were significantly changed. As an example, the article Database management system was

58

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

merged in 2013 with the article Database.40 Therefore, a wikifier trained on a Wikipedia

version older than 2013 will consider Database and Database management system as

two different articles, whereas more recent wikifiers will only consider them as one. This

divergence, however, is inevitable, as researchers who may wish to use a wikifier without

having to re-train it will be similarly affected.

By the same argument, the evolution of Stack Overflow posts between the wikification

and the completion of the annotation task causes another threat. To mitigate it, all data

used in this study was only a few months old, greatly reducing the threat of divergence.

External Validity. Threats to external validity depend on the level of generalization

considered. The first level of generalization is from the sample of 500 posts to all Stack

Overflow posts. The simple random sample of posts is sufficient to support a statistical

generalization of proportions computed over posts to the whole population within an error

of 0.05 with 95% confidence. However, most of the results of this study are proportions

computed over article–post pairs. This situation benefits us, as proportions of pairs represent

a much larger number of annotations (41 124 article–post pairs in total), but statistical

generalization from these proportions is more complex, because the sample of pairs is not

random. Despite the lack of statistical generalization, the unbiased sampling of posts and the

absence of evident imbalance in the wikifications (e.g., there was not a small subset of posts

that received all correct wikifications) give sufficient confidence in the representativeness of

the findings. Furthermore, the objective of this study is not to identify the best performing

wikifier, but to understand their relative performance to help potential users make informed

decision on which wikifier to use. In such context, small performance differences, statistically

significant or not, should not influence the choice of a wikifier the way larger differences

would.

We performed a sensitivity analysis to further assess the threat of spurious results. We

generated 300 trimmed samples by removing 5%, 10%, and 20% of the 500 posts, 100 times

for each proportion. For each trimmed sample, we computed the precision and recall of all

wikifiers, for 21 confidence thresholds ranging from 0 to 1, in increments of 0.05. We then

compared those precision and recall values to the precision and recall computed on the full

sample, for the same confidence thresholds. For all six wikifiers, the maximum variation in

recall, for all three proportions, was 1.8%. In terms of precision, the maximum variation

was of 4.2% for Ambiverse, Babelfy, DBpedia, and Illinois for all three proportions. We

40https://en.wikipedia.org/w/index.php?title=Database_management_system&diff=544579037&oldid=
544577010

59

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

observed larger variations in precision for JSI and WAT when the confidence threshold was

near 1, which can be expected, as very few results are returned (and thus, the effect of one

additional true or false positive is much larger). However, for lower thresholds (0.70 or less

for JSI and 0.95 or less for WAT), the variation is similar to that of the other tools (below

7.5%). Considering that these values represent the maximum variation over 300 independent

perturbations of up to 20% of the sample, the small observed variations suggest that the

results can reliably be generalized to the population of Stack Overflow posts within a small

margin of error.

The study design supports an analytic generalization from the sampled population, i.e.,

Stack Overflow posts, to the concept of a “software resource”. In contrast to other types of

documents, a software resource contains a mix of natural language and code, either in blocks

or embedded in the main text, software-specific jargon, and references to a fast growing list

of technologies. The considerable variance of posts in a number of dimensions, such as the

formality and quality of the language, the length of a post, the sub-area of computing, and

the intent of the post (e.g., question, description, explanation, step-by-step guide), allows

this analytic generalization. Nevertheless, because this study is the first to focus on the

wikification of software resources, further replication studies with resources from other sources

are required to strengthen this generalization. In particular, Stack Overflow posts exhibit

a number of idiosyncrasies. For example, posts edited to add content often include the

new content under an “Edit” header, and questions sometimes end with a “Thank you”,

which wikifiers would link to the Wikipedia articles Editing and Gratitude, respectively.

Although such phrases are unlikely to appear in other types of software resources, it is

reasonable to assume that any source has its own idiosyncrasies, and wikifiers should be able

to ignore them.

Construct Validity. Construct validity concerns the relation between the metrics used

(precision and recall) and the constructs under study (wikifier performance). The two metrics

are commonly used in software engineering research, and both have an intuitive interpretation

that allows the reader to understand what exactly is measured (as opposed to, e.g., F1

score). The more important threat to construct validity comes from the formulation of the

annotation task. The details of the task, discussed in Section 3.2.8, may diverge from others’

interpretation of wikification, especially regarding the rejection of relevant, but non-computing

articles. This decision was however necessary to mitigate the subjectivity of the task and the

influence of irrelevant results.

60

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

3.4.1 Off-Line Preparation

Both on-line phases of Scode rely on a graph of concepts derived from wikilinks, i.e., hyperlinks

between Wikipedia articles. The edges between concepts in this graph provide the basis

to identify related implicit concepts with the community search algorithms. The concepts

included in the graph also act as an inclusion list to filter the explicit concepts identified by

the wikification service. Thus, the accuracy with which the graph models the computing

domain plays an important role in improving the accuracy of Scode.

Although it would be possible to use the entire wikilink graph, this graph is extremely large

and highly connected. We used a semi-automated approach to extract this software-specific

subgraph from the April 2020 archive of the English-language Wikipedia. We only retained

articles in the main namespace of Wikipedia, i.e., excluding pages such as categories and

article discussions. We also retained only wikilinks that are inserted directly in the code of

an article, i.e., not via a template. This filter discriminates wikilinks that are intentionally

chosen by Wikipedia editors to relate two specific subjects from those added automatically

by, e.g., navboxes and sidebars.41

Wikipedia contains redirect pages, which automatically redirect the reader to another

target article when accessed. These pages are often used to add alternative titles to an article.

We removed those pages from the set of nodes, but resolved and retained wikilinks passing

through these redirect pages. That is, if an article A links to a redirect page R, whose target

is B, we add an edge from A to B in the graph. Finally, we discarded disambiguation pages42

and set index articles,43 which are only used to list the different senses of polysemous terms.

After applying these filters, we obtained a pruned graph with 5.65 million nodes and

129 million edges (average node degree of 45.7). We considered all edges as undirected

and unweighted, which is consistent with the interpretation that a wikilink indicates an

unquantifiable and reciprocal relatedness relation between the source and target concepts.

We further filtered the set of articles using a systematic manual procedure to retain

only those related to computer science and software technologies (Figure 3.11). The manual

procedure requires as input the automatically pruned Wikipedia link graph W and a seed set

C of candidate articles potentially related to computing. To produce the initial candidates, we

gathered all articles listed in four Wikipedia navigation pages containing notable computing-

41https://en.wikipedia.org/wiki/WP:NAVBOX
42https://en.wikipedia.org/wiki/WP:DAB
43https://en.wikipedia.org/wiki/WP:SIA

62

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Input: W : Wikipedia link graph
Input: C: Seed candidate set
Output: R: Subset of computing-related Wikipedia articles

1: D ← ∅ // unrelated articles to discard
2: while C ̸= ∅ do
3: c← arbitrary element from C
4: C ← C \ ¶c♢
5: if c is related to computing then
6: R← ¶c♢ ∪R
7: for all n ∈ neighbors(c) \ (C ∪R ∪D) do
8: N ← neighbors(n)
9: if ♣N ∩R♣ ≥ ♣N \R♣ then

10: C ← ¶n♢ ∪ C
11: end if
12: end for
13: else
14: D ← ¶c♢ ∪D
15: end if
16: end while

Figure 3.11: Identification of Computing-related Articles

related articles,44 as well as the 1098 articles identified as correct at least once during our

comparison of wikifiers (Section 3.2.8). The resulting candidate set C contained 2045 distinct

articles covering different areas of computing.

For each candidate, an annotator scanned the content of the article to determine whether

it was related to computing (line 5), in which case the candidate was added to a related

set R (line 6). When adding an article to R, each of its neighbors not yet considered (line

7) and that have more neighbors inside than outside R (line 9) became a candidate (line

10).45 Rejected articles were added to a discard set D to avoid considering them again as

candidates (line 14). As the set of candidates is updated every time a candidate is accepted,

we could not divide the annotation task into parallel subsets annotated independently by

each author. Thus, the first author performed the entire task, accepting 6746 articles and

rejecting 2811 others. To measure the subjectivity of the annotation task, the second author

independently annotated a sample of 800 articles taken at random with equal probability

from the final content of R and D. As this exercise only served to assess the subjectivity

44The articles are Glossary of computer science, Index of object-oriented programming articles, Index of
computing articles, and Index of software engineering articles.

45This criterion on line 9 prevents the set of candidates from growing too quickly and rendering the manual
validation impractical.

63

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

of the reliability of the first annotator’s results, we did not resolve conflicts. We observed a

substantial [112] inter-rater agreement (Cohen’s κ = 0.71 [52]), suggesting that the selected

articles are a reliable representation of the computing domain on Wikipedia.

The resulting graph of 6746 computing articles contains 102 854 edges (average node

degree of 30.5). This graph excludes general-domain concepts, such as Language and

Mind. It also excludes specific end-user applications (e.g., names of video games), learning

resources on computing (e.g., textbooks), and low-level hardware technologies (e.g., models

of microprocessors). It includes general computing concepts and domains (e.g., Data

parallelism, Artificial intelligence), programming languages (e.g., C++), and

development technologies (e.g., IntelliJ IDEA, Spring Framework). We make this

graph, as well as the annotation guide and annotations, publicly available in our on-line

appendix.

In addition to extracting a relevant subgraph of concepts from the Wikipedia link graph,

the off-line phase involves preparing a truss index to support one of the community search

algorithms. We reimplemented the procedure to compute this index as described by Akbas

and Zhao as part of their community search technique [6]. We define trusses and describe

the use of the truss index in Section 3.4.3, together with the other algorithms we used to

expand concepts into topics.

3.4.2 Explicit Concept Identification

Scode uses a wikification service to identify explicit concepts in documentation. To design

this phase, we relied on the results of a prior study in which we compared six state-of-the-

art wikification tools (Section 3.3). We found that the performance of all tools decreased

when applied to software documents, typically due to technical terms being confused with

their domain-general sense (e.g., Tree resolved as the type of plant). Using an inclusion

list of computing-specific concepts is an effective strategy to counter this limitation (see

Section 3.3.4).

We chose the Babelfy tool [149] for Scode. Babelfy is an on-line wikification service that

achieved good precision for reasonable recall levels, relatively to the other tools. To produce

its natural language input, Scode aggregates all Javadoc comments in a source file, keeping

them in their original order within the file. Each comment consists of an initial description of

the type or method being documented, followed by a list of tag-fragment pairs. For example,

the documentation of a method can start with its general purpose, followed by fragments

describing each parameter, marked by the @param tag. All elements can use HTML and

64

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

in-line Javadoc-specific syntax. Before aggregating these comments, Scode removes the HTML

and Javadoc syntax, and excludes any comment description or fragment that is too short.46

Excluding short descriptions and fragments prevents the input from containing incomplete

phrases (e.g., “Used for nontrivial settings upgrade”) and irrelevant information (e.g., the

authors of a class).

Like most wikification tools, Babelfy is more precise when processing large texts, because

text fragments of only a few words lack sufficient context to disambiguate the sense of

polysemous words. Thus, Scode aggregates all the comments of a project into a single

input, to provide as much context as possible.47 The order in which Scode aggregates the

documentation from different files is arbitrary.48

Babelfy returns a list of concepts, identified as entries in the BabelNet knowledge base [165].

BabelNet entries can be mapped to corresponding Wikipedia articles. Scode removes from

the output any concept that is not in our curated list of computing-specific Wikipedia articles.

This filter can produce false negatives, for example due to non-computing concepts related to

the problem domain of the project. However, the negative impact of these missing concepts

is outweighed by the larger increase in precision observed in our prior work when using an

inclusion list. The explicit concepts output by this phase seed the search for additional

implicit concepts in the next phase.

3.4.3 Implicit Concept and Topic Identification

Edges in the computing-specific Wikipedia graph indicate relatedness between articles, and

thus can be used to find implicit concepts. However, despite the heuristics described in

Section 3.4.1 to reduce the number of edges, the graph remains densely connected. Trivial

heuristics, such as taking all concepts within an arbitrary distance of the seed concepts,

produce too many concepts.

To circumvent this issue, we used community search techniques to identify a practical

number of concepts. Informed by Fang et al.’s survey of community search algorithms for

large graphs [68], we reimplemented three algorithms to identify implicit concepts, as shown

in Figure 3.12.

46We used an arbitrary minimum of ten words.
47Due to a limitation of the API, Scode makes several requests if the aggregated comments contain more

than 10 000 characters. Scode avoids splitting comments to the extent possible.
48Wikification techniques are noisy and sensitive to the order of their input. In an ancillary experiment,

we confirmed this sensitivity, but found no obvious way for the input order to systematically improve the
quality of the result. Babelfy introduced a similar amount of noise for the arbitrary order of Scode as for
other random permutations.

65

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Input: Set C of explicit concepts
Output: Set of topics T

1: M ← empty map
2: R← ∅
3: for all concept c ∈ C do
4: T ← LargeTruss(c) // T is itself a set of concepts
5: T ← ReduceTruss(T)
6: if ♣T ♣ ⩾ 100 then
7: T ← ReduceECC(T)
8: end if
9: r ← Representative(T)

10: if r ∈ keys(M) then
11: T ← T ∪M [r]
12: R← R ∪ ¶r♢
13: end if
14: M [r]← T
15: end for
16: for all r ∈ R do
17: M [r]← ReduceTruss(M [r])
18: end for
19: return values(M)

Figure 3.12: Implicit Concept Identification Procedure

The procedure starts by identifying a separate community around each explicit concept

c. An initial community (or topic) T is generated using Akbas and Zhao’s algorithm [6] to

find the largest k-truss around c, for the highest possible value of k (function LargeTruss

of Figure 3.12). Within a graph, a k-truss is a subgraph in which any two neighbors (i.e.,

nodes connected by an edge) share at least k− 2 other common neighbors. Akbas and Zhao’s

algorithm is particularly efficient for repeated queries over a large graph, as it precomputes

the key information about the potential trusses and stores it in a truss index.

As we favor smaller communities, Scode applies Huang et al.’s algorithm [100] to reduce

the size of the k-truss while maintaining the query concept c and the value of k (function

ReduceTruss of Figure 3.12). Their algorithm approximates the subset of the initial k-truss

for which the maximum distance from the query concept c to any other concept is as small

as possible.

We observed a bimodal distribution in the number of concepts per topic. In many cases,

the reduced topic has fewer than 25 concepts. However, when the initial query concept

is a popular computing concept, such as JSON or SQL, this minimal community still

66

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

contains several hundred concepts. Scode further reduces the size of any community with

over 100 concepts by relying on an alternative definition of connectivity for communities:

k-edge-connected-components, or k-ECC. A k-ECC is a subgraph that requires at least k

edges to be removed for the graph to become disconnected (i.e., it is no longer possible to find

a path between any two nodes). For example, a set of k nodes that are all pairwise connected

is a (k-1)-ECC. This connectivity requirement is looser than k-trusses, which allows to reduce

the size of a (k-1)-ECC derived from a k-truss while maintaining the value of k. We used Hu

et al.’s algorithms [97] to perform this reduction for large k-trusses (function ReduceECC

of Figure 3.12).

The algorithms described so far generate a separate community for each explicit concept.

The next step is to merge communities that describe similar topics. As the size of communities

varies considerably, many intuitive heuristics (e.g., merging communities with a large overlap)

have a detrimental effect on the output. For example, they can void the information captured

by a small specialized topic by merging it with a large generic community. Trivial merging

heuristics can also lead to arbitrary topics that depend on the order in which the communities

are merged.

We implemented the community aggregation step by seeking a representative concept for

each community. Following the insights from Lizorkin et al. [124], we chose the representative

as the concept with the highest pagerank value [32] among the community (function Repre-

sentative of Figure 3.12).49 Scode merges all communities that have the same representative

into a single community, and applies the k-truss reduction algorithm once more on the new

communities to further reduce their size.

This final set of communities forms the outcome of Scode. Each community represents a

single topic of related concepts, identified by one representative concept.

3.4.4 Implementing the Sample Application

We implemented the application described in Section 3.1 to demonstrate the usefulness of

Scode in a practical scenario.

After collecting a set of concepts grouped by topic, the application separates small topics

(i.e., containing at most 25 concepts) from larger ones. The summary badge inserted at

the top of the README file indicates the number of small topics. For each small topic,

the application generates one badge using the name of the topic’s representative concept

49The representative concept is typically more general than the explicit concept. In our evaluation with
Java classes, we observed that 15% of topics have an explicit concept as its representative.

67

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

as the value of the badge. The color of the badge is based on the representative concept:

we automatically assigned to each concept in the computing-related subset of Wikipedia a

unique color, giving similar colors to similar concepts based on a hierarchical clustering of

the Wikipedia graph. The application uses the Shields.io service to generate the badge image

with the desired name (scode), value, and color.

The application also creates a new file to describe the topics in more detail. In this file,

we add one section for each small topic, and each badge in the README file links to its

corresponding section. The section body contains the explicit concepts from this topic first,

as they are more likely to be of importance to the developer. Further implicit concepts are

placed in a collapsible list under the explicit concepts. As each concept is a Wikipedia article,

the application creates a hyperlink from each concept to the associated article.

Large topics are not included. We observed that they tend to contain less cohesive groups

of general programming concepts. Hence, developers are less likely to find the extent of such

topics useful, especially if they must scan hundreds of concepts. Hence, we only retain explicit

concepts included in large topics, and list them all under a “General Programming Concepts”

section in the new file.

3.5 Scode Evaluation

The objective of our evaluation was to understand the strengths and limitations of an approach

based on wikification and community search, as represented by Scode, to identify concepts

relevant to a software project. We centered this evaluation around the research questions

RQ 3.4 to 3.7 presented in Section 3.1.1.

We first evaluated the end-to-end performance of Scode and compared it to two baseline

techniques. To measure the performance of concept identification techniques, we used two

metrics: The precision of a technique corresponds to the proportion of the concepts it identifies

that are actually related to the project (RQ 3.4, Section 3.5.2). Conservative techniques

can achieve a high precision by returning few or very specific concepts. To balance this

dimension, we used the consistency of the identified concepts as the second metric (RQ 3.5,

Section 3.5.3). A technique should consistently identify the same concept for any project

related to this concept.

To gain a better understanding of the promising and limiting components of our approach,

we evaluated the internal mechanisms of Scode separately (RQ 3.6): the inclusion list of

computing concepts (Section 3.5.4), the wikification service (Section 3.5.5), and the community

search algorithms (Section 3.5.6). Finally, as it is a major design decision for Scode, we

68

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

studied the impact of extracting concepts from documentation rather than source code

(RQ 3.7, Section 3.5.7).

3.5.1 Study Design

We generated a list of concepts related to a sample of Java classes and manually validated the

concepts’ relatedness to their associated class. We compared Scode to two state-of-the-art

techniques as baselines, following the same procedure. We computed the precision and

consistency of all techniques to answer our first two research questions.

We selected as baselines tools that are publicly available and that extract concepts from

the documentation of a project. The first baseline is a technique to identify concepts related

to Java classes in order to build a comprehensive API knowledge graph [121, 122]. The

technique relies on various natural language processing heuristics specifically tailored for

API concept extraction. In contrast to Scode and the other baseline, the concepts are not

intended to have a recognized meaning in an external knowledge base. For our evaluation, we

extracted the concepts from the API knowledge graph, which we refer to as PengKG, instead

of re-implementing the concept extraction technique.

We used explicit semantic analysis (ESA) [75] as the other baseline technique. ESA

associates arbitrary text inputs with entries of a knowledge base, such as Wikipedia. We

used the EasyESA implementation of ESA in this evaluation [41]. To produce the input for

EasyESA, we used the same processed documentation as for Scode, described in Section 3.4.2.

We limited the size of the subjects in our evaluation sample, so that the evaluators could

understand each subject in a reasonable amount of time. Thus, instead of using whole

projects, we considered individual Java files as independent subjects. Because PengKG did

not include concepts for interfaces, we only sampled files for which the top level type is a

class. Hence, we refer to each subject as a Java class, with the understanding that it may

include nested classes.

We randomly sampled 100 Java classes, each with equal probability, from the standard

Java Class Library, version 15. We used the standard library due to its coverage of many

areas and the high quality of its documentation. These classes were also part of PengKG.

Scode identified a total of 84 to 774 concepts per class (average of 459), except for five

classes that were associated with no concept due to their insufficient documentation. To

avoid overloading the annotators, for classes associated with more than 100 concepts, we

randomly sampled 100 concepts among Scode’s output for the annotation task, with each

concept having an equal probability of being selected.

69

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

For each class, PengKG includes one to 42 related concepts (average of 10). We included

all of them in our evaluation. For EasyESA, as it takes a number of concepts to generate as

part of its input, we generated five more concepts than the number of concepts identified

by Scode. We did not use a constant number of concepts to account for classes that are

inherently related to very few or many concepts. Because EasyESA’s results are ranked, we

selected the 100 highest ranked concepts for the annotation task.

In total, we generated 20 005 class–concept pairs to evaluate. For each pair, the two

authors judged whether the concept may be relevant to a developer working with the class.

We did not rely on external annotators for this procedure as it requires a significant effort

to read and understand the code of each class and peruse the content of Wikipedia articles

before judging whether the concepts are related. To avoid a negative bias against baseline

techniques, the technique that generated each pair was not identifiable during the annotation

task. We also put all concepts in lower case, and removed parentheses from Wikipedia titles to

further reduce the distinctions between Wikipedia-based concepts and the free-form concepts

from PengKG.

The author and his supervisor first annotated all concepts associated with two classes and

discussed the results to refine the annotation procedure. We found that it was unreliable to

grade relatedness on a scale. Thus, the annotators annotated each pair as a binary variable,

i.e., whether the concept is related to the implementation of the class, its usage, or the

abstraction it represents. During the preliminary phase, we also found that some general

concepts could be relevant to virtually all developers for any class. These concepts include,

for example, fundamental computer science concepts such as Byte and Conditional

branching. Annotators assigned the special annotation general to these concepts and did

not further assess their relatedness to specific classes.

After refining the annotation guidelines (see Appendix A.3), each annotator independently

annotated 54 of the remaining 98 classes, so that the concepts associated with ten unmarked

classes would be annotated by both annotators to assess the inter-rater reliability. The two

annotators achieved a substantial agreement [112] (Cohen’s κ = 0.74 [52]). Conflicts were

resolved by a discussion between both annotators.

3.5.2 Precision of the Identified Concepts

Table 3.7 summarizes the results of the annotation task to answer our first research question.

The number of concepts identified by each technique and those that we annotated are shown

in the “Concepts” and “Sample” columns, respectively. The sample size varies based on the

70

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Table 3.7: Concept Identification Precision for 100 Java Files

Technique Concepts Sample Gen. Relevant Prec.

PengKG 1006 1006 187 584 71.3%

EasyESA 44 069 9455 674 340 3.9%
top 1 97 97 9 20 22.7%
top 3 291 291 36 44 17.3%
with inclusion list 1160 1160 439 79 11.0%
top 1 inclusion list 93 93 26 22 32.8%
top 3 inclusion list 265 265 96 38 22.5%

Scode 43 584 9663 6432 146 4.5%
small topics 1453 288 159 32 24.8%
representative 548 115 93 9 40.9%
explicit 1071 306 208 65 66.3%
implicit 42 513 9357 6224 81 2.6%

Table 3.8: Examples of Concepts Identified by PengKG, EasyESA, and Scode

Technique Sample Concepts (original capitalization)

PengKG PREFERREDSIZE, Minimum Size, Property Change Listener, utc,
detail message, CompositeData value

EasyESA Byte stream, GUI widget, Stream (computing), Endianness, Home
directory, Aspect ratio

Scode Concurrent computing, Character encoding, Serialization, Layout
manager, Dialog box, Parsing

number of concepts identified by each technique (capped at 100 per class) for the 100 classes.

The “Gen.” column shows how many concepts were marked as general. Finally, the last

two columns report the number of class–concept pairs marked as related and the precision

of each technique, computed as the ratio of relevant to non-general concepts. We excluded

general concepts from the precision as they are related to virtually any class, but capture

little information about them. This conservative decision impacted Scode the most. For each

technique, the top row in bold indicates the global values for the technique, and subsequent

rows show values for different variations as described below.

PengKG. PengKG is the most precise technique with a precision of 71.3%. It returned a

number of true positives comparable to but smaller than the other techniques.

71

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

However, while inspecting the concepts provided by PengKG, we observed recurrent

patterns of concepts that matched the class name and its members. For example, the class

ServerSocket, which contains the methods getLocalPort() and getInetAddress(), was associated

with the concepts Local port and Inet address. Although relevant, these concepts do

not reveal additional information beyond the interface of a class. In particular, PengKG

associated 44 of the 100 classes with a concept that exactly matches the class name. PengKG

also contained many overly specific concepts such as CompositeData value (see Table 3.8).

Contrary to concepts with an externally recognized definition, these concepts are meaningless

without prior knowledge of the class implementation.

EasyESA. In contrast to Scode and PengKG, EasyESA ranks concepts from most to least

relevant to the input text. Considering only the top concepts increases the precision of

EasyESA. However, we found that even when considering only its highest ranked result, the

precision was only 22.7%. As more concepts are considered, the precision decreased rapidly,

already to 17.3% when considering the top three concepts (see rows top 1 and top 3 of

Table 3.7).

Scode. Scode produced a large number of concepts for each class, with a considerable

amount of noise. The high proportion of false positives can be explained by explicit general

concepts, which tend to gather large, ill-defined topics during the community search phase of

Scode. Concepts from such large topics were also pervasive in the annotation sets due to

the uniform sampling across topics. For example, if Scode produces for a class three small,

cohesive topics of 20 concepts each, and one large, low-quality topic of 500 concepts, sampling

100 concepts uniformly from the 560 identified by Scode will select mostly concepts from the

large topic, despite most topics being more specific to the class. Specifically, only 1453 of the

43 584 concepts (3.3%) identified by Scode were in topics with at most 25 concepts.

When considering only concepts included in topics of 25 or fewer concepts, we observed

that Scode’s precision was significantly higher, up to 24.8% (see row small topics of Table 3.7).

We used a threshold of 25 concepts for the size of a small topics based on our preliminary

observation of a gap in the distribution of topic sizes, between 25 and 75 concepts. Although

the precision remains modest, within a topic of 16 concepts, approximately four would be

directly relevant to the project, thus warranting a look by developers unfamiliar with the

domain.

We also assessed the quality of the topics by considering their single representative concept,

as defined in Section 3.4.3. The precision of these concepts reached 41% (see the representative

72

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

row of Table 3.7), although a disproportionately large number of concepts were marked as

general and thus excluded from this computation.

Without constraints on the number of topics, we found that most of the time, Scode

produced a manageable number of topics. For our sample of 100 Java classes, Scode produced

at most 15 topics per class. For 90 classes, it even produced ten or fewer topics (including

the five classes for which no concept were identified). The number of topics for an entire

project is also small: When using 227 Android projects as input to Scode (see Section 3.5.6),

it produced on average 16 topics per project, with 90% of the projects having fewer than 26

topics. Thus, it is possible for humans to get an idea of the conceptual context of an entire

project by reviewing only a small number of topics.

Findings: Scode achieves a low precision when considering all implicit concepts (4%).

However, when filtering out large general topics, the precision rises to 25%. Scode is even

more precise for topic representatives (41%). In any configuration, Scode outperforms

EasyESA for a comparable output, but EasyESA generates fewer general concepts. PengKG

is the most precise concept identification technique (71%), but returns many trivial concepts.

In all cases, the modest precision levels suggest that concept identification techniques are

better suited to support semi-automated applications, where a human judge can filter false

positives.

3.5.3 Consistency of the Identified Concepts

Our second research question focuses on Scode’s ability to generate recognized concepts

consistently across projects. We looked at the concepts marked as related to get a sense

of each technique’s performance, and report illustrative examples in Table 3.8. Although

PengKG is more precise than Scode and EasyESA, the concepts it identified were specific

to each class. For example, PengKG identified that many classes of the Java Swing library

define a PREFERREDSIZE, but such a concept has no meaning outside this library. Other

concepts, such as CompositeData value, are obscure outside the specific context of the

class. In contrast, Scode and EasyESA’s concepts have by design a meaning recognized in a

popular independent knowledge base.

To empirically assess the consistency of the three techniques’ output, we measured how

often each technique identified the same concept for different classes. Although some concepts

are genuinely relevant to few classes, a technique should not only identify concepts so specific

73

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

0

25

50

75

0 250 500 750 1000

Concept

#
 o

f
A

s
s
o

c
ia

te
d

 C
la

s
s
e

s

Approach

Scode

EasyESA

PengKG

The x axis shows each con-
cept, in decreasing order
of their recurrence across
classes. For readability, the
x axis is limited to the 1000
most recurrent concepts.

Figure 3.13: Distribution of Concept Frequencies for Scode, EasyESA, and PengKG

that they are only related to a single class. Otherwise, these concepts will be of limited value

when comparing the conceptual context of different classes.

Figure 3.13 shows the recurrence of concepts in our sample of 100 Java classes. We used

all concepts returned by the three techniques to produce this graph, without limiting them

to 100 concepts per class to avoid the bias of a random filter on the output. Therefore, the

figure includes false positives, as not all results were annotated.

As the figure shows, Scode identified the same concept for multiple classes more often

than EasyESA and PengKG. Some general concepts were associated with almost all classes,

whereas other concepts were more specific to a few classes. This distribution of classes per

concept effectively supports a comparison of the domain of multiple classes.

In comparison, PengKG’s concepts were rarely reused across classes. Specifically, the

1006 class–concept pairs from PengKG contained 776 distinct concepts, 84.9% of which were

associated with a single class. The most common non general concept, PREFERREDSIZE,

was associated with only eight classes. In comparison, Scode’s 43 584 class-concept pairs

involved only 1281 distinct concepts. Only 10.9% of them were associated with a single class,

and the median number of classes associated with each concept was 18.

Despite also using a finite set of concepts, i.e., Wikipedia articles, EasyESA also rarely

identified the same concept for multiple classes. Of the 27 943 distinct concepts identified by

EasyESA, 71.9% were associated with a single class. The most common concept, Method,

was only associated with 33 classes, even though such a general concept is related to virtually

any Java class. This result suggests that using an external knowledge base is not sufficient

to identify consistent concepts, and shows the importance of finding a strategy to identify

implicit concepts.

74

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Findings: Concepts identified by Scode are more consistent than those identified by

EasyESA and PengKG. They were linked to a varying number of the 100 sampled classes,

from over 90 classes to a single one, with a median of 18. In contrast, the median EasyESA

concept was linked to two classes, with the most common concept, Method, only found

for 33 classes. The majority of PengKG’s concept (85%) were linked to a single class.

3.5.4 Inclusion List of Computing Concepts

One of our contributions is the manually curated list of 6746 Wikipedia articles about

computing-related concepts. Scode uses this list to remove false negatives from the output of

the wikification service. We investigated whether this inclusion list could also improve the

precision of other concept identification techniques by applying it to EasyESA.50

When using the inclusion list to filter the top 100 results from EasyESA, we observed

that it removed 87.7% of the original concepts, increasing the precision up to 11.0% (see row

with inclusion list of Table 3.7). When considering only the highest ranked result that is

also on the inclusion list, EasyESA achieved its highest precision of 33%, but this precision

dropped rapidly, reaching 22.5% for the first three concepts (see rows top 1 inclusion list and

top 3 inclusion list of Table 3.7).

An inclusion list of concepts also reduces the number of unique concepts that a technique

can return, limiting the number of concepts associated with a single class. In the case of

EasyESA, among the 1070 unique concepts both in the top 100 results for a class and in the

inclusion list, only 38.5% were associated with a single class, and the median concept was

associated with three classes.

Findings: Applying the computing-specific inclusion list of Scode to EasyESA improves

its precision from 23% to 33% (considering only the highest ranked concept). Although

better, it remains below the precision of Scode (41% for topic representatives or 66% for

explicit concepts).

3.5.5 Wikification and Community Search Algorithms

We measured the performance of the wikification service by considering only the subset of

explicit concepts in our annotated data set (see explicit row of Table 3.7). We found that

50As PengKG does not use Wikipedia articles as concepts, we cannot apply our inclusion list to this
technique.

75

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Babelfy identified on average 10.7 concepts per class, with a precision of 66.3% for non general

concepts.

The precision is consistent with what we had observed in the prior comparative study of

six wikification tools (Section 3.3). In this prior study, Babelfy achieved a precision of 75%

with the same configuration as used in this current work. For this precision level, Babelfy

achieved a recall of approximately 35%. This value is close to the maximum performance

of other wikification techniques, which hardly surpass 40% recall, motivating the use of

community search to recover missing concepts.

An important difference between the comparative study of six wikifiers and this study is

the sample of documents. The comparative study used Stack Overflow posts as a sample

of software documents about a variety of technologies. In contrast, this study relies on the

documentation comments (i.e., Javadoc) of Java classes, consistently with the application

domain of Scode. Although they share some similarities (e.g., varying in their length and

editorial quality), the two types of documents differ in their nature, which could affect the

performance of wikifiers. Nevertheless, we observed a similar performance of Babelfy in both

studies. This promising result suggests that the performance of wikification approaches may

generalize to different types of documents within the software domain.

Excluding the explicit concepts, we observed that the precision of the community search

algorithms was low, 2.6%, for identifying implicit concepts (see implicit row of Table 3.7).

However, as discussed above, most false positives are due to large, generic topics. When

considering only small topics, which mostly contain implicit concepts, the precision of Scode

is well above the 2.6% value. Thus, the drop in precision is a necessary cost to achieve

additional benefits, such as identifying further implicit concepts, grouping the results by

topic, and discriminating specialized concepts from generic ones (based on the size of the

community).

Findings: Babelfy’s precision (66%) is almost on par with PengKG (71%), the most

precise technique in our evaluation. In contrast, the community search algorithms introduce

a relatively large amount of noise when identifying implicit concepts (precision of 2.6%),

especially due to concepts that generate large communities.

3.5.6 Topic Cohesiveness

We evaluated the ability of the community search algorithms, developed for general network

science applications, to generate cohesive topics in the context of software-specific knowledge

76

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

non
archivedF-Droid

recent + mature

3091 projects

1000+
words

1051 projects227 projects

software-
specifc

subgraph

Wikipedia
graph

5 ≤ size ≤ 100

1647
clusters

MALLET

10 442 files,
298 525 nouns
(16 841 unique)

random selection

6746 articles

size ≤ 100

3670
communities

random selection

1098
clusters

random selection

2099
communities

random selection

100 LDA topics

45 random sets
(20 concepts

each)

45 LDA topics
(20 words each)

45
communities

45
clusters

Random
baseline

H. clusters Scode LDA

Android projects

Figure 3.14: Sample for the Topic Cohesiveness Evaluation

graphs. We compared the community search algorithms to three baselines: a hierarchical

clustering algorithm [198], latent Dirichlet allocation (LDA) [26], and random groups of

concepts as a soundness check. Because LDA requires a large training set, we sampled entire

Java projects for this evaluation.

Project Sample

Figure 3.14 summarizes our project and topic sampling procedure. We sampled Android

applications from F-Droid [66]. We considered all 3091 applications that were not archived

at the time of the evaluation. We excluded from them applications for which the last version

was released five or more years ago (recency filter) or for which the time difference between

their first and last released versions was less than one year (maturity filter). The recency

filter is relevant to ensure that recent concepts have a chance to be included in our sample.

The maturity filter excludes trivial applications.

77

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

After applying these two filters, we obtained a set of 1051 projects. We removed projects

for which the entire documentation contained less than 1000 words, computed as described in

Section 3.4.2 (documentation filter). We only considered classes and interfaces in the package

matching the application ID of the project, or one of its subpackages. After applying this

filter, we obtained our final sample of 227 Android applications, listed in Appendix A.5.

Topic Sample

We sampled 45 topics from each approach. This sample size is sufficient for a statistical

analysis when comparing ordinal score distributions, but small enough to limit the threat of

annotation fatigue (see the Evaluation Metrics).

We applied Scode to the 227 Android projects, generating a total of 3670 topics. We

removed those that contained more than 100 concepts. We randomly sampled 45 of the

remaining 2099 topics as the sample set from Scode.

Generating hierarchical clusters requires a distance metric between any two concepts,

which we defined as the length of the shortest path between them in the undirected and

unweighted Wikipedia subgraph. We then applied R’s implementation of the unweighted

pair group method with arithmetic mean (UPGMA) algorithm [198] to aggregate concepts

into hierarchical clusters. As the outcome of this algorithm is a binary tree by design, it

is sensitive to noise in the distance function. To mitigate this sensitivity, we rounded the

distance function during the merging phase of the UPGMA algorithm to produce a tree that

is not binary and less deep. After trying different rounding functions, we chose to round

distances to the nearest non-exceeding quarter (e.g., 3.1 and 3.2 were rounded to 3 and 3.3

was rounded to 3.25). We excluded clusters if they either contained fewer than five concepts

or were contained in larger cluster of ten or fewer concepts. We also removed clusters of

more than 100 concepts. This procedure generated 1098 topics, from which we sampled 45 at

random for the evaluation.

To generate LDA topics, we used the MALLET implementation of the algorithm for

Java [136]. LDA is an unsupervised learning technique that takes as input a set of documents

and generates latent topics represented as lists of words [26]. As LDA requires a training

set with many documents to generate a good model, we considered each of the 10 442 files

across all projects as a distinct document. For each document, we only retained nouns, for

consistency with Wikipedia titles which are predominantly noun phrases. We further removed

stop words and converted all nouns to lower case. This preprocessing produced a total of

298 525 terms across the 10 442 documents, forming a vocabulary of 16 841 unique nouns. We

78

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

generated 100 topics, with the initial value of parameters α and β set to 0.01, and using 2000

iterations. We left other parameters to their default values. The resulting topics comprise

between 62 and 670 terms (average of 295).

Finally, to support a soundness check, we generated 45 sets of 20 random concepts selected

using a uniform probability distribution over the 6746 computing-related Wikipedia articles,

with replacement between sets.

Evaluation Metrics

We used two complementary metrics to evaluate the cohesiveness of the topics. The first

metric is a direct, subjective assessment on a five-point ordinal scale from 1 (least cohesive)

to 5 (most cohesive). We asked three graduate students that were not involved in the project

to provide this assessment. For each topic, we showed a maximum of 20 concepts to avoid

overwhelming annotators with very large topics. We split the topics so that each annotator

evaluated 15 topics from each approach, with no overlap.

We used a second metric to mitigate the subjectivity of the direct assessment. This metric

is the success rate of the word intrusion task, described by Chang et al. [43]. In this task, an

annotator is shown a set of N + 1 concepts in random order. N of these concepts belong to

the same topic and the last one, the outlier, is chosen randomly among concepts not in the

topic. The annotator must then identify the outlier among the N + 1 concepts. If a topic is

cohesive, identifying the outlier should be easy, resulting in a high success rate. However,

concepts from a vague topic will be indistinguishable from the outlier. The success rate for

such topics should decrease towards 1/(N + 1). For this evaluation, we chose the value N = 5.

We generated a word intrusion task for each topic, and asked the same three annotators to

perform the task, dividing topics evenly among them and ensuring that the same annotator

did not provide a subjective score on the same topic for which they performed the word

intrusion task.

For both measures, annotators were unaware of the technique that generated each topic.

They did not know how many techniques were being compared, or that some concepts were

Wikipedia titles (which were shown in lower case) whereas others were simply terms from the

vocabulary of the LDA model. When selecting the evaluation metrics, we also considered

synthetic measures such as the Silhouette index [193]. Although these metrics are arguably

more objective than those we selected, their abstraction of human judgment poses a threat

to construct validity.

79

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

1

2

3

4

5

Community H. cluster LDA Random

Concept Generation Approach

C
o

h
e

s
iv

e
n

e
s
s
 S

c
o

re
 (

h
ig

h
e

r
is

 b
e

tt
e

r)

Annotator

A

B

C

Each boxplot aggregates the 15 topics evaluated by one annotator.

Figure 3.15: Distributions of the Cohesiveness Scores on a Five-Point Ordinal Scale for each
Combination of Approach and Annotator

Results

The community search algorithms generated topics that were more cohesive than those from

the three baselines. Figure 3.15 shows the distribution of cohesiveness scores given by each

annotator to topics generated by all four approaches. Each boxplot aggregates the scores

of exactly 15 topics. The results show a consistent trend across annotators: communities

are generally more cohesive than hierarchical clusters, followed by LDA topics, and finally

the random baseline. As expected, random topics were the least cohesive, and validate that

annotators can discriminate spurious topics by giving them very low scores, most often one

or two.

Table 3.9 confirms this observation. It shows the median cohesiveness score of each group

of topics, as well as the average scores, in parentheses, as this measure is more commonly used

to approximate the center of a distribution. However, because cohesiveness scores are not on

an interval scale, the averages cannot be used for further statistical analysis or interpretation.

We used one-tailed Mann–Whitney U tests [132] to test the hypothesis that the cohesiveness

differences are not due to chance. This test compares two groups of ordinal values and

evaluates the probability that a value randomly selected from the first group is larger than

a value randomly selected from the second group. The stars beside each value indicates

80

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Table 3.9: Success Rate of the Word Intrusion Task with Median (and Average) Cohesiveness
Scores for Concepts Generated by the Four Techniques

Annotator Community H. cluster LDA Random

A 60%; 5 (4.3) 40%; 4 (4.2)** 60%; 3 (3.0)** 20%; 2 (1.7)
B 67%; 4 (4.3)*** 60%; 2 (2.5) 60%; 2 (1.9)** 13%; 1 (1.3)
C 73%; 4 (3.8)* 60%; 3 (3.1)* 73%; 2 (2.5)*** 13%; 1 (1.3)

All 67%; 4 (4.2)*** 53%; 3 (3.3)*** 64%; 2 (2.5)*** 16%; 1 (1.4)

Cohesiveness scores are rated on an ordinal scale from 1 to 5, with higher scores given to more cohesive
groups of concepts.
Stars indicate the p-value of a one-tailed Mann–Whitney U test comparing the distributions of cohesive-
ness scores in a column to those to its right: less than 0.05 (*), 0.01 (**), or 0.001 (***).

the significance of the tests between consecutive approaches in the sequence {communities,

hierarchical clusters, LDA, random}.51

All but two comparisons are statistically significant at the 0.05 level. The difference

between hierarchical clusters and LDA topics annotated by B has a p-value of 0.080, and the

difference between communities and hierarchical clusters annotated by A has a p-value of 0.30.

These inconclusive results can be explained by the small group sizes (15 topics), as well as the

high cohesiveness scores (capped at 5) given by A, which limits the discrimination of the most

cohesive topics. When comparing all 45 topics from each approach, all tests are significant,

with p-values all lower than 0.00092, confirming our initial observation (communities >

hierarchical clusters > LDA topics > random concepts).

Table 3.9 also includes the proportion of outliers correctly identified in the word intrusion

task. Interestingly, although communities remain ahead of the other approaches, LDA topics

appear to be more cohesive than hierarchical clusters. One possible explanation for the

higher success rate with LDA topics is that outliers are selected from a different vocabulary

(i.e., Wikipedia articles) than the terms that form the topics (i.e., nouns).52 Due to the

binary result for each topic (success or failure), the only statistically significant differences

are between the random baseline and the other approaches. Detecting a significant difference

between the other approaches would have required an impractical sample size, i.e., over eight

times larger to reduce the confidence interval radius to 5% at the 95% confidence level.

51P-values for non-consecutive approaches are smaller than the minimum of the p-values shown in the
table. For example, the difference of community and LDA score distributions for annotator A is significant
with a p-value lower than 0.01.

52We chose this conservative evaluation approach because it favors the baseline. The alternative, i.e.,
selecting an outlier among the much larger, non computing-specific set of nouns used to train the LDA model,
would have had a negative impact on the LDA baseline.

81

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Findings: Three external annotators found topics identified by community search algo-

rithms significantly more cohesive in a direct evaluation than topics generated by alternative

techniques (hierarchical clustering and LDA). This subjective preference was confirmed by

a corresponding performance on a word intrusion task.

3.5.7 Documentation or Source Code as Input

In this work, we considered the documentation of a software project as input for identifying

concepts. This decision contrasts with prior approaches that extract concepts from source

code identifiers (e.g., [1, 103]).

Although using identifiers is the only option when documentation is lacking, using

documentation as input can leverage more diverse forms of information. We hypothesized

that the two strategies should generate different concepts, because information in source code

is at a lower level of abstraction than the information found in documentation. To validate

this hypothesis, we compared the output of Scode to concepts generated from source code

identifiers.

We used LDA to generate topics from the identifiers in all the source files of the Java 15

standard library.53 We considered each file as a separate document. We split each identifier

based on camel case conventions and underscores and removed terms with less than three

characters. Then, for each group of terms with the same stem according to the Porter

stemming algorithm [177], we replaced all terms with the most common form. We set

the number of topics to 100, the number of training iterations to 2000, and left the other

hyperparameters to their default values in MALLET.

We compared the top LDA topics with Scode’s concepts that are included in small topics

(see Section 3.5.2). As it is difficult to compare LDA topics to concepts represented by

Wikipedia articles, we focused on the vocabulary used by both strategies. We used the union

of the top 20 terms from the top 10 LDA topics and compared it to the set of all terms from

all Wikipedia titles, excluding terms in parentheses. We used their overlap coefficient, i.e., the

ratio of the sets’ intersection size to the size of the smaller set, to quantify this comparison.

As MALLET’s implementation of LDA is not deterministic, we repeated this procedure 100

times.

53An alternative would be to use Scode to identify concepts directly from source code. However, this
comparison would be unfair as the wikification service expects natural language inputs. Most prior work uses
language models such as LDA to identify concepts.

82

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

We found that the overlap between Scode’s concepts and LDA topics varied depending on

the class. Excluding classes for which Scode did not find any small topic,54 the average overlap

coefficient for each class, across the 100 trials, ranged from 0 to 0.19 (standard deviation

ranges from 0 to 0.11). Inspecting the LDA topics confirmed that they capture low-level

concepts. In addition to implementation-specific topics with terms such as length, attribute,

and string, other topics representing domain abstraction are expressed with low-level concepts.

For example, a topic about time zones includes terms such as central, america, and gmt.

Findings: Concepts extracted from recurrent terms in code identifiers differ from those

extracted using Scode: their vocabulary overlaps on average by less than 20%. This is

explained by the identifier-based concepts typically being at a lower level of abstraction

than Scode’s concepts.

3.5.8 Discussion

Beyond evaluating the performance of a single tool, the goal of our evaluation was to explore

the theoretical potential and limits of a new concept identification strategy. The findings

demonstrate the difficulty of this problem. Both phases of Scode achieved good performance

in isolation, but together, the precision remains low. Although there are more precise

concept identification approaches, they typically represent concepts using a project-specific

terminology, limiting the comparison and understandability of the concepts outside the

project’s context. Even for Scode, configuration details matter: Using only concepts from

small topics, topic representatives, or explicit concepts has a considerable impact on the

precision and coverage. Hence, there is currently no single technique to solve all concept

identification tasks.

Scode improves the state of the art with regards to identifying recognized concepts from

documentation. The evaluation showed the potential of an approach like Scode to identify

concepts more consistently. It also elicited challenges to solve to continue improving our

approach. In particular, the density of links in the Wikipedia graph, despite our pruning

steps, introduced noise in the community search algorithms and generated very large topics

that are impractical for developers. Although itself a challenging knowledge engineering task,

constructing a graph of Wikipedia articles with fewer, more meaningful links should improve

the precision of Scode while reducing the size of its output.

54These classes were mostly custom exception types and poorly documented classes.

83

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Another aspect to consider when improving concept identification strategies is the different

relations between concepts and a project. Some concepts that are not related to the current

implementation of a project may still be relevant to know for developers. For example,

developers who work with the MD5 cryptographic algorithm should likely be aware of

alternative algorithms, such as SHA-256. There may also be a distinction between core

concepts implemented by a project, and concepts implemented in third-party libraries.

Precisely identifying such categories of relatedness would be a promising avenue for future

work.

Finally, there is no inherent reason for Scode to use only header comments as input. Future

work could include investigating more types of documentation sources, such as requirements

files and issue trackers, and more preprocessing strategies to improve the precision of Scode.

Solutions to these challenges can be integrated within Scode without having to modify

the other components. Hence, Scode provides a framework to study different aspects of the

concept identification and knowledge graph construction problems.

3.5.9 Threats to Validity

The intangible nature of concepts and of the relatedness relation introduced threats to the

internal validity of our results. Judging whether a concept is related to a class is a subjective

decision. To control this subjectivity, we prepared a strict coding guide, which in particular

avoided speculations about concepts that may be relevant to be aware of, even though they

are not directly used by a class. The authors also performed the annotation task entirely.

Although this may introduce a bias in the annotations, judging the relevance of a concept

to a class requires a considerable effort to understand the class and the concept, as well as

their context. Thus, we favored this threat over the one that would have been introduced by

less motivated external annotators. We further mitigated the threat of investigator bias by

removing any indication of the technique that identified each concept during the annotation

task.

Performing the end-to-end evaluation using classes as a substitute for projects also poses

a threat to validity. This was necessary to design a practical evaluation, as it would be

infeasible for annotators to read and understand all components of entire projects. The

impact of this threat was mitigated by the fact that, in the context of this work, a concept

that is relevant to even a single class in a project is by definition relevant to the project. This

property shows a beneficial aspect of Scode: it can be used to analyze projects at different

granularities, from a project to a class level.

84

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

Similarly, most of our results focus on concepts rather than topics. We made this

decision as prior work have already rigorously evaluated the properties of the topic modeling

techniques used by Scode, including the communities’ cohesiveness [6, 68, 97, 100] and the

use of pagerank to select a topic’s representative [124]. To ensure these previous results would

apply in a software development context, we performed additional evaluations to measure

the cohesiveness of topics and the precision of topic representatives.

The evaluation of the topic cohesiveness relied on the judgment of external annotators. In

this case, we found that external annotators were a better option as the annotation tasks were

better encapsulated and required less contextual knowledge. Nevertheless, the background

of each annotator can affect the internal validity of the results. To mitigate this threat, we

triangulated results from two complementary metrics—a direct but subjective assessment of

the cohesiveness and the success rate of the word intrusion task—and from three annotators

working independently. To assess the consistency of the external annotators, we tested the

hypothesis that topics for which an annotator succeeded at the word intrusion task would

receive higher cohesiveness scores by the other annotators. We observed that all tests were

significant at the 0.05 level using Mann–Whitney U tests, except the one that compared

cohesiveness scores attributed by annotators B and C to topics for which the word intrusion

task was performed by annotator A (p-value of 0.086). This suggests that the results of the

evaluation are reliable, despite the subjectivity of cohesiveness.

The different vocabulary used by LDA topics and PengKG’s concepts can also introduce

a bias in our evaluation. We mitigated this bias by normalizing the concepts presentation

during the annotation tasks, i.e., by putting them in lower case. We also removed the

occasional clarifying terms in parentheses that are characteristic of Wikipedia titles for the

end-to-end evaluation. By doing so, different articles can result in the same concept. During

the annotation task and when reporting results, we considered these articles as a single,

polysemous concept. We erred on the side of inclusion when judging the relatedness of

such polysemous concepts, as trying to find an unrelated sense for each concept would be

counter-productive. We did not remove parentheses from Wikipedia titles for the cohesiveness

evaluation as the bias favored the LDA baseline.

Finally, our sampling strategies limit the generalizability of our results. For the topic

cohesiveness evaluation, we sampled open source Android projects. This sampling frame

biases the output of the compared techniques towards Java- and Android-related topics. For

the end-to-end evaluation, we used classes instead of larger project components as input

units to ensure that it was possible for the annotators to reliably understand the context

of each unit when judging the concepts. We also only sampled classes from a single source,

85

CHAPTER 3. CONCEPTUAL DEPENDENCIES OF SOFTWARE DOCUMENTATION

i.e., the standard Java Class Library. However, given that this library is intended to provide

fundamental classes supporting a wide variety of applications, it covered concepts from a

large variety of computing domains.

86

Chapter 4

Variations in Software Tutorial Design

In the previous chapter, we reported on our investigation of conceptual dependencies of

software documents. This research project applied to readers before they start reading

documentation: Our findings can help capture the background that readers must have to

understand a document, and orient them to further resources to address knowledge gaps

prior reading the document. However, identifying the conceptual dependencies of existing

documents is insufficient for a writer who wishes to improve the quality of the documents.

The writer must judge which concepts they should describe and which ones they can leave

as part of the expected background of readers. Beyond the selection of concepts to cover in

a document, it is challenging to organize the content of a document in a way that allows

readers to easily find the information they are looking for.

To address these challenges, we focus on the design of tutorial documentation. For software

development organizations, both large and small, software tutorials serve as a façade for a

technology and can help better market it [57]. Many developers refer to “Getting Started”

documentation or introductory tutorials when learning new APIs [141]. Thus, high-quality

tutorials can help organizations increase the usage share of their flagship products as well as

upstart projects to acquire critical adoption levels.

What constitutes a high-quality tutorial, however, remains an open question. A glance at

the offerings for popular technologies shows a diversity of styles related to content selection

and presentation. In this chapter, we report on a systematic data-centric analysis of popular

tutorials to better understand the design dimensions for software tutorials.

We looked at three tutorials aimed at beginners to Android programming: The App Basics

tutorial from the official Android Developer Documentation (AndroidOfficial), Google’s

Android Developer Fundamentals tutorial (GoogleCourse), and Vogella’s Android Development

87

CHAPTER 4. VARIATIONS IN SOFTWARE TUTORIAL DESIGN

tutorial (VogellaTraining). We selected these tutorials because of their quality, inferred from

their cohesiveness, up-to-dateness, and authoritativeness. The selection process consisted of searching

for Android tutorials on three web search engines and manually discarding low-quality results (see

our online appendix for the exact selection procedure [14]). We avoided the many tutorials that

consist of loosely structured collections of documents or poorly edited blog posts. We used this

selection process to elicit a variety of design decisions made by professional writers, rather than to

gather a representative sample of tutorials.

Despite their similar audience and purpose, the tutorials differ in essential ways. We observed

radical variations in their division into sections and their use of code fragments and links to other

documentation. The overlap of topic coverage between tutorials was also surprisingly low, hinting

at different content selection strategies.

Publication This study of design variations in tutorials was published in an article titled “A

Data-Centric Study of Software Tutorial Design”, which appeared in IEEE Software [15].

Study Data The complete details of the study procedure, including the criteria to select tutorials,

as well as the data collected during the study, are available in a data artifact [14]. Appendix B

details the content of this artifact.

Note This chapter presents the results from a collaboration with another PhD student, Deeksha

Arya. The author and D. Arya contributed equally to this research project. We present all the

results together to keep this thesis more coherent and self-contained.

Studied Tutorials

AndroidOfficial is the set of introduction documents under the “App Basics” header from the

Android platform [8]. It is the official set of short references to get programmers started quickly

on Android development. GoogleCourse is the “Android Developer Fundamentals” tutorial

created by the Google Developers Training Team to accompany an in-person course leading to an

entry-level Android certification [80]. VogellaTraining is the set of training resources under

the “development starter” and “fundamental” sections of the Android Development tutorials of the

Vogella training platform [225].

4.1 Design Decisions

Consistent with van der Meij et al.’s discussion of the evolution of content and presentation of

software tutorials between 1980 and 2009 [138], we chose to compare the three tutorials based on

88

CHAPTER 4. VARIATIONS IN SOFTWARE TUTORIAL DESIGN

Table 4.1: Organization Design Dimensions with Sample Decisions and Their Impact on the
Readers

Decision When/Why Trade-Off

Structure of the tutorial components
Sequential sections
forming a single
narrative

Provides beginners with an ex-
plicit entry point and a measur-
able progression

Requires readers to go
through sections that may be
less relevant to them

Modular set of
independent, focused
sections

Allows more advanced develop-
ers to only read sections that ad-
dress their information needs

Creates more complex depen-
dencies between sections that
can be challenging to navigate

Context included in a code fragment
Complete
compilable code
(e.g., entire files)

Encourages readers to clone the
examples for a more participa-
tory tutorial

Can distract from or hide the
code elements of interest

Short focused
fragments (e.g., few
statements)

Focuses the discussion on rele-
vant code, e.g., when comparing
different approaches

Can become challenging for
readers to integrate many fo-
cused fragments together

Links to external resources
Integral
component of the
tutorial

Reduces tutorial creation and
maintenance effort, and provides
a broad overview of the topic

All links:
Each additional link can dis-
tract the reader, who needs to
jump back and forth between
the tutorial and external re-
sources

Optional
supplement for
specialized topics

Allows readers to further their
expertise and interest on a topic

two aspects: the content they present, and the organization of this content. We captured details

about the organization of a tutorial by extracting structural properties such as the number and

length of each document and section of a tutorial and of its code examples. We operationalized

the content of a tutorial using Stack Overflow tags as a closed set of topics that a tutorial may or

may not cover. This data allowed us to reflect on the design of the tutorials based on quantitative

evidence.

We observed several impactful differences between tutorials, which we articulate as eleven design

decisions along five dimensions. Tables 4.1 and 4.2 summarizes these decisions, with their rationales

and trade-offs, related to the organization and content of a tutorial, respectively. Importantly,

different parts of the same tutorial can realize different decisions, even within the same dimension.

89

CHAPTER 4. VARIATIONS IN SOFTWARE TUTORIAL DESIGN

Table 4.2: Content Design Dimensions with Sample Decisions and Their Impact on the
Readers

Decision When/Why Trade-Off

Main topic selection strategy
Selection based on
external factors

Tailors the tutorial con-
tent to demonstrated in-
formation needs

Reduces the cohesiveness of top-
ics, compared to a baseline re-
flecting the author’s perspective

Selection based on
interactions between
topics

Describes how topics work
together to build more
complex applications

Requires a lot of effort: the num-
ber of interactions grows expo-
nentially with topics

Selection of additional topics
Implementations of
broad core topics

Provides concrete details
to understand a core topic
in a specific context

All topics:
Each additional topic lengthens
the tutorial, making it more ex-
pensive to create and maintain,
and more daunting to readers
who may want to get coding
quickly

Non-functional topics
(e.g., development tools)

Introduces beginners to
good development prac-
tices early

Peripheral topics (e.g.,
third-party libraries,
deprecated APIs)

Addresses varying needs of
readers working on special-
ized applications or legacy
systems

For example, a tutorial creator hired to document new features of an API may choose to design

the tutorial as a modular set of independent sections for an audience already familiar with the

technology. They may use focused code fragments throughout each section to keep the focus on

the new features, and base the content of the tutorial on external factors such as popular feature

requests to showcase the value of the updated API.

In the remainder of this chapter, we discuss each dimension in depth, including examples of

design variations from the three Android tutorials, and details of the process we followed to analyze

the tutorials.

4.2 Tutorial Organization

Table 4.3 reports structural properties of the tutorials under study. Although the three tutorials are

not intended to be representative of all tutorials, we compared them to eleven other introductory

90

CHAPTER 4. VARIATIONS IN SOFTWARE TUTORIAL DESIGN

Table 4.3: Properties of the Three Studied Tutorials Compared with Eleven Other Android
Tutorials for Context

Property Android Google Vogella Others (11)
Min. Mean Max.

Documents* 56 33 10 4 38 109
Sections* 292 697 333 16 252 712
Words 83 351 103 431 21 890 1559 30 925 104 441
... per document 1488 3134 2189 212 948 2984
... per section 285 148 66 32 135 240

Code fragments 338 430 174 2 222 711
Visible code fragment characters 67 810 90 107 102 141 172 132 528 454 856
... per code fragment 201 210 587 86 607 905

Hyperlinks (non-self referencing) 1447 1800 64 3 237 847
... to other pages of the tutorial 529 2 4 0 42 124
... to advanced tutorial pages 110 0 2 1 92 340
... to API reference documentation 602 1018 0 0 4 29
... to other resources 206 780 58 1 98 606

* A document refers to a web page, delimited into sections by a header (HTML h1-h3 tags).

Android tutorials to assess how they fit among the range of available tutorials (see the online

appendix for the details of our sampling strategy). We found that, except for an uncharacteristically

high number of hyperlinks, they do not exhibit unusual properties.

Intended Reading Order

All three tutorials are designed to be read in different manners. GoogleCourse’s content is

organized in a single sequence to read in a prescribed order. This single sequence is easy to follow

for beginners who may not know in advance what information is the most relevant.

In contrast, AndroidOfficial does not have a clear reading order. Each document contains

only information related to a focused subject, and delegates related information to other documents.

Thus, AndroidOfficial consists of a complex network of 56 short documents (with 5.2 sections on

average, compared to 21.1 and 33.3 sections for GoogleCourse and VogellaTraining) linked by

529 references to each other. Decoupled documents can improve their reusability in other learning

frameworks, according to Boyle [29]. They are also useful to readers with specific information

needs: Readers can access the desired information without wasting time on context built in prior

documents. Links to other documents provide learning resources for related concepts if necessary.

91

CHAPTER 4. VARIATIONS IN SOFTWARE TUTORIAL DESIGN

VogellaTraining, with its ten documents, lies between AndroidOfficial and Google-

Course with regard to its reading sequence. The largest document (103 sections and 8437 words,

more than twice the size of the second largest) covers a list of concepts that beginners should

read in sequence, similarly to GoogleCourse. The other nine documents explore in more details

different fundamental aspects of Android. These shorter documents share similarities with Android-

Official’s documents, as they can be read in any order and focus on a specific concept. The

combination of both organization styles is a compromise that grants readers the flexibility to explore

different aspects of the framework as they please, after having been introduced to fundamental

notions relevant to all of these aspects.

Use of Code Fragments

The tutorials exemplify two approaches for presenting code fragments to the reader. Android-

Official and GoogleCourse mostly contain short code fragments that focus on the statements of

interest. In contrast, VogellaTraining’s code fragments often display an entire file, including more

trivial information such as the package and import declarations. Despite these general tendencies, all

three tutorials use both short and long code fragments at some point, with the largest code fragment

having 2110, 1525, and 2368 characters respectively for AndroidOfficial, GoogleCourse, and

VogellaTraining.

Code fragments that focus on a single method do not overwhelm the reader with unnecessary

information. They convey a clearer purpose. In contrast, showing the complete content of a

file provides context for the relevant code. It thereby allows readers to follow the evolution of

code through several manipulations and understand how different concepts interact in a complete

application.

Another interesting design decision, although only observed in AndroidOfficial, is to present

equivalent code fragments in both languages officially supported for Android development, Java and

Kotlin. The tutorial uses a tabbing mechanism to show fragments in the language the reader prefers.

This design can increase the audience of a tutorial, but requires the additional cost of creating and

maintaining pairs of equivalent code fragments.

Links to External Resources

Resources found outside a tutorial can complement the content of tutorials. These external resources

can include pages of advanced tutorials from the same website, official API reference documentation,

and other resources, for example, blogs and third party libraries.

AndroidOfficial uses external resources to lighten its content, allowing readers to go through

each document more quickly. It contains 110 links to advanced tutorial pages hosted on the same

website. There are 602 links to API reference documentation in AndroidOfficial, to avoid

92

CHAPTER 4. VARIATIONS IN SOFTWARE TUTORIAL DESIGN

redundant descriptions of API types. It also contains 206 links to other resources, among which 163

links refer to official documentation hosted on the Android Developer website, such as graphical

design guides. This large number of links is representative of the Android documentation website,

which can be viewed as a large network of learning resources, of which AndroidOfficial is a

subset. These external resources conveniently refer readers to additional concepts, but can break the

flow of the tutorial if readers navigate back and forth between the tutorial and external resources.

GoogleCourse also contains many links (1798) to external resources. The 1018 links to API

reference documentation are due to mentions of API types being systematically linked to their

reference documentation. The remaining 780 links point to a variety of resources, including websites

of different technologies (e.g., the Mockito framework), Stack Overflow posts, and coding exercises,

often under a “Learn more” header. This use of links contrasts with AndroidOfficial, as external

resources are explicitly marked as supplemental material. Hence, in GoogleCourse, the external

resources complement, rather than directly support, the content of the tutorial.

VogellaTraining contains far fewer links to external resources, amounting to 60 in total.

It contains zero references to the API documentation, and so often repeats text that is already

present in the official documentation. Without a method to synchronize updates to the official

documentation with the content in the tutorial, VogellaTraining faces the risk of containing

inconsistent information and becoming outdated [10]. The hyperlinks that it does contain usually

point to the root page of documentation-hosting websites rather than specific documents. Similarly

to GoogleCourse, these few links in the main text of the tutorial encourage readers to remain

within the tutorial until its completion to limit potential distractions. VogellaTraining even

includes programming exercises between the more conceptual sections, limiting the need for readers

to refer to an external resource for practice material.

4.3 Tutorial Content

The lack of content presentation standard for tutorials makes their investigation a difficult prob-

lem [74]. To provide an objective definition of a tutorial content topic, we used Stack Overflow tags

as proxies for topics.

We retrieved tags that contain the substring “android”. After removing irrelevant tags, such

as specific Android versions, we obtained 393 topics, related to API types (e.g., android-intent),

libraries (e.g., android-glide), and generic concepts (e.g., android-camera).

For each of the 3× 393 = 1179 tutorial–topic pairs, we manually identified whether the tutorial

covers the topic, reporting the section where the topic is covered (when applicable) as evidence. We

did not discriminate between degrees of coverage, but considered passing mentions as insufficient to

cover a topic. All authors independently annotated a distinct set of pairs which included a common

subset of 20 tutorial–topic pairs from each tutorial. On this common subset, the annotators achieved

93

CHAPTER 4. VARIATIONS IN SOFTWARE TUTORIAL DESIGN

covered by one or two tutorials are not equally distributed: GoogleCourse covers 119 of them,

while AndroidOfficial covers only 32 of these additional topics.

The topics common to all three tutorials include the most basic aspects of Android development.

For example, it includes android-layout, android-view, android-activity, and android-intent—the four

pillars of any Android app. It also includes android-ide, android-gradle-plugin, and android-emulator

to teach beginners to implement, build, and run an application. Thus, all three tutorials cover at

least the essential topics to develop a basic application.

Topics covered only by AndroidOfficial relate to features of Android devices, even if they

may not be used by a majority of beginners, such as android-gps, and android-strictmode. In contrast,

the many topics solely covered by GoogleCourse include convenient API classes (e.g., android-

pendingintent) and third-party libraries (e.g., pocketsphinx-android), helping beginners explore topics

beyond those strictly necessary to start a project.

VogellaTraining covers some deprecated APIs, such as the popular tag android-listfragment.

The coverage of deprecated APIs can be helpful for developers joining older projects or if the classes

are used in Android projects despite the deprecation notice. A survey conducted by Lethbridge

et al. revealed that 81% of the 45 respondents agreed that even though it may not be up to date,

software documentation can still be useful [115].

The inclusion in a tutorial of topics beyond the essential core to use the framework constitutes a

design trade-off. Comprehensive tutorials that cover a broader range of topics require additional

effort from the authors and may discourage readers by their increased length. However, omitted

topics can prevent beginners from exploiting useful features.

Popularity of Topics

We use the number of Stack Overflow questions associated with each topic as a measure of how

prevalent its related information needs are among Stack Overflow users. The incidence matrix in

Figure 4.1 shows that tutorials tend to cover popular topics. AndroidOfficial, GoogleCourse,

and VogellaTraining cover respectively 22, 37, and 28 of the 50 most popular topics, but only

zero, one, and two of the 50 least popular ones. However, all three tutorials cover topics across the

whole range of popularity, and leave out some of the most popular topics that are demonstrably

challenging for developers.

AndroidOfficial covers fewer of the popular topics than the other two tutorials. For example,

it covers android-view, but not its more popular subclass, android-recyclerview. It excludes other

popular topics that are not essential for building applications, such as android-fragments (third most

popular). Thus, AndroidOfficial remains strict in its goal to provide the minimal information

to build simple applications, as opposed to GoogleCourse and VogellaTraining, which are

broader.

95

CHAPTER 4. VARIATIONS IN SOFTWARE TUTORIAL DESIGN

Tutorial authors cannot only rely on a topic’s popularity to decide whether to cover it, as

popularity is not a perfect assessment of relevance. Popularity depends also on the complexity of the

topic: prevalent but trivial topics are less likely to generate questions from developers. For example,

retrieving metadata about an Android application using the ApplicationInfo class is not very complex,

but is an important task for beginners to learn. Introductory tutorials still need to cover these

prevalent topics, so a lack of popularity does not indicate that the topic is irrelevant. Some of the

least popular topics are covered by all three tutorials, including for example android-applicationinfo,

which is among the 150 least popular topics.

Categories of Topics

Many of the covered topics are associated with an API type from the Android Framework (e.g.,

android-asynctask corresponds to the type android.os.AsyncTask). Although such type-related topics

amount to only 34% of all 393 topics, they constitute the majority of topics covered by Google-

Course and VogellaTraining (50% and 52%, respectively), and 38% of the topics covered by

AndroidOfficial. The tutorials also cover many topics related to the architecture and components

of Android, e.g., android-styles and android-manifest. Similarly to type-related topics, these topics

reveal that GoogleCourse and VogellaTraining largely cover the functionality and behavior

of the API, as opposed to other relevant concerns such as third-party libraries and development

tools.

Another common kind of covered topics are Android features visible to end-users, such as

android-sharing, and android-orientation. For example, AndroidOfficial, GoogleCourse, and

VogellaTraining uniquely cover android-keypad, android-launcher, and android-button respectively.

We observed that this kind of topic was especially prevalent in topics uniquely covered by Android-

Official.

Contrary to AndroidOfficial and VogellaTraining, GoogleCourse covers external

libraries such as android-espresso and android-glide. Although it defers to their documentation for a

more extensive description, a short introduction increases awareness of the Android development

ecosystem.

Finally, all three tutorials cover few topics related to development methods and tools, such as

android-lint and android-monkey, ignoring even official development tools such as android-ndk and

android-jetpack. This general bias against development and maintenance concerns is surprising, as

beginners would benefit from learning good development practices.

Correlated Topics

As software technology is comprised of multiple interacting components, cohesive tutorials cannot

cover topics in isolation. For example, Android activities and intents should be discussed together,

96

CHAPTER 4. VARIATIONS IN SOFTWARE TUTORIAL DESIGN

as intents are used to switch between activities. To assess the cohesiveness of the tutorial contents,

we looked at pairs of topics that frequently co-occur, i.e., are tagged on the same Stack Overflow

question. We considered the pairs of topics that co-occur in at least 40 questions, which cumulatively

constitute over 75% of all co-occurrences.

Figure 4.2 shows how many topics of each pair are covered by each tutorial. Both Android-

Official and VogellaTraining cover only one topic in almost half of the correlated pairs.

Covering the other topic in these pairs would convey a more cohesive and complete perspective of

Android programming, but each additional topic can in turn create a new correlated pair with only

one covered topic. Tutorial authors must carefully choose when to stop adding related topics to

avoid overwhelming a reader. Consistently with the previous observation of a small set of topics

covered by all tutorials, only 42 topic pairs (6%) are covered by all three tutorials.

GoogleCourse and VogellaTraining both cover the two topics of all but three of the top

20 most frequently co-occurring pairs. In contrast, AndroidOfficial covers only half of the 20

most common pairs. This observation is consistent with the organization of AndroidOfficial as

short, decoupled sections. In many cases, when a pair consists of a broad topic and a more specific

one, e.g., android-layout with android-linearlayout, AndroidOfficial typically only discusses the

broader topic. So AndroidOfficial provides an overall introduction to the framework, but leaves

out specific instances of the different concepts.

4.4 Towards a Systematic Approach to Tutorial Design

The design of tutorials has evolved over time, for example, by introducing minimalist documentation

in response to work on improved usability and readability of shorter, focused texts [138]. This

evolution is similar to the evolution of software design, which is supported by conceptual frameworks

and tools to systematically assess and document design decisions. However, contrary to software

design, no such system exists for tracking tutorial design rationale.

Our investigation of the organization and content of three introductory Android tutorials has

revealed many variation points in tutorial design. The lack of a standardized format for tutorials is

not inherently problematic, and in fact design variations can be beneficial in tailoring documentation

to a specific audience. However, we find that tutorial creators must be careful in the design decision

they make. Creators should consider alternative decisions based on evidence of their impact on how

different audience will receive the tutorial. Even carefully composed tutorials can be poorly received

if its content does not match the information needs of its target audience. Thus, we propose a

framework, captured in Tables 4.1 and 4.2, that authors can use to systematically review the design

of their tutorials.

97

CHAPTER 4. VARIATIONS IN SOFTWARE TUTORIAL DESIGN

To illustrate how these guidelines can be useful, we consider the case of a tutorial creator who is

tasked to write a “Getting Started” tutorial to present a novel unit testing library. Their initial draft

consists of a series of sections that cover all features of the library, with one feature per section.

Upon reviewing our guidelines, the tutorial creator may realize that their long draft can

discourage readers. Thus, they keep only the description of the core features in a sequential reading

order for a quicker introduction. To cater to advanced users, they can refactor sections about

specialized features into optional independent sections, excluded from the main tutorial, and add

“Additional Reading” boxes at relevant places in the tutorial to link to those sections. They can

also decide to cover additional topics based on external factors, such as common testing patterns

and features of competing libraries. However, to keep the main tutorial more cohesive, they can

choose to only place those topics in the optional sections.

While incorporating our guidelines in Tables 4.1 and 4.2, authors must balance trade-offs based

on the context and expectations of each tutorial. In the previous example, the tutorial writer may

have instead opted to avoid links to optional sections altogether, to avoid possible distractions

for beginners and reduce the tutorial creation effort. Both strategies have their merits. Although

our study focused on tutorials targeted at an audience of Android programming beginners, our

guidelines are applicable to different technologies and audience expertise levels. The guidelines are

thus offered as a tool to stimulate additional reflection and encourage a systematic and informed

approach to tutorial design.

98

Chapter 5

Casdoc: Code Examples with

Interactive Annotations

The previous chapter presented several decisions used to select and organize the content of profes-

sionally created tutorials. Although we highlighted different strategies to create tutorials, we did

not gather empirical evidence of the behavior of readers when faced with each design variation. As

the next and final part of this thesis, we delve deeper into the design of a documentation format

(i.e., the organization aspects of a document) for learning resources for the usage of unfamiliar

application programming interfaces (APIs).

Documentation is a crucial asset to understand an unfamiliar software system [77, 189]. However,

creating high-quality documents is effort-intensive, as documentation quality is a multi-faceted

challenge [98]. Documents must not only contain enough information to address the needs of its

audience [51], but the information must also be readable, navigable, and understandable [5, 232].

These aspects, which relate to how the content is organized and presented, are necessary to ensure

readers can locate the information they seek. Without a carefully designed format, documents that

contain a lot of information—which is typically a desirable quality—may fail to emphasize the most

useful fragments (e.g., [244]).

The evolution of web technologies has motivated a migration from printed documents to web

pages. This migration is an opportunity to revisit documentation formats [93, 221]. Programmers

can now find a large amount of learning resources online, including official documentation from

software organizations, public forums such as Stack Overflow, community-maintained knowledge

bases such as Wikipedia, and a plethora of tutorials on virtually any development technology.

New formats have emerged to change how users interact with information systems, such as video

tutorials [63, 219]. Researchers have designed new approaches to create [49] and consume [105]

video-based content. Others have also investigated augmented reality (AR) and virtual reality (VR)

100

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

environments to contextualize information and encourage content exploration (e.g., [111, 117, 123,

237]). More recently, research has shown the potential and challenges of conversational agents as

an intermediate layer between users and documents [209, 214]. Software engineering researchers

have also proposed different techniques to alleviate the effort and expertise required to create good

software documentation by generating content (e.g., [35, 121, 153]) or retrieving it from knowledge

bases (e.g., [56, 176, 233]).

Yet, despite the explosion of digital documentation, the structure of information within text-based

documents has not evolved considerably since the early days of the Internet. Most documents

present information as a fixed linear sequence of headers, paragraphs, and supporting elements such

as code examples, figures, and tables.

The static format of a traditional web page has several benefits. It is familiar to most writers

and readers, and it can be viewed in any web browser, printed, or read by a screen reader. Due to its

lack of interactivity, a traditional format also does not require writers to design a user interface, and

readers to learn how to use this interface. Nevertheless, an important limitation is that the structure

of information does not match how many readers consume the information in a document. Studies

have found that programmers often jump between sections of a document, focus on elements such as

code examples, and try to only read the content relevant to a specific task [30, 95]. Such behavior

was necessary with printed resources, but web technologies create opportunities for interactive

documents that better support a variety of reading behavior. Thus, new approaches are needed to

improve the way documents present information to programmers.

We present Casdoc, a novel technology for improving the presentation of online learning resources

for programmers. Casdoc, which stands for Cascading documentation, presents the content of an

HTML document as a graph of concise and interactive annotations rooted in a code example. A

transformation tool simplifies the authoring process of these documents by generating them from

annotated code files. Casdoc is a solution to improve the navigability of content in code-oriented

documents. Specifically, we designed Casdoc for documents that most readers will not read in the

same order. For example, readers will read different sections of how-to guides based on the task

they want to perform with a given API. In contrast, Casdoc is not optimal for documents where

readers are not expected to look for targeted information, such as a first programming tutorial for

novices, where a static format with a single linear narrative is preferable (possibly complemented by

annotated Casdoc code examples).

In a Casdoc document, readers interact with code elements to reveal further explanations of

those elements. Information about elements that are irrelevant to a reader remains hidden to avoid

unnecessary distractions. Casdoc relies on popovers and dialogs to achieve this objective. Hence, it

recasts two graphical elements which are typically used for secondary navigation aid as the primary

structure to organize the content of a document. As a result, this strategy splits the content of a

document into concise annotations. Annotations are created by the document’s author, who inserts

101

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

them directly into working code files as code comments. This authoring process is similar to the

generation of API reference documentation from header comments, but supports a different type of

documentation (i.e., tutorials and other learning-oriented documents). By writing each explanation

in isolation, authors do not need to concern themselves with the narrative flow of the document.

The Casdoc transformation tool then converts the annotated code files into dynamic web documents.

Researchers have proposed other techniques to add interactive elements to existing static

documents, such as data visualizations [17, 133, 134], custom annotations [96], and automatically

generated links to external resources [16]. Others have suggested to make document visualization

software more interactive with navigation features inspired by paper-based formats [202, 207].

Specifically for software documentation, explaining why specific code examples are matched can

help programmers decide on the pertinence of the code search results [228]. Digital documents can

also contain dynamic elements, such as runnable code examples [144, 222], explorable statistical

analyses [61], or modifiable machine learning models [22]. All of these techniques, however, do not

change the linear organization of information in existing documents.

With Casdoc, we challenge this traditional structure. Through the design and implementation

of the format, which does not require specialized software, as well as the transformation tool, we

explored alternative solutions for interacting with documentation. The design of Casdoc is guided

by principles elicited from prior work on document usage behavior.

The prototype implementation served as an instrument to study how programmers react to

a non-linear format. First, we conducted a seven-month field study with 326 participants and

126 documents. Participants were undergraduate students enrolled in a programming-intensive

software design course, who used the documents to learn professional software design know-how.

We collected and analyzed over 18 000 participant actions on the documents to assess the strengths

and limitations of Casdoc in an ecologically valid environment.

We complemented these quantitative results with qualitative navigation patterns observed during

a laboratory study. The laboratory study consisted of asking participants to solve a series of

implementation tasks using an unfamiliar API during a one-hour session. Participants had only

access to a limited set of documents that we authored specifically for the tasks. Each document

showed information both in the Casdoc format and in a non-interactive textual representation.

We analyzed the audio and video recordings of the participants’ use of the documents during the

sessions to assess how Casdoc supported or hampered recurrent navigation patterns.

Based on our results, we propose guidelines for designing new code-oriented documentation

formats and improving existing ones. We also leveraged these findings and feedback received on

preliminary versions of this work [154, 158] to design an improved version of Casdoc. Finally, we

released a set of public learning resources for software design that use the Casdoc format. Hence,

we make the following contributions:

102

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

1. the description of an interactive and non-linear format for software documents, which addresses

common documentation issues (Sections 5.1 and 5.7);

2. an analysis of five relevant document design factors, based on prior work (Section 5.2);

3. a complete methodology for the design of a field study that maximizes the ecological validity

and reliability of the results in a context where the investigators have authority over participants

(Section 5.3);

4. the complete material to perform controlled experiments with programming tasks that elicit

meaningful information needs within a short time period (Section 5.5);

5. the results of our studies, synthesized into guidelines for designing new software-oriented

documentation formats and insights into the combination of multiple formats (Sections 5.4

and 5.6).

Publications Preliminary stages of the Casdoc project were presented at two conferences. The

initial implementation of Casdoc was published in an article titled “Casdoc: Unobtrusive Explanations

in Code Examples”, presented at the International Conference on Program Comprehension in

2022 [154]. Preliminary results of the field study were published in an article titled “A Field Study

of Developer Documentation Format”, presented at the CHI Conference on Human Factors in

Computing Systems in 2023 [158].

A comprehensive description of Casdoc, including the field study design and results, is presented

in an article titled “Non Linear Software Documentation with Interactive Code Examples”, currently

under review for the journal ACM Transactions on Software Engineering and Methodology [160].

The details of the laboratory study are presented in an article titled “Evaluating Interactive

Documentation for Programmers”, currently under review for presentation at the conference ACM

Designing Interactive Systems in 2024 [162].

Study Data The material necessary to replicate the field study is publicly available from the

Casdoc project’s web page, at https://www.cs.mcgill.ca/~martin/casdoc/. The page includes a link

to a free online service to convert annotated code files into the preliminary version of Casdoc used

during the field study, with a detailed description of the annotation syntax. The page also includes

links to the course textbook, which has a public companion website, and to the annotated code

examples used in the study. The annotated code examples have been updated to the newest version

of Casdoc, but their content is similar to what was available to participants during the field study.

We do not publicly release the database of interaction events collected during the field study to

protect the participants’ information.

103

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

The material necessary to replicate the laboratory study is publicly available as an online

artifact [161]. The artifact contains the set of documents, task instructions, and programming

environments. It also includes the qualitative annotation guidelines and results of each phase of our

analysis.

Appendix C presents the content of the Casdoc project’s web page and of the data artifact in

detail.

5.1 The Casdoc Documentation Format

Casdoc is a presentation format for online programming learning resources. Casdoc documents

present a central code example, with additional explanations as interactive annotations. Authors

create documents by writing regular source code files and inserting explanations in-place as code

comments. The Casdoc transformation tool then converts the annotated code files into interactive web

documents. Our implementation currently supports code examples written in the Java programming

language.

Casdoc is designed for learning resources that focus on the implementation of programming

concepts, such as programming forum posts and tutorials. It can demonstrate how to use a

programming technology or the realization of programming concepts such as design patterns. In

contrast, Casdoc is not intended for internal developer documentation and documents that focus on

theoretical concepts.

5.1.1 Presentation Format

Figures 5.1 to 5.5 present five views of a Casdoc document. The initial view of the document shows

only a central code example, which acts as the root of the document. For example, Figure 5.1 shows

a code example that illustrates how to use Java’s cryptography application programming interface

(API) to encrypt a message.

Additional explanations of the root code example are placed in annotations. Annotations are

interactive elements that are overlaid on top of the code example. They are hidden in the initial

view of the document. Readers can selectively reveal the annotations that contain information

relevant to them, then hide them again once they no longer need the information. Annotations

can include any kind of content, such as textual explanations or definitions of relevant concepts,

alternative code examples, sample input and output data, and figures.

Each annotation is associated with a specific code element, called its anchor. Anchors have

visual markers, which indicate the presence of additional explanations to the reader. The anchor of

an annotation can be any string of text on a single line (inline anchor) or any continuous set of

lines (block anchor) in the code example. Figure 5.2 shows an annotation, anchored on the keyword

104

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

byte, that explains why the original message is stored in a byte array as opposed to a String object.

Some annotations can be associated with multiple anchors, for example when an important code

elements appears multiple times.

The anchor of an annotation can also be a string of text inside another annotation, such as the

mention of an important concept. In this case, the annotation that contains the anchor is the parent

annotation, and the annotation that the anchor links to is a nested annotation. Figure 5.3 shows a

nested annotation that defines the expression “zeroing an array”, which appears in the annotation

about the byte array. Nested annotations can themselves contain other nested annotations.

Readers can view annotations in two forms. Hovering over an anchor reveals a floating annotation,

which disappears when the reader leaves the area of the anchor and its annotation (Figure 5.2).

Floating annotations allow readers to read, then discard, many explanations only by moving their

mouse, without cluttering the document. Clicking on an anchor pins the annotation, keeping it

visible until the reader clicks again on the anchor (Figure 5.4). Readers can move and resize pinned

annotations. Pinned annotations allow readers to revisit later information that they find useful.

Thus, by moving and resizing pinned annotations, readers can organize the content of a document

in a way that fits their preferences and needs.

Typical annotations come from the comments inserted by the document’s author in the annotated

code file. However, the Casdoc transformation tool automatically creates additional annotations

with the official API reference documentation for standard Java types and their members (Javadoc

annotations), anchored on the type or member’s name in the code.1 By contrast, annotations

created by the document’s author are referred to as original annotations. If the anchor of a Javadoc

annotation overlaps with the anchor of an original annotation, the two annotations are combined

into a single one, with the two fragments clearly separated. Figure 5.4 shows an annotation that

contains both the rationale for using the SecureRandom class instead of the more usual Random to

generate numbers, and the reference documentation of that class.

To help readers orient themselves across the graph of annotations, Casdoc includes several visual

aids and navigation tools. When an annotation is pinned, a pin icon appears beside its anchor,

and the anchor is highlighted when the reader hovers over the annotation (Figure 5.4). Pinned

nested annotations show a breadcrumb trail to indicate their parents and allow readers to open

them (Figure 5.5). Readers can also use a custom search bar to search among the content of all

annotations.2 Finally, readers can undo and redo pinning and unpinning actions, e.g., in case they

accidentally close a nested annotation and forgot where the anchor was.

1The anchor of Javadoc annotations are not indicated by markers, to avoid too many anchors and because
the presence of the annotation is predictable.

2The native search feature of web browsers cannot reveal or find text in hidden annotations.

107

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

The special syntax for declaring annotations does not interfere with the original Java code.

Therefore, the annotated files can be validated for syntax and symbol resolution by any compatible

compiler

5.1.3 Implementation

Casdoc documents are self-contained. The HTML file generated by the transformation tool contains

all declared annotations, using dedicated HTML elements to identify them and their anchors. The

visual elements and interactive aspects of the format are implemented with client-side CSS and

JavaScript assets, which themselves only rely on mature libraries.3 Hence, Casdoc documents can be

viewed in any software that supports standard web technologies and can be deployed easily without

requiring a complex server infrastructure.

The transformation tool is implemented as a Java program. It relies on a Java-specific parsing

and symbol resolution library to extract custom annotations from code comments and Javadoc

annotations related to standard types and members. A preliminary version of the tool is available

as a free online service from the project web page.4

5.2 Key Properties of Casdoc

Documentation formats can vary across numerous dimensions, such as the length of code examples,

the interplay between text, figures, and code, or the use of external resources as integral or

peripheral information sources [87] (and as shown in Chapter 4). The creation of Casdoc involved

many decisions, from core design principles to technical implementation details. Not all of those

decisions, however, have the same impact on the ways readers find information in documents.

We identified five properties of Casdoc that are key components of the format. Casdoc documents

1. focus on code examples,

2. gradually reveal information,

3. split information into small fragments,

4. use explicit hints about the information structure, and

5. integrate content from external sources.

3The web assets can optionally be embedded in the Casdoc document, to make it a truly independent
HTML file.

4https://www.cs.mcgill.ca/~martin/casdoc/

109

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

The properties are informed by prior work on programmer information needs and reading behavior.

Each property thus corresponds to a hypothesis, namely that the property will help readers locate

the information they need within a document. We used these properties to scope our evaluation of

Casdoc. This scope focuses our findings on aspects of documentation that can be found in other

existing formats or that can be used to design new ones.

We present each property with the prior work that supports it, its realization in Casdoc, and

other examples of the property found in existing documentation. We also discuss potential limitations

of the property, or contexts in which it may be detrimental to a document’s quality. Table 5.1

shows an overview of the properties across a sample of documentation sources and formats. Those

examples demonstrate alternative implementations of the properties. We note that the presence or

absence of a property does not correlate with the overall quality or usefulness of the documents. In

particular, the official Java tutorials (second row), despite being high-quality documents, do not

exhibit any of the studied properties. We selected all resources as examples of good documentation.

The objective of this work is to explore various strategies for presenting information, rather than

try to rank different formats.

We discuss these properties as they apply within the context of a single document, i.e., a single

web page. The organization of documents within a set is outside the scope of this work.

5.2.1 Focus on Code

The document format emphasizes high-quality code examples that readers can use to

understand a concrete application of software development technologies.

Tutorial authors recognized the importance of good code examples [87] and many of the

documentation retrieval and synthesis techniques focus on code examples as the main source of

information(e.g., [56, 76, 233]). They capture concrete solutions that anchor the discussion of

more abstract concepts or guidelines related to the code. A code example is also a useful starting

point for programmers to copy and adapt to accomplish the task they want. For those reasons,

programmers commonly choose to first read the code examples of a tutorial, and only refer to

surrounding text if they need more information [30]. As a result, documents without code examples,

or with code examples that are too simple, are viewed as less helpful by programmers [152, 189].

The benefits of code examples in learning resources are similar, to an extent, to the benefits of video

tutorials: they allow the audience to follow along a concrete application of the abstract concepts

being discussed [130].

Implementation Casdoc focuses on code by anchoring the hierarchy of annotations in a complete

and compilable code example. Other learning resources emphasize code differently. Some tutorials

are accompanied by curated sets of standalone examples, intended to integrate the notions described

110

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

Table 5.1: Presence of the Five Properties in Documents from Various Sources

Document Source FC GR SF EH EC
Link

Casdoc ✓ ✓ ✓ ✓ ✓

https://www.cs.mcgill.ca/~martin/casdoc/

Oracle’s Java Tutorials - - - - -
https://docs.oracle.com/javase/tutorial/java/index.html

Java API documentation (Javadoc) - - ✓ ✓ -
https://docs.oracle.com/en/java/javase/17/docs/api/

Stack Overflow - - ✓ - -
https://stackoverflow.com/questions

Android Developer Guides - ✓ - ✓ -
https://developer.android.com/topic/architecture

Amazon API Gateway’s FAQs - ✓ ✓ - -
https://aws.amazon.com/api-gateway/faqs/

R Cookbook ✓ - ✓ - -
https://rc2e.com/

Codelets [166] ✓ ✓ ✓ ✓ -
https://dl.acm.org/doi/10.1145/2207676.2208664

Adamite [96] - ✓ ✓ ✓ -
https://adamite.netlify.app/

SISE [215] - ✓ ✓ - ✓

https://dl.acm.org/doi/10.1145/2884781.2884800

FC: Focus on Code; GR: Gradual Reveal; SF: Small Fragments;
EH: Explicit Hints; EC: External Content

in the tutorial into solutions for more complex scenarios.5 Other online resources, such as GitHub

Gist,6 are themselves databases of code examples, often with a minimal description of the example’s

purpose, which can be used on their own or in combination with other documents. Programming

“cookbooks” are a more structured version of code example databases.7 They typically focus on

implementation solutions that the reader can adapt to perform common tasks with a technology.

Some online learning platforms also guide readers through the implementation of a small program

as the main learning activity.8 However, although such platforms place a higher importance on code,

some readers may prefer to see the complete program first, instead of going through each step of the

guide. Finally, Oney and Brandt proposed to embed documentation in shareable code fragments,

called Codelets [166]. Programmers create Codelets as an HTML document using specific tags to

5E.g., https://www.tutorialspoint.com/javaexamples/index.htm and https://www.w3schools.com/java/java_
examples.asp

6https://gist.github.com/
7E.g., the Python [23] or R [125] cookbooks
8E.g., Google Codelabs, https://codelabs.developers.google.com/

111

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

identify links between the code example and its related documentation. Although their idea aims at

helping programmers integrate code examples found on the web, rather than as a learning resource

directly, Oney and Brandt acknowledge the pedagogical potential of Codelets.

Limitations Code examples alone are often insufficient to describe complex programming tasks.

Documents that focus on code should not entirely omit accompanying explanations, which can help

the reader adapt the code example to their situation, distinguish important parts of the code from

peripheral elements, or learn related concepts. For example, Stack Overflow answers that contain

only code often receive downvotes or edit requests to add some explanation of the code [152].

5.2.2 Gradual Reveal

The document format reveals only a small part of the content at a time, letting the

reader understand one fragment before showing the next.

Being overly verbose and containing insufficient information are two common, yet conflicting

issues of documentation [5]. Including more information in a document is necessary when the

audience is large and varied, as it is often the case for software documents addressed to third-party

programmers. However, too much content can have a detrimental effect if it increases the time and

effort each reader takes to find the information they need. When readers spend, or estimate that they

would spend, too much effort to find the parts of a document they need, they are likely to look for

another document [126, 234]. In their idea of the “Minimal Manual”, Carroll et al. suggest to “slash

the verbiage” [40]: technical writers should reduce the length of manuals by removing redundant

and superfluous parts, to avoid readers misusing the documents or missing crucial information.

Crowd-sourced documentation platforms in particular, such as Stack Overflow, can accumulate

overwhelming content on popular topics. They must find effective ways to emphasize the most

important information to readers [244]. Exposing readers to only parts of a document at a time is

an alternative solution to this conflict between completeness and verbosity.

Implementation Casdoc gradually reveals its content through annotations in floating popovers

or pinned dialogs. The initial view of a Casdoc document shows only the code example, and the

reader chooses which annotations to reveal by interacting with their anchors. Collapsible HTML

components can also be used for that purpose, allowing readers to choose which information to

reveal.9 Tabbed containers can be useful to include multiple variants of the same content fragment

in a document without increasing its bulk. They can show, for example, information to accomplish

9E.g., the FAQs document of Amazon API Gateway uses a collapsible element for the answer of each
question: https://aws.amazon.com/api-gateway/faqs/

112

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

a task with alternative technologies, allowing readers to select the technology that is relevant to

them.10

Limitations Revealing information gradually inherently relies on a format that can be modified

over time, based on the reader’s or timed triggers. Thus, this property may be harder to consistently

implement or adapt across software applications and viewing devices. For example, the Casdoc

format is designed for mouse interaction in desktop web browsers, and does not support well mobile

devices, touch-based interactions, or printing. This single supported context limits the usability of

Casdoc documents. Furthermore, dynamic documents are not well suited for long-term archival

purposes, unless the viewing technology is archived with them. Thus, it may be useful to produce

a static version of dynamic documents as a replacement in situations that do not support user

interactions.

5.2.3 Small Fragments

The document format presents its content as a series of concise fragments that each

convey a single self-contained idea.

It is common for programmers to read a document out of sequence [30]: they may look for a

specific section related to their needs, skip information that they already know, or go back to an

earlier point in the document to find background information about a concept. A set of concise

and decoupled fragments supports such reading behaviors. In contrast, documents composed of

vaguely bounded and highly dependent fragments force their readers to read larger sections to

contextualize and understand the information they seek, which can create a feeling of verbosity.

Additionally, identifying clear fragments in a document can facilitate the reuse of the content

into other documentation systems (e.g., [56, 99, 233]) or in integrated development environments

(e.g., [166, 176]). This reuse scenario expands the value of the document’s information beyond its

original purpose.

Implementation Casdoc’s annotations encourage authors to partition the information into

concise fragments that will be presented in small popovers and dialogs. Annotations can link to

further supporting explanations in nested annotations, but they should present a complete idea by

themselves. Non-interactive formats can also be organized as small fragments. For example, API

reference documentation typically contains one fragment per API type or member.11 Readers are

10E.g., Android Developer Guides uses this strategy to show equivalent code examples either in Kotlin or
Java: https://developer.android.com/guide

11E.g., the Java API reference documentation (Javadoc), https://docs.oracle.com/en/java/javase/17/docs/
api/index.html

113

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

not expected to read the entire API documentation to understand the fragment about a particular

element. Question and Answer (Q&A) forums often exhibit this property, as answers are typically

created as independent fragments.12

Limitations Documents that appear too fragmented can irritate readers [216]. Fragmentation

can lead to frustration when readers do not know how to find a fragment of interest, or when they

need to gather multiple fragments scattered across a document to answer a query. To prevent this

problem, authors should organize the fragments carefully to support an intuitive navigation and place

fragments that relate to the same task close to each others in the document’s structure. Dividing

the content of a document into small fragments can also break its narrative flow or disorient readers

that do not know what information they must look for. Thus, this property may be detrimental in

some contexts, such as online courses for a homogeneous novice audience.

5.2.4 Explicit Hints

The documentation format includes explicit hints, distinct from textual cues, to help

readers understand and navigate the structure of a document.

Navigating within the content of a document is an important aspect of information search [174].

Given the amount of web resources readily available and indexed by search engines, readers have a

strong incentive to look for other documents if they do not find the information they seek quickly

in the current one. Visual hints of the structure and content of a document reduce the cost of

within-document navigation and provide a sense of location and control [208]. They can be an

especially important tool to mitigate limitations of other properties, such as fragmentation [216].

This property is more incremental than the previous ones. Multiple types of visual hints can be

incrementally added to a format to reveal complementary aspects of the structure.

Implementation Casdoc uses markers to indicate the presence of annotations related to a code

element or to a concept. Annotations containing only Javadoc information, however, do not have

markers as their presence is predictable. The Adamite annotation tool uses a similar strategy to

mark parts of a document that have been annotated by readers [96]. Casdoc also uses indicators

such as “pin” icons, breadcrumbs, and highlighting to identify the anchor of a pinned dialog. The

XCoS code search approach proposed by Wang et al. presents information related to different

aspects of the query (e.g., non functional requirements) to help users navigate the list of results [228].

Although those hints are text-based, they constitute a navigation structure distinct from the main

list of results. Existing documents also include recurrent types of alternative hints. For example, a

12For example, the popular Stack Overflow programming forum, https://stackoverflow.com/questions/

114

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

table of contents that remains visible and indicates the current position of a reader as they scroll

within a page is useful to convey a sense of location within an overview of the document.13 API

reference documentation uses hyperlinks to relate relevant fragments, such as a function to its

parameter and return types.14 Although hyperlinks are a common feature of many websites, the

extremely predictable nature of a link’s target in reference documentation makes them an effective

mechanism to navigate its structure, as opposed to the arbitrary links in typical documents.

Limitations Structural cues integrated in the main text of a document must be used sparingly.

They can bloat the content and dilute its relevant information. Ideally, explicit hints should be

clearly separated from the document’s content, so that the reader can ignore them once they reached

the information they sought. Alternatively, hints that rely only on non-textual elements, such as

Casdoc’s markers, can easily be distinguished from the content. However, the hints’ purpose must

be intuitive, or they risk confusing the readers. They also limit the accessibility of a document for

some readers. For example, readers using a screen reader would be oblivious to Casdoc’s markers,

and therefore to all of its annotations. Thus, purely visual hints should be complemented with other

navigation cues, possibly embedded in the HTML tag attributes.

5.2.5 External Content

The document format provides a systematic way to integrate information from external

sources within its original content without corrupting or misappropriating either source

of information.

The extensive prior work on documentation generation and information retrieval (e.g., [121,

176, 215, 233]) constitutes a valuable opportunity to increase the coverage of a document. Formats

should be designed to leverage these approaches to reduce the effort of multiple authors documenting

similar technologies, similarly to how software development evolved to promote the reuse of software

packages (especially when well documented).

Implementation Casdoc automatically integrates API reference documentation as additional

annotations. These third-party annotations are identified by special icons and contain a link to the

information’s source. When the anchor of a third-party annotation overlaps with the anchor of an

original annotation, the two are concatenated into a single annotation that clearly distinguishes its

two parts. As an alternative, the SISE tool designed by Treude and Robillard integrates information

fragments from the Stack Overflow forum at the top of API reference documentation pages [215].

13The Android Developer Guides use such interactive tables of contents, https://developer.android.com/
guide/components/fundamentals

14For example, Java’s API reference, https://docs.oracle.com/en/java/javase/17/docs/api/

115

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

The imported information is presented in a rectangle overlay, and contains links to the original

Stack Overflow posts.

Limitations The trustworthiness, authoritativeness, and tone of imported content can differ from

the document’s original content and vary between external sources. Thus, including content from

various sources can create jarring changes for the reader, which can affect the perceived qualities

of the original content. Clearly identifying the provenance of external content can mitigate these

issues. Attributing proper credit is also an ethical and sometimes legal requirement.

5.3 Field Study Design

We evaluated Casdoc in a field study with undergraduate students enrolled in a software design

course. Throughout the course, participants had access to a suite of Casdoc documents that

complemented the course material. We analyzed how they navigated within the content of each

document to assess the strengths and limitations of Casdoc.

We sought to answer the following research questions:

RQ 5.1 Is Casdoc a suitable format for creating learning resources for programmers?

RQ 5.2 What is the impact of Casdoc’s key properties on the navigation behavior of the readers of

a document?

(a) Focus on Code

(b) Gradual Reveal

(c) Small Fragments

(d) Explicit Hints

(e) External Content

RQ 5.1 assessed whether Casdoc is a valuable addition to the documentation landscape. We

answered it by offering participants an alternative baseline format, code examples with static code

comments, and comparing the adoption of the two formats. RQ 5.2 assessed whether the five key

properties described in Section 5.2 help readers find information within a document. To answer these

questions, we instrumented the generated documents to log events when participants interacted

with Casdoc’s features.

5.3.1 Research Method

Our study falls within the field experiment category of Stol and Fitzgerald’s framework of research

methods [203]. We designed the study to prioritize the ecological validity of the results. We

116

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

conducted our investigation within a natural setting, i.e., a university course, but manipulated the

environment to introduce Casdoc documents. This strategy favors the realism of the setting, while

allowing the introduction of new elements, such as the Casdoc format, that do not exist in a purely

natural setting.

As participants could freely choose and change the documentation format they used, the study

is similar to that of a quasi-experiment with a within-subject design. Beyond the field study, our

investigation also integrates some aspects of action research, as we continued to improve the Casdoc

format based on our findings, to integrate the new documents as a permanent part of the course

material for future students (see Section 5.7).

5.3.2 Participants

The field study took place during two consecutive sections of a third-year undergraduate course on

software design with an important programming component. All students enrolled in the course

could choose to participate in the study by agreeing to a consent form for the collection of their

interaction data.15

Students are a subgroup of the target audience for Casdoc, i.e., programmers who are learning

software development concepts and the usage of some libraries. Although we do not claim that this

sample is representative of all programmers, the participants did not act as proxy for a different

population.

Both authors had a teaching role in the first section. This familiarity with the course was crucial

to create relevant Casdoc documents. The authors were not involved with the second section.

Given that the investigators had authority over participants of the first section, participants

remained completely anonymous throughout both sections of the study. This anonymity was

important to avoid an unintentional pressure on students to participate in the study or use a format

if they did not feel comfortable. Consequently, we did not collect demographic information to

measure specific properties of the sample. However, the population from which the sample is taken

is well known. Senior undergraduate students in computer science consists predominantly of young

adults with only a few years of programming experience, with a minority having previously done

industry internships. Before registering for the software design course, students are expected to

be familiar with the programming language of the course, Java, and its standard library, but not

necessarily with advanced concepts.

15This study was approved by the Research Ethics Board Office of McGill University, file number 21-06-007.

117

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

5.3.3 Documents

We used the content of the companion website of the course’s textbook [188] to create the corpus

of Casdoc documents.16 The website contains three types of documents, namely lists of exercises,

descriptions of their solutions in prose, and 126 code examples: 72 of them implement code described

in the textbook (i.e., chapter code) and the other 54 implement solutions to the exercises (i.e.,

solution code).

We converted each code example into the Casdoc format and inserted additional explanations as

annotations. We did not modify the exercise or solutions, which consist mostly of text. The original

code examples sometimes contained code comments. We retained those comments in the converted

documents, rather than transforming them into further annotations.

We also converted the annotated code examples to a static baseline format. This format included

all new annotations as code comments, but it did not include the API reference documentation for

standard Java types to avoid unreasonably large comments. This information is, however, easily

accessible via the students’ integrated development environments (IDEs) and via the official Java

documentation website.

The code examples were available on a public website dedicated to the study. The website

showed the first document in the Casdoc format to all participants to encourage them to try the new

format and provide a consistent user experience. Once on a document, participants could change

between the two formats whenever they wanted to. The website stored the last format used in a

browser cookie to open the next document in the same format.

The study website initially contained only the annotated code examples. After observing a low

study participation rate during the first section, we added the exercises and solutions, unmodified,

to the website. Following this change, the retention rate of participants increased for the second

section.

5.3.4 Data Collection Infrastructure

We instrumented the documents to record traces of the participants’ activity. Client-side JavaScript

functions created the interaction events and sent them to an HTTP POST endpoint of a dedicated

data collection server. Only Casdoc documents had interactive features, and therefore generated

interaction events. However, the server also recorded document requests in either format and

requests to change the format. These events did not rely on client-side functions. For the second

section, we also modified the server to record the total number of requests it received, both to

16https://github.com/prmr/DesignBook

118

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

Table 5.2: Events Collected During the Field Study

Event Origin IDs Details

Visit any page * server D
Consent to study server P/S
Withdraw consent server P
Start new session server P/S
Open code example server P/S/D format
Change format server P/S/D new format
Open/Close annotation client P/S/D annotation ID
Interact with marker client P/S/D marker ID
Use search widget client P/S/D query; selection(s)
Use navigation widgets client P/S/D result

* This type of events was only collected during the second section of the course.

monitor the website’s status and to estimate the sampling bias.17 We report on an analysis of the

sampling bias in Section 5.4.3

This logging mechanism was asynchronous and did not affect the user experience. The usage

of Casdoc’s features did not require a successful exchange with the website, other than fetching

the document with an initial GET request. Thus, problems with the data collection infrastructure

would not affect students, unless the entire study website was down.

The study website did not require any form of authentication, or ask for personally identifiable

information, to preserve the anonymity of participants. To follow events performed by different

participants, we stored two HTTP cookies in each participant’s browser, in addition to the format-

related cookie. Upon consent, participants received a randomly generated 64-bit integer in a

persistent cookie (i.e., the participant ID). The website also sent a second random integer in a

session cookie (i.e., the session ID), which was reset every time the browser was reopened.

Table 5.2 summarizes the types of events we collected. The first six types of events are generated

by the website, whereas the last four types are generated by JavaScript functions and sent through

the HTTP POST endpoint. For each event, the website stored the type of event and a timestamp,

as well as the IDs of the participant (P), session (S), or document (D) and the additional details

described in the last column.

This procedure was minimally intrusive to participants. After providing their initial consent,

the participants did not see the data collection mechanisms while using the documents. This was a

deliberate choice to avoid constant reminders that participants were observed, which could affect

their behavior. As a consequence, we did not rely on tools such as pop-up dialogs or surveys to

17We did not observe any unusual access patterns, except for a large number of requests to the website’s
home page: there were almost six times as many requests to the home page as the number of requests to all
code examples combined. These requests could be due to web crawling or server maintenance bots.

119

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

Table 5.3: Summary Statistics of the Collected Data

Property Section 1 Section 2 Total

Study length (days) 104 102 206
All document requests * – 19 594 –
Code example requests * – 14 644 –
Enrolled students 165 321 486
Participants 124 202 326
Sessions 176 541 717
Opened code examples 827 6511 7338
Logged interactions 2795 15 570 18 365

* including from non-participating students

gather the feedback of participants. Thus, although we did not collect insights about the subjective

perceptions of participants on Casdoc, the collected data is more likely to represent the true behavior

and preferences of participants.

5.3.5 Data Preparation

Table 5.3 gives an overview of the data we collected. In total, 326 participants generated over 18 000

interaction events. They consulted the 126 code examples a total of 7338 times. We collected more

data during the second section of the course, partly due to the larger enrollment and to the changes

to the study website made between the two sections. However, both data sets show the same trends

(see Section 5.4.3).

We reassembled the flat list of events into a meaningful structure to analyze our results. The

actions of each participant are split into sessions, i.e., a period of continuous usage of the website.

During a session, a participant viewed code example documents. Participants performed different

actions on code examples, such as viewing an annotation and using the search widget. Based on

a preliminary inspection of the data, we considered all events performed within 15 minutes of

consenting to the study as part of a learning period. We excluded the data of all participants who

did not interact with the website beyond their learning period.

We initially split sessions using the session ID cookie. However, we found that the cookie was

unreliable to track continuous usage. Some participants rarely closed their web browser, creating

sessions that spanned many days or weeks. We split such long sessions whenever a participant did not

generate any event for two consecutive hours.18 Within each session, opening a document initiates a

new code example view, and all subsequent actions performed on this document are associated with

18We chose the threshold of two hours based on the distribution of time between two consecutive events
with the same session cookie. Nevertheless, as we did not observe a significant drop in the distribution, this
threshold is only approximative. We avoid relying too much on sessions in our analysis.

120

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

this view. After artificially splitting long sessions, any document that remained opened initiates a

new code example view in the second part of the session if the participant performed any action on

the document. A single session can contain multiple views of the same document, if it is closed and

reopened, and multiple views of different documents can overlap.

We grouped successive events associated with the same Casdoc annotation as a single annotation

view action. Each annotation view starts with zero or more hovering events, optionally followed

by a pin event, and a final optional unpin event. We grouped together multiple hovering events if

they were less than five seconds apart, to account for participants accidentally moving outside the

marker and immediately going back to it. To avoid spurious events, a hovering event was generated

only if the participant hovered for at least one second over a marker.

As each keystroke in the search widget generated a new event, we grouped all events that

incrementally built towards a single search query, as well as subsequent interactions with the search

results, as a single search action. Each use of the breadcrumbs and the undo and redo buttons

constitutes a separate action.

5.3.6 Study Design Trade-Offs

There is an inherent trade-off between the realism of, and control over, the study setting. As the field

study favors realism, we could not control when or for how long participants used the documents.

Field studies also lack the control of confounding factors that the sterile environment of laboratory

experiments provides. Thus, the decision to conduct a field experiment limited the precision of

our measurements and generalizability of our results [203], but produced concrete insights that are

directly applicable to an existing context. These insights led to the improvement of Casdoc for

future students enrolled in the course.

Another early decision point was the choice of the environment in which to conduct the

study. We chose to study students enrolled in a university course. Alternative options included

looking for programmers outside our organization, such as professional developers, or using remote

experimentation platforms such as Prolific.19 The effort involved in recruiting participants for a

long-term study (several months) and creating a realistic environment in which participants would

need learning resources was a deciding factor for choosing the university course. A consequence of

this decision was the need to mitigate potential pressures on students. We thus designed the data

collection to be anonymous and minimally intrusive, which was consistent with the choice of our

research method. Recruiting students as participants also narrowed down the sampling frame of our

study. Thus, our results are specific to a well-defined subset of Casdoc’s target audience, and more

experimentation is required to generalize them to more experienced programmers.

19https://www.prolific.co/

121

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

The number and choice of document formats to compare was also an important decision.

Alternative formats include presenting the additional explanations in a narrative text above, below,

or interleaved with the code example, as well as presenting a varying number of explanations in

static documents. Offering more formats to participants can help contextualize our observations.

However, each format requires a considerable effort to produce, and too many formats can overwhelm

participants. We chose to offer one baseline format to have at least one point of comparison for

Casdoc. We selected static, commented code examples for the baseline as it is conceptually the

closest to Casdoc. We did not vary the content of documents to avoid students missing some relevant

information due to their choice of format.

Regarding the collection of events, there is a trade-off between the reliability of the events and

the quality of the user experience. Asynchronous client-side functions increase the risk of losing

some data, e.g., due to students with an unreliable Internet connection. HTTP cookies can generate

inconsistencies in the data, e.g., due to students clearing their cookies during the course. The

website’s HTTP POST endpoint was also vulnerable to potential attacks from malicious actors,

who may try to send fake events. We accepted these risks to improve the user experience, to honor

our responsibility to create a suitable learning environment for students in the course. The features

of Casdoc were not affected by corrupted cookies or the latency of the study website, as they

would have if the content of annotations was retrieved using synchronous requests, for example. To

limit and detect the generation of corrupted events, we ensured that key events were generated by

the website, such as new document requests. For example, events describing interactions with a

document that was never opened would reveal some inconsistencies. We also devised a strategy

in which the type of event in the client-side scripts would be encrypted based on the session and

participant IDs to make it harder to send undetected fake data to the POST endpoint. We found

no inconsistency in the collected data.

5.4 Field Study Results

Figure 5.7 shows a timeline of the participants’ activity through the study, and Table 5.4 presents

an overview of the main study artifacts and observations. Although we excluded 122 short-term

participants (37.4%, see Section 5.3.5), we retained interaction data related to 6770 document views

by the others. As participants viewed the large majority of documents (96.1%) in the Casdoc format,

the data shows clear usage patterns for the different features of Casdoc, but only limited insights

into situations that Casdoc does not support well. We present these patterns in Section 5.4.1, and

discuss their implications on documentation formats in Section 5.4.2. We discuss the aggregated

data from both sections together, as participants from the two groups exhibited the same patterns.

In Section 5.4.3, we report on an analysis of the differences between the two sections and of the

sampling bias.

122

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

0

50

100

150

5 10 15

Week

D
o
c
u
m

e
n
ts

(a) Section 1

0

250

500

750

1000

5 10 15

Week

D
o
c
u
m

e
n
ts

(b) Section 2

Figure 5.7: Number of Code Examples (Documents) Accessed by Participants During Each
Section of the Course

Table 5.4: Summary Statistics of the Data After Preprocessing

Property Section 1 Section 2 Total

Participants 54 150 204
Sessions 155 1060 1215
Unique code examples 123 * 126 126
Code example views by all participants 677 6093 6770
Code example views in Casdoc format † 670 5836 6506
Unique original annotations 417 417 417

* For technical reasons, three code examples were not available during the first course
section. We fixed this issue for the second section.
† Excluding views during which the participant changed format

5.4.1 Casdoc Usage Patterns

Tables 5.5 and 5.6 present the detailed findings of the field study, grouped according to our research

questions.

RQ 5.1. Viability of Casdoc The majority of participants (178 of 204, or 87.3%) used only the

Casdoc format throughout the course. Considering that participants had no explicit incentive to use

Casdoc rather than the baseline format, this observation strongly suggests that Casdoc is suitable

for presenting annotated code examples. Furthermore, among the 26 participants who tried both

formats, only six (23%) retained the baseline until the end of the course. Most of the participants

who reverted to Casdoc did so within the same session.

123

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

Table 5.5: Metrics and Results by Research Question

RQ Question/Metric Sec. 1 Sec. 2 Total

5.1 Viability of Casdoc
Participants who used only Casdoc 49 129 178
Participants who tried the baseline format 5 21 26
. . . only during the learning phase 1 5 6
. . . for only one document after the learning phase 2 8 10
. . . for only one session (2+ documents) after the learning phase 1 3 4
. . . for multiple sessions 1 5 6
Participants who changed to the baseline format more than once 0 3 3
Participants who kept the baseline format until the end 1 5 6

Findings: Most participants only used Casdoc. Most of those who tried both formats changed back to
Casdoc within the same session.

5.2a Focus on Code Examples
Server-side code example requests — 14 644 —
. . . chapter code — 8857 —
. . . solution code — 5787 —
Server-side exercise statement requests — 2539 —
Server-side solution description requests — 2411 —
Solution code to description requests ratio — 2.4 —
Average number of links to solution code per solution description — 3.8 —

Findings: Participants found value in documents centered around code examples, to support the rest of
the course material.

5.2b Reveal Information Gradually
Annotation views 356 1889 2245
Participants who used annotations 35 115 150
% annotated document views with 1+ annotation view(s) 18.8% 15.6% 15.9%
% markers in the code example interacted with (average, by participant) 9.3% 9.1% 9.1%
% unique original annotations viewed by at least one participant 23.0% 60.9% —*
* We did not aggregate the coverage of unique annotation over the two sections as the
documents changed slightly between the sections.

Findings: Most participants used annotations to find further information about elements of the code
examples, but only for a minority of the documents they looked at.

5.2c Split Information into Small Fragments
Annotation views 356 1889 2245
. . . viewed by only hovering on the anchor 311 1632 1943
. . . viewed by clicking on the anchor 43 227 270
. . . viewed without interacting with the anchor 2 30 32
Original annotation viewed from the anchor 228 1385 1613
. . . with a nested anchor 41 131 172
. . . with an anchor in the code example 187 1254 1441

Findings: Participants mostly viewed annotations in floating boxes, suggesting that they can grasp
the information quickly. Participants viewed nested annotations at a relative rate similar to top level
annotations.

124

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

Table 5.6: Metrics and Results by Research Question (Continued)

RQ Question/Metric Sec. 1 Sec. 2 Total

5.2d Structure Information with Explicit Hints
Breadcrumbs used 0 1 1
Undo/redo buttons used 0 1 1
Search queries 4 208 212
. . . where the participant hovered over the results without selecting one 0 32 32
. . . where the participant selected at least one result 2 20 22
Participants who used the search bar at least once 3 43 46
Document views with at least one search query 3 159 162
% inline (vs block) markers seen by participants (average) 57.8% 61.1% 60.3%
% inline (vs block) markers interacted with by participants (average) 85.6% 86.9% 86.6%

Findings: Participants did not rely often on secondary navigation aids, suggesting that the markers are
effective navigation hints. However, small differences in the visual appearance of markers impacted their
effectiveness.

5.2e Support the Integration of External Content
Unique annotations in all documents 1565 1529 —
. . . with only Javadoc content 1148 1112 —
Annotation views 356 1889 2245
. . . with only Javadoc content 128 485 613

Findings: API reference documentation augmented code examples with a considerable number of
annotations without additional effort. These imported annotations were used by participants, representing
a quarter to over a third of all annotation views.

We investigated the documents that triggered a format change and the participants that chose

the baseline format over Casdoc to identify scenarios that Casdoc does not support well. However,

we found no clear trend in the type of documents (i.e., chapter code or solution code), number

of annotations in the documents, or whether the document was among the first ones read by the

participants. For example, some participants switched to the baseline on their first document after

the learning period, whereas others only tried the baseline after having read over 80 documents

already.

RQ 5.2a. Focus on Code Example As all documents presented a central code example in

both Casdoc and the baseline format, we could not measure the impact of this property based

on the interaction with the code example. Instead, we compared the number of requests for code

examples to requests for other documents to assess the value of code-oriented documents. As the

study website did not log requests during the first section, this analysis relies only on the second

section of the course.

Figure 5.8 shows the number of weekly requests for each document type. Students looked at code

examples, in particular chapter code, almost three times as often as exercise and solution descriptions.

The number of requests fluctuated over time, but the usage of code examples was strongly correlated

to the exercise and solution descriptions (Pearson’s r = 0.93 between the distributions of weekly

125

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

0

300

600

900

0 5 10 15

Week

R
e
q
u
e
s
ts

Type
chapter code solution code

exercise solution

Figure 5.8: Requests to Each Type of Document Received by the Study Website During Each
Week of Section 2

requests), suggesting a consistent usage of all types of documents.20 Comparing the solution code

and description requests can provide more detailed insights into the usage of text-oriented and

code-oriented documents. There were nine solution descriptions (i.e., one document per chapter),

each linking to an average of 3.8 solution code examples. Each solution description document

presents the complete solution to all exercises, with smaller code fragments to illustrate the main

part of a solution. However, we still observed that, for each chapter, participants requested solution

code examples 2.4 times more often than solution descriptions on average. This ratio did not vary

considerably per chapter, even for the two chapters where the solution descriptions did not include

any link to solution code (ratios of 2.1 and 1.7). For each chapter, the ratio of solution code to

solution description requests ranged from 0.9 and 1.5 (first two chapters) to 4.1 and 3.0 (chapters

four and five, for which the description had the most links). The consistent popularity of code

examples demonstrates their value as part of the learning material.

RQ 5.2b. Reveal Information Gradually Participants did not often look at the content

of annotations in a code example. Although 150 participants (73.5%) used annotations at least

once, they looked at any annotation in only 15.9% of the code examples they consulted (excluding

code examples that did not contain any annotation). Furthermore, considering only annotations

with a visible marker in the code example, i.e., annotations that are not nested inside others or

20Additionally, we did not find evidence that usage of code examples decreased significantly over time
(Kendall’s τ = −0.242, p = 0.175 [104]).

126

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

Javadoc annotations, participants opened only 9.1% of the annotations they saw. This suggests

that annotations, a key feature of Casdoc, was not systematically used by participants.

However, we did not expect, or intend, participants to open most of the annotations they saw.

One objective of Casdoc is to be able to contain a large amount of information, including fragments

that may only be relevant to a small fraction of the audience, without distracting most readers.

Hence, although the low usage of annotations may suggest that readers are more likely to miss

information in annotations, it also suggests that the gradual reveal of information is effective to

avoid overwhelming readers with information that is less pertinent to them. The annotations viewed

by participants varied, as they collectively viewed 23.0% and 60.9% of all original annotations

(including nested annotations) during the first and second section, respectively.21 This further

suggests that participants effectively adapted the information they saw to their needs, and that the

authoring effort of annotation was not wasted.

Finally, looking at each participant individually, we also observed some differences in their

behavior. In particular, some participants used annotations much more than the average. For

example, ten participants consulted five or more annotations on at least 10% of the code examples

they looked at (excluding code examples with no annotation at all), and four participants interacted

with more than half of all the visible markers anchored in the code examples. This observation

reinforces the hypothesis that Casdoc can adapt the content of a document to individual readers.

RQ 5.2c. Split Information into Small Fragments When viewing an annotation using its

anchor (instead of using a navigation tool), most of the time (87.8%), participants only viewed

the annotation in its floating form, i.e., by hovering over the anchor, rather than in its pinned

form. Floating annotations are intended for faster interactions with the content of the document,

thus suggesting that concise fragments allow readers to quickly grasp the key information in an

annotation or identify that it is not relevant to them.

Fragmentation can also make it hard for readers to collect all the information they need. The

ratio of nested to top level annotations views was 0.119, which is comparable, and even slightly

higher, than the ratio of code example markers participants interacted with (see RQ 5.2b).22 Thus,

we reach a similar conclusion as for RQ 5.2b, that the fragmentation can mitigate distractions to

readers, but also increases the probably that a reader will miss useful information.

RQ 5.2d. Structure Information with Explicit Hints Participants rarely used the secondary

navigation aids. We observed only one instance of a participant using the breadcrumbs and the undo

21We did not aggregate the coverage of unique annotation seen by all participants over the two sections, as
the documents changed slightly during the modifications of the study website.

22We consider only original annotations in this comparison, as Javadoc annotations cannot be nested. We
also exclude annotation views opened using navigation tools, as they do not discriminate between nested and
top level annotations.

127

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

and redo buttons. The search bar was used more often, slightly over 200 times, by 46 participants

(22.5%) in 162 unique document views (2.5%). In 22 cases (10.4%), the participant pinned at least

one of the search results. In an additional 32 cases (15.1%), the participant hovered over the search

results to reveal the content of the retrieved annotation, similarly to hovering over an annotation

anchor. Hence, the search bar was the most useful of the navigation aids, helping participants find

information in 10.4% to 25.5% of cases.23 This is consistent with Feng et al.’s observation that

search widgets help users interact more with interactive visualizations [70]: In a study with 830

participants asked to explore data visualizations, they found that most of the participants who

had access to a search bar used it and looked for more diverse information than the control group.

However, in our field study, relatively to all annotation views, the search bar was not often used to

find information, suggesting that the explicit hints from markers were effective to help participants

find relevant annotations.

We observed an interesting difference, however, in the type of markers that participants interacted

with the most. Original annotations with a block anchor in the code example were marked by a

gray bracket in the left margin of the code example, whereas those with an inline anchor were

marked by a blue underline. Of all markers seen by participants (excluding nested anchors, which

are always inlined), 60.3% were blue underlines. Yet, the annotations that participants interacted

with disproportionately had inline markers (86.6%, sign test comparing the inline anchors viewed

to those interacted with, per participant: p < 10
−15). We suspect that this difference may be due

to the visual aspect of the two markers. Gray brackets have a lower contrast with the document’s

background than blue underlines, and they are often physically farther from the code element of

interest due to the code indentation.

RQ 5.2e. Support the Integration of External Content Importing the API reference

documentation of standard Java types and members more than tripled the number of annotations

available to participants, without requiring any effort from the documents’ authors. Javadoc

annotations also contributed to a notable fraction (27.3%) of the annotation views. The absence

of authoring cost and the concrete benefits strongly encourage the development of techniques

to properly import external content in documents. We nevertheless observe that participants

viewed original annotations more often than Javadoc annotations, despite their lower number. Thus,

imported external content should not dilute the quality and relevance of the original content specially

authored for a document.
23The modest success rate can be explained partly because we counted successive queries separately.

Therefore, if a participant uses N queries before finding the information they need, this will be measured as a
success rate of 1/N . This was necessary as it is impossible to reliably infer whether the information sought
by a participant changes between successive queries.

128

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

5.4.2 Implications

The field study showed that programmers are willing to try different types of documents, which

encourages the design of new, interactive formats. From our observations, we derived several

guidelines that documentation creators can consider when formatting documents. These guidelines

informed the design of a new version of Casdoc, which we present in Section 5.7.

We formulate the guidelines as lessons we learned from implementing Casdoc and evaluating it

in a field study. Although they are derived from empirical evidence, more work is needed to reliably

generalize each guideline to various contexts and types of documentation.

Guideline 1: Involve readers to mitigate verbosity. A format that reveals information

selectively based on reader interaction mitigates the cost of including more content into a document.

During the study, readers typically did not inspect the entire content of documents, indicating that

extraneous content had little impact on their experience. Thus, it allows document creators to

aim for a wider audience while keeping documents approachable for individual readers, instead of

investing effort to optimize the balance between coverage and verbosity.

Guideline 2: Do not require user actions to reveal important information. A format

that requires user interaction for a reader to reach specific information increases the probability

that the reader will miss that information. During the study, readers never viewed a majority of the

annotations, including annotations that were clearly indicated by a marker on the code example.

Readers also viewed nested annotations, which required more complex interactions, considerably

less often than top level annotations. Thus, even simple interaction patterns, such as hovering over

a specific part of the document, may prevent a reader from finding some key information. This risk

is especially important to mitigate for novice readers who may not correctly identify their needs and

the important information in a document. To avoid this threat, the document’s creator should place

important information in a prominent place that does not require extensive interaction to discover.

Guideline 3: Carefully assess the impact of aesthetic decisions. Small differences in

the visual presentation of a component of the format can have a high impact on the readers’

behaviors. During the study, participants seemed to notice blue underline markers (for inline

anchors) significantly more than gray brackets (for block anchors). Although we designed both

types of markers to be similarly subtle in a document, this difference possibly caused a bias towards

revealing annotations with inline anchors more often than annotations with block anchors. Document

creators should carefully review multiple visual options, and choose the option that optimizes the

discoverability of the document’s content over stylistic preferences.

129

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

0

500

1000

1500

1 2 3 4 5 6 7 8 9

Chapter

R
e
q
u
e
s
ts

Origin Participants Other Students

Figure 5.9: Code Example Requests by Chapter from Participants and Non-Participants
During Section 2

Guideline 4: Favor an intuitive structure over navigation aids. A format with an explicit

and intuitive structure with predictable hints, that readers can navigate to find specific information

fragments, mitigates the need for secondary navigation aids. During the study, common navigation

aids such as undo and redo buttons and breadcrumbs trails were almost never used to open

annotations. Even the search bar was relatively rarely used compared to direct navigation features,

despite a large fraction of each document’s content being initially hidden from the readers. Thus,

format designers should prioritize the improvement of a document’s structure, to make it more

explicit and intuitive, over the addition or improvement of more navigation aids.

Guideline 5: Consider external content to augment the content of a document. When

done well, supporting the integration of external content can greatly improve the coverage and

quality of a document at a minimal cost. During the study, readers benefited from over three

times more annotations thanks to the integration of API reference documentation. However, this

must be done carefully and with the proper attribution, as the quality, style, and authoritativeness

of the imported content can vary, and the external content was not originally designed for the

target document. Nevertheless, authors and format designers should consider techniques to share

information across documents, given the rich documentation landscape.

5.4.3 Sampling Bias and Differences Between Sections

When recording all document requests received by the study website during the second section of

the course, we observed that the majority of requests (55.1%) were not made by participants. As

participation in the study was voluntary, there is the risk of a sampling bias in our results. For

130

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

0.00

0.05

0.10

0.15

0.20

0.25

1 2 3 4 5 6 7 8 9

Chapter

R
e
q
u
e
s
ts

 (
%

)

Section Section 1 Section 2

Figure 5.10: Code Example Requests by Chapter from Participants of Both Sections

example, students who are less favorable to trying new technologies may decide to only use the

more familiar baseline format and forget to consent to participate in the study.24 To assess the

magnitude of the sampling bias, we investigated whether there was a notable difference between

document requests from participants and other students. Figure 5.9 compares the requests for code

examples for each chapter. We observe that the differences are relatively small. A Pearson’s χ2

test confirms that the differences are statistically significant (p < 10
−15), but the effect size is small

(Cramer’s V = 0.18). The same analysis, but comparing requests by week rather than by chapter,

return similar results (Pearson’s χ2 test: p < 10
−15; Cramer’s V = 0.19). Thus, although we cannot

exclude the effect of a sampling bias on our results, there is no evidence of considerable differences

between the sample and the target population.

We also compared the requests made by participants from the two sections of the course during

which the study took place, to assess how they may differ. We expected some differences, as the

two sections were independent of each other. They involved different instructors and students and

used a different evaluation scheme and schedule relative to the start of the course. We also released

the code examples chapter by chapter during the first section, but all at once during the second

section. Figure 5.10 shows the relative number of requests per chapter for each section.25 We can

indeed observe some differences: The number of requests decreases more consistently during the first

section as chapters progress—likely a symptom of the lower retention rate we observed. However,

the effect size remains moderate (Pearson’s χ2 test: p < 10
−15; Cramer’s V = 0.25), which suggests

that the sample of participants did not have a considerable impact on our results.

24Students had to consent to the study to use the Casdoc format, as the instrumented client-side functions
would generate interaction events.

25We use relative rather than absolute frequencies in this graph for better readability, as the total number
of requests was considerably higher during the second section.

131

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

5.5 Laboratory Study Design

The field study generated precise usage metrics of the different features of Casdoc from a large

population in a realistic context. The results provide evidence of the viability of Casdoc as a

format for API learning resources. However, the asynchronous data collection procedure prevented

us from understanding why readers may choose to use Casdoc. To fill this gap, we conducted a

laboratory study in which we directly observed how programmers use documentation while working

on implementation tasks. Specifically, we sought to answer the following research questions:

RQ 5.3 In which situations does a programmer choose to use the interactive format vs. the

expanded format?

RQ 5.4 How does the interactive format support or interfere with a programmer’s actions with the

documentation?

We asked participants to perform several programming tasks that involved an unfamiliar API

using a set of documents we provided. The documents used a combination of Casdoc and non-

interactive text to present information. While participants were working on the tasks, we recorded

their screen and audio to analyze how they sought information and navigated the content of the

documents.

The goal of our study was to explore how well an interactive format supports programmers

looking for information, rather than to demonstrate the superiority of any single format. This

goal motivated an in-depth analysis of fewer participants over a statistical analysis of performance

measures, such as task completion times or error rates, with a large sample from a target population.

Additionally, we focused on navigation within a single document, as opposed to the synthesis of

information from multiple sources.

5.5.1 Study Environment

We recruited 13 computer science students (seven undergraduates, five masters, and one PhD) from

our university to participate in the study. Participants had from one to ten years of experience

programming in the Java language (average: 3.5 years). Five participants identified as male, seven

as female, and one preferred not to disclose their gender.

In this study, students were not a proxy for the target population. All participants were

programmers who used online documentation to learn programming knowledge. Thus, we recruited

students as a subgroup of the population of programmers who need to learn about unfamiliar APIs.

132

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

Table 5.7: Eight Programming Tasks Used During the Laboratory Study

Summary Challenging Element

1 Return the sum of all values in a column Getting familiar with the key elements of the JDBC API
2 Print the content of a table Distinguishing 0 from NULL with the wasNull() method
3 Insert a new row in a table Letting the database generate the primary key
4 Insert untrustworthy strings in a table Using PreparedStatement to prevent SQL injection attacks
5 Create a new table and insert two rows Creating an auto-incrementing column
6 Insert multiple rows as a single transaction Enabling transactions and rollbacks
7 Create a connection to another database Understanding the connection URL syntax
8 Update cells in a table based on a condition Understanding the syntax of UPDATE statements

Each participant session took place during a videoconference with the author. Participants were

compensated at the end of their session.26

Each session started with a pre-recorded video of the study instructions and the format of the

documents. The investigator then asked the participants to locate a specific piece of information

within a training document. The objective of this training activity was to help participants familiarize

themselves with the documentation format. The training session involved a topic unrelated to the

programming tasks.

The participants then worked on the programming tasks for 40 minutes. We asked participants

to comment aloud on their information search processes, such as the information they looked for, as

they worked on the tasks. The investigator would occasionally prompt participants who remained

silent for too long. After 40 minutes, participants had the option to continue working on the tasks

for up to an additional 20 minutes. We made it clear that this was optional and would not affect

the study’s compensation. Three participants chose to use this grace period to finish the task they

were working on.

At the end of the session, we asked the participants to answer five questions about their

experience with the documents. In total, each session lasted approximately one hour. Participants

did not need to do anything for the study before or after their session.

Participants could use their preferred integrated development environment (IDE) to solve the

programming tasks locally on their computer. Alternatively, we also offered the option to work

on a cloud development environment that was set up by the investigator. Two participants used

this option. Throughout the session, we recorded the screen and audio of the participant using the

videoconferencing software.

133

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

5.5.2 Programming Tasks

We designed eight tasks that required using Java’s standard JDBC API to interact with a SQLite

database (see Table 5.7). We chose this domain for the tasks as it requires understanding specialized

concepts, such as the relational model of databases and transactions, and supported designing tasks

of increasing complexity, from simple queries to table creation operations. Another consideration

was to select a domain that participants would likely have some familiarity with to be able to solve

a few of the tasks, but participants should not be able to solve all tasks easily without consulting

the documentation. Most participants (ten out of thirteen) had prior experience with SQL, as our

institution offers an undergraduate course on databases, but not with SQLite or JDBC specifically.27

All tasks were presented in the same Java file, and required only Java code. After cloning a Git

project, and potentially fixing configuration issues with the investigator, the participants only had

to complete the body of one method per task. Peripheral issues, such as file paths, error handling,

and code quality, were outside the scope of the tasks. The instructions of each task were presented

as code comments in the empty method to complete.

Participants attempted the tasks in the order they were presented and had to successfully

complete a task before moving on to the next one. The investigator told participants that they

should not try to finish as fast as possible and that we did not expect them to finish all eight tasks

during the session. Rather, the tasks served as a context to trigger information searches.

To verify whether they completed a task, participants ran the main method of the Java program.

They could run the program as much as desired to test partial solutions, verify a solution, and

debug issues. The start of the main method reset the database, so participants did not have to

handle unintentional consequences of successive runs.

5.5.3 Documents Provided

We authored six documents for the study. Their content was based on popular tutorials, including

Oracle’s official “JDBC Basics” tutorial [167]. We reused the sample application scenarios from

the tutorials, but adapted the content to ensure that the documents covered all the information

needed to solve the tasks. As it was common in tutorials to address several variations of SQL, we

included information for four popular databases: SQLite, the database used in the tasks, in addition

to MySQL, PostgreSQL, and Oracle Database. The documents did not emphasize SQLite-specific

content over the rest, so participants had to mentally filter out irrelevant content. However, only

later tasks required vendor-specific adaptations.

26Participants provided informed consent before the session. This study was approved by the Research
Ethics Board Office of McGill University, file number 21-06-007.

27We did not advertise the domain of the tasks during the recruitment phase, or used it as a selection
criterion, as we did not want participants to try to learn about it prior to their session.

134

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

Table 5.8: Topic of the Six Documents Provided to the Laboratory Study Participants

Name Topic Task(s)

Connection Connect to the SQL database from a Java program 7
Create-Table Create SQL tables and specify constraints on the columns 5
Read-Values Read the content of a database 1, 2
Write-Values Append rows to a table of the database 3, 8
Safe-SQL Avoid SQL injection attacks when handling user-provided values 4
Transactions Execute several SQL statements within a transaction 6

* The study’s landing page showed the topic of each document, but not the tasks they were related to.

Each document described one type of operation to perform with the JDBC API, as shown in

Table 5.8. Participants were free to consult any of the documents at any time, but all the information

for each task was contained in a single document. There was no indication of which document was

relevant for a task.

All documents used the same format, shown in Figure 5.11. Apart from their title and a one-line

description, each document started with a complete code example (highlighted in red and marked “A”

in Figure 5.11). The code example contained interactive Casdoc annotations (highlighted in blue and

marked “B”). Casdoc’s search bar, which allowed participants to search within hidden annotations,

was present in the top right corner. Below the code example, the content of all annotations was

replicated in a traditional, non-interactive format (highlighted in green and marked “C”). Henceforth,

we refer to the code annotations (B) as the interactive format, and to the non-interactive text (C)

as the expanded format, as it expands the content of all annotations in a single (scrolling) view. We

did not consider the top code example as part of either format.28 However, we refer to the format

of the entire document (A+B+C) as a hybrid format.

At the start of each session, the investigator told participants that both the interactive and

expanded formats had exactly the same content, apart from headers and annotation titles. The

only exception was for API reference documentation. Casdoc automatically generated annotations

for API elements mentioned in the code (e.g., the class String). However, the expanded format did

not contain that information to avoid documents that are too long, and because participants could

access reference documentation from their IDE or on Oracle’s website.

The hybrid format was a consequence of our study design with a single set of tasks. Given the

small sample size and confounding factors such as the subjective preferences and backgrounds of

participants, we opted for a within-subjects design in which each participant is exposed to both the

interactive and expanded formats. In a conventional design, we would have asked all participants

to work on two sets of tasks, using only one format for each set. However, this procedure would

28More precisely, the code example is an essential component of both formats, but it is not a distinguishing
feature of the formats in this study.

135

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

Q1. Did any aspect of the documentation format helped or hampered your search for
information within a document?

Q2. On a scale from 1 to 6, how challenging was it to find the information you were looking
for in code annotations?
[scale shown below the question: 1 = extremely easy; 6 = extremely hard]

Q3. On a scale from 1 to 6, how challenging was it to find the information you were looking
for in paragraphs below the code example?
[scale shown below the question: 1 = extremely easy; 6 = extremely hard]

Q4. Did the different formats affect your strategies for finding the information you wanted?
If so, how?

Q5. Did the kind of information you looked for affect which format you used?

Figure 5.12: Post-Study Questionnaire

about the relative importance of different aspects of the two formats. The last two questions aimed

at eliciting types of situations that influenced the choice of format (RQ 5.3).

To answer our research questions, we started by summarizing the elements of the questionnaire

responses that related to the document formats. This provided us with a list of types of situations

that influenced the choice of format (RQ 5.3), and a list of navigation actions that conflicted with

or were supported by the formats (RQ 5.4). We then operationalized each of these initial findings

and investigated their occurrence during the programming tasks. The results consist of validated

situations and navigation behavior that affect the ability of the interactive or expanded format to

satisfy an information need. They contribute to the knowledge of documentation format design by

providing a set of hypotheses that link the presentation format with a reader’s interaction behavior.

The analysis required three phases of data annotation to transcribe the video recordings. The

annotation guidelines for each phase are reproduced in Appendix C.5.

First phase: Session events The first phase took place concurrently with the analysis of the

questionnaire answers. We transcribed each session as a series of events related to interactions with

the documents or to the tasks. Table 5.9 shows an excerpt of this transcription. Each event has a

timestamp, and belongs to one of five categories: Task events relate to the progress on tasks; Window

events indicate which document the participant was looking at; Search events denote observable

milestones of searches (e.g., starting a new search); Doc. Component events indicate which part of

each document the participant interacted with; and finally Intervention events denote interactions

137

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

Table 5.9: Sample Session Events Transcribed During the First Analysis Phase

Timestamp Task Window Search Doc. Component Intervention

...
35:10 Start 3
36:00 Write-Values Start Text
36:16 Code
36:37 Popover “NULL”
36:39 Dialog “NULL”
37:16 Found
37:27 Question
37:33 End
...
38:14 Coding IDE
39:58 Write-Values Quick Code
40:02 Dialog “NULL”
40:04 IDE
...

* The online appendix describes in detail the meaning of the column values.

between the participant and the investigator, such as the participant asking about the version of

SQLite used. This phase provided a quantitative overview of the sessions, presented in Figure 5.13.

The bar chart excludes the time participants spent reading general instructions that applied to

all tasks, e.g., instructing them to write all code in the same Java file. This exclusion is the reason

why not all bars reach a total of 40 minutes. Participant 7 lost more time than others at the start

because they wrongly assumed that they had to read all the documentation before starting the

tasks. Participants 11 and 12, who progressed the slowest, were also the least experienced, both

having only one year of prior Java experience and no prior exposure to SQL. All other participants

had at least two years of Java experience and all but one of them (P8) had prior exposure to SQL.

Second phase: Search fragments For each participant, we split the study sessions into search

fragments, which form our units of analysis. A search fragment consists of a period where the

participant consults the documentation to search for some target information without making

progress towards their solution. Two search fragments must be separated by time spent in the IDE

working on the solution. The information sought during a search fragment may change, for example,

if a participant finds some unexpected information that makes them reconsider their strategy.

In some cases, especially when trying to resolve issues, a participant would rapidly alternate

between looking into the documentation and trying various ways to progress. We considered such

situations as a single search fragment, as the participant stops and resumes the same search activity,

138

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

P13

P12

P11

P10

P9

P8

P7

P6

P5

P4

P3

P2

P1

0 10 20 30 40 50 60

Time (minutes)

P
a

rt
ic

ip
a

n
t

Task

5

4

3

2

1

Figure 5.13: Time spent per task for each participant. The chart excludes the time spent
reading general instructions about the tasks’ context, which explains why not all bars reach
a total of 40 minutes.

until they either find a solution or abandon trying to solve the issue (e.g., by changing their approach

to the task). In both cases, we interpreted this resolution as progress in the task.

In contrast, participants searching for information only within their IDE did not constitute

search fragments, as they do not involve online documentation, the focus of this study. We also

excluded short interactions with the documents, such as locating known information, as they do not

require the participant to search for information. Finally, we excluded search fragments for which

the target information was unrelated to SQL or the JDBC API (e.g., information about the Java

syntax), as the documents were not designed to contain such information.30

In total, we identified 122 search fragments, summarized in Table 5.10. For each search fragment,

we extracted properties about the context in which the search took place and properties related to

the navigation within the documents. The context of a search includes a broad categorization of the

intention of the search, such as looking for an initial code to adapt as a solution or for a way to fix

an issue. The navigation properties contain the list of document components that the participant

interacted with, the sequence in which each component was used, and the type of information sought

when using either format (Information Type (Interactive/Expanded)). Tables 5.11 and 5.12 show

the context and navigation properties, respectively, of the search fragments of P13 as an example of

the data generated during the second phase.

30In such cases, the investigator would provide the missing information or mention that it was irrelevant to
the task, as participants could not look for other documents.

139

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

Table 5.10: Overview of the Search Fragments (Frag.) From Each Participant (Part.)

Part. # Frag. Time/Frag. Total Time # Frag. that Use
(seconds) (minutes) Code only Interactive Expanded

P1 10 50 8.3 3 3 5
P2 13 90 19.5 4 7 6
P3 9 69 10.4 2 2 7
P4 14 78 18.2 1 8 9
P5 11 89 16.3 1 10 6
P6 8 42 5.6 0 1 8
P7 7 123 14.4 1 5 2
P8 10 72 12.0 2 7 2
P9 13 71 15.4 3 9 5
P10 10 97 16.2 1 6 8
P11 5 259 21.6 0 5 4
P12 4 318 21.2 0 2 3
P13 8 61 8.1 1 6 5

Total 122 92 187.1 19 71 70

Third phase: Navigation patterns The third phase consisted of synthesizing recurring nav-

igation patterns (presented in Section 5.6) and marking, for each search fragment, whether the

fragment contains an occurrence of the pattern.

5.6 Laboratory Study Results

Figure 5.14 shows the subjective ratings of the interactive and expanded formats. Seven participants

rated the information is easier to find in the interactive format than in the expanded one, two rated

the expanded format above the interactive one, and one rated both equally. Three participants

preferred not to rate one of the formats because they only remembered using annotations (P7 and

P8) or the expanded text (P1).

Despite their preferences, all participants used both formats during their session to find in-

formation, including those who rated only one format. In answer to RQ 5.3, the analysis of the

programming sessions and of the post-study questionnaire elicited factors related to four aspects

of an information search that may affect the choice of a format (Section 5.6.1). In answer

to RQ 5.4, the study also revealed how Casdoc supported or interfered with three recurrent

groups of navigation patterns, which can affect a programmer’s preference for a format

(Section 5.6.2).

140

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

Table 5.11: Excerpt from the Second Analysis Phase: Context of the Search Fragments
Performed by Participant P13

ID Start End Task Intention Document(s)

115 21:16 21:48 1 Initial solution Read-Values
116 32:55 34:03 2 Specific aspect Read-Values, Javadoc ResultSet
117 35:59 37:16 3 Specific aspect Write-Values, create-table
118 41:21 42:11 3 Specific aspect Write-Values
119 42:41 43:44 3 Specific aspect Write-Values
120 45:54 46:20 3 Specific aspect Read-Values
121 48:57 49:49 3 Fix issue Write-Values
122 53:26 55:27 4 Get familiar Safe-SQL

* The online appendix describes in detail the meaning of the column values.

Table 5.12: Excerpt from the Second Analysis Phase: Navigation Properties of the Search
Fragments Performed by Participant P13

ID Components Sequence Information Type
(Interactive)

Information Type
(Expanded)

115 code new → code
116 code, text, popover known → code → text → code

→ popover → link ; javadoc
→ text

link content overview,
element detail

117 code, text, popover,
dialog

new → code → text → code
→ popover → dialog → link ;
new → code → text → code →
back ; known → dialog

continue “how to” how to, content
overview

118 dialog, popover,
text

known → dialog [↔ popover]
→ text

element detail confirm “content
overview”

119 code, text, popover,
dialog, unint.
popover

known → code → text → code
[↔ popover] → dialog → link ;
javadoc → text

continue “how to” content overview,
how to

120 code, popover known → code ↔ popover element detail
121 code, popover,

dialog
known → code ↔ popover →
dialog [↔ popover] ↔ ide

error cause

122 code, text, unint.
popover

new → code → text → code
[↔ ide] [↔ text]

concept

* The online appendix describes in detail the meaning of the column values.

141

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

extremely easy

very easy

somewhat easy

somewhat hard

very hard

extremely hard

P1* P2 P3 P4 P5 P6 P7* P8* P9 P10 P11 P12 P13

Participant
[*P1, P7, and P8 rated only one format]

H
o
w

 c
h

a
lle

n
g

in
g

 w
a

s
 i
t

to
 f

in
d

th
e

 i
n

fo
rm

a
ti
o

n
 y

o
u

 w
e

re
 l
o

o
k
in

g
 f
o

r?

Format

Interactive

Expanded

Figure 5.14: Participants’ Ratings of the Interactive and Expanded Formats

Overall, the results show that the two formats can coexist in the same document and provide

complementary benefits. Despite the duplication of all the content, participants appreciated having

the possibility to switch between the two formats according to their evolving needs. We discuss the

implications of our results in Section 5.6.3.

5.6.1 Choice of Documentation Format (RQ 5.3)

Participants related their use of the interactive and expanded formats to the need to find different

types of information. For example, P5 expressed “The general ‘how to do a thing’ was definitely more

for the code highlights. [...] If I wanted to fix a bug or something, I looked through the paragraphs.”

Similarly, P10 mentioned “When I just want to search a keyword, I prefer just using the popup

over.” We investigated this behavior at two levels. First, for each search fragment, we attributed

one of four broad categories of search intention. The intention captured the purpose of the sought

information in relation to the task. Second, we identified the type of information that participants

looked for every time they switched to a new format during an information search fragment.31

Another recurring strategy from participants was to use the code and the interactive format first

when looking for information, then move to the expanded format if they could not find what they

were looking for easily. For example, P9 said “I would first look at the code annotations. Then, if

there’s any detail that’s missing, I don’t really bother to go over all those levels of popovers to look

31While using a format, the information type could change as the search progressed. We only considered
the information type that triggered the initial usage of a format.

142

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

Table 5.13: Search Intentions and Formats Used During Search Fragments

Stage Code only Interactive Expanded Both

Get familiar 0 1 3 3
Initial solution 13 12 7 6
Specific aspect 3 16 17 25
Fix issue 3 4 5 4

Total 19 33 32 38

for it. I would just go through the paragraphs.” P3 expressed more succinctly “I always go to the

code annotations first, and then try reading the paragraphs.” These responses hinted at a consistent

sequence of formats when participants did not know in advance where the information would be

located (e.g., from a prior search fragment).

Finally, multiple participants indicated that they perceived the expanded format as more reliable

and complete than the interactive format, despite being shown that both formats contain the

same content. P6 stated this bias clearly: “I don’t know if that’s true, but I assumed that there’s

going to be more information in the paragraphs.” P10 also said “I thought the documentation below

has more thorough explanation.”

Search intention We distinguished four broad categories of search intentions: getting familiar

with the API or domain concepts, looking for an initial solution in the document that can be

adapted, finding information about a specific aspect of the task, or fixing an issue with an unknown

cause. We used the progression on the current task and the information found as a result of the

search to infer the intention when participants did not mention it explicitly.

Table 5.13 shows the number of search fragments that used either format for each intention.

When looking for a specific aspect of the task or a solution to an issue, participants used each

format almost as often. However, when looking for an initial solution to the task, participants used

interactive annotations more often than the expanded text to support their initial understanding of

the code example. In contrast, although it did not happen too often, reading the expanded format

was preferred when a participant wanted to get familiar with the domain of a task without a specific

query in mind.

Type of Information Participants often looked for the same recurring information as they

proceeded through the tasks. We identified six categories of information needs specific to our

experiment based on how participants expressed what they looked for: instructions on how to

perform an operation, error causes and potential solutions, API element details, clarifications about

the code example implementation, details about the SQL syntax, and conceptual information about

143

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

Table 5.14: Usage of Each Format to Look for Information of Each Type

Information Type Format
Interactive Expanded Total

how to 10 18 28
error cause 2 7 9
element detail 27 6 33
example implementation 13 2 15
SQL syntax 13 17 30
concept 3 5 8

the task or API domain. When a participant used both formats to search for the same information,

only the first format is considered, as it was the participant’s initial instinct.

Table 5.14 shows the usage frequency of both formats for each information type. Participants

predominantly used the interactive format for details about an API element and clarifications of

the main code example’s implementation. In contrast, they sought “how to” instructions and error

causes more often in the expanded format. Information about SQL syntax and concepts were more

balanced between both formats, with a preference for the expanded format.

Sequence of formats Many participants mentioned looking for information first in the interactive

annotations, and then in the expanded text if it took too long to find the information. However, when

identifying instances where a participant changed format when looking for the same information,

we observed that they went from the interactive format to the expanded format 15 times, and the

other way around 14 times. This suggests that regardless of the initial format, when participants

could not find some information, changing format was a viable strategy to continue the search.

However, a closer look at the instances revealed that participants mostly (11 out of 14 times)

relied on the search feature of Casdoc after failing to find information in the expanded text. This

suggests a more nuanced sequence of formats: first interacting with the annotations from the code

example, then looking into the expanded text, and finally using a text search feature to locate

hard-to-find information.

Perceived reliability and completeness Despite an explicit mention that both formats had

the exact same content at the start of each session, participants showed a bias to trust more the

expanded format. We did not expect this bias, and thus did not measure this subjective aspect of

the format, e.g., with questions in the post-study questionnaire.

We nevertheless gathered evidence of this bias by identifying instances where participants

used one format to confirm information already found. Five search fragments, from four distinct

144

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

participants, showed such behavior, all using the expanded format. In these instances, participants

expressed the desire to scan the text in case they missed relevant information.

5.6.2 Support of Navigation Actions (RQ 5.4)

Participants referred to three recurrent groups of navigation actions during the study. One of the

most common actions was to first look for code examples when reading a new document. For

example, P1 stated “I prefer to look directly at some code which is simple but really good. [...] Even

if the code is at the end of a document, I always try to look at it.” This sentiment was echoed by

P2, among others: “I always default to code first.” Even after reading the main code example, some

participants looked through the document for further examples, such as P12, who indicated while

scanning the expanded text “I am looking for examples, because that’s how I learn best.”

Another common action was to scan a document’s content without a single specific infor-

mation need. Participants performed this action to locate where a given topic was discussed, to

assess the extent of the coverage of a topic, or to get an overview of the set of topics discussed in a

document. For example, P6 discussed having prior strategies for reading expanded text efficiently,

and said “I guess my strategy is always to look for the keyword and then, once I see the keyword, I

will read stuff around it.” P9 and P12 also mentioned their appreciation for features that help scan

documents by stating, respectively, “One thing that I found really helpful was the subtitles.” and

“I’m also someone who really enjoys indentation in things, to make it easier to scan through.”

Finally, participants pointed out limitations related to popovers appearing unintentionally when

they read with the mouse. P7 mentioned this issue directly: “There were so many pop-ups. I’ve

a tendency to move my mouse while I read the code. [...] That kind of interrupts the reading flow.”

Similarly, popovers interfered with participants trying to copy and paste code, as P6 said: “When I

try to do copy-pasting, the pop-up window [...] actually interferes with the actual copy-pasting of the

code.”

Looking for code examples We measured the reliance on code examples by identifying when, if

at all, participants used the main code example during search fragments. In 19 search fragments

(16%), participants used only the code example. In 57 fragments, (47%), the code was the first

element participants looked at, and in 16 fragments (13%), they looked at other components of the

documents first. In the remaining 30 fragments (25%), participants did not use the code example.

This prominent use of the code example is consistent with the participants’ comments. Although

it was not a distinguishing feature of the two formats in this study, the focus on a complete code

example was one of the key design properties of Casdoc (see Section 5.2). Our results confirm the

validity of this design aspect for documentation.

145

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

Scanning a document’s content Casdoc does not support well scanning the content of a

document, as it cannot provide an overview of all annotations at once. We measured how often

participants did scan the expanded format to assess the impact of this limitation of the interactive

format. We observed this action in 30 search fragments, performed by all but one participant. This

represents 25% of all search fragments, or 43% of the fragments where the expanded format was

used. The popularity of this action suggests that it should be a consideration for documentation

designers, especially for interactive formats that do not show all of their content at once.

Reading with the mouse Although many participants appreciated the swift interaction mecha-

nism to reveal and hide popovers, some noted their distracting nature when performing other mouse

actions. To measure this negative impact, we measured how often popovers opened by unrelated

mouse movements distracted participants.32 A popover was distracting when it interfered with a

participant trying to select some code to copy, when it hid the code that the participant was trying

to read, or when it triggered an abrupt mouse motion to leave the anchor. We found instances of

distracting popovers in 36 search fragments (30%), affecting all but one participant. This result

highlights a trade-off when designing the interaction mechanism of a format: simplifying the actions

to access content can generate accidental events.

5.6.3 Discussion

Our results generally show that the interactive format allowed participant to directly get concise

information to answer specific queries. However, queries that required more elaborate answers were

better answered in the expanded format. The expanded format also made it easier for participants

to scan information related to their original query. P10 gave the syntax of SQL conditions as an

example: “Sometimes I want to see other content related to ‘WHERE’ as well, [...] to see the overall

picture.” Reading this related content typically required participants to spend more time than with

the interactive format, but it could help them feel more confident that they correctly understood

the information they found.

The personality and prior navigation behavior of a reader may also affect their preference for a

format. How much a reader uses their mouse while reading may affect their opinion on whether

the usefulness of pointer-triggered interactions to reveal contextual information outweigh their

distracting potential. Some readers may also be more enthusiastic about developing new navigation

techniques for the interactive format, whereas others may be reticent to abandon the more familiar

expanded format. Thus, the design of documentation should not only accommodate differences in

the search contexts, but also in personal preferences.

32These unintentional popovers did not count as a usage of the interactive format in the other metrics, e.g.,
when comparing how often participants used each format.

146

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

An overarching theme among the results is that the combination of the interactive and expanded

formats accommodated a variety of navigation techniques. Each format mitigated some limitations

of the other, which allowed participants to use the most appropriate format depending on their

needs. Participants noted this synergy: “If I wanted very quick information, I would just look at the

highlights that were directly in the code. [...] If I got stuck on something, or I needed a bit more

information, then I went into the paragraphs to look for it. [...] The two levels were quite nice, with

respect to how much information I needed” (P5). Even the redundancy of the content, which is

typically regarded as a negative aspect of documentation, had some advantages: “It was kind of

reassuring to know that there are different strategies for finding what I wanted. [...] It [duplicated

content] made me more comfortable looking anywhere” (P12). We did not expect such positive

feedback on the dual nature of the hybrid format, which we created to avoid long programming

sessions. Future work could fully integrate the two formats, e.g., by allowing readers to jump

between annotations and their expanded representation, to further improve documentation design.

5.6.4 Limitations

Studying a novel documentation format required to impose some constraints that limited the realism

of the experimental conditions. First, forcing participants to use only the provided documents

meant that they could not use familiar resources such as their favorite search engine or Stack

Overflow. Some participants expressed that this constraint affected their typical programming

habits, particularly when trying to find the cause of an error in their code. Many participants

(P4, P6, P7, and P13) also indicated that redirecting the keyboard shortcut Ctrl+F to Casdoc’s

search bar, instead of the browser native search tool, negatively affected their experience.33 These

constraints had an impact on the navigation behavior of participants, and therefore the study

findings. They were necessary to encourage participants to try the interactive format during the

sessions, but further investigation is needed to carefully assess their impact.

The study also required participants to get familiar with a new documentation format. Partici-

pants were used to searching within the expanded format, and had developed techniques to do so

more efficiently. P6 expressed this bias directly: “Reading the paragraphs is more intuitive, because

I’m already used to reading that kind of documentation.” In contrast, participants had to learn

about Casdoc’s features and develop an intuition about how and when to use them. Participants

reacted differently to this change. Some were more enthusiastic and tried more advanced features

of Casdoc, whereas others preferred to rely mostly on their existing strategies. It is possible that

programmers who have used Casdoc for more than the study’s 40 minutes would elaborate new

navigation approaches that the findings do not capture.

33The browser search tool remained available without the keyboard shortcut, but participants had to open
it from the browser menu.

147

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

A threat to the validity of our observations is that the investigators designed both the tasks

and the documents. We ensured that both formats in each document contained exactly the same

content, which was based on existing online tutorials. It is possible, however, that other design

aspects of the documentation, such as the order of paragraphs and sections in the static text, would

affect their navigability. Regarding the tasks, we designed them to represent common database

operations, while also involving more challenging parts of the JDBC API so that participants would

need to consult the documentation. To mitigate the potential of an investigator bias on the results,

the analysis focused on qualitative similarities and differences between the formats, rather than on

quantitative measures of properties (e.g., time) used as a proxy for document quality.

The selection of the participant sample also limits the generalizability of the results. A smaller

sample size permits a more detailed analysis of the programming sessions within a practical time

budget. This approach was consistent with the exploratory nature of the study, and is a first step

to generate hypotheses that can be tested in future studies using statistical methods over a large

sample.

5.7 Improving the Casdoc Format

Following the field study, we released the annotated code examples, without the JavaScript data

collection functions, on a permanent website for students enrolled in future sections of the under-

graduate course.34 We leveraged the study findings to implement a new version of Casdoc that

address some of its original shortcomings. Figure 5.15 shows one of the documents in the revised

format.

According to Guideline 3, we revised the visual elements of Casdoc, taking into consideration

their impact on readers. Instead of its original arbitrary color scheme, Casdoc now uses a color

scheme for code blocks that is similar to the one from Stack Overflow, a popular forum among

programmers (see Figure 5.15a). This color scheme should be more familiar to programmers,

mitigating the adoption cost of a new format. To make block anchors stand out more, their markers

appear at the right of the code and are blue instead of light gray. This increases the contrast of

block markers with the background and reduces the distance between the marker and indented

code. Finally, anchors of pinned annotations no longer show a “pin” icon next to its marker, as it

was disrupting the layout of the code.35 Instead, inline anchors are shown in bold and italics font

and block anchors have their marker in darker blue and with a drop shadow to indicate that the

associated annotation is pinned.

We also added three new features to Casdoc. First, authors can now identify a sequence of

important annotations when creating a Casdoc document. In addition to their normal behavior,

34https://www.cs.mcgill.ca/~martin/designbook/
35The icon was also interfering with copy-and-paste behavior, as it would be included in the copied code.

148

CHAPTER 5. CASDOC: CODE EXAMPLES WITH INTERACTIVE ANNOTATIONS

readers. Thus, it can help make important annotations more prominent without requiring any user

action (Guideline 2).

Finally, authors can now store reusable annotations in a database, and insert them in multiple

Casdoc documents. In addition to mitigating the need to copy the content of recurrent annotations

(e.g., an annotation that describes a common theoretical concept), the database provides a flexible

interface to integrate external content into Casdoc documents (Guideline 5). The database stores

the exact content of each annotation in an HTML file, associated with another file that contains

properties of the annotation, such as its title. Thus, the database can be populated with external

content using simple scripts, but the author of a document remains in control of which annotations

are added to the document.

150

Chapter 6

Discussion

Our investigation of software documentation design revealed exciting opportunities to improve

current practices. Overall, this thesis demonstrates that the design of API documentation goes

well beyond writing technical information. The identification of related concepts, the selection of

which concepts to include or not in a document, and the organization of information fragments into

an effective presentation structure all play an important role in the quality of a document. Yet,

this thesis only focused on user-facing characteristics of existing documents. The documentation

authoring process was outside the scope of our research. Although we considered the authoring

process, e.g., when designing the Casdoc transformation tool to ease the creation of Casdoc document,

future empirical studies should directly target the characteristics, motivations, and behavior of

documentation creators. Such studies would complement this thesis by revealing the impact, and

viability, of novel documentation practices.

In the following sections, we discuss recurring themes in documentation design, with implications

for researchers and practitioners. We then present ideas for future work. We end this chapter

with a reflection of the impact language models and conversational agents (e.g., ChatGPT) on

documentation practices.

6.1 Recurring Themes in Documentation Design

Our investigation of documentation highlighted several design aspects that researchers and practi-

tioners should consider when assessing or improving the quality of documents.

151

CHAPTER 6. DISCUSSION

6.1.1 Adaptability of Documentation Guidelines to Various

Contexts

Our comparison of tutorials and the design and evaluation of Casdoc elicited several guidelines and

design dimensions to consider when designing documentation (see Table 4.1 and Sections 5.2 and

5.4.2). In addition to our findings, researchers have collected empirical evidence about the impact of

other design aspects, such as the use of UML diagrams [3, 148] or showing API usage statistics [204].

Nevertheless, the laboratory study reaffirms that those design considerations are not universal. The

same feature of a document’s format can be both useful and detrimental, depending on the reader’s

personality and on the information search context. The subjectivity and contextual aspects of

documentation quality highlights the importance of considering various groups of developers and

various development tasks when designing documentation.

To refine design guidelines for different contexts, prior work on different types of user personalities,

such as GenderMag [34], can provide theoretical tools to correlate documentation usage patterns to

different groups of users. Future work can develop and validate psychometric tests to better capture

the subjective aspects of various software engineering activities, including documentation [81].

Categorizations of the types of documentation (e.g., API reference, tutorials, how-to guides, and

explanations [180]) can provide a framework to support the analysis of the contextual aspect of

design guidelines.

Comparing the documentation approach of different communities of programmers can also help

reflect on the applicability of design guidelines for various scenarios. For example, R is a language

used primarily for statistical analysis and visualizations [211]. It is designed to be accessible to

scientists and statisticians who do not otherwise have programming experience. Therefore, studies of

the API reference documentation of R packages (e.g., [223]) can reveal differences from the reference

documentation of typical development languages, such as Java. Understanding these differences is

important not only to adapt guidelines for different technologies, but also to design truly adaptable

documentation for different users of the same technology [190].

Despite the potential for improvement, the risk of decreasing document quality with ineffective

documentation designs can incite writers to reuse conservative designs. However, the results of our

studies with Casdoc showed that readers are willing to try new types of documentation. Writers

should leverage this enthusiasm to explore new approaches to documentation. A novel format that

helps readers locate the information they need effectively can constitute a competitive advantage

over other documentation resources in the current documentation landscape. Advanced formats

that effectively adapt to multiple information search contexts can be especially useful to attract

large audiences. With Casdoc, we contribute to this exploration of novel formats, but many design

aspects remain unexplored. For example, a document format could offer readers the ability to modify

the length of code examples or the proportion of images and tables in a document to match their

152

CHAPTER 6. DISCUSSION

preference [11, 12]. Researchers should leverage the enthusiasm for innovative formats to further

study documentation design aspects, to eventually synthesize different aspects into a comprehensive

theory.

6.1.2 Selection of Topics to Include in Documentation

Our comparison of three Android tutorials showed a surprising variety of topics covered in each

tutorial. Prior studies that elicited questions from developers about unfamiliar APIs (e.g., [62, 197])

offer valuable insights to improve the description of individual topics. For example, they reveal

what information developers need about selected API elements (e.g., “Which keywords best describe

a functionality provided by the API?” [62]). However, they do not offer concrete guidelines to

prioritize some topics over others within a domain. For example, when creating a tutorial, writers

must decide which API elements to describe, which ones to mention, and which ones to ignore or

relegate to a “Further reading” section.

To help with the selection of content for some documentation, writers can rely on information

needs expressed on public developer forums (e.g., Stack Overflow, as we used in our comparison of

tutorials), usage information from open source projects (e.g., hosted on GitHub), or other sources of

data (e.g., telemetry). These sources of information can help identify more challenging or popular

aspects of the technology to document, but they do not capture the inherent dependencies between

different components of the technology. Therefore, the topics identified by these sources can be

disconnected, leading to disjointed documents. Our investigation of conceptual dependencies can

support an analysis of the relevant topics to cover in documentation, which takes into consideration

the structure of the technology.

With Scode, writers can identify the components of a technology that relate to the same topic.

A writer who wishes to create a tutorial about a popular library could start by identifying key

concepts commonly discussed in Stack Overflow. The writer could then use Scode to identify the

conceptual dependencies of each component of the library. Based on this information, the writer

would then be able to systematically select cohesive groups of API elements to cover that relate to

topics often discussed by developers.

A similar approach can also be applied to other knowledge graphs. Identifying communities

among API elements, based on mentions in the reference documentation or on advanced API

knowledge graphs (e.g., [121]), could reveal cohesive sets of elements to describe in relation to a

task. Paired with data about the popularity or complexity of different components, this information

can help writers create cohesive documents that comprehensively cover the most useful topics.

Document formats that help readers navigate efficiently to the information they seek can mitigate

this problem by allowing writers to select more topics to cover without creating overwhelming

documents. For example, Casdoc documents can include a lot of content in nested annotations, but

153

CHAPTER 6. DISCUSSION

this content will only be showed to readers who seek it. However, even an optimal format would not

completely solve the problem of topic selection, as writers would still have to prioritize topics to

emphasize within a document.

We note that practical constraints can also affect the content of a tutorial. The motivation for

creating documentation can impact the content that writers choose to cover. For example, writers

who create documentation as a hobby or as a personal learning exercise may select topics based

on their personal interests rather than on the needs of their expected audience [13, 170]. Other

factors, such as a company’s interest in advertising their products, a limited time or effort budget, or

known characteristics of a small audience (e.g., when creating internal documentation for colleagues

within an organization) can also affect the selection of content. In our investigation of Android

tutorials, we attempted to minimize the impact of these considerations when selecting the tutorials

to study. However, future work should study how practical constraints affect the decisions taken by

practitioners.

6.1.3 Explicit Representations of Knowledge about Software

Systems and Development

Measuring or manipulating the information encapsulated in documents is challenging due to the

intangible nature of human knowledge. Yet, many documentation tasks, such as the selection

of topics to cover in a document, require to explicitly and systematically reflect on knowledge.

Knowledge bases can support these tasks by providing explicit representations of knowledge.1 They

can be valuable sources of information to support approaches for generating dynamic API class

documentation [121] and for comparing similar API elements [122].

Although many knowledge bases are available, finding one suitable for a specific application

requires considering many trade-offs. We used two knowledge bases in our studies: one (Wikipedia)

in the development of Scode to identify conceptual dependencies, and another one (API reference

documentation) in the development of Casdoc to generate Javadoc annotations. In this section, we

discuss some of the trade-offs we considered when selecting appropriate knowledge bases for Scode

and Casdoc. Table 6.1 complements this discussion with some examples of knowledge bases with

different properties, and a summary of the benefits and limitations of each.

1In the context of this discussion, we consider as a knowledge base any structured collection of information
organized into meaningful entries and that can be queried in a systematic way. This definition includes
knowledge graphs, ontologies, and glossaries. For example, we consider the complete reference documentation
of an API as a knowledge base, as it is composed of separate entries, i.e., the documentation of each API
element.

154

CHAPTER 6. DISCUSSION

Table 6.1: Types of Knowledge Base to Support Software Documentation Tasks

Properties Example Benefits Limitations

Expert-curated,
software-specific

SWEBOK [28],
ISO 24765 [101]

Authoritative and
traceable knowledge.

Require a large effort
investment; less
frequent updates and
smaller coverage.

Generated,
software-specific

HDSKG [245] High coverage,
especially for
technical information.

Varying reliability of
information and
consistency of
abstract concepts.

Crowdsourced,
software-specific

Stack Overflow High coverage;
creation cost
distributed among
community members.

Quality of information
correlates to the
popularity of a topic;
consistency depends
on moderators rather
than strict structures.

Crowdsourced,
general-domain

Wikipedia High coverage; large
community can
attract experts that
contribute
high-quality content.

Lack of specialized
information;
task-specific
considerations may
not align with
general-domain
guidelines.

Derived SOTorrent [19],
Wikidata [226]

Similar coverage and
quality than the
original knowledge
base, with more
consistent structures.

Transformation
process introduces an
additional source of
errors; excludes
information about
natural community
interactions.

Combined API Caveats
Knowledge
Graph [116]

Mitigate content
limitations of multiple
knowledge bases.

Heterogeneous entries
can create challenges
when processing the
information.

155

CHAPTER 6. DISCUSSION

Origin of Knowledge

Gathering and organizing the content of a knowledge base requires a lot of effort. Different strategies

are possible to alleviate or distribute this effort.

Expert-curated knowledge bases are manually created by a group of domain experts, ensuring

the high quality of their content. They include the Software Engineering Body of Knowledge

(SWEBOK) [28] or an ISO/IEC/IEEE standard [101]. The quality of their content comes at a cost,

as the effort required to create and evolve these knowledge bases prevents frequent updates. In

particular, curated project-agnostic knowledge bases typically focus on stable software development

concepts, rather than covering the most recent technologies. API reference documentation can also

be considered a curated, project-specific knowledge base, as its content is created and maintained

by the project’s developers. In this case, the content focuses on technical information about a single

API.

Tool-generated knowledge bases, such as HDSKG [245] or PengKG [121], can cover a wide

range of concepts and entities, including detailed information about software APIs (e.g., list of

public types and methods). However, the accuracy and coverage of a generated knowledge base

depend on the quality of the corpus from which the knowledge is extracted. Thus, although the

generation of the knowledge base requires little to no effort, this effort is instead spent on gathering

and curating the input corpus, in addition to the initial effort to develop the generation approach.

Generation approaches also have an inherent trade-off between the range and consistency of the

extracted information. This trade-off was apparent in our comparison between Scode and PengKG:

We observed that PengKG included a large variety of concepts, but few were consistently applied to

multiple entries.

Crowdsourced knowledge bases, such as Stack Overflow tags, cover a wider range of topics than

curated knowledge bases, but without the unpredictability of automated knowledge base construction

methods. However, the quality and coverage of crowdsourced knowledge bases depend on the size of

the community of contributors. Thus, successful crowdsourced knowledge bases typically have loose

structures maintained by moderators to lower the barriers to entry for newcomers. For example, on

Stack Overflow, there is no systematic protocol to detect redundant tags. This task instead relies

on contributors individually identifying and voting on tag synonyms on a case-by-case basis. As

a result, the quality of information is not uniform across the knowledge base, as popular entries

receive more attention than specialized ones.

Domain of Knowledge

The breadth of topics covered in knowledge bases varies considerably. Domain-specific knowl-

edge bases contain specialized information about a narrow domain. For example, the Common

Vulnerabilities and Exposures (CVE) dataset contains structured information about cybersecurity

156

CHAPTER 6. DISCUSSION

vulnerabilities [210]. In contrast, general-domain knowledge bases cover common topics related to

many domains. For example, WordNet is a lexical knowledge base that contains most of the common

English words [179]. The distinction between domain-specific and general-domain knowledge bases is

relative to the domain of the target application. For example, Stack Overflow tags can be considered

a domain-specific dataset to study the landscape of software technologies [163], but a general-domain

dataset to study the content of Android tutorials (Section 4.3).

As domain-specific knowledge bases focus on fewer topics, they can contain more detailed

information about them. For example, they can divide a concept into many fine-grained entries in

the knowledge base (e.g., include one entry for each component of a software library, rather than a

single entry for the entire library). They can also include specialized structures to relate entries

that would not apply outside the given domain (e.g., software products affected by CVE entries).

As general-domain knowledge bases capture many topics, they are typically more popular. This

popularity can positively affect the quality and quantity of information contained in the knowledge

base. In particular, popular crowdsourced knowledge bases can benefit from larger communities of

contributors, which can also attract many experts in a variety of topics. Thus, in some cases, the

quality of information in a domain-specific subset of a general-domain knowledge base can rival

the information in a knowledge base specific to the same domain. For example, when studying

information needs about the Android framework, it may be preferable to use data from the general-

domain forum Stack Overflow instead of its Android-specific equivalent, Android Enthusiasts Stack

Exchange [24]: As of March 2023, Stack Overflow contains over 1.4 million questions tagged with

android, whereas Android Enthusiasts contains a total of 59k questions.

Among general-domain knowledge bases, Wikipedia is a mature, extensive, and active option.

Due to its popularity, researchers and practitioners have designed many tools to interact with

Wikipedia, including the six wikifiers we evaluated. These tools are a practical consideration to

reduce the development effort of knowledge-oriented documentation tools. Wikipedia contains

an impressive amount of information, with over six million articles (as of March 2023). It uses

many structures to organize this information, such as categories and information boxes. However,

due to the size of Wikipedia, these structures inevitably contain inconsistencies. To illustrate this

limitation, we consider Wikipedia’s categories. A category groups articles about a similar topic.

Categories can themselves be grouped into parent categories, creating a hierarchical structure.

However, topics captured by categories can considerably change when navigating the hierarchy. For

example, Java enterprise platform is a descendant of Economy through three intermediate

categories, and of Paleoanthropology through four additional intermediate categories.2 The

2Java enterprise platform is a subcategory of Business software, which is a subcategory of
Business computing, which is a subcategory of Business, which is a subcategory of Economy, which is a
subcategory of Society, which is a subcategory of Humans, which is a subcategory of Hominina, which is
a subcategory of Hominini, which is a subcategory of Paleoanthropology. This sequence of categories is
not a rare oddity, but rather a representative example of topics changing when retrieving parent categories.

157

CHAPTER 6. DISCUSSION

hierarchical structure of categories is also imperfect, as it contains cycles. Thus, although categories

provide useful information, this information can be unreliable on a large scale.

Knowledge Base Transformations

A key attribute of knowledge bases is to provide the ability to manipulate knowledge using systematic

procedures. As a consequence, knowledge bases can be created by transforming other knowledge

bases.

Some knowledge bases are derived from other knowledge bases. For example, DBpedia [114]

and Wikidata [226] are derived from Wikipedia. They provide more rigid structures by curating or

automatically extracting structured information. Thus, they address one of the main limitations

of Wikipedia, but they lose information that has not yet been formalized into a rigid structure.

For example, the context in which internal Wikipedia links appear (e.g., its surrounding words

or the section within the article) can provide information about the nature of the relationship

between the two linked articles. This information is lost in derived knowledge bases. Therefore,

derived knowledge bases can provide more structured information with similar coverage and accuracy

than the original knowledge base, but they exclude the latent information that arise from natural

interactions between community members.

It is also possible to combine multiple knowledge bases into a single one by extracting meaningful

associations between entries of each original knowledge base. For example, Li et al. created a

knowledge graph of API caveats (i.e., directives) by linking the graph of API elements of a

framework to a dataset of caveat sentences extracted from tutorials [116]. Similarly, Scode can help

combine a graph of API elements to Wikipedia entries. Combined knowledge bases can mitigate

limitations in the content of its sources. However, they introduce the challenge of data heterogeneity.

Documentation approaches that use combined knowledge bases must ensure to properly handle

the different types of entries, which can increase the complexity of developing accurate processing

techniques. For example, WiBiTaxonomy is an approach that uses Wikipedia to identify pairs of

terms in a semantic generic–specific relation (e.g., Programming language and C++) [73]. As

it relies on a heterogeneous graph, where nodes can be either a Wikipedia article or a category,

it requires two distinct parameters to control the number of articles and categories considered,

respectively.

Creating or Selecting an Appropriate Knowledge Base

These considerations for selecting an appropriate knowledge base for a specific application demon-

strate the complexity of representing knowledge explicitly. Yet, a carefully selected or constructed

knowledge base constitutes an invaluable asset to developers and researchers.

158

CHAPTER 6. DISCUSSION

When designing documentation, writers can consider adding machine-readable structures to

documents, so that the documentation can also serve as a knowledge base. For example, a tutorial

writer could mark usage constraints, common error symptoms, or supported tasks described in the

tutorial with a special HTML syntax (e.g., using a recognizable HTML class). With this approach,

the tutorial writer could increase the value of its documentation with only a small additional effort.

Researchers can also further study the opportunities provided by different knowledge bases.

For example, Casdoc can be expanded by generating annotations from different knowledge bases

(e.g., Wikipedia, Stack Overflow, or CVE). Each additional knowledge base would require solving

challenges to ensure that only relevant annotations are added to Casdoc documents. Solutions

to these challenges would constitute useful contributions to both the software documentation and

traceability recovery fields.

6.2 Future Work

The themes discussed in the previous section highlighted areas of software documentation research

that can be further explored. Future work on the contextual aspects of documentation design

can include studies of various audiences (e.g., students, professional developers, non-developer

programmers), various technological contexts (e.g., declarative, object-oriented, or functional

languages), and various domains (e.g., utilities libraries, security libraries, end-user software bound

by legal requirements). Eventually, secondary studies can create theoretical models to identify

effective sets of guidelines for new development contexts.

Researchers can further study topic selection guidelines by conducting observation studies in

which they analyze the correlation between topics that readers look at in existing documents.

Alternatively, they can conduct experiments in which they modify a sample of base documents to

evaluate the impact of excluding different topics on quality scores given by participants.

Future work on explicit representations of knowledge can develop techniques to generate knowl-

edge bases with an emphasis on the consistency of abstract concepts or relations.

Beyond these research ideas, we discuss three additional opportunities for future research.

First, we describe how Casdoc can serve as an instrument to gather precise information about

documentation usage in realistic environments. Second, we discuss the need of more studies on the

effort required to create documentation. Finally, we discuss possible improvements that can be

made to the Casdoc format.

159

CHAPTER 6. DISCUSSION

6.2.1 Casdoc as an Extensible Instrument for Studying

Documentation

The development of Casdoc constitutes a concrete contribution to practitioners. We integrated

Casdoc documents as part of the learning material for an undergraduate course, and plan to continue

improving the format.

Beyond this contribution, an incidental benefit of the design of Casdoc is that it allowed us to

collect detailed data about the information that participants looked at without disrupting their

documentation usage behavior (see Section 5.3). The objective of our field study was to evaluate

Casdoc itself, so we did not analyze the content of the annotations that participants looked at.

However, future work can use a similar data collection methodology to study information needs.

As readers have to consciously reveal information by interacting with the document, and as

information is split into concise fragments, monitoring readers’ interaction can generate fine-grained

evidence of specific information needs. The design of Casdoc also supports the addition of different

types of annotations. The revised version of Casdoc presented in Section 5.7 includes two types of

annotations (i.e., authored by the investigators and extracted from API reference documentation).

Supporting more types would be a straightforward modification consistent with the design principles

of Casdoc. Having multiple types, each with a unique visual appearance, would allow to collect

even more precise data about information sought by readers.

Using Casdoc as a study instrument has several benefits over alternative data collection methods

such as surveys and observation studies. It avoids the need for data collection forms that disrupt

information searching activities, rely on self-reported data, and may require participants to recall

actions or to reflect on subconscious behavior. As opposed to observation studies, Casdoc can be

deployed in realistic environments. The automated and asynchronous data collection process also

allows to study many participants over long periods of time. Casdoc also does not require the use of

specialized tools such as eye tracking equipment and software to collect precise data.

Casdoc also has limitations. Although our studies demonstrated the viability of the format,

using it in a study of information needs introduces a confounding factor, as it requires readers to

adapt their strategies for finding information. Casdoc also requires investigators to create new

documents and participants to use them, as opposed to using existing resources that participants

are already familiar with. These limitations impact the realism of the study environment. In

return, investigators have more control over the documentation, which can allow them to mitigate

other confounding variables (e.g., the quality of the documents). Finally, Casdoc can only collect

quantitative data, limiting its usefulness for exploratory research.

These benefits and limitations of Casdoc make it a valuable instrument for large-scale descriptive

or confirmatory studies. For example, it can help confirm information needs elicited in observation

studies [62, 197] or measure their relative frequency.

160

CHAPTER 6. DISCUSSION

In addition to their research potential, instrumented Casdoc documents can also provide valuable

feedback to documentation writers. A challenging aspect of creating online documentation is the

lack of interaction with an actual audience [118]. Casdoc can address this problem by capturing

fine-grained usage data from any reader of a document. This information can help writers fix the

parts of a document that need improvement, or identify effective design decisions to replicate in

other documents. To realize this scenario, researchers or practitioners can design methodologies and

tools to elicit actionable recommendations from the analysis of Casdoc’s interaction data.

6.2.2 Challenges of Creating Documentation

Our comparison of Android tutorials and our studies of Casdoc focused on the readers’ perception

of documentation. However, the perspective of writers is also important to make a documentation

format successful. Creating documentation is already an effort-intensive activity, where writers must

balance multiple objectives. Thus, formats that require impractical amounts of effort from writers

will not be adopted, or only by the most motivated minority, even if they provide clear benefits to

readers.

As an example, researchers have argued for the publication of interactive scientific articles to

encourage readers to critically examine the data and their interpretation presented in articles [61].

However, creating interactive articles without efficient tools require considerably more effort than

traditional articles, which can explain why this practice is not prevalent in the scientific commu-

nity [93]. The same constraints apply to the context of software documentation: the additional effort

required to create interactive documents without specialized tools may outweigh the improvement

in quality for readers.

We were conscious of this trade-off during the development of Casdoc. Several design decisions

were motivated by the impact on the authoring process. We evaluated those design decisions by

using Casdoc ourselves to author over a hundred documents. However, this experience only provides

anecdotal evidence of the viability of Casdoc as an authoring tool. Future work should study

the challenges faced by writers, and how tools such as Casdoc can mitigate these challenges, to

complement research on software documentation with the document creators’ perspective [13, 130].

6.2.3 Further Improvements to the Casdoc Format

Although Casdoc is already a viable format for documentation, our studies revealed some of its

limitations that can be addressed in future versions of the format. We describe some of the

improvements we already implemented in Section 5.7. We plan to continue the development of

Casdoc, with some of the following improvements.

One benefit of non-interactive expanded documents over Casdoc is that readers can scan their

content to get an overview of the topics and amount of details covered by the document. We can

161

CHAPTER 6. DISCUSSION

address this limitation with a summarized representation of all annotations in Casdoc. Designing

this summary may involve an exploration of text summarization and information prioritization

techniques, to select which annotations to show in the summary and condense their content; topic

inference strategies, to organize the summary based on latent semantic relations between annotations;

and visual representations of information, to present the summarized information, with its non-linear

structure, in an understandable representation.

Expanded documents also allow readers to find information they did not specifically seek, for

example when trying to become more familiar with a topic. As the hybrid format we used in

the laboratory study proved to be a desirable option, a future version of Casdoc could duplicate

the content of some annotations to place it around the code example in an expanded form. This

alternative representation of the content introduces the challenge of transforming a graph-based

representation of information (i.e., annotations) into a coherent linear representation. In addition to

contributing to the improvement of Casdoc, solutions to this challenge could help develop techniques

to generate documentation from knowledge bases by aggregating a set of related entries into a single

narrative. Solutions that are reversible, i.e., that allow to transform the linear representation into a

graph of annotations, could support approaches that automatically convert existing documents into

the Casdoc format. The development of these solutions should also improve our understanding of

equivalent representations of knowledge.

The integration of additional knowledge bases to automatically generate annotation can improve

the content of Casdoc documents while reducing the authoring effort. Integrating a knowledge

base requires to investigate how to precisely associate its entries to specific anchors in the Casdoc

document. This is a traceability recovery problem. Thus, developing this feature will both validate

traceability recovery approaches for instances of the problem already studied in prior work, and

suggest new approaches for contexts that are yet unexplored.

6.3 Documentation in the Age of Language Models

The rising popularity of language models in recent years has introduced a new alternative for software

documentation. Conversational agents, such as ChatGPT, can generate on-demand documentation

based on user queries (i.e., prompts). In the most recent Stack Overflow developer survey, 83% of

respondents indicated having used ChatGPT in the last year [201]. Whether the current excitement

around language models constitutes the start of a new paradigm or a marketing success to pass

remains to be determined. Nevertheless, it encourages the community to reflect on new modes of

interaction for documentation. We note two prominent ways in which language models can influence

documentation practices: as a design option for the interface of interactive documentation, or as a

tool to support writers in the creation of non-interactive documents. We conclude with a reflection

162

CHAPTER 6. DISCUSSION

on how documentation research can affect the development of conversational agents, as opposed to

being disrupted by them.

Conversational Agents as an Interface Design Option

Using conversational agent as a form of documentation achieves several documentation quality

objectives. It can capture a large range of topics and technologies (i.e., high coverage) without

overwhelming readers with too much information (i.e., conciseness). They can also provide varying

amounts of background information to adapt to the expertise of its readers. Finally, it mitigates

navigability issues, as readers interact with only two elements: an input component to receive

queries, and an output component to show responses. In particular, it achieves many of the core

design objectives of Casdoc, and there are some similarities between the user interface of the two

formats. Both Casdoc and conversational agents show concise information to the reader, who can

then query the document to find more information about confusing aspects of the initial information.

With such benefits, one may question if conversational agents will (or should) become the

ubiquitous method for accessing documentation in a near future. The usefulness of conversational

agents depends on the quality of user queries [39, 84] and on the agent’s ability to understand the

query [230]. Both aspects can be challenging and introduce usability issues.3 In particular, during

our laboratory study, we observed several instances of participants looking for general information

about a topic they were unfamiliar with. In such cases, participants appreciated the ability to

discover information they did not specifically look for. In a document authored by a human expert,

readers can rely on the expert’s judgment to know what information is necessary to learn a topic.

Using conversational agents as a design strategy for documentation can also have a negative

impact on document creators. Training a large language model requires extensive computational

resources that many creators cannot afford. The development of conversational agents may also

conflict with the motivation of many documentation creators [13, 130]. For example, creators who

publish documentation to establish and improve their reputation within a community would not

benefit from creating a conversational agent, as it demonstrates an expertise in machine learning

techniques rather than in the domain actually covered by the conversational agent.

Language Models as a Content Creation Aid

Language models can help support writers in the creation of new documents. For example, writers

can use generative models to create the description of a concept for a tutorial or to improve the

3These issues add to other problems that are commonly discussed, such as the reliability and trustworthiness
of answers. Language models require users to trust both the original sources of information and the algorithms
to synthesize them. Although it is a valid argument against current language models, we are more interested
in language models as a tool to design documents. Thus, we assume that document writers and readers can
interact with trustworthy conversational agents.

163

CHAPTER 6. DISCUSSION

language quality of a section. These applications leave a human expert in control of design aspects

of the documentation (e.g., the selection of topics to cover and the organization of sections), but

help with the generation of its content. In this case, language models affect some steps in the

documentation creation process, but they do not constitute a fundamental paradigm shift. Therefore,

although language models show a lot of potential to reduce the burden of documentation, they do

not completely eliminate the human effort needed to create high-quality documents.

Documentation Research to Support Conversational Agents

Research on documentation design can help improve the user interface of conversational agents. For

example, we designed Casdoc as a format for documents authored by humans, but conversational

agents could also use a similar format. The user interface would include a component for the code

example, either produced by a human expert or generated based on an initial query. The user

would then be able to interact with specific elements of the code example to request additional

automatically generated information. This interface would contextualize the agent’s responses

for the user, but also allow to clarify the context of the user’s queries for the agent. Presenting

information in annotations instead of a chat interface would also allow the user and the agent to

follow multiple threads of information.

164

Chapter 7

Conclusion

Software documentation plays a critical role in sustaining rich ecosystems of reusable software

components. In addition to the quality of a document’s content, different design aspects affect a

document’s ability to effectively support sharing knowledge between developers. These aspects

include the selection of topics, their organization across a set of documents, and the navigation

features of the user interface.

We explored the design of software documentation to help writers improve the quality of

documents. Creating documents for a large audience is challenging, as individual readers have

varying needs and preferences. For example, if a tutorial about a library to perform cryptographic

operations includes definitions of domain concepts to be more accessible to novice developers,

domain experts may find it too verbose. Conversely, if the tutorial assumes prior knowledge of

domain concepts, novices may find it incomplete. In this thesis, we focused on design strategies that

promote interaction between readers and documents to address this challenge. Instead of creating

rigid documents tailored to a hypothetical average reader, we studied techniques to create flexible

documents that adapt to the preferences of individual readers.

We investigated three aspects of documentation design. First, we studied techniques to identify

concepts that developers must be familiar with when using a software library. We called these

concepts conceptual dependencies to denote the importance of developers understanding them to

correctly use the library. We designed Scode, an approach that combines wikification and community

search, to automatically identify conceptual dependencies represented by Wikipedia articles. Our

evaluation of Scode and of state-of-the-art wikifiers revealed insights on how to extract structured

knowledge from natural language documents and knowledge graphs. In particular, using a knowledge

base to identify conceptual dependencies leads to more consistent and meaningful, but less precise

results than extracting free-form concepts. We also found that selecting an optimal wikifier is

challenging and that they are generally less accurate on software-specific inputs, but simple heuristics

165

CHAPTER 7. CONCLUSION

(e.g., filtering the output with an inclusion list) can mitigate this limitation. The use of community

search algorithms generates more cohesive sets of concepts than alternative options, such as latent

Dirichlet allocation (LDA), but can generate very large sets around popular concepts such as SQL.

Second, we studied design variations in the content and organization of existing documents

by comparing three introductory tutorials about the Android framework. Although the tutorials

were all comprehensive, published by reputable organizations, and aimed at a similar audience, we

identified eleven design decisions related to five design aspects, such as the length of code examples

and the inclusion of peripheral topics to cover.

Finally, we designed a new format of documentation, called Casdoc, to explore the potential

of web technologies to support interactive documents. Casdoc documents focus on a high-quality

code example, and embed additional explanations about the code in dynamic annotations. We

conducted a field study and a laboratory study to understand the strengths and limitations of

interactive documentation designs. Our results demonstrate that Casdoc is a viable format for API

learning resources. It allows writers to include large amounts of information in a single document

that readers can access on demand. However, it also increases the probability that readers will miss

important information if they do not specifically search for it. We also observed that optimal format

designs depend on both the preferences of readers and the context of the search. These findings

informed several improvements to the Casdoc formats that we already made or plan to make in the

future.

This thesis demonstrates that many aspects of documentation design are insufficiently explored,

despite their potential to improve software documents. The design variations elicited from the

Android tutorials illustrate that even professional writers use various strategies, with an unclear

impact on the audience, to design complex tutorials. The design and evaluation of Casdoc allowed

us to elaborate guidelines, supported by empirical evidence, to help writers make informed decisions

about some design aspects. Our investigation of conceptual dependencies provide techniques for

writers to systematically select and review topics covered in a document. It also provides detailed

insights to manipulate knowledge graphs, e.g., to automatically generate annotations for Casdoc

documents.

We plan to pursue the development of Casdoc and to continue investigating better knowledge

representation techniques in the future. We hope our effort encourages both researchers and

practitioners to consider innovative strategies to present documentation.

166

Bibliography

[1] Surafel Lemma Abebe and Paolo Tonella. 2015. Extraction of domain concepts from the

source code. Science of Computer Programming 98, 4 (2015), 680–706.

[2] Nahla J. Abid, Bonita Sharif, Natalia Dragan, Hend Alrasheed, and Jonathan I. Maletic. 2019.

Developer Reading Behavior While Summarizing Java Methods: Size and Context Matters.

In Proceedings of the IEEE/ACM 41st International Conference on Software Engineering.

384–395.

[3] Silvia Abrahão, Carmine Gravino, Emilio Insfran, Giuseppe Scanniello, and Genoveffa Tortora.

2013. Assessing the Effectiveness of Sequence Diagrams in the Comprehension of Functional

Requirements: Results from a Family of Five Experiments. IEEE Transactions on Software

Engineering 39, 3 (2013), 327–342.

[4] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele Bavota, Michele

Lanza, and David C. Shepherd. 2020. Software Documentation: The Practitioners’ Perspective.

In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering.

590–601.

[5] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez, Laura

Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software Documentation Issues Unveiled.

In Proceedings of the IEEE/ACM 41st International Conference on Software Engineering.

1199–1210.

[6] Esra Akbas and Peixiang Zhao. 2017. Truss-based Community Search: a Truss-equivalence

Based Indexing Approach. Proceedings of the VLDB Endowment 10, 11 (2017), 1298–1309.

[7] Miltiadis Allamanis and Charles Sutton. 2013. Why, When, and What: Analyzing Stack

Overflow Questions by Topic, Type, and Code. In Proceedings of the 10th Working Conference

on Mining Software Repositories. 53–56.

[8] Android Developers. 2020. Developer guides. Retrieved 2024-03-28 from https://developer.

android.com/guide

167

BIBLIOGRAPHY

[9] Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zimmer. 2017. Automated

Extraction and Clustering of Requirements Glossary Terms. IEEE Transactions on Software

Engineering 43, 10 (2017), 918–945.

[10] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. 2020. Information Correspondence

between Types of Documentation for APIs. Empirical Software Engineering 25, 5 (2020),

4069–4096.

[11] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. 2023. How programmers find

online learning resources. Empirical Software Engineering 28, 2, Article 23 (2023), 30 pages.

[12] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. 2024. Properties and Styles of

Software Technology Tutorials. IEEE Transactions on Software Engineering 50, 2 (2024),

159–172.

[13] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. 2024. Why People Contribute to

Software Documentation. In Proceedings of the 17th International Conference on Cooperative

and Human Aspects of Software Engineering. 6 pages. To appear.

[14] Deeksha M. Arya, Mathieu Nassif, and Martin P. Robillard. 2021. Appendix for “A Data-

Centric Study of Software Tutorial Design”. Retrieved 2024-03-07 from https://zenodo.org/

records/5075903

[15] Deeksha M. Arya, Mathieu Nassif, and Martin P. Robillard. 2022. A Data-Centric Study of

Software Tutorial Design. IEEE Software 39, 3 (2022), 106–115.

[16] T. K. Attwood, D. B. Kell, P. McDermott, J. Marsh, S. R. Pettifer, and D. Thorne. 2010.

Utopia documents: linking scholarly literature with research data. Bioinformatics 26, 18

(2010), i568–i574.

[17] Sriram Karthik Badam, Zhicheng Liu, and Niklas Elmqvist. 2019. Elastic Documents: Coupling

Text and Tables through Contextual Visualizations for Enhanced Document Reading. IEEE

Transactions on Visualization and Computer Graphics 25, 1 (2019), 661–671.

[18] Gavin Bailey, Deepak Ranjan Sahoo, and Matt Jones. 2020. Digital Bookmark: Seamless

Switching Between Printed and Electronic Books. In Proceedings of the ACM Designing

Interactive Systems Conference. 885–894.

[19] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. 2018. SOTorrent:

Reconstructing and Analyzing the Evolution of Stack Overflow Posts. In Proceedings of the

ACM/IEEE 15th International Conference on Mining Software Repositories. 319–330.

168

BIBLIOGRAPHY

[20] Sebastian Baltes, Christoph Treude, and Martin P. Robillard. 2022. Contextual Documentation

Referencing on Stack Overflow. IEEE Transactions on Software Engineering 48, 1 (2022),

135–149.

[21] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. 2014. What are developers talking

about? An analysis of topics and trends in Stack Overflow. Empirical Software Engineering

19, 3 (2014), 619–654.

[22] Alex Bäuerle, Ángel Alexander Cabrera, Fred Hohman, Megan Maher, David Koski, Xavier

Suau, Titus Barik, and Dominik Moritz. 2022. Symphony: Composing Interactive Interfaces

for Machine Learning. In Proceedings of the CHI Conference on Human Factors in Computing

Systems. Article 210, 14 pages.

[23] David Beazley and Brian K. Jones. 2013. Python Cookbook: Recipes for Mastering Python 3

(3 ed.). O’Reilly Media.

[24] Stefanie Beyer, Christian Macho, Massimiliano Di Penta, and Martin Pinzger. 2020. What kind

of questions do developers ask on Stack Overflow? A comparison of automated approaches

to classify posts into question categories. Empirical Software Engineering 25, 3 (2020),

2258–2301.

[25] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. 1993. The Concept Assignment

Problem in Program Understanding. In Proceedings of the Working Conference on Reverse

Engineering. 27–43.

[26] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet Allocation.

Journal of Machine Learning Research 3, Jan (2003), 993–1022.

[27] Abir Bouraffa and Walid Maalej. 2020. Two Decades of Empirical Research on Develop-

ers’ Information Needs: A Preliminary Analysis. In Proceedings of the IEEE/ACM 42nd

International Conference on Software Engineering Workshops. 71–77.

[28] Pierre Bourque and Richard E. Fairley. 2014. Guide to the Software Engineering Body of

Knowledge (3 ed.).

[29] Tom Boyle. 2003. Design principles for authoring dynamic, reusable learning objects. Aus-

tralasian Journal of Educational Technology 19, 1 (2003), 46–58.

[30] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009.

Two Studies of Opportunistic Programming: Interleaving Web Foraging, Learning, and Writing

Code. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

1589–1598.

169

BIBLIOGRAPHY

[31] Janez Brank, Gregor Leban, and Marko Grobelnik. 2017. Annotating Documents with Relevant

Wikipedia Concepts. In Proceedings of the Slovenian Conference on Data Mining and Data

Warehouses. 4 pages.

[32] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-Scale Hypertextual Web

Search Engine. Computer Networks 30 (1998), 107–117.

[33] Marcel Bruch, Mira Mezini, and Martin Monperrus. 2010. Mining Subclassing Directives to

Improve Framework Reuse. In Proceedings of the 7th IEEE Working Conference on Mining

Software Repositories. 141–150.

[34] Margaret Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Laura Beckwith, Irwin

Kwan, Anicia Peters, and William Jernigan. 2016. GenderMag: A Method for Evaluating

Software’s Gender Inclusiveness. Interacting with Computers 28, 6 (2016), 760–787.

[35] Raymond P. L. Buse and Westley Weimer. 2012. Synthesizing API Usage Examples. In

Proceedings of the 34th International Conference on Software Engineering. 782–792.

[36] Liang Cai, Haoye Wang, Bowen Xu, Huang Qiao, Xin Xia, David Lo, and Zhenchang Xing.

2019. AnswerBot: An Answer Summary Generation Tool Based on Stack Overflow. In

Proceedings of the 27th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering. 1134–1138.

[37] Tianyuan Cai, Shaun Wallace, Tina Rezvanian, Jonathan Dobres, Bernard Kerr, Samuel

Berlow, Jeff Huang, Ben D. Sawyer, and Zoya Bylinskii. 2022. Personalized Font Recommen-

dations: Combining ML and Typographic Guidelines to Optimize Readability. In Proceedings

of the ACM Designing Interactive Systems Conference. 1–25.

[38] Eduardo C. Campos, Lucas B. L. de Souza, and Marcelo de A. Maia. 2016. Searching crowd

knowledge to recommend solutions for API usage tasks. Journal of Software: Evolution and

Process 28, 10 (2016), 863–892.

[39] Kaibo Cao, Chunyang Chen, Sebastian Baltes, Christoph Treude, and Xiang Chen. 2021.

Automated Query Reformulation for Efficient Search Based on Query Logs From Stack

Overflow. In Proceedings of the IEEE/ACM 43rd International Conference on Software

Engineering. 1273–1285.

[40] John M. Carroll, Penny L. Smith-Kerker, James R. Ford, and Sandra A. Mazur-Rimetz. 1987.

The Minimal Manual. Human–Computer Interaction 3, 2 (1987), 123–153.

170

BIBLIOGRAPHY

[41] Danilo Carvalho, Çağatay Çallı, André Freitas, and Edward Curry. 2014. EasyESA: A Low-

effort Infrastructure for Explicit Semantic Analysis. In Proceedings of the 13th International

Semantic Web Conference. 177–180.

[42] Taylor Cassidy, Heng Ji, Lev-Arie Ratinov, Arkaitz Zubiaga, and Hongzhao Huang. 2012. Anal-

ysis and Enhancement of Wikification for Microblogs with Context Expansion. In Proceedings

of the 24th International Conference on Computational Linguistics. 441–456.

[43] Jonathan Chang, Sean Gerrish, Chong Wang, Jordan Boyd-Graber, and David M. Blei. 2009.

Reading Tea Leaves: How Humans Interpret Topic Models. In Advances in Neural Information

Processing Systems. 288–296.

[44] Chunyang Chen and Zhenchang Xing. 2016. Mining Technology Landscape from Stack

Overflow. In Proceedings of the 10th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement. 1–10.

[45] Chunyang Chen, Zhenchang Xing, and Yang Liu. 2019. What’s Spain’s Paris? Mining

analogical libraries from Q&A discussions. Empirical Software Engineering 24, 3 (2019),

1155–1194.

[46] Chunyang Chen, Zhenchang Xing, and Ximing Wang. 2017. Unsupervised Software-Specific

Morphological Forms Inference from Informal Discussions. In Proceedings of the 39th Interna-

tional Conference on Software Engineering. 450–461.

[47] Nicholas Chen, Francois Guimbretiere, and Abigail Sellen. 2012. Designing a Multi-Slate

Reading Environment to Support Active Reading Activities. ACM Transactions on Computer-

Human Interaction 19, 3, Article 18 (2012), 35 pages.

[48] Xiao Cheng and Dan Roth. 2013. Relational Inference for Wikification. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing. 1787–1796.

[49] Pei-Yu Chi, Sally Ahn, Amanda Ren, Mira Dontcheva, Wilmot Li, and Björn Hartmann. 2012.

MixT: Automatic Generation of Step-by-Step Mixed Media Tutorials. In Proceedings of the

25th annual ACM symposium on User Interface Software and Technology. 93–102.

[50] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Paulo

Merson, Nord Robert, and Judith Stafford. 2010. Documenting Software Architectures: Views

and Beyond (2 ed.).

[51] Filipe Roseiro Cogo, Xin Xia, and Ahmed E. Hassan. 2023. Assessing the Alignment between

the Information Needs of Developers and the Documentation of Programming Languages: A

171

BIBLIOGRAPHY

Case Study on Rust. ACM Transactions on Software Engineering and Methodology 32, 2,

Article 43 (2023), 48 pages.

[52] Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Educational and

Psychological Measurement 20, 1 (1960), 37–46.

[53] Marco Cornolti, Paolo Ferragina, and Massimiliano Ciaramita. 2013. A Framework for

Benchmarking Entity-Annotation Systems. In Proceedings of the 22nd International Conference

on World Wide Web. 249–260.

[54] Alex Cummaudo, Rajesh Vasa, and John Grundy. 2019. What should I document? A

preliminary systematic mapping study into API documentation knowledge. In Proceedings of

the ACM/IEEE International Symposium on Empirical Software Engineering and Measurement.

6 pages.

[55] Bill Curtis, Sylvia B. Sheppard, Elizabeth Kruesi-Bailey, John Bailey, and Deborah A. Boehm-

Davis. 1989. Experimental Evaluation of Software Documentation Formats. Journal of

Systems and Software 9, 2 (1989), 167–207.

[56] Rodrigo Fernandes Gomes da Silva, Chanchal K. Roy, Mohammad Masudur Rahman,

Kevin A. Schneider, Klérisson Paixão, Carlos Eduardo de Carvalho Dantas, and Marcelo de

Almeida Maia. 2020. CROKAGE: Effective solution recommendation for programming tasks

by leveraging crowd knowledge. Empirical Software Engineering 25, 6 (2020), 4707–4758.

[57] Barthélémy Dagenais and Martin P. Robillard. 2010. Creating and Evolving Developer

Documentation: Understanding the Decisions of Open Source Contributors. In Proceedings of

the 18th ACM SIGSOFT international symposium on Foundations of software engineering.

127–136.

[58] Joachim Daiber, Max Jakob, Chris Hokamp, and Pablo N. Mendes. 2013. Improving Efficiency

and Accuracy in Multilingual Entity Extraction. In Proceedings of the 9th International

Conference on Semantic Systems. 121–124.

[59] Biniam Fisseha Demissie, Mariano Ceccato, and Lwin Khin Shar. 2020. Security analysis of

permission re-delegation vulnerabilities in Android apps. Empirical Software Engineering 25,

6 (2020), 5084–5136.

[60] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013. Feature location

in source code: a taxonomy and survey. Journal of Software: Evolution and Process 25, 1

(2013), 53–95.

172

BIBLIOGRAPHY

[61] Pierre Dragicevic, Yvonne Jansen, Abhraneel Sarma, Matthew Kay, and Fanny Chevalier.

2019. Increasing the Transparency of Research Papers with Explorable Multiverse Analyses.

In Proceedings of the CHI Conference on Human Factors in Computing Systems. Article 65,

15 pages.

[62] Ekwa Duala-Ekoko and Martin P. Robillard. 2012. Asking and Answering Questions about

Unfamiliar APIs: An Exploratory Study. In Proceedings of the 34th International Conference

on Software Engineering. 266–276.

[63] Shreyosi Endow and Cesar Torres. 2021. “I’m Better Off on my Own”: Understanding How a

Tutorial’s Medium Affects Physical Skill Development. In Proceedings of the ACM Designing

Interactive Systems Conference. 1313–1323.

[64] Neil A. Ernst and Martin P. Robillard. 2023. A study of documentation for software architecture.

Empirical Software Engineering 28, 5, Article 122 (2023), 23 pages.

[65] Saad Ezzini, Sallam Abualhaija, Chetan Arora, Mehrdad Sabetzadeh, and Lionel C. Briand.

2021. Using Domain-Specific Corpora for Improved Handling of Ambiguity in Requirements.

In Proceedings of the IEEE/ACM 43rd International Conference on Software Engineering.

1485–1497.

[66] F-Droid Limited and Contributors. 2022. F-Droid. Retrieved 2024-01-02 from https://www.

f-droid.org/

[67] J.-R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Prince, and M. Dao. 2010. Automatic

Extraction of a WordNet-Like Identifier Network from Software. In Proceedings of the 18th

IEEE International Conference on Program Comprehension. 4–13.

[68] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng, and Xuemin

Lin. 2020. A survey of community search over big graphs. The VLDB Journal 29, 1 (2020),

353–392.

[69] K. J. Kevin Feng, Maxwell James Coppock, and David W. McDonald. 2023. How Do UX

Practitioners Communicate AI as a Design Material? Artifacts, Conceptions, and Propositions.

In Proceedings of the ACM Designing Interactive Systems Conference. 2263–2280.

[70] Mi Feng, Cheng Deng, Evan M. Peck, and Lane Harrison. 2018. The Effects of Adding Search

Functionality to Interactive Visualizations on the Web. In Proceedings of the CHI Conference

on Human Factors in Computing Systems. Article 137, 13 pages.

173

BIBLIOGRAPHY

[71] Paolo Ferragina and Ugo Scaiella. 2010. TAGME: On-the-fly Annotation of Short Text

Fragments (by Wikipedia Entities). In Proceedings of the 19th ACM International Conference

on Information and Knowledge Management. 1625–1628.

[72] Alessio Ferrari and Andrea Esuli. 2019. An NLP approach for cross-domain ambiguity detection

in requirements engineering. Automated Software Engineering 26, 3 (2019), 559–598.

[73] Tiziano Flati, Daniele Vannella, Tommaso Pasini, and Roberto Navigli. 2014. Two Is Bigger

(and Better) Than One: the Wikipedia Bitaxonomy Project. In Proceedings of the 52nd Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 945–955.

[74] Adam Fourney and Michael Terry. 2014. Mining Online Software Tutorials: Challenges and

Open Problems. In Extended Abstracts on Human Factors in Computing Systems. 653–664.

[75] Evgeniy Gabrilovich and Shaul Markovitch. 2007. Computing Semantic Relatedness using

Wikipedia-based Explicit Semantic Analysis. In Proceedings of the 20th International Joint

Conference on Artificial Intelligence. 1606–1611.

[76] Zhipeng Gao, Xin Xia, David Lo, John Grundy, Xindong Zhang, and Zhenchang Xing. 2023.

I Know What You Are Searching for: Code Snippet Recommendation from Stack Overflow

Posts. ACM Transactions on Software Engineering and Methodology 32, 3, Article 80 (2023),

42 pages.

[77] R. Stuart Geiger, Nelle Varoquaux, Charlotte Mazel-Cabasse, and Chris Holdgraf. 2018. The

Types, Roles, and Practices of Documentation in Data Analytics Open Source Software

Libraries. Computer Supported Cooperative Work 27, 3-6 (2018), 767–802.

[78] Katy Ilonka Gero, Lydia Chilton, Chris Melancon, and Mike Cleron. 2022. Eliciting Gestures

for Novel Note-taking Interactions. In Proceedings of the ACM Designing Interactive Systems

Conference. 966–975.

[79] Elena L. Glassman, Tianyi Zhang, Björn Hartmann, and Miryung Kim. 2018. Visualizing

API Usage Examples at Scale. In Proceedings of the CHI Conference on Human Factors in

Computing Systems. Article 580, 12 pages.

[80] Google. 2020. Android Developer Fundamentals. Retrieved 2024-03-07 from https:

//google-developer-training.github.io/android-developer-fundamentals-course-concepts-v2/

index.html

[81] Daniel Graziotin, Per Lenberg, Robert Feldt, and Stefan Wagner. 2022. Psychometrics in

Behavioral Software Engineering: A Methodological Introduction with Guidelines. ACM

Transactions on Software Engineering and Methodology 31, 1, Article 7 (2022), 36 pages.

174

BIBLIOGRAPHY

[82] John Gruber. 2004. Daring Fireball: Markdown. Retrieved 2024-03-07 from https:

//daringfireball.net/projects/markdown/

[83] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-Based Program Visualization

for CS Education. In Proceedings of the 44th ACM technical symposium on Computer science

education. 579–584.

[84] Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia, and Tim

Menzies. 2013. Automatic Query Reformulations for Text Retrieval in Software Engineering.

In Proceedings of the 35th International Conference on Software Engineering. 842–851.

[85] Feng Han, Yifei Cheng, Megan Strachan, and Xiaojuan Ma. 2021. Hybrid Paper-Digital

Interfaces: A Systematic Literature Review. In Proceedings of the ACM Designing Interactive

Systems Conference. 1087–1100.

[86] Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio. 2019. 9.6 Million

Links in Source Code Comments: Purpose, Evolution, and Decay. In Proceedings of the

IEEE/ACM 41st International Conference on Software Engineering. 1211–1221.

[87] Andrew Head, Jason Jiang, James Smith, Marti A. Hearst, and Björn Hartmann. 2020.

Composing Flexibly-Organized Step-by-Step Tutorials from Linked Source Code, Snippets,

and Outputs. In Proceedings of the CHI Conference on Human Factors in Computing Systems.

Article 669, 12 pages.

[88] Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight. 2018. When

Not to Comment: Questions and Tradeoffs with API Documentation for C++ Projects. In

Proceedings of the 40th International Conference on Software Engineering. 643–653.

[89] Andrew Head, Amber Xie, and Marti A. Hearst. 2022. Math Augmentation: How Authors

Enhance the Readability of Formulas using Novel Visual Design Practices. In Proceedings of

the CHI Conference on Human Factors in Computing Systems. Article 491, 18 pages.

[90] Jeffrey Heer, Stuart K. Card, and James A. Landay. 2005. prefuse: A Toolkit for Interactive

Information Visualization. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. 421–430.

[91] Keita Higuchi, Shotaro Sano, and Takeo Igarashi. 2021. Interactive Hyperparameter Opti-

mization with Paintable Timelines. In Proceedings of the ACM Designing Interactive Systems

Conference. 1518–1528.

175

BIBLIOGRAPHY

[92] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Manfred Pinkal,

Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum. 2011. Robust Disam-

biguation of Named Entities in Text. In Proceedings of the ACL Conference on Empirical

Methods in Natural Language Processing. 782–792.

[93] Fred Hohman, Matthew Conlen, Jeffrey Heer, and Duen Horng (Polo) Chau. 2020. Com-

municating with Interactive Articles. Distill 5, 9 (2020), e28. https://distill.pub/2020/

communicating-with-interactive-articles

[94] Michihiro Horie and Shigeru Chiba. 2010. Tool support for crosscutting concerns of API

documentation. In Proceedings of the 9th International Conference on Aspect-Oriented Software

Development. 97–108.

[95] Kasper Hornbæk and Erik Frøkjær. 2003. Reading Patterns and Usability in Visualizations

of Electronic Documents. ACM Transactions on Computer-Human Interaction 10, 2 (2003),

119–149.

[96] Amber Horvath, Michael Xieyang Liu, River Hendriksen, Connor Shannon, Emma Paterson,

Kazi Jawad, Andrew Macvean, and Brad A Myers. 2022. Understanding How Programmers

Can Use Annotations on Documentation. In Proceedings of the CHI Conference on Human

Factors in Computing Systems. Article 69, 16 pages.

[97] Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang Fang. 2017. On Minimal

Steiner Maximum-Connected Subgraph Queries. IEEE Transactions on Knowledge and Data

Engineering 29, 11 (2017), 2455–2469.

[98] Xing Hu, Qiuyuan Chen, Haoye Wang, Xin Xia, David Lo, and Thomas Zimmermann.

2022. Correlating Automated and Human Evaluation of Code Documentation Generation

Quality. ACM Transactions on Software Engineering and Methodology 31, 4, Article 63 (2022),

28 pages.

[99] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API Method

Recommendation without Worrying about the Task-API Knowledge Gap. In Proceedings of

the 33rd ACM/IEEE International Conference on Automated Software Engineering. 293–304.

[100] Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Approximate

Closest Community Search in Networks. Proceedings of the VLDB Endowment 9, 4 (2015),

276–287.

[101] ISO/IEC/IEEE. 2017. International Standard – Systems and software engineering – Vocabulary.

Standard 24765:2017. ISO/IEC/IEEE.

176

BIBLIOGRAPHY

[102] Heng Ji and Ralph Grishman. 2011. Knowledge Base Population: Successful Approaches and

Challenges. In Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies. 1148–1158.

[103] Matthew B. Kelly, Jason S. Alexander, Bram Adams, and Ahmed E. Hassan. 2011. Recovering

a Balanced Overview of Topics in a Software Domain. In Proceedings of the IEEE 11th

International Working Conference on Source Code Analysis and Manipulation. 135–144.

[104] Maurice G Kendall. 1938. A New Measure of Rank Correlation. Biometrika 30, 1/2 (1938),

81–93.

[105] Kandarp Khandwala and Philip J. Guo. 2018. Codemotion: Expanding the Design Space of

Learner Interactions with Computer Programming Tutorial Videos. In Proceedings of the 5th

Annual ACM Conference on Learning at Scale. Article 57, 10 pages.

[106] Kimia Kiani, George Cui, Andrea Bunt, Joanna McGrenere, and Parmit K. Chilana. 2019.

Beyond “One-Size-Fits-All”: Understanding the Diversity in How Software Newcomers Discover

and Make Use of Help Resources. In Proceedings of the CHI Conference on Human Factors in

Computing Systems. 1–14.

[107] Dae Hyun Kim, Enamul Hoque, Juho Kim, and Maneesh Agrawala. 2018. Facilitating

Document Reading by Linking Text and Tables. In Proceedings of the 31st Annual ACM

Symposium on User Interface Software and Technology. 423–434.

[108] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An Exploratory

Study of How Developers Seek, Relate, and Collect Relevant Information during Software

Maintenance Tasks. IEEE Transactions on Software Engineering 32, 12 (2006), 971–987.

[109] Amy J. Ko and Yann Riche. 2011. The Role of Conceptual Knowledge in API Usability. In

Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing.

173–176.

[110] Amy J. Ko and Bob Uttl. 2003. Individual Differences in Program Comprehension Strategies

in Unfamiliar Programming Systems. In Proceedings of the 11th IEEE International Workshop

on Program Comprehension. 175–184.

[111] Balasaravanan Thoravi Kumaravel, Cuong Nguyen, Stephen DiVerdi, and Björn Hartmann.

2019. TutoriVR: A Video-Based Tutorial System for Design Applications in Virtual Reality.

In Proceedings of the CHI Conference on Human Factors in Computing Systems. Article 284,

12 pages.

177

BIBLIOGRAPHY

[112] J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer Agreement for

Categorical Data. Biometrics 33, 1 (1977), 159–174.

[113] Tien-Duy B. Le, Richard J. Oentaryo, and David Lo. 2015. Information Retrieval and

Spectrum Based Bug Localization: Better Together. In Proceedings of the 10th Joint Meeting

on Foundations of Software Engineering. 579–590.

[114] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N.

Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and Christian

Bizer. 2015. DBpedia – A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia.

Semantic Web 6, 2 (2015), 167–195.

[115] Timothy C. Lethbridge, Janice Singer, and Andrew Forward. 2003. How Software Engineers

Use Documentation: The State of the Practice. IEEE Software 20, 6 (2003), 35–39.

[116] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and Xuejiao

Zhao. 2018. Improving API Caveats Accessibility by Mining API Caveats Knowledge Graph.

In Proceedings of the IEEE International Conference on Software Maintenance and Evolution.

183–193.

[117] Chen Liang, Anhong Guo, and Jeeeun Kim. 2022. CustomizAR: Facilitating Interactive

Exploration and Measurement of Adaptive 3D Designs. In Proceedings of the ACM Designing

Interactive Systems Conference. 898–912.

[118] Eden Litt. 2012. Knock, Knock. Who’s There? The Imagined Audience. Journal of Broad-

casting & Electronic Media 56, 3 (2012), 330–345.

[119] Jiakun Liu, Sebastian Baltes, Christoph Treude, David Lo, Yun Zhang, and Xin Xia. 2021.

Characterizing Search Activities on Stack Overflow. In Proceedings of the 29th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering. 919–931.

[120] Mingwei Liu, Xin Peng, Andrian Marcus, Shuangshuang Xing, Christoph Treude, and

Chengyuan Zhao. 2022. API-Related Developer Information Needs in Stack Overflow. IEEE

Transactions on Software Engineering 48, 11 (2022), 4485–4500.

[121] Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuangshuang Xing,

and Yang Liu. 2019. Generating Query-Specific Class API Summaries. In Proceedings of the

27th ACM Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering. 120–130.

178

BIBLIOGRAPHY

[122] Yang Liu, Mingwei Liu, Xin Peng, Christoph Treude, Zhenchang Xing, and Xiaoxin Zhang.

2020. Generating Concept based API Element Comparison Using a Knowledge Graph.

In Proceedings of the 35th IEEE/ACM International Conference on Automated Software

Engineering. 834–845.

[123] Ziyi Liu, Zhengzhe Zhu, Enze Jiang, Feichi Huang, Anna M. Villanueva, Xun Qian, Tianyi

Wang, and Karthik Ramani. 2023. InstruMentAR: Auto-Generation of Augmented Reality

Tutorials for Operating Digital Instruments Through Recording Embodied Demonstration.

In Proceedings of the CHI Conference on Human Factors in Computing Systems. Article 32,

17 pages.

[124] Dmitry Lizorkin, Olena Medelyan, and Maria Grineva. 2009. Analysis of Community Structure

in Wikipedia. In Proceedings of the 18th International Conference on World Wide Web. 1221–

1222.

[125] J. D. Long and Paul Teetor. 2019. R Cookbook: Proven Recipes for Data Analysis, Statistics

& Graphics (2 ed.). O’Reilly Media.

[126] Lori Lorigo, Bing Pan, Helene Hembrooke, Thorsten Joachims, Laura Granka, and Geri Gay.

2006. The influence of task and gender on search and evaluation behavior using Google.

Information Processing & Management 42, 4 (2006), 1123–1131.

[127] Suyu Ma, Zhenchang Xing, Chunyang Chen, Cheng Chen, Lizhen Qu, and Guoqiang Li. 2021.

Easy-to-Deploy API Extraction by Multi-Level Feature Embedding and Transfer Learning.

IEEE Transactions on Software Engineering 47, 10 (2021), 2296–2311.

[128] Walid Maalej and Martin P. Robillard. 2013. Patterns of Knowledge in API Reference

Documentation. IEEE Transactions on Software Engineering 39, 9 (2013), 1264–1282.

[129] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. 2014. On the Com-

prehension of Program Comprehension. ACM Transactions on Software Engineering and

Methodology 23, 4, Article 31 (2014), 37 pages.

[130] Laura MacLeod, Andreas Bergen, and Margaret-Anne Storey. 2017. Documenting and sharing

software knowledge using screencasts. Empirical Software Engineering 22, 3 (2017), 1478–1507.

[131] Laura MacLeod, Margaret-Anne Storey, and Andreas Bergen. 2015. Code, Camera, Action:

How Software Developers Document and Share Program Knowledge Using YouTube. In

Proceedings of the IEEE 23rd International Conference on Program Comprehension. 104–114.

179

BIBLIOGRAPHY

[132] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random Variables

is Stochastically Larger than the Other. The Annals of Mathematical Statistics 18, 1 (1947),

50–60.

[133] Damien Masson, Sylvain Malacria, Géry Casiez, and Daniel Vogel. 2023. Charagraph:

Interactive Generation of Charts for Realtime Annotation of Data-Rich Paragraphs. In

Proceedings of the CHI Conference on Human Factors in Computing Systems. Article 146,

18 pages.

[134] Damien Masson, Sylvain Malacria, Edward Lank, and Géry Casiez. 2020. Chameleon: Bringing

Interactivity to Static Digital Documents. In Proceedings of the CHI Conference on Human

Factors in Computing Systems. Article 432, 13 pages.

[135] Paul W. McBurney and Collin McMillan. 2014. Automatic Documentation Generation via

Source Code Summarization of Method Context. In Proceedings of the 22nd International

Conference on Program Comprehension. 279–290.

[136] Andrew Kachites McCallum. 2002. MALLET: A Machine Learning for Language Toolkit.

Retrieved 2024-01-02 from http://mallet.cs.umass.edu

[137] Edgar Meij, Wouter Weerkamp, and Maarten de Rijke. 2012. Adding Semantics to Microblog

Posts. In Proceedings of the 5th ACM International Conference on Web Search and Data

Mining. 563–572.

[138] Hans Meij, Joyce Karreman, and Michaël Steehouder. 2009. Three Decades of Research and

Professional Practice on Printed Software Tutorials for Novices. Technical Communication 56,

3 (2009), 265–292.

[139] David A. Mellis, Ben Zhang, Audrey Leung, and Björn Hartmann. 2017. Machine Learning

for Makers: Interactive Sensor Data Classification Based on Augmented Code Examples. In

Proceedings of the Conference on Designing Interactive Systems. 1213–1225.

[140] Pablo N. Mendes, Max Jakob, Andres Garcia-Silva, and Christian Bizer. 2011. DBpedia

Spotlight: Shedding Light on the Web of Documents. In Proceedings of the 7th International

Conference on Semantic Systems. 1–8.

[141] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. 2018. Application Programming

Interface Documentation: What Do Software Developers Want? Journal of Technical Writing

and Communication 48, 3 (2018), 295–330.

180

BIBLIOGRAPHY

[142] Michael Meng, Stephanie M. Steinhardt, and Andreas Schubert. 2020. Optimizing API

Documentation: Some Guidelines and Effects. In Proceedings of the 38th ACM International

Conference on Design of Communication. Article 24, 11 pages.

[143] Rada Mihalcea, Timothy Chklovski, and Adam Kilgarriff. 2004. The Senseval-3 English lexical

sample task. In Proceedings of the 3rd International Workshop on the Evaluation of Systems

for the Semantic Analysis of Text. 25–28.

[144] Bradley N. Miller and David L. Ranum. 2012. Beyond PDF and ePub: Toward an Interactive

Textbook. In Proceedings of the 17th ACM annual conference on Innovation and technology

in computer science education. 150–155.

[145] David Milne and Ian H. Witten. 2008. Learning to link with Wikipedia. In Proceedings of the

17th ACM conference on Information and Knowledge Management. 509–518.

[146] David Milne and Ian H. Witten. 2013. An open-source toolkit for mining Wikipedia. Artificial

Intelligence 194 (2013), 222–239.

[147] Aliaksei Miniukovich, Antonella De Angeli, Simone Sulpizio, and Paola Venuti. 2017. Design

Guidelines for Web Readability. In Proceedings of the Conference on Designing Interactive

Systems. 285–296.

[148] Daniel Moody and Jos van Hillegersberg. 2008. Evaluating the Visual Syntax of UML: An

Analysis of the Cognitive Effectiveness of the UML Family of Diagrams. In Proceedings of the

International Conference on Software Language Engineering. 16–34.

[149] Andrea Moro, Alessandro Raganato, and Roberto Navigli. 2014. Entity Linking meets Word

Sense Disambiguation: a Unified Approach. Transactions of the Association for Computational

Linguistics 2 (2014), 231–244.

[150] Parisa Moslehi, Juergen Rilling, and Bram Adams. 2022. A user survey on the adoption of

crowd-based software engineering instructional screencasts by the new generation of software

developers. Journal of Systems and Software 185, Article 111144 (2022), 21 pages.

[151] Sarah Nadi and Christoph Treude. 2020. Essential Sentences for Navigating Stack Overflow

Answers. In Proceedings of the IEEE 27th International Conference on Software Analysis,

Evolution and Reengineering. 229–239.

[152] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What Makes a

Good Code Example? A Study of Programming Q&A in StackOverflow. In Proceedings of the

28th IEEE International Conference on Software Maintenance. 25–34.

181

BIBLIOGRAPHY

[153] Mathieu Nassif, Alexa Hernandez, Ashvitha Sridharan, and Martin P. Robillard. 2022. Gen-

erating Unit Tests for Documentation. IEEE Transactions on Software Engineering 48, 9

(2022), 3268–3279.

[154] Mathieu Nassif, Zara Horlacher, and Martin P. Robillard. 2022. Casdoc: Unobtrusive Expla-

nations in Code Examples. In Proceedings of the 30th IEEE/ACM International Conference

on Program Comprehension. 631–635.

[155] Mathieu Nassif and Martin P. Robillard. 2021. Replication package for “Wikifying Software

Artifacts”. Retrieved 2024-03-07 from https://zenodo.org/records/4442458

[156] Mathieu Nassif and Martin P. Robillard. 2021. Wikifying Software Artifacts. Empirical

Software Engineering 26, 2, Article 31 (2021), 31 pages.

[157] Mathieu Nassif and Martin P. Robillard. 2023. Artifact for “Identifying Concepts in Software

Projects”. Retrieved 2024-03-16 from https://zenodo.org/records/7835197

[158] Mathieu Nassif and Martin P. Robillard. 2023. A Field Study of Developer Documentation

Format. In Extended Abstracts of the ACM CHI Conference on Human Factors in Computing

Systems. Article 7, 7 pages.

[159] Mathieu Nassif and Martin P. Robillard. 2023. Identifying Concepts in Software Projects.

IEEE Transactions on Software Engineering 49, 7 (2023), 3660–3674.

[160] Mathieu Nassif and Martin P. Robillard. 2023. Non Linear Software Documentation with

Interactive Code Examples. ACM Transactions on Software Engineering and Methodologies

(2023), 29 pages. https://arxiv.org/abs/2311.18057 Accepted pending minor revision.

[161] Mathieu Nassif and Martin P. Robillard. 2024. Appendix to “Evaluating Interactive Documen-

tation for Programmers”. Retrieved 2024-03-07 from https://zenodo.org/doi/10.5281/zenodo.

10637078

[162] Mathieu Nassif and Martin P. Robillard. 2024. Evaluating Interactive Documentation for

Programmers. Empirical Software Engineering (2024), 25 pages. Under review.

[163] Mathieu Nassif, Christoph Treude, and Martin P. Robillard. 2020. Automatically Categorizing

Software Technologies. IEEE Transactions on Software Engineering 46, 1 (2020), 20–32.

[164] Roberto Navigli, David Jurgens, and Daniele Vannella. 2013. SemEval-2013 Task 12: Multilin-

gual Word Sense Disambiguation. In Second Joint Conference on Lexical and Computational

Semantics, Volume 2: Proceedings of the 7th International Workshop on Semantic Evaluation.

222–231.

182

BIBLIOGRAPHY

[165] Roberto Navigli and Simone Paolo Ponzetto. 2012. BabelNet: The automatic construction,

evaluation and application of a wide-coverage multilingual semantic network. Artificial

Intelligence 193 (2012), 217–250.

[166] Stephen Oney and Joel Brandt. 2012. Codelets: Linking Interactive Documentation and

Example Code in the Editor. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. 2697–2706.

[167] Oracle. 2022. Lesson: JDBC Basics. Retrieved 2024-03-08 from https://docs.oracle.com/

javase/tutorial/jdbc/basics/index.html

[168] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The PageRank

Citation Ranking: Bringing Order to the Web. Technical Report 1999-66. Stanford InfoLab.

[169] Fabio Palomba, Pasquale Salza, Adelina Ciurumelea, Sebastiano Panichella, Harald Gall,

Filomena Ferrucci, and Andrea De Lucia. 2017. Recommending and Localizing Change

Requests for Mobile Apps Based on User Reviews. In Proceedings of the IEEE/ACM 39th

International Conference on Software Engineering. 106–117.

[170] Chris Parnin, Christoph Treude, and Margaret-Anne Storey. 2013. Blogging Developer

Knowledge: Motivations, Challenges, and Future Directions. In Proceedings of the 21st

International Conference on Program Comprehension. 211–214.

[171] Sangameshwar Patil. 2017. Concept-Based Classification of Software Defect Reports. In

Proceedings of the 14th International Conference on Mining Software Repositories. 182–186.

[172] Maksym Petrenko, Václav Rajlich, and Radu Vanciu. 2008. Partial Domain Comprehension

in Software Evolution and Maintenance. In Proceedings of the 16th IEEE International

Conference on Program Comprehension. 13–22.

[173] Francesco Piccinno and Paolo Ferragina. 2014. From TagME to WAT: a new Entity Annotator.

In Proceedings of the first International Workshop on Entity Recognition & Disambiguation.

55–62.

[174] Peter Pirolli and Stuart Card. 1999. Information Foraging. Psychological Review 106, 4 (1999),

643–675.

[175] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. 2013. Seahawk: Stack Overflow in the

IDE. In Proceedings of the 35th International Conference on Software Engineering. 1295–1298.

[176] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele

Lanza. 2014. Prompter: A Self-Confident Recommender System. In Proceedings of the IEEE

International Conference on Software Maintenance and Evolution. 577–580.

183

BIBLIOGRAPHY

[177] Martin F. Porter. 1980. An algorithm for suffix stripping. Program 14, 3 (1980), 130–137.

[178] Denys Poshyvanyk, Malcom Gethers, and Andrian Marcus. 2012. Concept Location Using For-

mal Concept Analysis and Information Retrieval. ACM Transactions on Software Engineering

and Methodology 21, 4, Article 23 (2012), 34 pages.

[179] Princeton University. 2010. WordNet: A Lexical Database for English. Retrieved 2024-03-17

from https://wordnet.princeton.edu/

[180] Daniele Procida. 2017. Diátaxis documentation framework. Retrieved 2024-03-18 from

https://diataxis.fr/

[181] Mohammad Masudur Rahman and Chanchal K. Roy. 2018. Improving IR-Based Bug Localiza-

tion with Context-Aware Query. In Proceedings of the 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering.

621–632.

[182] Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. 2011. Local and Global Algorithms

for Disambiguation to Wikipedia. In Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language Technologies – Volume 1. 1375–1384.

[183] Daniel Ratiu, Martin Feilkas, and Jan Jurjens. 2008. Extracting Domain Ontologies from Do-

main Specific APIs. In Proceedings of the 12th European Conference on Software Maintenance

and Reengineering. 203–212.

[184] Thomas Rebele, Fabian Suchanek, Johannes Hoffart, Joanna Biega, Erdal Kuzey, and Gerhard

Weikum. 2016. YAGO: A Multilingual Knowledge Base from Wikipedia, Wordnet, and

Geonames. In Proceedings of the International Semantic Web Conference. 177–185.

[185] Xiaoxue Ren, Jiamou Sun, Zhenchang Xing, Xin Xia, and Jianling Sun. 2020. Demystify

Official API Usage Directives with Crowdsourced API Misuse Scenarios, Erroneous Code

Examples and Patches. In Proceedings of the IEEE/ACM 42nd International Conference on

Software Engineering. 925–936.

[186] Peter C. Rigby and Martin P. Robillard. 2013. Discovering Essential Code Elements in

Informal Documentation. In Proceedings of the 35th IEEE/ACM International Conference on

Software Engineering. 832–841.

[187] Martin P. Robillard. 2009. What Makes APIs Hard to Learn? Answers from Developers.

IEEE Software 26, 6 (2009), 27–34.

[188] Martin P. Robillard. 2022. Introduction to Software Design with Java (2 ed.). Springer.

184

BIBLIOGRAPHY

[189] Martin P. Robillard and Robert DeLine. 2011. A field study of API learning obstacles.

Empirical Software Engineering 16, 6 (2011), 703–732.

[190] Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar Chaparro,

Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza, Mario Linares-Vásquez,

Gail C. Murphy, Laura Moreno, David Shepherd, and Edmund Wong. 2017. On-Demand

Developer Documentation. In Proceedings of the IEEE International Conference on Software

Maintenance and Evolution. 479–483.

[191] Martin P. Robillard and Christoph Treude. 2020. Understanding Wikipedia as a Resource for

Opportunistic Learning of Computing Concepts. In Proceedings of the 51st ACM Technical

Symposium on Computer Science Education. 72–78.

[192] Christoffer Rosen and Emad Shihab. 2016. What are mobile developers asking about? A large

scale study using Stack Overflow. Empirical Software Engineering 21, 3 (2016), 1192–1223.

[193] Peter J. Rousseeuw. 1987. Silhouettes: a graphical aid to the interpretation and validation of

cluster analysis. J. Comput. Appl. Math. 20 (1987), 53–65.

[194] Dominic Seyler, Tatiana Dembelova, Luciano Del Corro, Johannes Hoffart, and Gerhard

Weikum. 2018. A Study of the Importance of External Knowledge in the Named Entity Recog-

nition Task. In Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers). 241–246.

[195] Zohreh Sharafi, Yu Huang, Kevin Leach, and Westley Weimer. 2021. Toward an Objective

Measure of Developers’ Cognitive Activities. ACM Transactions on Software Engineering and

Methodology 30, 3, Article 30 (2021), 40 pages.

[196] Wei Shen, Jianyong Wang, and Jiawei Han. 2015. Entity Linking with a Knowledge Base:

Issues, Techniques, and Solutions. IEEE Transactions on Knowledge and Data Engineering

27, 2 (2015), 443–460.

[197] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2008. Asking and Answering Questions

during a Programming Change Task. IEEE Transactions on Software Engineering 34, 4

(2008), 434–451.

[198] Robert R. Sokal and Charles D. Michener. 1958. A Statistical Method for Evaluating

Systematic Relationships. The University of Kansas Science Bulletin 38 (1958), 1409–1438.

[199] Mauro Sozio and Aristides Gionis. 2010. The Community-search Problem and How to Plan a

Successful Cocktail Party. In Proceedings of the 16th ACM SIGKDD International Conference

on Knowledge Discovery and Data mining. 939–948.

185

BIBLIOGRAPHY

[200] Stack Exchange Inc. 2024. All Sites - Stack Exchange. Retrieved 2024-03-18 from https:

//stackexchange.com/sites

[201] Stack Overflow Labs. 2023. Stack Overflow Developer Survey 2023. Retrieved 2024-03-23

from https://survey.stackoverflow.co/2023/

[202] Sarah Sterman, Molly Jane Nicholas, Janaki Vivrekar, Jessica R. Mindel, and Eric Paulos.

2023. Kaleidoscope: A Reflective Documentation Tool for a User Interface Design Course. In

Proceedings of the CHI Conference on Human Factors in Computing Systems. Article 702,

19 pages.

[203] Klaas-Jan Stol and Brian Fitzgerald. 2018. The ABC of Software Engineering Research. ACM

Transactions on Software Engineering and Methodology 27, 3, Article 11 (2018), 51 pages.

[204] Jeffrey Stylos, Andrew Faulring, Zizhuang Yang, and Brad A. Myers. 2009. Improving API

Documentation Using API Usage Information. In Proceedings of the IEEE Symposium on

Visual Languages and Human-Centric Computing. 119–126.

[205] Beth M. Sundheim. 1995. Overview of Results of the MUC-6 Evaluation. In Proceedings of

the 6th Conference on Message Understanding. 13–31.

[206] Julian Szymański and Maciej Naruszewicz. 2019. Review on Wikification methods. AI

Communications 32, 3 (2019), 235–251.

[207] Craig S. Tashman and W. Keith Edwards. 2011. LiquidText: A Flexible, Multitouch

Environment to Support Active Reading. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. 3285–3294.

[208] Jaime Teevan, Christine Alvarado, Mark S. Ackerman, and David R. Karger. 2004. The

Perfect Search Engine Is Not Enough: A Study of Orienteering Behavior in Directed Search.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 415–422.

[209] Maartje ter Hoeve, Robert Sim, Elnaz Nouri, Adam Fourney, Maarten de Rijke, and Ryen W.

White. 2020. Conversations with Documents: An Exploration of Document-Centered Assis-

tance. In Proceedings of the Conference on Human Information Interaction and Retrieval.

43–52.

[210] The MITRE Corporation. 1999. CVE Website. Retrieved 2024-03-26 from https://www.cve.

org/

[211] The R Foundation. 2024. R: What is R? Retrieved 2024-03-22 from https://www.r-project.

org/about.html

186

BIBLIOGRAPHY

[212] Stephen W. Thomas, Hadi Hemmati, Ahmed E. Hassan, and Dorothea Blostein. 2014. Static

test case prioritization using topic models. Empirical Software Engineering 19, 1 (2014),

182–212.

[213] Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 Shared

Task: Language-Independent Named Entity Recognition. In Proceedings of the 7th Conference

on Natural Language Learning at HLT-NAACL. 142–147.

[214] Kashyap Todi, Luis A. Leiva, Daniel Buschek, Pin Tian, and Antti Oulasvirta. 2021. Con-

versations with GUIs. In Proceedings of the ACM Designing Interactive Systems Conference.

1447–1457.

[215] Christoph Treude and Martin P. Robillard. 2016. Augmenting API Documentation with

Insights from Stack Overflow. In Proceedings of the 38th International Conference on Software

Engineering. 392–403.

[216] Gias Uddin and Martin P. Robillard. 2015. How API Documentation Fails. IEEE Software

32, 4 (2015), 68–75.

[217] Ricardo Usbeck, Michael Röder, Axel-Cyrille Ngonga Ngomo, Ciro Baron, Andreas Both,

Martin Brümmer, Diego Ceccarelli, Marco Cornolti, Didier Cherix, Bernd Eickmann, Paolo

Ferragina, Christiane Lemke, Andrea Moro, Roberto Navigli, Francesco Piccinno, Giuseppe

Rizzo, Harald Sack, René Speck, Raphaël Troncy, Jörg Waitelonis, and Lars Wesemann. 2015.

GERBIL: General Entity Annotator Benchmarking Framework. In Proceedings of the 24th

International Conference on World Wide Web. 1133–1143.

[218] Hans van der Meij, Joyce Karreman, and Michaël Steehouder. 2009. Three Decades of Research

and Professional Practice on Printed Software Tutorials for Novices. Technical Communication

56, 3 (2009), 265–292.

[219] Hans van der Meij and Jan van der Meij. 2014. A comparison of paper-based and video

tutorials for software learning. Computers & Education 78 (2014), 150–159.

[220] J. van der Meij and H. van der Meij. 2015. A test of the design of a video tutorial for software

training. Journal of Computer Assisted Learning 31, 2 (2015), 116–132.

[221] Bret Victor. 2011. Explorable Explanations. https://worrydream.com/ExplorableExplanations/.

[222] Bret Victor. 2012. Learnable Programming. https://worrydream.com/LearnableProgramming/.

187

BIBLIOGRAPHY

[223] Melina Vidoni and Zadia Codabux. 2023. Towards a taxonomy of Roxygen documentation in

R packages. Empirical Software Engineering 28, 4, Article 106 (2023), 48 pages.

[224] Nicolas Vincent, Isaac Johnson, and Brent Hecht. 2018. Examining Wikipedia With a Broader

Lens: Quantifying the Value of Wikipedia’s Relationship with Other Large-Scale Online

Communities. In Proceedings of the CHI Conference on Human Factors in Computing Systems.

Article 566, 13 pages.

[225] Lars Vogel. 2020. Android Development Tutorials. Retrieved 2024-03-28 from https://www.

vogella.com/tutorials/android.html

[226] Denny Vradečić and Markus Krötzsch. 2014. Wikidata: a free collaborative knowledgebase.

Commun. ACM 57, 10 (2014), 78–85.

[227] Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai, Bing Xie, and Tuo

Wang. 2019. A Learning-Based Approach for Automatic Construction of Domain Glossary

from Source Code and Documentation. In Proceedings of the 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of Software

Engineering. 97–108.

[228] Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie

Meng. 2023. XCoS: Explainable Code Search Based on Query Scoping and Knowledge

Graph. ACM Transactions on Software Engineering and Methodology 32, 6, Article 140 (2023),

28 pages.

[229] Lu Wang, Xiaobing Sun, Jingwei Wang, Yucong Duan, and Li Bin. 2017. Construct Bug

Knowledge Graph for Bug Resolution. In Proceedings of the IEEE/ACM 39th International

Conference on Software Engineering Companion. 189–191.

[230] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf

Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. 2023. A Prompt Pattern Cat-

alog to Enhance Prompt Engineering with ChatGPT. ArXiv preprint (2023), 19 pages.

arXiv:2302.11382

[231] Wikipedia. 2019. Wikipedia:Manual of Style/Linking. Retrieved 2024-03-28 from https:

//en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking

[232] David Wong-Aitken, Diana Cukierman, and Parmit K. Chilana. 2022. “It Depends on Whether

or Not I’m Lucky” How Students in an Introductory Programming Course Discover, Select,

and Assess the Utility of Web-Based Resources. In Proceedings of the 27th ACM Conference

on Innovation and Technology in Computer Science Education. 512–518.

188

BIBLIOGRAPHY

[233] Di Wu, Xiao-Yuan Jing, Hongyu Zhang, Yang Feng, Haowen Chen, Yuming Zhou, and Baowen

Xu. 2023. Retrieving API Knowledge from Tutorials and Stack Overflow Based on Natural

Language Queries. ACM Transactions on Software Engineering and Methodology 32, 5, Article

109 (2023), 36 pages.

[234] Wan-Ching Wu, Diane Kelly, and Avneesh Sud. 2014. Using Information Scent and Need for

Cognition to Understand Online Search Behavior. In Proceedings of the 37th International

ACM SIGIR conference on Research & development in information retrieval. 557–566.

[235] Tao Xiao, Sebastian Baltes, Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, Takashi

Ishio, and Kenichi Matsumoto. 2023. 18 million links in commits messages: purpose, evolution,

and decay. Empirical Software Engineering 28, 4, Article 91 (2023), 29 pages.

[236] Guangxu Xun, Xiaowei Jia, Vishrawas Gopalakrishnan, and Aidong Zhang. 2017. A Survey

on Context Learning. IEEE Transactions on Knowledge and Data Engineering 29, 1 (2017),

38–56.

[237] Masahiro Yamaguchi, Shohei Mori, Peter Mohr, Markus Tatzgern, Ana Stanescu, Hideo

Saito, and Denis Kalkofen. 2020. Video-Annotated Augmented Reality Assembly Tutorials.

In Proceedings of the 33rd Annual ACM Symposium on User Interface Software Technology.

1010–1022.

[238] Litao Yan, Miryung Kim, Björn Hartmann, Tianyi Zhang, and Elena L. Glassman. 2022.

Concept-Annotated Examples for Library Comparison. In Proceedings of the 35th Annual

ACM Symposium on User Interface Software and Technology. Article 65, 16 pages.

[239] Jinqui Yang and Lin Tan. 2014. SWordNet: Inferring semantically related words from software

context. Empirical Software Engineering 19, 6 (2014), 1856–1886.

[240] Deheng Ye, Lingfeng Bao, Zhenchang Xing, and Shang-Wei Lin. 2018. APIReal: an API

recognition and linking approach for online developer forums. Empirical Software Engineering

23, 6 (2018), 3129–3160.

[241] Deheng Ye, Zhenchang Xing, Chee Yong Foo, Zi Qun Ang, Jing Li, and Nachiket Kapre.

2016. Software-Specific Named Entity Recognition in Software Engineering Social Content. In

Proceedings of the IEEE 23rd International Conference on Software Analysis, Evolution, and

Reengineering. 90–101.

[242] Zining Ye, Xinran Yuan, Shaurya Gaur, Aaron Halfaker, Jodi Forlizzi, and Haiyi Zhu. 2021.

Wikipedia ORES Explorer: Visualizing Trade-offs For Designing Applications With Machine

Learning API. In Proceedings of the ACM Designing Interactive Systems Conference. 1554–

1565.

189

BIBLIOGRAPHY

[243] Annie T. T. Ying and Martin P. Robillard. 2014. Selection and Presentation Practices for

Code Example Summarization. In Proceedings of the 22nd ACM SIGSOFT International

Symposium on the Foundations of Software Engineering. 460–471.

[244] Haoxiang Zhang, Shaowei Wang, Tse-Hsun (Peter) Chen, and Ahmed E. Hassan. 2021. Are

Comments on Stack Overflow Well Organized for Easy Retrieval by Developers? ACM

Transactions on Software Engineering and Methodology 30, 2, Article 22 (2021), 31 pages.

[245] Xuejiao Zhao, Zhenchang Xing, Muhammad Ashad Kabir, Naoya Sawada, Jing Li, and

Shang-Wei Lin. 2017. HDSKG: Harvesting Domain Specific Knowledge Graph from Content

of Webpages. In Proceedings of the IEEE 24th International Conference on Software Analysis,

Evolution and Reengineering. 56–67.

[246] Cheng Zhou. 2018. Intelligent Bug Fixing with Software Bug Knowledge Graph. In Proceedings

of the 26th ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering. 944–947.

190

Appendix A

Replication Data for Conceptual

Dependencies

We published the data necessary to verify and replicate our comparison of wikifiers (Section 3.2) at

https://zenodo.org/records/4442458 [155], and the data related to our evaluation of Scode (Section 3.5)

at https://zenodo.org/records/7835197 [157]. Table A.1 details the content of each artifact. The last

column indicates which parts of each artifact is reproduced in the sections of this appendix.

191

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

Table A.1: Content of the Data Artifacts for Our Studies of Conceptual Dependencies

Path Description Sec.

https://zenodo.org/ records/4442458

README.md Description of the artifact.

computing-articles.txt List of all Wikipedia articles marked as correct

at least once.

stackoverflow-posts-sample.txt List of the 500 Stack Overflow post IDs used for

the evaluation.

Wikifications/ Folder containing the output of each wikifier on

the 500 Stack Overflow posts. The folder

contains 19 files, each one corresponding to

one configuration of one wikifier.

Annotation_Guide/

Wikifier Annotation Guide.md

Guidelines provided to the annotators to validate

the wikification results.

A.1

Annotation_Guide/

sample-annotations-5posts.xlsx

Set of five posts already annotated to serve as an

example for annotators.

A.2

Annotations/ Folder containing the results of the annotation

tasks. The folder contains a file readme.txt

that describes each annotation set.

https://zenodo.org/ records/7835197

README.md Description of the artifact.

Concept_Relatedness/results-[...].tsv Output of Scode and the two other techniques

on the 100 Java classes.

Concept_Relatedness/coding-guide.md Guidelines provided to the annotators to validate

the relatedness of the class–concept pairs.

A.3

Concept_Relatedness/codes-[...].tsv Results of the annotation tasks.

Concept_Relatedness/resolved-[...].tsv Outcome of the conflict resolution phase.

Wikipedia_Graph/nodes.tsv List of 6746 Wikipedia articles related to

computing.

A.4

Wikipedia_Graph/edges.tsv Undirected edges of the computing-specific

Wikipedia subgraph.

Topic_Cohesiveness/android-projects.txt List of the 227 open source Android projects

used during the evaluation.

A.5

Topic_Cohesiveness/sample-[...].tsv Sample of 45 topics (i.e., sets of concepts) from

each concept aggregation technique.

Topic_Cohesiveness/annotations-[...].xlsx Results of the cohesiveness scores and word

intrusion tasks.

Topic_Cohesiveness/keys.xlsx Identification of the true outlier for the word

intrusion tasks.

192

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

A.1 Wikifier Annotation Guide

Content of Annotation_Guide/Wikifier Annotation Guide.md from https://zenodo.org/records/4442458

Context

We are investigating the ability of automated approaches to identify concepts, represented by

Wikipedia articles, in Stack Overflow posts. We need your help to evaluate the performance of these

automated approaches.

Your task is to annotate concepts found in Stack Overflow posts.

Data

You received an Excel file with the following columns:

• A: URL: URL to the Stack Overflow post or Wikipedia article describing the concept (this

column is hidden);

• B: Clickable URL: Clickable URL from column A (for convenience);

• C: Post: Stack Overflow post ID;

• D: Concept: Concept, i.e., Wikipedia article, associated with the post ID;

• E: Match: Your annotation (yes or no);

Task

For each pair of Stack Overflow post and Wikipedia article, answer the following question:

Is the concept represented by the Wikipedia article related to computing AND explicitly

mentioned in the Stack Overflow post?

Do not necessarily rely on the title of the Wikipedia article to guess its meaning.

The title can redirect to another article or point to a missing (deleted) article. For some articles,

especially on more general concepts, it is necessary to briefly look at the article to grasp what it

refers to. Some special cases, such as identifying synonyms, may also require perusal of the article

(see below for details).

193

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

“Related to computing”

A concept is related to computing if, in the context of the post, the concept implies notions of

programming, software development, theory of computation, or information technologies.

Special Cases:

1. Disambiguation pages, by their nature, do not describe a single concept, so it cannot be a

concept related to computing. Whether a page is a disambiguation page or not is indicated

at the bottom of the Wikipedia article for the concept.

“Software implementation” is a disambiguation page. It points to several computing-

related articles, but it is not, itself, a concept related to computing.

2. If an article is a redirect page, use the article it redirects to instead. Redirect pages automati-

cally redirect to the correct article. If an article does not exist (usually, because it has been

deleted), mark it as not related to computing.

“Character string” is a redirect page that points to “String (computer science)”,

which is related to computing.

3. The context in which the concept appears matters. A computer technology is not related to

computing if it is only used as a tool for a general audience.

The concept “Blog”, in the sentence “You can find further explanations on my

blog” is not related to computing, because it refers to a location where anyone can

find additional resources.

However, in the sentence “Use Wordpress to create an interactive blog”, the concept

“Blog” is related to computing, because it refers to a software platform to be built

by programmers.

4. Rely on the content of the Wikipedia article to help distinguish computing-related concepts.

The Wikipedia article for “Code” describes the concept of code it in its very general

sense, and it does not discuss its use in the programming domain. Therefore, it is

not related to computing. Correct articles for the concept of “code” can be “Source

code”, “Character encoding”, or “Code (cryptography)”.

Similarly, “Definition” (of a variable, function, class) represents a feature of all

programming languages, but the Wikipedia article for “Definition” does not discuss

its computing sense, so it is not related to computing.

194

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

5. Concepts not uniquely specific to computing, but with considerable importance in computing,

should be accepted as related to computing. In this case, however, the Wikipedia article must

mention the computing-specific interpretation of the concept.

“Implementation” is a concept that applies to many domains, including computing.

Because of its importance in computing, and because the article describes its

application to computer science (section 1.1), it is related to computing.

6. If in doubt, err on the side of marking the concept as not related to computing.

“Explicitly mentioned”

To be accepted, a concept must appear explicitly in the text of the Stack Overflow post. Do not

consider the post’s title, comments, or other related question and answers.

Special Cases:

1. Accept concepts that are mentioned by:

• alternate phrases or synonyms (use the content of the article to identify synonyms)

“map” is an explicit mention of the concept “Associative Array”

• a different part-of-speech, i.e., nouns, verbs, adjectives, etc.

“concatenate” is an explicit mention of the concept “Concatenation”

• related morphological forms, including antonyms (if they are formed by adding a prefix)

“rebooting” is an explicit mention of the concept “Booting”

2. Reject concepts that are not mentioned in the text, even if they are related to concepts

mentioned in the text (such as hypernyms, hyponyms, meronyms, and holonyms).

“Twitter” is not an explicit mention of the concept “Social network”, because

Twitter is a hyponym (special case) of social network.

3. Some Wikipedia articles discuss a general concept in a specific context. For a specific mention

in a post, accept both a general article and an article with a specific context if the context

matches the one of the post. Reject a context-specific article if the post does not imply any

particular context.

With the sentence “Paypal is a payment system”, both “Payment system” and

“E-commerce payment system” are acceptable concepts, because “payment system”

is used in the context of e-commerce, so the context-specific “E-commerce payment

system” is acceptable, as well as the more generic article “Payment system”.

195

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

With the sentence “I want show the first 100 rows of a table”, unless it is clear

that the table comes from a database, the concept “Table (database)” must be

rejected, because it is described in context that is more specific than the post. An

acceptable concept would be “Table (information)”.

4. Programming language syntactic constructs: Reject a concept about a syntactic construct,

unless the syntactic construct is itself mentioned.

With the sentence “This method returns a String”, the concept “Return statement”

is not an acceptable concept, because the syntactic construct (a statement) is not

mentioned.

Similarly, with the sentence “The method returns if x = 0”, the concept “Conditional

(computer programming)” is not an acceptable concept.

5. URL: Accept a concept only if it matches the whole URL. In particular, reject mentions in

the path of the URL.

“https://stackoverflow.com/questions/1108/how-does-database-indexing-work/” is

not a mention of “Database”, even if “database” appears as a sub-string of the

URL.

6. Code: Do not consider mentions in code blocks, but consider inline code. An identifier can be

an explicit mention of a concept if the identifier refers to the concept. Block quotes are not

code, and therefore must be considered as normal text. Treat clear multi-line code fragments

or stack traces that happen not to be in code blocks as if they were code blocks (i.e., do not

consider them).

Concepts “Set (abstract data type)” and “String (computer science)” are mentioned

in “Set<String>” (unless it is found in a code block). However, concepts such as

“Interface (computing)” or “Generic programming” are not mentioned, because the

identifiers do not refer to these concepts.

A.2 Sample of Wikification Annotations

Content of Annotation_Guide/sample-annotations-5posts.xlsx from https://zenodo.org/records/4442458

URL Post Concept Match

https://stackoverflow.com/questions/41700996 P41700996

https://en.wikipedia.org/wiki/Data type Data type yes

https://en.wikipedia.org/wiki/Type species Type species no

https://en.wikipedia.org/wiki/Conclusion (music) Conclusion (music) no

196

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

URL Post Concept Match

https://en.wikipedia.org/wiki/.properties .properties yes

https://en.wikipedia.org/wiki/Homonym Homonym no

https://en.wikipedia.org/wiki/At the End At the End no

https://en.wikipedia.org/wiki/Variable star Variable star no

https://en.wikipedia.org/wiki/String literal String literal no

https://en.wikipedia.org/wiki/Universal quantification Universal quantification no

https://en.wikipedia.org/wiki/Prince Prince no

https://en.wikipedia.org/wiki/Príncipe Príncipe no

https://en.wikipedia.org/wiki/Der Ring des Nibelungen Der Ring des Nibelungen no

https://en.wikipedia.org/wiki/Endomorphism Endomorphism no

https://en.wikipedia.org/wiki/Key (lock) Key (lock) no

https://en.wikipedia.org/wiki/Variable (computer science) Variable (computer science) yes

https://en.wikipedia.org/wiki/Associative array Associative array yes

https://en.wikipedia.org/wiki/Random variable Random variable no

https://en.wikipedia.org/wiki/Why (Annie Lennox song) Why (Annie Lennox song) no

https://en.wikipedia.org/wiki/English orthography English orthography no

https://en.wikipedia.org/wiki/Those, Nepal Those, Nepal no

https://en.wikipedia.org/wiki/Configure script Configure script no

https://en.wikipedia.org/wiki/Definition Definition no

https://en.wikipedia.org/wiki/String section String section no

https://en.wikipedia.org/wiki/Operators in C and C++ Operators in C and C++ no

https://en.wikipedia.org/wiki/Single-valued function Single-valued function no

https://en.wikipedia.org/wiki/Computer file Computer file yes

https://en.wikipedia.org/wiki/Teleological argument Teleological argument no

https://en.wikipedia.org/wiki/C preprocessor C preprocessor no

https://en.wikipedia.org/wiki/Unique key Unique key no

https://en.wikipedia.org/wiki/Map Map no

https://en.wikipedia.org/wiki/Property (philosophy) Property (philosophy) no

https://en.wikipedia.org/wiki/Access control Access control no

https://en.wikipedia.org/wiki/Free will Free will no

https://en.wikipedia.org/wiki/5"/38 caliber gun 5"/38 caliber gun no

https://en.wikipedia.org/wiki/String (computer science) String (computer science) yes

https://en.wikipedia.org/wiki/Enharmonic Enharmonic no

https://en.wikipedia.org/wiki/Property (programming) Property (programming) no

https://en.wikipedia.org/wiki/Property Property no

https://en.wikipedia.org/wiki/Freedom of the City Freedom of the City no

https://en.wikipedia.org/wiki/Syllable Syllable no

https://en.wikipedia.org/wiki/That That no

https://en.wikipedia.org/wiki/Bracket Bracket no

https://en.wikipedia.org/wiki/Reference Reference no

https://en.wikipedia.org/wiki/Access key Access key no

https://en.wikipedia.org/wiki/Canning Canning no

https://en.wikipedia.org/wiki/End of World War II in Europe End of World War II in Europe no

https://en.wikipedia.org/wiki/Variable (mathematics) Variable (mathematics) no

https://en.wikipedia.org/wiki/Orgasm Orgasm no

https://en.wikipedia.org/wiki/Key (music) Key (music) no

https://en.wikipedia.org/wiki/Surrender of Japan Surrender of Japan no

https://en.wikipedia.org/wiki/5%22/38 caliber gun 5"/38 caliber gun no

https://en.wikipedia.org/wiki/You Can You Can no

https://stackoverflow.com/questions/11366327 P11366327

https://en.wikipedia.org/wiki/Harmonic Harmonic no

https://en.wikipedia.org/wiki/Metre (music) Metre (music) no

https://en.wikipedia.org/wiki/Monotheism Monotheism no

https://en.wikipedia.org/wiki/Income Income no

https://en.wikipedia.org/wiki/Music examination Music examination no

https://en.wikipedia.org/wiki/Small-signal model Small-signal model no

https://en.wikipedia.org/wiki/Human physical appearance Human physical appearance no

https://en.wikipedia.org/wiki/Exonym and endonym Exonym and endonym no

https://en.wikipedia.org/wiki/Vertex (graph theory) Vertex (graph theory) no

https://en.wikipedia.org/wiki/Image Image no

https://en.wikipedia.org/wiki/Universal quantification Universal quantification no

https://en.wikipedia.org/wiki/English modal verbs English modal verbs no

https://en.wikipedia.org/wiki/Graph of a function Graph of a function no

https://en.wikipedia.org/wiki/Sphere Sphere no

https://en.wikipedia.org/wiki/Dacians Dacians no

https://en.wikipedia.org/wiki/Java (programming language) Java (programming language) yes

https://en.wikipedia.org/wiki/A- and B-class destroyer A- and B-class destroyer no

https://en.wikipedia.org/wiki/Digital signature Digital signature no

https://en.wikipedia.org/wiki/Data structure Data structure no

197

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

URL Post Concept Match

https://en.wikipedia.org/wiki/Child Child no

https://en.wikipedia.org/wiki/Protocol (object-oriented programming) Protocol (object-oriented programming) no

https://en.wikipedia.org/wiki/CPU cache CPU cache no

https://en.wikipedia.org/wiki/Amplitude Amplitude no

https://en.wikipedia.org/wiki/Object (computer science) Object (computer science) no

https://en.wikipedia.org/wiki/English orthography English orthography no

https://en.wikipedia.org/wiki/Recurrence relation Recurrence relation no

https://en.wikipedia.org/wiki/General relativity General relativity no

https://en.wikipedia.org/wiki/Social structure Social structure no

https://en.wikipedia.org/wiki/Bitwise operation Bitwise operation no

https://en.wikipedia.org/wiki/Level of measurement Level of measurement no

https://en.wikipedia.org/wiki/Soviet occupation zone Soviet occupation zone no

https://en.wikipedia.org/wiki/Multiple dispatch Multiple dispatch no

https://en.wikipedia.org/wiki/Theory in Practice Theory in Practice no

https://en.wikipedia.org/wiki/Weird fiction Weird fiction no

https://en.wikipedia.org/wiki/Single parent Single parent no

https://en.wikipedia.org/wiki/Mundos opuestos (Chilean TV series) Mundos opuestos (Chilean TV series) no

https://en.wikipedia.org/wiki/Multiverse Multiverse no

https://en.wikipedia.org/wiki/Interface (computing) Interface (computing) yes

https://en.wikipedia.org/wiki/Ancestor Ancestor no

https://en.wikipedia.org/wiki/Social change Social change no

https://en.wikipedia.org/wiki/Social influence Social influence no

https://en.wikipedia.org/wiki/Theory Theory no

https://en.wikipedia.org/wiki/Willie Mays Willie Mays no

https://en.wikipedia.org/wiki/Multiple inheritance Multiple inheritance yes

https://en.wikipedia.org/wiki/Biology Biology no

https://en.wikipedia.org/wiki/Maize Maize no

https://en.wikipedia.org/wiki/Structural level Structural level no

https://en.wikipedia.org/wiki/Suicide Suicide no

https://en.wikipedia.org/wiki/Implementation Implementation yes

https://en.wikipedia.org/wiki/Visual perception Visual perception no

https://en.wikipedia.org/wiki/Enharmonic Enharmonic no

https://en.wikipedia.org/wiki/The The no

https://en.wikipedia.org/wiki/Interface (Java) Interface (Java) yes

https://en.wikipedia.org/wiki/Interface (matter) Interface (matter) no

https://en.wikipedia.org/wiki/R. Kelly R. Kelly no

https://en.wikipedia.org/wiki/Id, ego and super-ego Id, ego and super-ego no

https://en.wikipedia.org/wiki/Android (operating system) Android (operating system) no

https://en.wikipedia.org/wiki/Anatomical terms of motion Anatomical terms of motion no

https://en.wikipedia.org/wiki/Racial segregation Racial segregation no

https://en.wikipedia.org/wiki/B (programming language) B (programming language) no

https://en.wikipedia.org/wiki/Bacteria Bacteria no

https://en.wikipedia.org/wiki/Structure Structure no

https://en.wikipedia.org/wiki/Professional wrestling match types Professional wrestling match types no

https://en.wikipedia.org/wiki/Tree (data structure) Tree (data structure) yes

https://en.wikipedia.org/wiki/Military Military no

https://en.wikipedia.org/wiki/For loop For loop no

https://en.wikipedia.org/wiki/Might (magazine) Might (magazine) no

https://en.wikipedia.org/wiki/Human nature Human nature no

https://en.wikipedia.org/wiki/Computer programming Computer programming no

https://en.wikipedia.org/wiki/Puberty Puberty no

https://en.wikipedia.org/wiki/V/Line A class V/Line A class no

https://en.wikipedia.org/wiki/A-class destroyer (1913) A-class destroyer (1913) no

https://en.wikipedia.org/wiki/Terrorism Terrorism no

https://en.wikipedia.org/wiki/Evolutionary grade Evolutionary grade no

https://en.wikipedia.org/wiki/Never (Heart song) Never (Heart song) no

https://en.wikipedia.org/wiki/Religion Religion no

https://en.wikipedia.org/wiki/United Kingdom United Kingdom no

https://en.wikipedia.org/wiki/Node (computer science) Node (computer science) yes

https://en.wikipedia.org/wiki/Experience point Experience point no

https://en.wikipedia.org/wiki/Information technology Information technology no

https://en.wikipedia.org/wiki/Instance (computer science) Instance (computer science) yes

https://en.wikipedia.org/wiki/Class (computer programming) Class (computer programming) yes

https://en.wikipedia.org/wiki/Medicine Medicine no

https://en.wikipedia.org/wiki/Canadian Hot 100 Canadian Hot 100 no

https://en.wikipedia.org/wiki/Time management Time management no

https://en.wikipedia.org/wiki/Breast Breast no

https://en.wikipedia.org/wiki/Family Family no

https://en.wikipedia.org/wiki/Therefore sign Therefore sign no

198

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

URL Post Concept Match

https://en.wikipedia.org/wiki/U-boat Campaign (World War I) U-boat Campaign (World War I) no

https://en.wikipedia.org/wiki/Software feature Software feature no

https://en.wikipedia.org/wiki/Actually Actually no

https://en.wikipedia.org/wiki/ActionScript ActionScript no

https://en.wikipedia.org/wiki/Semantic memory Semantic memory no

https://en.wikipedia.org/wiki/Flood fill Flood fill no

https://en.wikipedia.org/wiki/Standardization Standardization no

https://en.wikipedia.org/wiki/Keep Austin Weird Keep Austin Weird no

https://en.wikipedia.org/wiki/My Neighbors the Yamadas My Neighbors the Yamadas no

https://en.wikipedia.org/wiki/Hypothesis Hypothesis no

https://en.wikipedia.org/wiki/Hierarchy Hierarchy no

https://en.wikipedia.org/wiki/Conflict (process) Conflict (process) no

https://en.wikipedia.org/wiki/Multiplicity (mathematics) Multiplicity (mathematics) no

https://en.wikipedia.org/wiki/Theory (mathematical logic) Theory (mathematical logic) no

https://en.wikipedia.org/wiki/27th government of Turkey 27th government of Turkey no

https://en.wikipedia.org/wiki/Tree Tree no

https://en.wikipedia.org/wiki/Instance dungeon Instance dungeon no

https://en.wikipedia.org/wiki/Confirmation bias Confirmation bias no

https://en.wikipedia.org/wiki/Aishō, Shiga Aishō, Shiga no

https://en.wikipedia.org/wiki/Semiconductor device fabrication Semiconductor device fabrication no

https://en.wikipedia.org/wiki/This Is... (TV series) This Is... (TV series) no

https://en.wikipedia.org/wiki/Those, Nepal Those, Nepal no

https://en.wikipedia.org/wiki/Assistive technology Assistive technology no

https://en.wikipedia.org/wiki/Phylogenetic tree Phylogenetic tree no

https://en.wikipedia.org/wiki/Level (video gaming) Level (video gaming) no

https://en.wikipedia.org/wiki/Proto-Norse language Proto-Norse language no

https://en.wikipedia.org/wiki/What You’re On What You’re On no

https://en.wikipedia.org/wiki/Honda Life Honda Life no

https://en.wikipedia.org/wiki/This Is Not This Is Not no

https://en.wikipedia.org/wiki/Tree structure Tree structure no

https://en.wikipedia.org/wiki/Extensibility Extensibility no

https://en.wikipedia.org/wiki/Tetrahedral molecular geometry Tetrahedral molecular geometry no

https://en.wikipedia.org/wiki/Object-oriented programming Object-oriented programming no

https://en.wikipedia.org/wiki/Function (engineering) Function (engineering) no

https://en.wikipedia.org/wiki/Psalms Psalms no

https://en.wikipedia.org/wiki/Inheritance (object-oriented program-

ming)

Inheritance (object-oriented program-

ming)

yes

https://en.wikipedia.org/wiki/Application programming interface Application programming interface no

https://en.wikipedia.org/wiki/Programming language Programming language yes

https://en.wikipedia.org/wiki/Homeomorphism Homeomorphism no

https://en.wikipedia.org/wiki/Causality Causality no

https://en.wikipedia.org/wiki/Is-a Is-a no

https://en.wikipedia.org/wiki/Potentiality and actuality Potentiality and actuality no

https://en.wikipedia.org/wiki/Social support Social support no

https://en.wikipedia.org/wiki/Bootstrapping (compilers) Bootstrapping (compilers) no

https://en.wikipedia.org/wiki/Hereditarily countable set Hereditarily countable set no

https://en.wikipedia.org/wiki/Parent Parent no

https://en.wikipedia.org/wiki/Inheritance (computer science) Inheritance (computer science) yes

https://en.wikipedia.org/wiki/Unix-like Unix-like no

https://en.wikipedia.org/wiki/Reciprocal lattice Reciprocal lattice no

https://en.wikipedia.org/wiki/Schizophrenia Schizophrenia no

https://en.wikipedia.org/wiki/Affect (psychology) Affect (psychology) no

https://en.wikipedia.org/wiki/List of nuclides List of nuclides no

https://en.wikipedia.org/wiki/Family tree Family tree no

https://en.wikipedia.org/wiki/Mathematics Mathematics no

https://en.wikipedia.org/wiki/Stellar classification Stellar classification no

https://en.wikipedia.org/wiki/Domain Name System Domain Name System no

https://en.wikipedia.org/wiki/Hot R&B/Hip-Hop Songs Hot R&B/Hip-Hop Songs no

https://en.wikipedia.org/wiki/Neon Neon no

https://en.wikipedia.org/wiki/Budha Budha no

https://en.wikipedia.org/wiki/Language Language no

https://en.wikipedia.org/wiki/United States Constitution United States Constitution no

https://en.wikipedia.org/wiki/Graph (discrete mathematics) Graph (discrete mathematics) no

https://en.wikipedia.org/wiki/Dialect Dialect no

https://en.wikipedia.org/wiki/Technical standard Technical standard no

https://en.wikipedia.org/wiki/Hungarian Academy of Sciences Hungarian Academy of Sciences no

https://en.wikipedia.org/wiki/Graph (mathematics) Graph (mathematics) no

https://en.wikipedia.org/wiki/There (virtual world) There (virtual world) no

https://en.wikipedia.org/wiki/Sexual differentiation Sexual differentiation no

199

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

URL Post Concept Match

https://en.wikipedia.org/wiki/Functional group Functional group no

https://en.wikipedia.org/wiki/Structure (mathematical logic) Structure (mathematical logic) no

https://en.wikipedia.org/wiki/That That no

https://en.wikipedia.org/wiki/Occam’s razor Occam’s razor no

https://en.wikipedia.org/wiki/Every Child (film) Every Child (film) no

https://en.wikipedia.org/wiki/Practice (learning method) Practice (learning method) no

https://en.wikipedia.org/wiki/Uniqueness quantification Uniqueness quantification no

https://en.wikipedia.org/wiki/Royal Oak Royal Oak no

https://en.wikipedia.org/wiki/Sathya Sai Baba Sathya Sai Baba no

https://en.wikipedia.org/wiki/As One Black Eagles As One Black Eagles no

https://en.wikipedia.org/wiki/Graph theory Graph theory no

https://en.wikipedia.org/wiki/Vaccine Vaccine no

https://en.wikipedia.org/wiki/WAGR K class WAGR K class no

https://en.wikipedia.org/wiki/Inventive step and non-obviousness Inventive step and non-obviousness no

https://en.wikipedia.org/wiki/San Fernando, Trinidad and Tobago San Fernando, Trinidad and Tobago no

https://en.wikipedia.org/wiki/Identity (philosophy) Identity (philosophy) no

https://en.wikipedia.org/wiki/Abstraction layer Abstraction layer no

https://en.wikipedia.org/wiki/Subtraction Subtraction no

https://en.wikipedia.org/wiki/Screw Screw no

https://en.wikipedia.org/wiki/Binary search tree Binary search tree no

https://en.wikipedia.org/wiki/Imagination Imagination no

https://en.wikipedia.org/wiki/But/Aishō But/Aishō no

https://en.wikipedia.org/wiki/Logical conjunction Logical conjunction no

https://en.wikipedia.org/wiki/Reflexive pronoun Reflexive pronoun no

https://en.wikipedia.org/wiki/Java virtual machine Java virtual machine no

https://en.wikipedia.org/wiki/Grandparent Grandparent no

https://en.wikipedia.org/wiki/You You no

https://stackoverflow.com/questions/55228245 P55228245

https://en.wikipedia.org/wiki/Gratitude Gratitude no

https://en.wikipedia.org/wiki/Magnetohydrodynamics Magnetohydrodynamics no

https://en.wikipedia.org/wiki/Import Import no

https://en.wikipedia.org/wiki/Parkinson’s disease Parkinson’s disease no

https://en.wikipedia.org/wiki/C (programming language) C (programming language) no

https://en.wikipedia.org/wiki/R10 (Rodalies de Catalunya) R10 (Rodalies de Catalunya) no

https://en.wikipedia.org/wiki/Safe Safe no

https://en.wikipedia.org/wiki/HTML HTML no

https://en.wikipedia.org/wiki/This (computer programming) This (computer programming) no

https://en.wikipedia.org/wiki/Last (unit) Last (unit) no

https://en.wikipedia.org/wiki/Software bug Software bug yes

https://en.wikipedia.org/wiki/Library (computing) Library (computing) no

https://en.wikipedia.org/wiki/Universal quantification Universal quantification no

https://en.wikipedia.org/wiki/NumPy NumPy no

https://en.wikipedia.org/wiki/Py (cipher) Py (cipher) no

https://en.wikipedia.org/wiki/Init Init no

https://en.wikipedia.org/wiki/Paris Métro Line 3 Paris Métro Line 3 no

https://en.wikipedia.org/wiki/Last.fm Last.fm no

https://en.wikipedia.org/wiki/Package manager Package manager no

https://en.wikipedia.org/wiki/Giant panda Giant panda no

https://en.wikipedia.org/wiki/Taxation in Canada Taxation in Canada no

https://en.wikipedia.org/wiki/Image scaling Image scaling no

https://en.wikipedia.org/wiki/Seoul Subway Line 3 Seoul Subway Line 3 no

https://en.wikipedia.org/wiki/Equals sign Equals sign no

https://en.wikipedia.org/wiki/I Was Warned I Was Warned no

https://en.wikipedia.org/wiki/Translation Translation no

https://en.wikipedia.org/wiki/Trial Trial no

https://en.wikipedia.org/wiki/Barcelona Metro line 3 Barcelona Metro line 3 no

https://en.wikipedia.org/wiki/Tariff Tariff no

https://en.wikipedia.org/wiki/Palladium Palladium no

https://en.wikipedia.org/wiki/ANSI escape code ANSI escape code no

https://en.wikipedia.org/wiki/Meaning (linguistics) Meaning (linguistics) no

https://en.wikipedia.org/wiki/End user End user no

https://en.wikipedia.org/wiki/Dimension (vector space) Dimension (vector space) no

https://en.wikipedia.org/wiki/Computer file Computer file yes

https://en.wikipedia.org/wiki/Line 23 (Shanghai Metro) Line 23 (Shanghai Metro) no

https://en.wikipedia.org/wiki/Pinyin Pinyin no

https://en.wikipedia.org/wiki/.py .py no

https://en.wikipedia.org/wiki/Humanitarian aid Humanitarian aid no

https://en.wikipedia.org/wiki/ImageMagick ImageMagick no

https://en.wikipedia.org/wiki/Line 3 (Mumbai Metro) Line 3 (Mumbai Metro) no

200

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

URL Post Concept Match

https://en.wikipedia.org/wiki/Holocene Holocene no

https://en.wikipedia.org/wiki/Lp space Lp space no

https://en.wikipedia.org/wiki/Madlib Madlib no

https://en.wikipedia.org/wiki/Northern Pacific Railway Northern Pacific Railway no

https://en.wikipedia.org/wiki/Paris Métro Line 10 Paris Métro Line 10 no

https://en.wikipedia.org/wiki/Widescreen signaling Widescreen signaling no

https://en.wikipedia.org/wiki/Comma-separated values Comma-separated values yes

https://en.wikipedia.org/wiki/Free will Free will no

https://en.wikipedia.org/wiki/Subroutine Subroutine no

https://en.wikipedia.org/wiki/Website Website no

https://en.wikipedia.org/wiki/Backslash Backslash no

https://en.wikipedia.org/wiki/Suicide Suicide no

https://en.wikipedia.org/wiki/Env Env no

https://en.wikipedia.org/wiki/Currency appreciation and depreciation Currency appreciation and depreciation no

https://en.wikipedia.org/wiki/Last Glacial Maximum Last Glacial Maximum no

https://en.wikipedia.org/wiki/Stack trace Stack trace no

https://en.wikipedia.org/wiki/Python (programming language) Python (programming language) no

https://en.wikipedia.org/wiki/Pandas (software) Pandas (software) no

https://en.wikipedia.org/wiki/Attribute (computing) Attribute (computing) no

https://en.wikipedia.org/wiki/Hed PE Hed PE no

https://en.wikipedia.org/wiki/Modular programming Modular programming no

https://en.wikipedia.org/wiki/Online help Online help no

https://en.wikipedia.org/wiki/User (computing) User (computing) no

https://en.wikipedia.org/wiki/Unitary patent Unitary patent no

https://en.wikipedia.org/wiki/Line (geometry) Line (geometry) no

https://en.wikipedia.org/wiki/Asterisk Asterisk no

https://en.wikipedia.org/wiki/Pure Data Pure Data no

https://en.wikipedia.org/wiki/Software versioning Software versioning no

https://en.wikipedia.org/wiki/Bracket Bracket no

https://en.wikipedia.org/wiki/Drive letter assignment Drive letter assignment no

https://en.wikipedia.org/wiki/Religion Religion no

https://en.wikipedia.org/wiki/Error Error no

https://en.wikipedia.org/wiki/Rotation Rotation no

https://en.wikipedia.org/wiki/Libretto Libretto no

https://en.wikipedia.org/wiki/File system File system no

https://en.wikipedia.org/wiki/XML XML yes

https://en.wikipedia.org/wiki/Telephone call Telephone call no

https://en.wikipedia.org/wiki/WILL WILL no

https://en.wikipedia.org/wiki/Pythonidae Pythonidae no

https://en.wikipedia.org/wiki/W-inds discography W-inds discography no

https://en.wikipedia.org/wiki/ActionScript ActionScript no

https://en.wikipedia.org/wiki/20th Empire Awards 20th Empire Awards no

https://stackoverflow.com/questions/22969451 P22969451

https://en.wikipedia.org/wiki/Gratitude Gratitude no

https://en.wikipedia.org/wiki/Reference type Reference type no

https://en.wikipedia.org/wiki/Data type Data type yes

https://en.wikipedia.org/wiki/Metre Metre no

https://en.wikipedia.org/wiki/Web service Web service yes

https://en.wikipedia.org/wiki/Booting Booting no

https://en.wikipedia.org/wiki/This (computer programming) This (computer programming) no

https://en.wikipedia.org/wiki/Software bug Software bug yes

https://en.wikipedia.org/wiki/Namespace (computer science) Namespace (computer science) yes

https://en.wikipedia.org/wiki/MPEG-4 Part 2 MPEG-4 Part 2 no

https://en.wikipedia.org/wiki/When (Amanda Lear song) When (Amanda Lear song) no

https://en.wikipedia.org/wiki/Identifier Identifier no

https://en.wikipedia.org/wiki/Middle English Middle English no

https://en.wikipedia.org/wiki/Command (computing) Command (computing) yes

https://en.wikipedia.org/wiki/Windows ME Windows ME no

https://en.wikipedia.org/wiki/Missing in action Missing in action no

https://en.wikipedia.org/wiki/Thank You (The Walking Dead) Thank You (The Walking Dead) no

https://en.wikipedia.org/wiki/Existence Existence no

https://en.wikipedia.org/wiki/English orthography English orthography no

https://en.wikipedia.org/wiki/Compiler Compiler no

https://en.wikipedia.org/wiki/Thank You in Advance Thank You in Advance no

https://en.wikipedia.org/wiki/Addition Addition no

https://en.wikipedia.org/wiki/Trial Trial no

https://en.wikipedia.org/wiki/Atheism Atheism no

https://en.wikipedia.org/wiki/Assembly language Assembly language no

https://en.wikipedia.org/wiki/Missing person Missing person no

201

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

URL Post Concept Match

https://en.wikipedia.org/wiki/Scheme (linguistics) Scheme (linguistics) no

https://en.wikipedia.org/wiki/Recursion Recursion no

https://en.wikipedia.org/wiki/Deer Deer no

https://en.wikipedia.org/wiki/Namespace Namespace yes

https://en.wikipedia.org/wiki/Advance payment Advance payment no

https://en.wikipedia.org/wiki/Tab key Tab key no

https://en.wikipedia.org/wiki/RSS RSS no

https://en.wikipedia.org/wiki/Toponymy Toponymy no

https://en.wikipedia.org/wiki/Runway Runway no

https://en.wikipedia.org/wiki/Execution (computing) Execution (computing) yes

https://en.wikipedia.org/wiki/Trench warfare Trench warfare no

https://en.wikipedia.org/wiki/South Sudanese Civil War South Sudanese Civil War no

https://en.wikipedia.org/wiki/Complementary event Complementary event no

https://en.wikipedia.org/wiki/Start-stop system Start-stop system no

https://en.wikipedia.org/wiki/Offensive (military) Offensive (military) no

https://en.wikipedia.org/wiki/X-class submarine X-class submarine no

https://en.wikipedia.org/wiki/Host (network) Host (network) no

https://en.wikipedia.org/wiki/Daemon (computing) Daemon (computing) yes

https://en.wikipedia.org/wiki/Evaluation strategy Evaluation strategy no

https://en.wikipedia.org/wiki/Et cetera Et cetera no

https://en.wikipedia.org/wiki/Saudi Arabia at the 2010 Summer Youth

Olympics

Saudi Arabia at the 2010 Summer Youth

Olympics

no

https://en.wikipedia.org/wiki/National Assembly (South Korea) National Assembly (South Korea) no

https://en.wikipedia.org/wiki/World Wide Web World Wide Web yes

https://en.wikipedia.org/wiki/Error (baseball) Error (baseball) no

https://en.wikipedia.org/wiki/System System yes

https://en.wikipedia.org/wiki/ETC (TV channel) ETC (TV channel) no

https://en.wikipedia.org/wiki/Factorial Factorial no

https://en.wikipedia.org/wiki/Classic Mac OS Classic Mac OS no

https://en.wikipedia.org/wiki/The The no

https://en.wikipedia.org/wiki/Popular assembly Popular assembly no

https://en.wikipedia.org/wiki/Address space Address space no

https://en.wikipedia.org/wiki/Pointer (computer programming) Pointer (computer programming) no

https://en.wikipedia.org/wiki/Windows service Windows service yes

https://en.wikipedia.org/wiki/Computer graphics Computer graphics no

https://en.wikipedia.org/wiki/Type system Type system no

https://en.wikipedia.org/wiki/Operating system Operating system no

https://en.wikipedia.org/wiki/Reference (computer science) Reference (computer science) yes

https://en.wikipedia.org/wiki/Are You In%3F Are You In? no

https://en.wikipedia.org/wiki/Error Error no

https://en.wikipedia.org/wiki/Disney+ Disney+ no

https://en.wikipedia.org/wiki/Information technology Information technology no

https://en.wikipedia.org/wiki/Microsoft Windows Microsoft Windows yes

https://en.wikipedia.org/wiki/I Am (2010 Indian film) I Am (2010 Indian film) no

https://en.wikipedia.org/wiki/I am (biblical term) I am (biblical term) no

https://en.wikipedia.org/wiki/Command-line interface Command-line interface no

https://en.wikipedia.org/wiki/Organ stop Organ stop no

https://en.wikipedia.org/wiki/Preprocessor Preprocessor no

https://en.wikipedia.org/wiki/Royal Navy Royal Navy no

https://stackoverflow.com/questions/23088709 P23088709

https://en.wikipedia.org/wiki/Polymorphism (biology) Polymorphism (biology) no

https://en.wikipedia.org/wiki/Project commissioning Project commissioning no

https://en.wikipedia.org/wiki/Term limit Term limit no

https://en.wikipedia.org/wiki/Word Word no

https://en.wikipedia.org/wiki/Information system Information system no

https://en.wikipedia.org/wiki/Potsdam Potsdam no

https://en.wikipedia.org/wiki/Exonym and endonym Exonym and endonym no

https://en.wikipedia.org/wiki/Image Image no

https://en.wikipedia.org/wiki/Universal quantification Universal quantification no

https://en.wikipedia.org/wiki/English modal verbs English modal verbs no

https://en.wikipedia.org/wiki/Genetic code Genetic code no

https://en.wikipedia.org/wiki/Object lifetime Object lifetime no

https://en.wikipedia.org/wiki/Limited liability company Limited liability company no

https://en.wikipedia.org/wiki/Complement (set theory) Complement (set theory) no

https://en.wikipedia.org/wiki/Scientific method Scientific method no

https://en.wikipedia.org/wiki/Middle English Middle English no

https://en.wikipedia.org/wiki/Political criticism Political criticism no

https://en.wikipedia.org/wiki/Determine Determine no

https://en.wikipedia.org/wiki/Fly Me to the Moon Fly Me to the Moon no

202

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

URL Post Concept Match

https://en.wikipedia.org/wiki/Wikimedia Foundation Wikimedia Foundation no

https://en.wikipedia.org/wiki/Thank You (The Walking Dead) Thank You (The Walking Dead) no

https://en.wikipedia.org/wiki/Strike action Strike action no

https://en.wikipedia.org/wiki/Conceptual model Conceptual model no

https://en.wikipedia.org/wiki/Who is a Jew? Who is a Jew? no

https://en.wikipedia.org/wiki/English orthography English orthography no

https://en.wikipedia.org/wiki/Object (computer science) Object (computer science) yes

https://en.wikipedia.org/wiki/Bookend Bookend no

https://en.wikipedia.org/wiki/Berthold Carl Seemann Berthold Carl Seemann no

https://en.wikipedia.org/wiki/Computer simulation Computer simulation no

https://en.wikipedia.org/wiki/John Doe John Doe no

https://en.wikipedia.org/wiki/String searching algorithm String searching algorithm yes

https://en.wikipedia.org/wiki/Neologism Neologism no

https://en.wikipedia.org/wiki/Creativity Creativity no

https://en.wikipedia.org/wiki/Deer Deer no

https://en.wikipedia.org/wiki/YouTube YouTube no

https://en.wikipedia.org/wiki/Chemical equilibrium Chemical equilibrium no

https://en.wikipedia.org/wiki/Public relations Public relations no

https://en.wikipedia.org/wiki/Computer file Computer file no

https://en.wikipedia.org/wiki/Model theory Model theory no

https://en.wikipedia.org/wiki/Article (publishing) Article (publishing) no

https://en.wikipedia.org/wiki/Subject (grammar) Subject (grammar) no

https://en.wikipedia.org/wiki/Ambiguity Ambiguity no

https://en.wikipedia.org/wiki/Mystery fiction Mystery fiction no

https://en.wikipedia.org/wiki/Justice Justice no

https://en.wikipedia.org/wiki/Access control Access control no

https://en.wikipedia.org/wiki/Strike Me Pink (film) Strike Me Pink (film) no

https://en.wikipedia.org/wiki/Perspective distortion (photography) Perspective distortion (photography) no

https://en.wikipedia.org/wiki/Subroutine Subroutine yes

https://en.wikipedia.org/wiki/Comment (computer programming) Comment (computer programming) no

https://en.wikipedia.org/wiki/Better Way Better Way no

https://en.wikipedia.org/wiki/Specification (technical standard) Specification (technical standard) no

https://en.wikipedia.org/wiki/Set (mathematics) Set (mathematics) no

https://en.wikipedia.org/wiki/Website Website yes

https://en.wikipedia.org/wiki/Euclid Euclid no

https://en.wikipedia.org/wiki/French World War II destroyers French World War II destroyers no

https://en.wikipedia.org/wiki/Accountant Accountant no

https://en.wikipedia.org/wiki/I Have a Dream I Have a Dream no

https://en.wikipedia.org/wiki/String (computer science) String (computer science) yes

https://en.wikipedia.org/wiki/Web content Web content yes

https://en.wikipedia.org/wiki/Implementation Implementation yes

https://en.wikipedia.org/wiki/Being Being no

https://en.wikipedia.org/wiki/I Am... World Tour I Am... World Tour no

https://en.wikipedia.org/wiki/Where (SQL) Where (SQL) no

https://en.wikipedia.org/wiki/Content management system Content management system no

https://en.wikipedia.org/wiki/User (computing) User (computing) yes

https://en.wikipedia.org/wiki/Shipbuilding Shipbuilding no

https://en.wikipedia.org/wiki/Transformativeness Transformativeness no

https://en.wikipedia.org/wiki/Correlation and dependence Correlation and dependence no

https://en.wikipedia.org/wiki/English grammar English grammar no

https://en.wikipedia.org/wiki/For loop For loop no

https://en.wikipedia.org/wiki/Computer programming Computer programming no

https://en.wikipedia.org/wiki/Voluntary association Voluntary association no

https://en.wikipedia.org/wiki/Reference Reference no

https://en.wikipedia.org/wiki/Musical form Musical form no

https://en.wikipedia.org/wiki/Religion Religion no

https://en.wikipedia.org/wiki/Source code Source code yes

https://en.wikipedia.org/wiki/Canning Canning no

https://en.wikipedia.org/wiki/Information technology Information technology no

https://en.wikipedia.org/wiki/Limit of a sequence Limit of a sequence no

https://en.wikipedia.org/wiki/Applied mathematics Applied mathematics no

https://en.wikipedia.org/wiki/Work (physics) Work (physics) no

https://en.wikipedia.org/wiki/United States Department of Energy United States Department of Energy no

https://en.wikipedia.org/wiki/Breast Breast no

https://en.wikipedia.org/wiki/Writing Writing no

https://en.wikipedia.org/wiki/When (The Kalin Twins song) When (The Kalin Twins song) no

https://en.wikipedia.org/wiki/Need To Need To no

https://en.wikipedia.org/wiki/Instrument landing system Instrument landing system no

https://en.wikipedia.org/wiki/Codification (law) Codification (law) no

203

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

URL Post Concept Match

https://en.wikipedia.org/wiki/The Pattern (The Chronicles of Amber) The Pattern (The Chronicles of Amber) no

https://en.wikipedia.org/wiki/Rugby union bonus points system Rugby union bonus points system no

https://en.wikipedia.org/wiki/Gratitude Gratitude no

https://en.wikipedia.org/wiki/Who is a Jew%3F Who is a Jew? no

https://en.wikipedia.org/wiki/Metre Metre no

https://en.wikipedia.org/wiki/Email Email no

https://en.wikipedia.org/wiki/String-searching algorithm String-searching algorithm yes

https://en.wikipedia.org/wiki/User-generated content User-generated content yes

https://en.wikipedia.org/wiki/Dear J (song) Dear J (song) no

https://en.wikipedia.org/wiki/Reliability engineering Reliability engineering no

https://en.wikipedia.org/wiki/Element (mathematics) Element (mathematics) no

https://en.wikipedia.org/wiki/This (computer programming) This (computer programming) no

https://en.wikipedia.org/wiki/Traverse (surveying) Traverse (surveying) no

https://en.wikipedia.org/wiki/The Set-Up (1949 film) The Set-Up (1949 film) no

https://en.wikipedia.org/wiki/Learning Learning no

https://en.wikipedia.org/wiki/Radiocarbon dating Radiocarbon dating no

https://en.wikipedia.org/wiki/CAN bus CAN bus no

https://en.wikipedia.org/wiki/Racing video game Racing video game no

https://en.wikipedia.org/wiki/Instance dungeon Instance dungeon no

https://en.wikipedia.org/wiki/Outfielder Outfielder no

https://en.wikipedia.org/wiki/Subtyping Subtyping no

https://en.wikipedia.org/wiki/Tree traversal Tree traversal no

https://en.wikipedia.org/wiki/Grade (climbing) Grade (climbing) no

https://en.wikipedia.org/wiki/Which (Unix) Which (Unix) no

https://en.wikipedia.org/wiki/Weasel word Weasel word no

https://en.wikipedia.org/wiki/Demand Demand no

https://en.wikipedia.org/wiki/Subject (philosophy) Subject (philosophy) no

https://en.wikipedia.org/wiki/Ares Ares no

https://en.wikipedia.org/wiki/Association (object-oriented program-

ming)

Association (object-oriented program-

ming)

yes

https://en.wikipedia.org/wiki/Book of Isaiah Book of Isaiah no

https://en.wikipedia.org/wiki/Fallacy of quoting out of context Fallacy of quoting out of context no

https://en.wikipedia.org/wiki/Microcontroller Microcontroller no

https://en.wikipedia.org/wiki/Not Yet (Monotonix album) Not Yet (Monotonix album) no

https://en.wikipedia.org/wiki/Almost surely Almost surely no

https://en.wikipedia.org/wiki/Object-oriented programming Object-oriented programming no

https://en.wikipedia.org/wiki/Frameup Frameup no

https://en.wikipedia.org/wiki/Chemistry Chemistry no

https://en.wikipedia.org/wiki/Context (language use) Context (language use) no

https://en.wikipedia.org/wiki/Economic model Economic model no

https://en.wikipedia.org/wiki/Metric prefix Metric prefix no

https://en.wikipedia.org/wiki/Programming language Programming language no

https://en.wikipedia.org/wiki/Dude Ranch (album) Dude Ranch (album) no

https://en.wikipedia.org/wiki/Modus ponens Modus ponens no

https://en.wikipedia.org/wiki/Big Bang Big Bang no

https://en.wikipedia.org/wiki/Is-a Is-a no

https://en.wikipedia.org/wiki/Most (Most District) Most (Most District) no

https://en.wikipedia.org/wiki/Representation of the People Act 1918 Representation of the People Act 1918 no

https://en.wikipedia.org/wiki/Complementary event Complementary event no

https://en.wikipedia.org/wiki/Roseanne Barr Roseanne Barr no

https://en.wikipedia.org/wiki/Determinism Determinism no

https://en.wikipedia.org/wiki/Mode (literature) Mode (literature) no

https://en.wikipedia.org/wiki/Bridge of Independent Lists Bridge of Independent Lists no

https://en.wikipedia.org/wiki/Science Science no

https://en.wikipedia.org/wiki/It Still Moves It Still Moves no

https://en.wikipedia.org/wiki/Article (grammar) Article (grammar) no

https://en.wikipedia.org/wiki/Wikipedia Wikipedia no

https://en.wikipedia.org/wiki/Time Time no

https://en.wikipedia.org/wiki/Information Information no

https://en.wikipedia.org/wiki/Diffraction-limited system Diffraction-limited system no

https://en.wikipedia.org/wiki/Factorial Factorial no

https://en.wikipedia.org/wiki/User interface User interface no

https://en.wikipedia.org/wiki/Employment Employment no

https://en.wikipedia.org/wiki/United States Constitution United States Constitution no

https://en.wikipedia.org/wiki/Ketuvim Ketuvim no

https://en.wikipedia.org/wiki/About URI scheme About URI scheme no

https://en.wikipedia.org/wiki/Mathematical model Mathematical model no

https://en.wikipedia.org/wiki/Method (computer programming) Method (computer programming) yes

https://en.wikipedia.org/wiki/Electric current Electric current no

204

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

URL Post Concept Match

https://en.wikipedia.org/wiki/Pseudonym Pseudonym no

https://en.wikipedia.org/wiki/Square root Square root no

https://en.wikipedia.org/wiki/Copula (linguistics) Copula (linguistics) no

https://en.wikipedia.org/wiki/Bitcoin Bitcoin no

https://en.wikipedia.org/wiki/Artin transfer (group theory) Artin transfer (group theory) no

https://en.wikipedia.org/wiki/Linguistic prescription Linguistic prescription no

https://en.wikipedia.org/wiki/Napoleonic Wars Napoleonic Wars no

https://en.wikipedia.org/wiki/Collectivization in the Soviet Union Collectivization in the Soviet Union no

https://en.wikipedia.org/wiki/Camino de Santiago Camino de Santiago no

https://en.wikipedia.org/wiki/Graph traversal Graph traversal no

https://en.wikipedia.org/wiki/Not Yet (band) Not Yet (band) no

https://en.wikipedia.org/wiki/Software design pattern Software design pattern no

https://en.wikipedia.org/wiki/HTML element HTML element no

https://en.wikipedia.org/wiki/Allusion Allusion no

https://en.wikipedia.org/wiki/I am (biblical term) I am (biblical term) no

https://en.wikipedia.org/wiki/Myspace Myspace no

https://en.wikipedia.org/wiki/Set theory Set theory no

https://en.wikipedia.org/wiki/Control theory Control theory no

https://en.wikipedia.org/wiki/Material conditional Material conditional no

https://en.wikipedia.org/wiki/Personal pronoun Personal pronoun no

https://en.wikipedia.org/wiki/Right to work Right to work no

https://en.wikipedia.org/wiki/Instrument approach Instrument approach no

https://en.wikipedia.org/wiki/War in Darfur War in Darfur no

https://en.wikipedia.org/wiki/Pattern matching Pattern matching yes

https://en.wikipedia.org/wiki/Polymorphism (computer science) Polymorphism (computer science) yes

A.3 Scode Relatedness Annotation Guide

Content of Concept_Relatedness/coding-guide.md from https://zenodo.org/records/7835197

Use Java 15’s source code and documentation to understand the class

• Source code: https://github.com/openjdk/jdk15 (search by pressing T on the GitHub repo,

then using the query src/[name of class], the right result is typically the first, and has a path

similar to src/[modulename]/share/classes/[package/name]/[class].java)

• Reference documentation: https://docs.oracle.com/en/java/javase/15/docs/api/index.html

After carefully reading the source code and reference documentation of the class, code each association

with one of the following categories, in order of precedence

• [general] General programming or computer science concept: Is the concept inherently

tied to programming (with modern languages) and related to almost any programming project?

• [yes] Related concept: Is the concept directly related to the implementation of the class,

its usage, or the abstraction it represents?

• [no] Unrelated concept: None of the above. The concept is completely unrelated to the

class.

• [?] Don’t know: If unable to make a decision, use this category, but also indicate which

categories are considered.

205

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

“General” Category:

• Marking a concept as “general” means that it would be related to almost all classes. This

includes concepts like object, class, method, function, branching statement, etc., that are highly

coupled with the language.

• Categories of concepts that are “general” include: programming languages, markup languages

(e.g., html, json), development tools (e.g., eclipse). However, specialized concepts within these

categories (e.g., a development tool used only in specific contexts) are not general.

Additional Rules / Special Cases

• Everyday or non-programming concepts can be “related” or “unrelated”, depending on whether

they relate to the abstraction of the class (e.g., east is related to the BorderLayout, because

it uses this concept to arrange its elements). They can’t, however, be “general”.

– Rationale: Classes can relate to non-programming concepts. However, the general

category is specific to programming and computer science concepts.

• Non-concepts are “unrelated”.

– Rationale: They are false positives.

• If a file contains multiple classes, include all classes when deciding if the concept is related or

not (i.e., it is “related” if related to at least one of the classes).

– Rationale: Sampling was done at the file level.

• Don’t consider the boilerplate license text at the top of files when deciding if a concept is

related or not.

– Rationale: Licensing is an orthogonal concern. The boilerplate license was removed

from the input to the tools, so license-related concepts should be related to the class.

• Some concepts appear twice for the same class (usually the 2nd time with a trailing space).

Mark both with the same category.

– Rationale: it’s a small bug in the generation, with no impact on the list of results

other than the duplicates.

• Each term is a concept, whether it refers to abstract concepts, softwares, technical standards,

organizations, etc., and the “type” of concept (abstract, software, etc.) doesn’t prevent coding

an association with any category.

206

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

– Rationale: the term “concept” is used in a loose sense.

• Not all concepts are from Wikipedia. Code the concept, not the Wikipedia article. Use online

resources, including Wikipedia, to understand the concept if necessary.

– Rationale: 1 tool doesn’t use Wikipedia.

• If a concept has the form “comparison of [XYZ]”, “list of [XYZ]”, “list of [XYZ] by [ABC]”,

etc., code as if the concept was only “[XYZ]”.

– Rationale: 2 of 3 tools use Wikipedia, which has many redirects from less popular

technologies to these articles, and sometimes even the main article for “XYZ” actually

redirects to the list article.

• If a concept is ambiguous or has multiple meanings, assume the most closely related meaning,

i.e., the one that would give the highest category.

– Rationale: this most related meaning could be useful.

• If a concept is mentioned by the reference documentation or by a code identifier, it is “related”,

even if the mention is not in a core part of the code.

– Rationale: a developer reading the code/documentation would be expected to under-

stand this concept.

• Concepts do not need to be mentioned to be “related”.

– Rationale: human judgment is sufficient.

• If a concept would be “related” for a parent class or interface of the target class, it is also

“related” for the target class.

– Rationale: understanding a subtype requires understanding its supertypes.

• If a concept is coded as “general” at least once, it can never be coded as “related” or

“unrelated”.

– Rationale: answering the “general” question does not require to compare the con-

cept with the class, so the answer should not change for a different class. General

concepts are related to virtually any software project, so it isn’t meaningful to make the

related/unrelated decision for each class.

• If unsure about “related” or “general”, err on the side of “yes” and “no” respectively. Use the

“?” category if it could really be more than one category.

207

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

– Rationale: even slightly less related concepts can be part of the understanding of a

class and useful when using or developing the class. “General” concepts, however, are

not as insightful.

A.4 List of Computing-Related Wikipedia Articles

First 300 articles listed in Wikipedia_Graph/nodes.tsv from https://zenodo.org/records/7835197.

Each line shows the page ID of the Wikipedia article in brackets, followed by the article’s title.

[586] ASCII

[775] Algorithm

[856] Apple Inc.

[1164] Artificial intelligence

[1242] Ada (programming language)

[1368] Assembly language

[1451] APL (programming language)

[1453] ALGOL

[1456] AWK

[2014] Atomic semantics

[2052] Array data structure

[2114] IBM AIX

[2230] Analysis of algorithms

[2316] Audio file format

[2323] Amdahl’s law

[2349] Abstract data type

[2581] Apache HTTP Server

[2726] Atlas Autocode

[2883] Active Server Pages

[3233] Acceptance testing

[3364] Bit

[3365] Byte

[4015] BASIC

[4052] BCPL

[4086] Brainfuck

[4266] Binary search algorithm

[4321] Binary tree

[4459] Backward compatibility

[4475] B (programming language)

[4547] Bash (Unix shell)

[4801] BeOS

[5213] Computing

[5218] Central processing unit

[5244] Cipher

[5295] Character encoding

[5300] Computer data storage

[5309] Software

[5311] Computer programming

[5323] Computer science

[5715] Cryptanalysis

[5739] Compiler

[5783] Computer program

[5926] Computation

[6021] C (programming language)

[6068] Common Lisp

[6211] Context-sensitive grammar

[6212] Context-sensitive language

[6429] Compact disc

[6513] Client–server model

[6557] Control unit

[6559] Control store

[6596] Computer vision

[6604] Rendering (computer graphics)

[6667] CPAN

[6734] Garbage collection (computer science)

[6759] Context-free grammar

[6799] COBOL

[6806] Computer memory

[6829] Cache (computing)

[6857] Computer multitasking

[7030] Code coverage

[7056] Computer mouse

[7077] Computer file

[7144] Content-control software

[7237] Common Language Infrastructure

[7262] Coral 66

[7291] CuteFTP

[7392] Class (computer programming)

[7398] Computer security

[7492] Capability Maturity Model

[7543] Computational complexity theory

[7575] CLU (programming language)

[7645] Cyclone (programming language)

[7677] Computer monitor

[7850] Chomsky normal form

[7962] Logical disjunction

[8013] Data compression

[8276] Digital data

[8339] Domain Name System

[8377] Database

[8472] Disk storage

[8495] Data set

[8501] Distributed computing

[8519] Data structure

[8525] Digital signal processing

[8640] Database normalization

[8733] Digital video

[8741] Dylan (programming language)

[8743] Document Object Model

[8904] Double-ended queue

[9101] Device driver

[9251] Engineering

[9310] Enterprise resource planning

[9499] Ethernet

[9646] Erlang (programming language)

[9647] Euphoria (programming language)

[9672] Entscheidungsproblem

[9685] Earley parser

[9738] Email

[9773] EBCDIC

[9838] Eiffel (programming language)

[9845] JavaScript

[9875] Exploit (computer security)

[10136] Expert system

[10294] Encryption

[10375] Error detection and correction

[10377] Euclidean algorithm

[10635] Free software

[10891] Floppy disk

[10931] Finite-state machine

[10933] Functional programming

[10939] Formal language

[11012] Forth (programming language)

[11168] Fortran

[11178] Foobar

[11347] FIFO (computing and electronics)

[11367] Fourth-generation programming language

[11376] Floating-point arithmetic

[11402] FileMan

[11545] Feedback

[11592] Freeware

[11691] Functional decomposition

[11856] Gnutella

[11875] GNU

[12293] Graphical user interface

[12570] Gigabyte

[12702] GIF

[12823] Garbage in, garbage out

[13191] HTML

[13259] Home page

[13263] Hexadecimal

[13443] Hypertext Transfer Protocol

[13501] Source tracking

[13777] Hard disk drive

[13790] Hash function

[13833] Hash table

[13834] "Hello, World!" program

[13995] Heapsort

[13996] Heap (data structure)

[14539] Internet

[14617] Intel

[14739] IEEE 802.11

[14773] Information theory

[14791] IEEE 802.3

[14794] Integer (computer science)

[14801] Icon (programming language)

[14921] IP address

[14934] International Organization for Standardization

[15019] ISO/IEC 8859-1

[15046] IA-32

[15072] Instruction register

[15075] INTERCAL

[15089] Interpreted language

[15144] International Electrotechnical Commission

[15145] ISO 9660

[15205] Insertion sort

[15215] Internet Explorer

[15222] IEEE 802.2

[15289] Interrupt

[15305] Integrated development environment

[15323] Internet Protocol

[15476] Internet protocol suite

[15881] Java (programming language)

[16009] JPEG

[16226] JUnit

208

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

[16389] Java virtual machine

[16629] KDE

[16750] Kleene star

[16794] Kilobyte

[17178] KL0

[17212] KOMPILER

[17224] Kent Recursive Calculator

[17731] LiveScript

[17739] Local area network

[17927] Logic programming

[18004] LALR parser

[18016] Lisp (programming language)

[18030] LR parser

[18136] Literate programming

[18152] Logical conjunction

[18155] Lazy evaluation

[18167] Linked list

[18171] Linear search

[18195] LaTeX

[18203] Lambda calculus

[18334] Logo (programming language)

[18508] Lightweight Directory Access Protocol

[18529] Lynx (web browser)

[18530] Lynx (programming language)

[18566] Linker (computing)

[18692] Lint (software)

[18826] MD5

[18847] Multics

[18890] Microsoft Windows

[18910] Markup language

[19001] Microsoft

[19045] MIME

[19545] MySQL

[19550] Multiple inheritance

[19553] Microprocessor

[19609] Memory leak

[19673] MP3

[19723] MUMPS

[19726] Mercury (programming language)

[19918] Megabyte

[19945] Motherboard

[19962] Mesa (programming language)

[19999] Microcode

[20003] Multitier architecture

[20029] Multics Relational Data Store

[20034] Mutual recursion

[20039] Merge sort

[20055] Moving Picture Experts Group

[20070] Memory address register

[20072] Microassembler

[20170] MIPS architecture

[20178] MOO (programming language)

[20266] Mainframe computer

[20272] Minicomputer

[20340] Mary (programming language)

[20362] Merge algorithm

[20412] MATLAB

[20556] Meta element

[20560] Macro (computer science)

[20607] ML (programming language)

[20640] MacOS

[20683] Machine code

[20824] Modula

[20901] Malware

[21150] Nibble

[21506] Numerical analysis

[21523] Artificial neural network

[21571] Nial

[21652] Natural language processing

[21796] Namespace

[22194] Operating system

[22290] Open-source license

[22330] Octal

[22373] Object code

[22496] Oberon (programming language)

[22660] Occam (programming language)

[22693] Operator overloading

[22758] List of object-oriented programming languages

[22826] Object database

[23015] Programming language

[23485] Prolog

[23577] Partial function

[23630] Programmed Data Processor

[23659] Plug-in (computing)

[23665] Pixel

[23708] PL/I

[23773] Pascal (programming language)

[23801] Procedural programming

[23824] PostgreSQL

[23862] Python (programming language)

[23939] Perl

[24077] PDF

[24080] PostScript

[24107] Peer-to-peer

[24131] PHP

[24281] PowerPC

[24304] Password

[24306] Portable Network Graphics

[24400] Pair programming

[24444] Page description language

[24485] Priority queue

[24510] Pushdown automaton

[24722] P-code machine

[24829] Primitive recursive function

[24947] Pong

[24970] PA-RISC

[25030] Plain text

[25204] Qt (software)

[25213] QWERTY

[25220] Quantum computing

[25231] QuickTime

[25265] Queue (abstract data type)

[25270] Quine (computing)

[25407] Recursion

[25540] Request for Comments

[25612] Random access

[25717] Regular expression

[25723] Regular language

[25742] Raster graphics

[25748] Router (computing)

[25750] Routing

[25768] Ruby (programming language)

[25855] Regular grammar

[25871] Code refactoring

[25873] Relational database

[25983] Regular semantics

[25989] RGB color model

[26123] Real-time operating system

[26201] Reduced instruction set computer

[26220] Relational model

[26344] Register transfer language

[26346] Remote procedure call

[26384] Rebol

[26490] Reference counting

[26526] Referential transparency

A.5 Open Source Android Projects

Content of Topic_Cohesiveness/android-projects.txt from https://zenodo.org/records/7835197

acr.browser.lightning_101

ar.rulosoft.mimanganu_129

at.bitfire.davdroid_301000002

at.linuxtage.companion_1700002

be.digitalia.fosdem_1700201

be.mygod.vpnhotspot_220

ca.rmen.android.networkmonitor_13200

ca.rmen.android.poetassistant_113001

ca.rmen.android.scrumchatter_10606

ch.bailu.aat_31

ch.blinkenlights.android.vanilla_10850

ch.hgdev.toposuite_69

chat.rocket.android_2077

com.achep.acdisplay_76

com.adam.aslfms_61

com.adonai.manman_171

com.amaze.filemanager_54

com.android.music_2

com.app.missednotificationsreminder_2010302021

com.apps.adrcotfas.goodtime_118

com.atr.tedit_14

com.averi.worldscribe_23

com.bernaferrari.changedetection_32

com.better.alarm_30505

com.biglybt.android.client_1020600

com.dalthed.tucan_38

com.danvelazco.fbwrapper_20170312

com.dfa.hubzilla_android_46

com.dozingcatsoftware.bouncy_25

com.etesync.syncadapter_107

com.forrestguice.suntimeswidget_61

com.fsck.k9_27014

209

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

com.geecko.QuickLyric_131

com.gelakinetic.mtgfam_73

com.ghostsq.commander_396

com.github.axet.binauralbeats_157

com.github.dfa.diaspora_android_45

com.github.ruleant.getback_gps_60

com.google.android.stardroid_1480

com.google.zxing.client.android_108

com.gulshansingh.hackerlivewallpaper_13

com.haringeymobile.ukweather_27

com.hexad.bluezime_20

com.hobbyone.HashDroid_20

com.ichi2.anki_20907300

com.junjunguo.pocketmaps_34

com.keylesspalace.tusky_71

com.liato.bankdroid_222

com.llamacorp.equate_9

com.lukekorth.screennotifications_22

com.mantz_it.rfanalyzer_1303

com.matoski.adbm_27

com.maxfour.music_12

com.mde.potdroid_82

com.metinkale.prayer_215

com.mikifus.padland_20

com.moez.QKSMS_2213

com.morlunk.mumbleclient_73

com.namelessdev.mpdroid_58

com.nbossard.packlist_19

com.newsblur_163

com.nextcloud.client_30110190

com.nononsenseapps.feeder_74

com.nononsenseapps.notepad_57130

com.nutomic.syncthingandroid_4227

com.orgzly_152

com.oriondev.moneywallet_71

com.owncloud.android_21400201

com.perflyst.twire_513

com.pitchedapps.frost_2040400

com.poupa.vinylmusicplayer_168

com.quaap.bookymcbookface_430

com.quaap.launchtime_850

com.quaap.primary_33

com.rareventure.gps2_91

com.ruesga.android.wallpapers.photophase_1036

com.seafile.seadroid2_101

com.sunyata.kindmind_65

com.termux_94

com.u17od.upm_20

com.ulicae.cinelog_26

com.vonglasow.michael.satstat_3030

com.vuze.android.remote_82

com.wangdaye.mysplash_348

com.wmstein.tourcount_322

com.wmstein.transektcount_324

com.zoffcc.applications.aagtl_36

cx.ring_238

damo.three.ie_19

de.blau.android_1407

de.danoeh.antennapod_1080195

de.geeksfactory.opacclient_218

de.k3b.android.androFotoFinder_47

de.karbach.tac_6

de.kugihan.dictionaryformids.hmi_android_131

de.luhmer.owncloudnewsreader_152

de.marmaro.krt.ffupdater_34

de.qspool.clementineremote_759

de.retujo.bierverkostung_4

de.skubware.opentraining_31

de.srlabs.snoopsnitch_39

de.sudoq_26

de.syss.MifareClassicTool_48

de.tobiasbielefeld.solitaire_71

de.t_dankworth.secscanqr_19

de.vanitasvitae.enigmandroid_18

de.vibora.viborafeed_28

de.westnordost.streetcomplete_1904

de.yaacc_26

dev.ukanth.ufirewall_19450

ee.ioc.phon.android.speak_1712

es.usc.citius.servando.calendula_42

eu.kanade.tachiyomi_42

eu.siacs.conversations_383

eu.sum7.conversations_383

felixwiemuth.lincal_13

fi.kroon.vadret_24

fr.free.nrw.commons_561

fr.neamar.kiss_179

github.daneren2005.dsub_158

godau.fynn.dsbdirect_36

in.blogspot.anselmbros.torchie_34

indrora.atomic_21

info.schnatterer.nusic_22

io.github.hidroh.materialistic_79

io.github.tjg1.nori_15

io.pslab_21

it.niedermann.owncloud.notes_2012000

it.reyboz.bustorino_28

jackpal.androidterm_72

joshuatee.wx_55420

kaljurand_at_gmail_dot_com.diktofon_983

libretasks.app_22

me.blog.korn123.easydiary_195

me.ccrama.redditslide_323

me.kuehle.carreport_79

mobi.maptrek_77

mobi.omegacentauri.SendReduced_1600

net.cyclestreets_1579

net.czlee.debatekeeper_23

net.ddns.mlsoftlaberge.trycorder_523

net.eneiluj.nextcloud.phonetrack_18

net.gorry.android.input.nicownng_201412041

net.i2p.android.router_4745255

net.kervala.comicsreader_28

net.kourlas.voipms_sms_123

net.mabako.steamgifts_1005511

net.osmand.plus_363

net.osmtracker_48

net.reichholf.dreamdroid_439

net.sf.times_37

net.sourceforge.opencamera_77

net.usikkert.kouchat.android_16

net.wigle.wigleandroid_251

nodomain.freeyourgadget.gadgetbridge_173

ohi.andre.consolelauncher_205

ohm.quickdice_48

openfoodfacts.github.scrachx.openfood_328

org.adaway_40304

org.andstatus.app_320

org.bienvenidoainternet.app_13

org.bottiger.podcast_424

org.connectbot_10906000

org.coolreader_32380

org.cprados.wificellmanager_19

org.c_base.c_beam_29

org.dmfs.tasks_78500

org.dolphinemu.dolphinemu_14523

org.ea.sqrl_52

org.epstudios.epmobile_60

org.fdroid.fdroid_1008050

org.fitchfamily.android.dejavu_21

org.floens.chan_30002

org.freshrss.easyrss_706

210

APPENDIX A. REPLICATION DATA FOR CONCEPTUAL DEPENDENCIES

org.gateshipone.malp_32

org.gateshipone.odyssey_31

org.gdroid.gdroid_10002

org.isoron.uhabits_38

org.kontalk_440

org.mariotaku.twidere_511

org.moire.opensudoku_20200323

org.moire.ultrasonic_72

org.openbmap_27

org.openhab.habdroid_269

org.openintents.filemanager_40

org.openintents.notepad_10084

org.openintents.shopping_100213

org.petero.droidfish_91

org.pocketworkstation.pckeyboard_1041001

org.primftpd_49

org.quantumbadger.redreader_89

org.schabi.newpipelegacy_60

org.schabi.newpipe_930

org.schabi.terminightor_12

org.secuso.privacyfriendlydame_3

org.secuso.privacyfriendlyintervaltimer_4

org.secuso.privacyfriendlysudoku_8

org.secuso.privacyfriendlyweather_6

org.servalproject_2371

org.sipdroid.sipua_115

org.smssecure.smssecure_211

org.softeg.slartus.forpdaplus_637

org.sufficientlysecure.keychain_55000

org.sugr.gearshift_88

org.telegram.messenger_19479

org.tomdroid_14

org.totschnig.myexpenses_410

org.toulibre.capitoledulibre_11

org.transdroid.search_36

org.ttrssreader_1946

org.videolan.vlc_13021208

org.wikipedia_50308

org.xbmc.kore_26

org.yaaic_13

org.yaxim.androidclient_53

org.zephyrsoft.trackworktime_28

pk.contender.earmouse_30

privacyfriendlyshoppinglist.secuso.org.privacyfriendlyshoppinglist_7

rkr.simplekeyboard.inputmethod_69

ru.gelin.android.weather.notification_54

ru.playsoftware.j2meloader_80

ryey.easer_123

se.leap.bitmaskclient_147

uk.co.bitethebullet.android.token_6

uk.co.yahoo.p1rpp.calendartrigger_7

vocabletrainer.heinecke.aron.vocabletrainer_20

wseemann.media.romote_16

211

Appendix B

Replication Data for Tutorial Design

Variations

We published the data necessary to verify and replicate our study of tutorial design (Chapter 4)

at https://zenodo.org/records/5075903 [14]. Table B.1 details the content of the artifact. The last

column indicates which parts of the artifact is reproduced in the sections of this appendix.

Table B.1: Content of the Data Artifact for Our Study of Tutorial Design

Path Description Sec.

README.md Description of the artifact.

topics/android-tags.csv List of all Stack Overflow tags containing the substring

android.

topics/topics.json List of all tags used in our study, with additional

information.

B.1

tutorials/urls.txt List of URLs of all the tutorial pages used in our study. B.2

tutorials/sections.csv List of parsed tutorial sections.

mapping/annotations_[...].csv Results of the manual mapping between Android topics

(i.e., Stack Overflow tags) and tutorial sections.

mapping/all_annotations.csv Incidence matrix of the coverage of the 393 topics (rows) by

the 3 tutorials (columns).

B.3

cooccurrences/counts.csv Number of Stack Overflow posts associated with each pair

of tags.

212

APPENDIX B. REPLICATION DATA FOR TUTORIAL DESIGN VARIATIONS

B.1 Android-Related Stack Overflow Tags Used in

Our Study

Tags listed in topics/topics.json from https://zenodo.org/records/5075903

android-studio

android-layout

android-fragments

android-intent

android-activity

android-recyclerview

android-listview

android-asynctask

android-ndk

android-gradle-plugin

android-edittext

android-emulator

android-viewpager

android-actionbar

android-sqlite

android-webview

android-volley

android-service

android-camera

android-widget

react-native-android

android-alertdialog

android-manifest

android-animation

android-linearlayout

android-mediaplayer

android-arrayadapter

android-notifications

android-imageview

android-view

android-canvas

android-support-library

android-room

android-spinner

android-custom-view

android-contentprovider

android-permissions

android-adapter

android-espresso

android-toolbar

android-xml

android-appcompat

android-softkeyboard

android-videoview

android-mapview

android-source

android-resources

android-constraintlayout

android-tabhost

android-button

android-contacts

android-cardview

android-fragmentactivity

android-databinding

android-lifecycle

android-theme

facebook-android-sdk

android-glide

android-context

android-testing

android-tablayout

androidx

android-styles

android-dialogfragment

android-bluetooth

mpandroidchart

android-library

rx-android

android-pendingintent

android-scrollview

android-gridview

android-livedata

android-bitmap

android-sensors

android-progressbar

android-sdcard

android-architecture-components

android-coordinatorlayout

android-relativelayout

android-dialog

android-ui

android-location

android-menu

android-tablelayout

android-listfragment

android-broadcast

android-collapsingtoolbarlayout

android-gallery

android-logcat

android-alarms

android-sdk-tools

android-proguard

android-tv

android-jetpack

android-calendar

android-appwidget

android-camera-intent

android-file

android-viewholder

android-youtube-api

android-broadcastreceiver

android-cursoradapter

android-networking

appium-android

android-maps

android-contentresolver

android-cursor

android-orientation

android-download-manager

google-drive-android-api

android-uiautomator

android-handler

android-keystore

android-ksoap2

android-appbarlayout

android-design-library

android-c2dm

android-multidex

android-viewmodel

android-audiomanager

android-navigation

android-checkbox

android-datepicker

android-actionbar-compat

android-mediarecorder

android-workmanager

android-architecture-navigation

android-gridlayout

android-launcher

android-facebook

android-gps

android-syncadapter

android-textinputlayout

android-external-storage

android-things

android-seekbar

android-vectordrawable

android-nestedscrollview

kotlin-android-extensions

android-sharedpreferences

ibeacon-android

opencv4android

android-assets

android-toast

android-geofence

android-install-apk

android-browser

android-jobscheduler

android-fileprovider

android-cursorloader

android-pay

android-productflavors

android-windowmanager

android-annotations

android-database

material-components-android

android-imagebutton

android-intentservice

android-instant-apps

android-graphview

androiddesignsupport

android-security

android-keypad

android-pageradapter

android-layout-weight

androidhttpclient

android-instrumentation

android-loadermanager

cocos2d-android

android-search

android-service-binding

android-snackbar

android-debug

android-navigationview

android-wake-lock

android-ffmpeg

mapbox-android

android-notification-bar

android-billing

android-memory

android-homebutton

android-timepicker

android-popupwindow

android-radiobutton

android-optionsmenu

android-event

213

APPENDIX B. REPLICATION DATA FOR TUTORIAL DESIGN VARIATIONS

android-statusbar

android-lvl

android-radiogroup

android-developer-api

android-sharing

android-fusedlocation

android-lint

android-fullscreen

android-ibeacon

android-wear-data-api

android-adapterview

android-nested-fragment

android-app-bundle

android-accessibility

android-icons

android-tabactivity

android-async-http

android-bundle

android-mvp

android-gesture

calabash-android

android-api-levels

android-paging

android-settings

android-support-design

activeandroid

android-actionbaractivity

android-ble

basic4android

rxandroidble

android-holo-everywhere

android-backup-service

android-maven-plugin

android-hardware

android-vision

android-binder

android-loader

android-contextmenu

androidviewclient

android.mk

android-actionmode

android-elevation

android-switch

android-shape

android-textwatcher

android-togglebutton

android-mediascanner

android-runonuithread

android-auto

android-touch-event

android-searchmanager

android-doze

android-storage

android-wallpaper

android-app-indexing

quickblox-android

android-beam

android-looper

android-applicationinfo

android-mediaprojection

android-internal-storage

android-chips

android-strictmode

android-management-api

android-bottomnav

android-lru-cache

android-instant-run

pocketsphinx-android

android-task

android-recents

android-mediasession

android-authenticator

android-xmlpullparser

android-account

android-wear-notification

android-jetpack-compose

titanium-android

android-viewbinder

android-bottomappbar

android-query

android-implicit-intent

android-app-signing

android-mediacodec

android-maps-utils

android-usb

sqlcipher-android

android-build-type

android-immersive

android-biometric-prompt

android-print-framework

android-number-picker

android-dialer

parse-android-sdk

android-application-class

android-intent-chooser

android-wrap-content

android-market-filtering

android-device-monitor

android-for-work

android-espresso-recorder

spring-android

android-shapedrawable

android-junit

android-profiler

android-jack-and-jill

android-powermanager

qtandroidextras

android-parsequeryadapter

nineoldandroids

android-applicationrecord

android-traceview

android-speech-api

android-customtabs

android-simple-facebook

android-screen-pinning

vimeo-android

chrome-for-android

android-ondestroy

android-percentrelativelayout

android-jetifier

android-pdf-api

xamarin-android-player

androidasync-koush

android-enterprise

androidpdfviewer

android-components

android-job

air-android

android-emulator-plugin

android-crop

android-capture

android-side-navigation

apollo-android

android-jsinterface

android-afilechooser

android-palette

android-automotive

sbt-android-plugin

android-ide

android-multiple-users

android-custom-drawable

androidappsonchromeos

android-monkey

svg-android

android-guava

android-viewbinding

android-open-accessory

android-vertical-seekbar

android-things-console

android-os-handler

android-wheel

android-droidtext

android-view-invalidate

android-percent-library

qandroidjniobject

android-bootstrap

android-apt

android-tools-namespace

android-drm

android-kenburnsview

android-soong

android-cts

dronekit-android

appsflyer-android-sdk

android-ktx

android-managed-profile

android-wear-complication

android-vts

android-cling

android-vitals

android-largeheap

android-json-rpc

parse-sdk-android

android-appwidget-list

android-sparsearray

android-navigation-editor

android-spellcheck

android-restrictions

android-time-square

android-sdk-plugin

android-activityrecord

android-contact-mimetype

android-app-ops

android-subscriptionmanager

android-tap-and-pay

android-singleline

android-assertj

android-bootstrap-widgets

turbolinks-android

android-notification.mediastyle

android-tradefederation

android-extracted-text

ms-android-emulator

android-pixel-copy

android-storm

android-simon-datepicker

android-snapshot

android-standout

android-slider

android-drawable-importer

android-cognalys

android-kripton

wikimedia-android-data-client

httpclientandroidlib

paper-android

android-ble-library

androidx-lifecycle

214

APPENDIX B. REPLICATION DATA FOR TUTORIAL DESIGN VARIATIONS

B.2 List of Tutorial Pages

Content of tutorials/urls.txt from https://zenodo.org/records/5075903

AppBasic

https://developer.android.com/training/basics/firstapp

https://developer.android.com/training/basics/firstapp/creating-project

https://developer.android.com/training/basics/firstapp/running-app

https://developer.android.com/training/basics/firstapp/building-ui

https://developer.android.com/training/basics/firstapp/starting-activity

https://developer.android.com/guide/components/fundamentals

https://developer.android.com/guide/topics/resources/providing-resources

https://developer.android.com/guide/topics/resources/runtime-changes

https://developer.android.com/guide/topics/resources/localization

https://developer.android.com/guide/topics/resources/pseudolocales

https://developer.android.com/guide/topics/resources/internationalization

https://developer.android.com/guide/topics/resources/multilingual-support

https://developer.android.com/guide/topics/resources/complex-xml-resources

https://developer.android.com/guide/topics/resources/available-resources

https://developer.android.com/guide/topics/resources/animation-resource

https://developer.android.com/guide/topics/resources/color-list-resource

https://developer.android.com/guide/topics/resources/drawable-resource

https://developer.android.com/guide/topics/resources/layout-resource

https://developer.android.com/guide/topics/resources/menu-resource

https://developer.android.com/guide/topics/resources/string-resource

https://developer.android.com/guide/topics/resources/style-resource

https://developer.android.com/guide/topics/resources/font-resource

https://developer.android.com/guide/topics/resources/more-resources

https://developer.android.com/guide/topics/manifest/manifest-intro

https://developer.android.com/guide/topics/manifest/action-element

https://developer.android.com/guide/topics/manifest/activity-element

https://developer.android.com/guide/topics/manifest/activity-alias-element

https://developer.android.com/guide/topics/manifest/application-element

https://developer.android.com/guide/topics/manifest/category-element

https://developer.android.com/guide/topics/manifest/compatible-screens-element

https://developer.android.com/guide/topics/manifest/data-element

https://developer.android.com/guide/topics/manifest/grant-uri-permission-element

https://developer.android.com/guide/topics/manifest/instrumentation-element

https://developer.android.com/guide/topics/manifest/intent-filter-element

https://developer.android.com/guide/topics/manifest/manifest-element

https://developer.android.com/guide/topics/manifest/meta-data-element

https://developer.android.com/guide/topics/manifest/path-permission-element

https://developer.android.com/guide/topics/manifest/permission-element

https://developer.android.com/guide/topics/manifest/permission-group-element

https://developer.android.com/guide/topics/manifest/permission-tree-element

https://developer.android.com/guide/topics/manifest/provider-element

https://developer.android.com/guide/topics/manifest/receiver-element

https://developer.android.com/guide/topics/manifest/service-element

https://developer.android.com/guide/topics/manifest/supports-gl-texture-element

https://developer.android.com/guide/topics/manifest/supports-screens-element

https://developer.android.com/guide/topics/manifest/uses-configuration-element

https://developer.android.com/guide/topics/manifest/uses-feature-element

https://developer.android.com/guide/topics/manifest/uses-library-element

https://developer.android.com/guide/topics/manifest/uses-permission-element

https://developer.android.com/guide/topics/manifest/uses-permission-sdk-23-element

https://developer.android.com/guide/topics/manifest/uses-sdk-element

https://developer.android.com/guide/topics/permissions/overview

https://developer.android.com/training/permissions/requesting

https://developer.android.com/training/permissions/usage-notes

https://developer.android.com/guide/topics/permissions/default-handlers

https://developer.android.com/guide/topics/permissions/defining

DevFundamental

https://google-developer-training.github.io/android-developer-fundamentals-course-concepts-v2/

.../unit-1-get-started/lesson-1-build-your-first-app/1-0-c-introduction-to-android/1-0-c-introduction-to-android.html

215

APPENDIX B. REPLICATION DATA FOR TUTORIAL DESIGN VARIATIONS

.../unit-1-get-started/lesson-1-build-your-first-app/1-1-c-your-first-android-app/1-1-c-your-first-android-app.html

.../unit-1-get-started/lesson-1-build-your-first-app/1-2-c-layouts-and-resources-for-the-ui/1-2-c-layouts-and-resources-for-the-ui.html

.../unit-1-get-started/lesson-1-build-your-first-app/1-3-c-text-and-scrolling-views/1-3-c-text-and-scrolling-views.html

.../unit-1-get-started/lesson-1-build-your-first-app/1-4-c-resources_to_help_you_learn/1-4-c-resources_to_help_you_learn.html

.../unit-1-get-started/lesson-2-activities-and-intents/2-1-c-activities-and-intents/2-1-c-activities-and-intents.html

.../unit-1-get-started/lesson-2-activities-and-intents/2-2-c-activity-lifecycle-and-state/2-2-c-activity-lifecycle-and-state.html

.../unit-1-get-started/lesson-2-activities-and-intents/2-3-c-implicit-intents/2-3-c-implicit-intents.html

.../unit-1-get-started/lesson-3-testing,-debugging,-and-using-support-libraries/3-1-c-the-android-studio-debugger/3-1-c-the-android-studio-debugger.html

.../unit-1-get-started/lesson-3-testing,-debugging,-and-using-support-libraries/3-2-c-app-testing/3-2-c-app-testing.html

.../unit-1-get-started/lesson-3-testing,-debugging,-and-using-support-libraries/3-3-c-the-android-support-library/3-3-c-the-android-support-library.html

.../unit-2-user-experience/lesson-4-user-interaction/4-1-c-buttons-and-clickable-images/4-1-c-buttons-and-clickable-images.html

.../unit-2-user-experience/lesson-4-user-interaction/4-2-c-input-controls/4-2-c-input-controls.html

.../unit-2-user-experience/lesson-4-user-interaction/4-3-c-menus-and-pickers/4-3-c-menus-and-pickers.html

.../unit-2-user-experience/lesson-4-user-interaction/4-4-c-user-navigation/4-4-c-user-navigation.html

.../unit-2-user-experience/lesson-4-user-interaction/4-5-c-recyclerview/4-5-c-recyclerview.html

.../unit-2-user-experience/lesson-5-delightful-user-experience/5-1-c-drawables-styles-and-themes/5-1-c-drawables-styles-and-themes.html

.../unit-2-user-experience/lesson-5-delightful-user-experience/5-2-c-material-design/5-2-c-material-design.html

.../unit-2-user-experience/lesson-5-delightful-user-experience/5-3-c-resources-for-adaptive-layouts/5-3-c-resources-for-adaptive-layouts.html

.../unit-2-user-experience/lesson-6-testing-your-ui/6-1-c-ui-testing/6-1-c-ui-testing.html

.../unit-3-working-in-the-background/lesson-7-background-tasks/7-1-c-asynctask-and-asynctaskloader/7-1-c-asynctask-and-asynctaskloader.html

.../unit-3-working-in-the-background/lesson-7-background-tasks/7-2-c-internet-connection/7-2-c-internet-connection.html

.../unit-3-working-in-the-background/lesson-7-background-tasks/7-3-c-broadcasts/7-3-c-broadcasts.html

.../unit-3-working-in-the-background/lesson-7-background-tasks/7-4-c-services/7-4-c-services.html

.../unit-3-working-in-the-background/lesson-8-alarms-and-schedulers/8-1-c-notifications/8-1-c-notifications.html

.../unit-3-working-in-the-background/lesson-8-alarms-and-schedulers/8-2-c-alarms/8-2-c-alarms.html

.../unit-3-working-in-the-background/lesson-8-alarms-and-schedulers/8-3-c-efficient-data-transfer/8-3-c-efficient-data-transfer.html

.../unit-4-saving-user-data/lesson-9-preferences-and-settings/9-0-c-data-storage/9-0-c-data-storage.html

.../unit-4-saving-user-data/lesson-9-preferences-and-settings/9-1-c-shared-preferences/9-1-c-shared-preferences.html

.../unit-4-saving-user-data/lesson-9-preferences-and-settings/9-2-c-app-settings/9-2-c-app-settings.html

.../unit-4-saving-user-data/lesson-10-storing-data-with-room/10-0-c-sqlite-primer/10-0-c-sqlite-primer.html

.../unit-4-saving-user-data/lesson-10-storing-data-with-room/10-1-c-room-livedata-viewmodel/10-1-c-room-livedata-viewmodel.html

.../appendix/appendix-utilities/appendix-utilities.html

DevStarter

http://www.vogella.com/tutorials/Android/article.html

http://www.vogella.com/tutorials/AndroidStudioTooling/article.html

http://www.vogella.com/tutorials/AndroidKotlin/article.html

http://www.vogella.com/tutorials/AndroidIntent/article.html

http://www.vogella.com/tutorials/AndroidLifeCycle/article.html

http://www.vogella.com/tutorials/AndroidPermissions/article.html

http://www.vogella.com/tutorials/AndroidRecyclerView/article.html

http://www.vogella.com/tutorials/AndroidDatabinding/article.html

http://www.vogella.com/tutorials/AndroidListView/article.html

http://www.vogella.com/tutorials/AndroidLogging/article.html

B.3 Topic Coverage of Three Android Tutorials

Content of mappings/all_annotations.csv from https://zenodo.org/records/5075903

Topic Covered in AppBasic Covered in DevFundamental Covered in DevStarter

activeandroid FALSE FALSE FALSE

air-android FALSE FALSE FALSE

android-accessibility FALSE FALSE FALSE

android-account FALSE FALSE FALSE

android-actionbar FALSE TRUE FALSE

android-actionbar-compat FALSE TRUE FALSE

android-actionbaractivity FALSE FALSE FALSE

android-actionmode FALSE TRUE TRUE

android-activity TRUE TRUE TRUE

android-activityrecord FALSE FALSE FALSE

android-adapter FALSE TRUE TRUE

android-adapterview FALSE TRUE TRUE

android-afilechooser FALSE FALSE FALSE

216

APPENDIX B. REPLICATION DATA FOR TUTORIAL DESIGN VARIATIONS

Topic Covered in AppBasic Covered in DevFundamental Covered in DevStarter

android-alarms FALSE TRUE FALSE

android-alertdialog FALSE TRUE FALSE

android-animation TRUE TRUE TRUE

android-annotations FALSE FALSE FALSE

android-api-levels TRUE TRUE TRUE

android-app-bundle FALSE TRUE FALSE

android-app-indexing FALSE FALSE FALSE

android-app-ops FALSE FALSE FALSE

android-app-signing FALSE FALSE FALSE

android-appbarlayout FALSE TRUE FALSE

android-appcompat FALSE TRUE FALSE

android-application-class FALSE FALSE TRUE

android-applicationinfo TRUE TRUE TRUE

android-applicationrecord FALSE FALSE FALSE

android-appwidget FALSE TRUE FALSE

android-appwidget-list FALSE FALSE FALSE

android-apt FALSE FALSE FALSE

android-architecture-components TRUE TRUE TRUE

android-architecture-navigation FALSE TRUE TRUE

android-arrayadapter FALSE TRUE TRUE

android-assertj FALSE FALSE FALSE

android-assets FALSE TRUE TRUE

android-async-http FALSE FALSE FALSE

android-asynctask FALSE TRUE FALSE

android-audiomanager FALSE FALSE FALSE

android-authenticator FALSE FALSE FALSE

android-auto FALSE FALSE FALSE

android-automotive TRUE FALSE FALSE

android-backup-service FALSE TRUE FALSE

android-beam FALSE FALSE FALSE

android-billing FALSE FALSE FALSE

android-binder FALSE TRUE FALSE

android-biometric-prompt FALSE FALSE FALSE

android-bitmap TRUE TRUE TRUE

android-ble FALSE FALSE FALSE

android-ble-library FALSE FALSE FALSE

android-bluetooth TRUE FALSE FALSE

android-bootstrap FALSE FALSE FALSE

android-bootstrap-widgets FALSE FALSE FALSE

android-bottomappbar FALSE FALSE FALSE

android-bottomnav FALSE FALSE FALSE

android-broadcast TRUE TRUE TRUE

android-broadcastreceiver TRUE TRUE TRUE

android-browser FALSE FALSE FALSE

android-build-type FALSE TRUE FALSE

android-bundle TRUE TRUE TRUE

android-button TRUE TRUE TRUE

android-c2dm FALSE FALSE FALSE

android-calendar FALSE FALSE FALSE

android-camera TRUE FALSE TRUE

android-camera-intent FALSE FALSE FALSE

android-canvas FALSE FALSE FALSE

android-capture TRUE FALSE FALSE

android-cardview FALSE TRUE FALSE

android-checkbox FALSE TRUE TRUE

android-chips FALSE FALSE FALSE

android-cling FALSE FALSE FALSE

android-cognalys FALSE FALSE FALSE

android-collapsingtoolbarlayout FALSE FALSE FALSE

android-components FALSE TRUE FALSE

android-constraintlayout TRUE TRUE TRUE

android-contact-mimetype FALSE FALSE FALSE

android-contacts FALSE FALSE TRUE

android-contentprovider TRUE FALSE TRUE

android-contentresolver TRUE FALSE FALSE

android-context FALSE TRUE TRUE

android-contextmenu FALSE TRUE FALSE

android-coordinatorlayout FALSE FALSE FALSE

android-crop FALSE FALSE FALSE

217

APPENDIX B. REPLICATION DATA FOR TUTORIAL DESIGN VARIATIONS

Topic Covered in AppBasic Covered in DevFundamental Covered in DevStarter

android-cts FALSE FALSE FALSE

android-cursor FALSE TRUE FALSE

android-cursoradapter FALSE FALSE TRUE

android-cursorloader FALSE FALSE FALSE

android-custom-drawable FALSE TRUE FALSE

android-custom-view TRUE FALSE FALSE

android-customtabs FALSE FALSE FALSE

android-database FALSE TRUE FALSE

android-databinding FALSE FALSE TRUE

android-datepicker FALSE TRUE TRUE

android-debug TRUE TRUE FALSE

android-design-library FALSE TRUE FALSE

android-developer-api FALSE TRUE TRUE

android-device-monitor FALSE FALSE FALSE

android-dialer FALSE FALSE FALSE

android-dialog FALSE TRUE FALSE

android-dialogfragment FALSE TRUE FALSE

android-download-manager FALSE FALSE FALSE

android-doze FALSE TRUE FALSE

android-drawable-importer FALSE FALSE FALSE

android-drm FALSE FALSE FALSE

android-droidtext FALSE FALSE FALSE

android-edittext TRUE TRUE TRUE

android-elevation FALSE TRUE TRUE

android-emulator TRUE TRUE TRUE

android-emulator-plugin FALSE FALSE FALSE

android-enterprise FALSE FALSE FALSE

android-espresso FALSE TRUE FALSE

android-espresso-recorder FALSE TRUE FALSE

android-event FALSE TRUE TRUE

android-external-storage FALSE TRUE FALSE

android-extracted-text FALSE FALSE FALSE

android-facebook FALSE FALSE FALSE

android-ffmpeg FALSE FALSE FALSE

android-file TRUE TRUE FALSE

android-fileprovider FALSE FALSE FALSE

android-for-work FALSE FALSE FALSE

android-fragmentactivity FALSE FALSE FALSE

android-fragments FALSE TRUE TRUE

android-fullscreen FALSE FALSE FALSE

android-fusedlocation FALSE FALSE FALSE

android-gallery FALSE FALSE FALSE

android-geofence FALSE FALSE FALSE

android-gesture FALSE TRUE TRUE

android-glide FALSE TRUE TRUE

android-gps TRUE FALSE FALSE

android-gradle-plugin TRUE TRUE TRUE

android-graphview FALSE FALSE FALSE

android-gridlayout FALSE TRUE TRUE

android-gridview FALSE FALSE TRUE

android-guava FALSE FALSE FALSE

android-handler FALSE TRUE TRUE

android-hardware TRUE TRUE TRUE

android-holo-everywhere FALSE TRUE FALSE

android-homebutton FALSE FALSE TRUE

android-ibeacon FALSE FALSE FALSE

android-icons TRUE FALSE TRUE

android-ide TRUE TRUE TRUE

android-imagebutton FALSE TRUE FALSE

android-imageview TRUE TRUE TRUE

android-immersive TRUE FALSE FALSE

android-implicit-intent TRUE TRUE TRUE

android-install-apk TRUE TRUE FALSE

android-instant-apps FALSE FALSE FALSE

android-instant-run FALSE FALSE FALSE

android-instrumentation TRUE TRUE FALSE

android-intent TRUE TRUE TRUE

android-intent-chooser TRUE TRUE FALSE

android-intentservice FALSE TRUE FALSE

218

APPENDIX B. REPLICATION DATA FOR TUTORIAL DESIGN VARIATIONS

Topic Covered in AppBasic Covered in DevFundamental Covered in DevStarter

android-internal-storage FALSE TRUE FALSE

android-jack-and-jill FALSE FALSE FALSE

android-jetifier FALSE FALSE FALSE

android-jetpack FALSE FALSE FALSE

android-jetpack-compose FALSE FALSE FALSE

android-job TRUE FALSE FALSE

android-jobscheduler TRUE TRUE FALSE

android-jsinterface FALSE FALSE FALSE

android-json-rpc FALSE FALSE FALSE

android-junit FALSE TRUE FALSE

android-kenburnsview FALSE FALSE FALSE

android-keypad TRUE FALSE FALSE

android-keystore FALSE FALSE TRUE

android-kripton FALSE FALSE FALSE

android-ksoap2 FALSE FALSE FALSE

android-ktx FALSE FALSE FALSE

android-largeheap TRUE FALSE FALSE

android-launcher FALSE TRUE FALSE

android-layout TRUE TRUE TRUE

android-layout-weight FALSE FALSE TRUE

android-library FALSE FALSE TRUE

android-lifecycle FALSE TRUE TRUE

android-linearlayout FALSE TRUE TRUE

android-lint FALSE FALSE FALSE

android-listfragment FALSE FALSE TRUE

android-listview TRUE FALSE TRUE

android-livedata FALSE TRUE TRUE

android-loader FALSE TRUE FALSE

android-loadermanager FALSE TRUE FALSE

android-location FALSE FALSE FALSE

android-logcat FALSE TRUE TRUE

android-looper FALSE FALSE FALSE

android-lru-cache FALSE FALSE FALSE

android-lvl FALSE FALSE FALSE

android-managed-profile FALSE FALSE FALSE

android-management-api FALSE FALSE FALSE

android-manifest TRUE TRUE TRUE

android-maps FALSE FALSE FALSE

android-maps-utils FALSE FALSE FALSE

android-mapview FALSE FALSE FALSE

android-market-filtering TRUE FALSE FALSE

android-maven-plugin FALSE FALSE FALSE

android-mediacodec FALSE FALSE FALSE

android-mediaplayer FALSE FALSE FALSE

android-mediaprojection FALSE FALSE FALSE

android-mediarecorder FALSE FALSE FALSE

android-mediascanner FALSE FALSE FALSE

android-mediasession FALSE FALSE FALSE

android-memory TRUE TRUE TRUE

android-menu TRUE TRUE TRUE

android-monkey FALSE FALSE FALSE

android-multidex FALSE FALSE FALSE

android-multiple-users FALSE FALSE FALSE

android-mvp FALSE FALSE TRUE

android-navigation FALSE TRUE FALSE

android-navigation-editor TRUE FALSE FALSE

android-navigationview FALSE TRUE FALSE

android-ndk FALSE FALSE FALSE

android-nested-fragment FALSE FALSE FALSE

android-nestedscrollview FALSE FALSE FALSE

android-networking FALSE TRUE FALSE

android-notification-bar FALSE TRUE FALSE

android-notification.mediastyle FALSE TRUE FALSE

android-notifications FALSE TRUE TRUE

android-number-picker FALSE FALSE FALSE

android-ondestroy FALSE TRUE TRUE

android-open-accessory FALSE FALSE FALSE

android-optionsmenu FALSE TRUE FALSE

android-orientation TRUE TRUE TRUE

219

APPENDIX B. REPLICATION DATA FOR TUTORIAL DESIGN VARIATIONS

Topic Covered in AppBasic Covered in DevFundamental Covered in DevStarter

android-os-handler FALSE TRUE FALSE

android-pageradapter FALSE TRUE FALSE

android-paging FALSE TRUE FALSE

android-palette FALSE TRUE FALSE

android-parsequeryadapter FALSE FALSE FALSE

android-pay FALSE FALSE FALSE

android-pdf-api FALSE FALSE FALSE

android-pendingintent FALSE TRUE FALSE

android-percent-library FALSE FALSE FALSE

android-percentrelativelayout FALSE FALSE FALSE

android-permissions TRUE TRUE TRUE

android-pixel-copy FALSE FALSE FALSE

android-popupwindow FALSE FALSE FALSE

android-powermanager FALSE FALSE FALSE

android-print-framework FALSE FALSE FALSE

android-productflavors FALSE FALSE FALSE

android-profiler FALSE TRUE FALSE

android-progressbar FALSE FALSE FALSE

android-proguard FALSE TRUE FALSE

android-query FALSE FALSE FALSE

android-radiobutton FALSE TRUE FALSE

android-radiogroup FALSE TRUE FALSE

android-recents FALSE TRUE FALSE

android-recyclerview FALSE TRUE TRUE

android-relativelayout FALSE TRUE TRUE

android-resources TRUE TRUE TRUE

android-restrictions FALSE FALSE FALSE

android-room FALSE TRUE FALSE

android-runonuithread FALSE FALSE FALSE

android-screen-pinning FALSE FALSE FALSE

android-scrollview FALSE TRUE TRUE

android-sdcard FALSE FALSE FALSE

android-sdk-plugin FALSE FALSE FALSE

android-sdk-tools TRUE TRUE TRUE

android-search FALSE FALSE FALSE

android-searchmanager FALSE FALSE FALSE

android-security FALSE FALSE FALSE

android-seekbar FALSE TRUE FALSE

android-sensors TRUE TRUE FALSE

android-service TRUE TRUE TRUE

android-service-binding TRUE TRUE FALSE

android-settings FALSE TRUE FALSE

android-shape TRUE TRUE FALSE

android-shapedrawable TRUE TRUE FALSE

android-sharedpreferences FALSE TRUE FALSE

android-sharing TRUE TRUE TRUE

android-side-navigation FALSE TRUE FALSE

android-simon-datepicker FALSE FALSE FALSE

android-simple-facebook FALSE FALSE FALSE

android-singleline FALSE FALSE FALSE

android-slider FALSE FALSE FALSE

android-snackbar FALSE TRUE FALSE

android-snapshot FALSE FALSE FALSE

android-softkeyboard FALSE TRUE FALSE

android-soong FALSE FALSE FALSE

android-source FALSE FALSE FALSE

android-sparsearray FALSE FALSE FALSE

android-speech-api FALSE FALSE FALSE

android-spellcheck FALSE FALSE FALSE

android-spinner FALSE TRUE TRUE

android-sqlite FALSE TRUE FALSE

android-standout FALSE FALSE FALSE

android-statusbar FALSE TRUE FALSE

android-storage FALSE TRUE FALSE

android-storm FALSE FALSE FALSE

android-strictmode TRUE FALSE FALSE

android-studio TRUE TRUE TRUE

android-styles TRUE TRUE TRUE

android-subscriptionmanager FALSE FALSE FALSE

220

APPENDIX B. REPLICATION DATA FOR TUTORIAL DESIGN VARIATIONS

Topic Covered in AppBasic Covered in DevFundamental Covered in DevStarter

android-support-design FALSE TRUE FALSE

android-support-library FALSE TRUE FALSE

android-switch FALSE TRUE TRUE

android-syncadapter FALSE FALSE FALSE

android-tabactivity FALSE FALSE FALSE

android-tabhost FALSE FALSE FALSE

android-tablayout FALSE TRUE FALSE

android-tablelayout FALSE TRUE FALSE

android-tap-and-pay FALSE FALSE FALSE

android-task TRUE TRUE FALSE

android-testing TRUE TRUE FALSE

android-textinputlayout FALSE FALSE FALSE

android-textwatcher FALSE FALSE FALSE

android-theme FALSE TRUE TRUE

android-things FALSE FALSE FALSE

android-things-console FALSE FALSE FALSE

android-time-square FALSE FALSE FALSE

android-timepicker FALSE TRUE FALSE

android-toast FALSE TRUE FALSE

android-togglebutton FALSE TRUE FALSE

android-toolbar FALSE TRUE FALSE

android-tools-namespace FALSE FALSE FALSE

android-touch-event FALSE TRUE TRUE

android-traceview FALSE TRUE FALSE

android-tradefederation FALSE FALSE FALSE

android-tv FALSE FALSE FALSE

android-ui TRUE TRUE TRUE

android-uiautomator FALSE TRUE FALSE

android-usb TRUE FALSE FALSE

android-vectordrawable TRUE TRUE FALSE

android-vertical-seekbar FALSE FALSE FALSE

android-videoview FALSE FALSE FALSE

android-view TRUE TRUE TRUE

android-view-invalidate FALSE FALSE FALSE

android-viewbinder FALSE FALSE FALSE

android-viewbinding FALSE FALSE FALSE

android-viewholder FALSE TRUE FALSE

android-viewmodel TRUE TRUE TRUE

android-viewpager FALSE TRUE FALSE

android-vision FALSE FALSE FALSE

android-vitals FALSE FALSE FALSE

android-volley FALSE FALSE FALSE

android-vts FALSE FALSE FALSE

android-wake-lock FALSE FALSE FALSE

android-wallpaper FALSE FALSE FALSE

android-wear-complication FALSE FALSE FALSE

android-wear-data-api FALSE FALSE FALSE

android-wear-notification FALSE FALSE FALSE

android-webview FALSE TRUE TRUE

android-wheel FALSE FALSE FALSE

android-widget TRUE TRUE FALSE

android-windowmanager FALSE FALSE FALSE

android-workmanager FALSE TRUE FALSE

android-wrap-content TRUE TRUE TRUE

android-xml TRUE TRUE TRUE

android-xmlpullparser FALSE FALSE FALSE

android-youtube-api FALSE FALSE FALSE

android.mk FALSE FALSE FALSE

androidappsonchromeos FALSE FALSE FALSE

androidasync-koush FALSE FALSE FALSE

androiddesignsupport FALSE TRUE TRUE

androidhttpclient FALSE TRUE FALSE

androidpdfviewer FALSE FALSE FALSE

androidviewclient FALSE FALSE FALSE

androidx FALSE FALSE FALSE

androidx-lifecycle FALSE FALSE FALSE

apollo-android FALSE FALSE FALSE

appium-android FALSE FALSE FALSE

appsflyer-android-sdk FALSE FALSE FALSE

221

APPENDIX B. REPLICATION DATA FOR TUTORIAL DESIGN VARIATIONS

Topic Covered in AppBasic Covered in DevFundamental Covered in DevStarter

basic4android FALSE FALSE FALSE

calabash-android FALSE FALSE FALSE

chrome-for-android FALSE FALSE FALSE

cocos2d-android FALSE FALSE FALSE

dronekit-android FALSE FALSE FALSE

facebook-android-sdk FALSE FALSE FALSE

google-drive-android-api FALSE FALSE FALSE

httpclientandroidlib FALSE FALSE FALSE

ibeacon-android FALSE FALSE FALSE

kotlin-android-extensions FALSE FALSE FALSE

mapbox-android FALSE FALSE FALSE

material-components-android FALSE FALSE FALSE

mpandroidchart FALSE FALSE FALSE

ms-android-emulator FALSE FALSE FALSE

nineoldandroids FALSE FALSE FALSE

opencv4android FALSE FALSE FALSE

paper-android FALSE FALSE FALSE

parse-android-sdk FALSE FALSE FALSE

parse-sdk-android FALSE FALSE FALSE

pocketsphinx-android FALSE FALSE FALSE

qandroidjniobject FALSE FALSE FALSE

qtandroidextras FALSE FALSE FALSE

quickblox-android FALSE FALSE FALSE

react-native-android FALSE FALSE FALSE

rx-android FALSE FALSE FALSE

rxandroidble FALSE FALSE FALSE

sbt-android-plugin FALSE FALSE FALSE

spring-android FALSE FALSE FALSE

sqlcipher-android FALSE FALSE FALSE

svg-android FALSE FALSE FALSE

titanium-android FALSE FALSE FALSE

turbolinks-android FALSE FALSE FALSE

vimeo-android FALSE FALSE FALSE

wikimedia-android-data-client FALSE FALSE FALSE

xamarin-android-player FALSE FALSE FALSE

222

Appendix C

Replication Data for Casdoc

We published the data necessary to verify and replicate our laboratory study of Casdoc (Section 5.5)

at https://zenodo.org/records/10637079 [161]. Table C.1 details the content of the artifact. The last

column indicates which parts of the artifact is reproduced in the sections of this appendix.

223

APPENDIX C. REPLICATION DATA FOR CASDOC

Table C.1: Content of the Data Artifact for Our Laboratory Study of Casdoc

Path Description Sec.

README.md Description of the artifact.

study-replication/documentation/ Folder containing the content of the static website

available to participants during their session.

study-replication/

documentation-sources.txt

List of online resources used for the creation of the

documents provided to participants.

C.1

study-replication/tasks/ Folder containing the programming environment for

the tasks. The folder is a Git repository that

participants can clone. The task instructions

start on line 118 of the file src/task/JdbcTask.java

in this folder.

C.2

study-replication/sample-solutions/

JdbcTask.java

Reference solution for the tasks. Participants could

implement alternative, functionally-equivalent

solutions to complete the tasks.

C.3

study-replication/

intervention-guide.md

Intervention guidelines for the investigator during the

study sessions.

C.4

analysis-data/phase1-session-events/ Folder containing the results of the first phase of

manual annotation of the sessions’ recordings.

The folder contains one file per participant.

analysis-data/

phase2-search-fragments.tsv

Results of the second phase of manual annotation.

analysis-data/

phase3-navigation-patterns.tsv

Results of the third phase of manual annotation.

analysis-data/coding-guide.md Guidelines for each phase of data annotation. C.5

C.1 Documentation Resources About the JDBC API

Content of study-replication/documentation from https://zenodo.org/records/10637079

• https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html

• https://www.tutorialspoint.com/sqlite/sqlite_java.htm

• https://www.sqlitetutorial.net/sqlite-java/sqlite-jdbc-driver/

• https://www.tutorialspoint.com/jdbc/index.htm

• https://en.wikipedia.org/wiki/SQL_injection

• https://www.w3schools.com/sql/sql_constraints.asp

224

APPENDIX C. REPLICATION DATA FOR CASDOC

C.2 Programming Tasks for the Laboratory Study

Content of study-replication/tasks/src/task/JdbcTask.java from https://zenodo.org/records/10637079

package task;

import java.nio.file.*;

import java.sql.*;

import java.util.*;

import ca.mcgill.cs.mnassif.taskutil.TaskUtil;

import task.JdbcTask.*;

@SuppressWarnings("unused")

public class JdbcTask {

private static final List<Item> SPECIAL_ITEMS = Arrays.asList(new Item(101, "(;)\";’;;’;));"),

new Item(102, "\"\"’’;;’&;."),

new Item(103, ""),

new Item(104, ";\n;’’% -- \"\" /* ;;"));

private static final List<Item> ITEM_GROUP_FRUITS = Arrays.asList(new Item(201, "strawberry"),

new Item(202, "mango"),

new Item(203, "banana"),

new Item(204, "passion fruit"));

private static final List<Item> ITEM_GROUP_DAIRIES = Arrays.asList(

new Item(301, "chocolate milk"),

new Item(302, "heavy cream"),

new Item(303, "cheese"),

new Item(304, "cream cheese"));

private static final List<Item> ITEM_GROUP_MEATS = Arrays.asList(new Item(401, "duck"),

new Item(402, "turkey"),

new Item(403, "pork"),

new Item(404, "bison"),

new Item(405, "moose"),

new Item(406, null));

private static Connection staffConnection;

public static void main(String[] args) throws Exception {

TaskUtil.resetDatabases();

try (Connection connection = TaskUtil.getFoodConnection()) {

System.out.println("----- Objective 1 -----");

int totalStock = objective1(connection);

System.out.println("Total inventory stock: " + totalStock + " / 18000");

System.out.println();

System.out.println("----- Objective 2 -----");

System.out.println("Content of Food table:");

objective2(connection);

System.out.println();

System.out.println("----- Objective 3 -----");

int breadId = objective3(connection);

System.out.println("ID for the bread: " + breadId);

System.out.println();

System.out.println("----- Objective 4 -----");

objective4(connection, SPECIAL_ITEMS);

System.out.println(TaskUtil.checkInsertedItems(connection, "food", SPECIAL_ITEMS));

System.out.println();

System.out.println("----- Objective 5 -----");

objective5(connection);

if (TaskUtil.isValidConnection(connection, "people")) {

System.out.println("Table successfully created");

System.out.println("See ’FINAL CONTENT’ to check that the 2 rows were correctly inserted");

}

System.out.println();

225

APPENDIX C. REPLICATION DATA FOR CASDOC

System.out.println("----- Objective 6 -----");

objective6(connection, ITEM_GROUP_FRUITS); // should fail

objective6(connection, ITEM_GROUP_DAIRIES); // should succeed

objective6(connection, ITEM_GROUP_MEATS); // should fail

System.out.println(TaskUtil.checkInsertedItems(connection, "food", ITEM_GROUP_FRUITS));

System.out.println(TaskUtil.checkInsertedItems(connection, "food", ITEM_GROUP_DAIRIES));

System.out.println(TaskUtil.checkInsertedItems(connection, "food", ITEM_GROUP_MEATS));

System.out.println();

System.out.println("----- Objective 7 -----");

staffConnection = objective7();

if (TaskUtil.isValidConnection(staffConnection, "staff")) {

System.out.println("Valid connection established");

}

else {

System.out.println("Invalid connection");

}

System.out.println();

System.out.println("----- Objective 8 -----");

objective8(staffConnection);

if (TaskUtil.isStaffUpdated(staffConnection)) {

System.out.println("Update successful");

}

System.out.println();

System.out.println("---- FINAL CONTENT ----");

TaskUtil.listTables(connection);

TaskUtil.listTables(staffConnection);

}

}

// Represents a food item to add to the database

public static class Item {

private final int id;

private final String name;

public Item(int id, String name) {

this.id = id;

this.name = name;

}

public int getId() {

return id;

}

public String getName() {

return name;

}

}

/*

* Interacting with a SQLite database with JDBC

* ==

*

* Implement the methods below to achieve the objective stated in the block comments,

* related to interacting with a SQLite database file using the JDBC API.

*

* You can:

* - write new helper code outside the methods;

* - run the main method as often as you want to check if an objective is complete;

* - look at the content of the database by running the main method.

*

* You can’t:

* - change the signature (name, parameters, etc.) of the objectiveX() methods;

* - modify the code above this comment.

*

* Other important notes:

* - You don’t need to worry about exception handling or leaked resources:

* write only the code to handle a normal scenario, and assume the database is well-formed.

226

APPENDIX C. REPLICATION DATA FOR CASDOC

* - The quality of the code you write is not important:

* just write code that solves the objective, and move on to the next.

* - There are subtle complexities to the objectives:

* you will likely need to read about some corner cases in the provided documentation.

*/

public static int objective1(Connection connection) throws Exception {

/*

* Fetch the content of the "food" table, which has 3 columns:

* - ‘id‘: integer;

* - ‘name‘: string;

* - ‘stock‘: integer, may be missing (i.e., NULL).

*

* Return the sum of all item stocks in the table.

* Ignore items with missing stock values.

*

* Use the Connection object provided as argument to this method

* to complete this objective.

*/

return 0;

}

public static void objective2(Connection connection) throws Exception {

/*

* Print each row of the "food" table in the console on a separate line,

* separating values with tabs ("\t").

* If the ‘stock‘ value is missing, leave it blank (i.e., not "0").

*

* The top 3 lines should look like:

* 15 mango 4500

* 19 peach

* 27 milk 10000

*/

}

public static int objective3(Connection connection) throws Exception {

/*

* Insert a new food item named "bread".

* The ID for this category should be automatically generated by the database.

* The ‘stock‘ value should be missing (i.e., NULL).

*

* Then, return the automatically generated ID.

*/

return -1;

}

public static void objective4(Connection connection, List<Item> items) throws Exception {

/*

* Insert in the "food" table all items indicated by the second argument.

* The ‘id‘ and ‘name‘ of the items are provided by the Item objects.

* The ‘stock‘ value should be missing (i.e., NULL) for all items.

*

* Assume the list of items comes from an unknown source. You should write the

* code to prevent SQL injection attacks.

*

* Note: The Item class is declared at the top of this file (lines 99 to 116).

*/

}

public static void objective5(Connection connection) throws Exception {

/*

* Create a new table named "people" with the following columns and constraints:

* 1. ‘id‘: integer

* - automatically generated,

* - unique,

* - always present,

* - the primary key of the table.

* 2. ‘name‘: string

* - unique,

* - always present

* 3. ‘fav_food‘: integer

227

APPENDIX C. REPLICATION DATA FOR CASDOC

* - may be missing

*

* After creating the table, insert two rows:

* (autogenerated ID, "Mathieu", 15)

* (autogenerated ID, "Martin", NULL)

*/

}

public static void objective6(Connection connection, List<Item> items) throws Exception {

/*

* Insert new items in the "food" table the same way as for objective 4.

*

* However, perform all insertions in a single transaction.

* If some items can’t be inserted (e.g., because they violate a constraint

* of one of the columns), roll back the transaction, so that none of the items

* are inserted.

*/

}

public static Connection objective7() throws Exception {

/*

* Create a connection to the SQLite database contained in the file res/staff.db

* (i.e., the file "staff.db" located in the "res" folder), and return this connection.

*

* The necessary libraries containing the SQLite JDBC driver version 4.0 are already

* on the classpath. You only need to write code in this method to finish the objective.

*

* The database has the following properties:

* database vendor: SQLite

* driver version: 4.0

* file path: res/staff.db

* username/password: none required

*/

return null;

}

public static void objective8(Connection staffDbConnection) throws Exception {

/*

* The database contained in staff.db contains a table named "staff" with the

* following columns:

* - ‘id‘: integer;

* - ‘name‘: string;

* - ‘role‘: string, may be missing (NULL).

*

* Update this table to replace each missing value in the ‘role‘ column by the

* value ‘regular‘. Do not modify other values, or add or remove rows in the table.

*/

}

}

C.3 Reference Solutions to the Programming Tasks

Content of study-replication/sample-solutions/JdbcTasks.java from https://zenodo.org/records/10637079

package task;

import java.sql.*;

import java.util.*;

import ca.mcgill.cs.mnassif.taskutil.*;

@SuppressWarnings("unused")

public class JdbcTask {

private static final List<Item> SPECIAL_ITEMS = Arrays.asList(new Item(101, "(;)\";’;;’;));"),

new Item(102, "\"\"’’;;’&;."),

new Item(103, ""),

228

APPENDIX C. REPLICATION DATA FOR CASDOC

new Item(104, ";\n;’’% -- \"\" /* ;;"));

private static final List<Item> ITEM_GROUP_FRUITS = Arrays.asList(new Item(201, "strawberry"),

new Item(202, "mango"),

new Item(203, "banana"),

new Item(204, "passion fruit"));

private static final List<Item> ITEM_GROUP_DAIRIES = Arrays.asList(

new Item(301, "chocolate milk"),

new Item(302, "heavy cream"),

new Item(303, "cheese"),

new Item(304, "cream cheese"));

private static final List<Item> ITEM_GROUP_MEATS = Arrays.asList(new Item(401, "duck"),

new Item(402, "turkey"),

new Item(403, "pork"),

new Item(404, "bison"),

new Item(405, "moose"),

new Item(406, null));

private static Connection staffConnection;

public static void main(String[] args) throws Exception {

TaskUtil.resetDatabases();

try (Connection connection = TaskUtil.getFoodConnection()) {

System.out.println("----- Objective 1 -----");

int totalStock = objective1(connection);

System.out.println("Total inventory stock: " + totalStock + " / 18000");

System.out.println();

System.out.println("----- Objective 2 -----");

System.out.println("Content of Food table:");

objective2(connection);

System.out.println();

System.out.println("----- Objective 3 -----");

int breadId = objective3(connection);

System.out.println("ID for the bread: " + breadId);

System.out.println();

System.out.println("----- Objective 4 -----");

objective4(connection, SPECIAL_ITEMS);

System.out.println(TaskUtil.checkInsertedItems(connection, "food", SPECIAL_ITEMS));

System.out.println();

System.out.println("----- Objective 5 -----");

objective5(connection);

if (TaskUtil.isValidConnection(connection, "people")) {

System.out.println("Table successfully created");

System.out.println(

"See ’FINAL CONTENT’ to check that the 2 rows were correctly inserted");

}

System.out.println();

System.out.println("----- Objective 6 -----");

objective6(connection, ITEM_GROUP_FRUITS); // should fail

objective6(connection, ITEM_GROUP_DAIRIES); // should succeed

objective6(connection, ITEM_GROUP_MEATS); // should fail

System.out.println(TaskUtil.checkInsertedItems(connection, "food", ITEM_GROUP_FRUITS));

System.out.println(TaskUtil.checkInsertedItems(connection, "food", ITEM_GROUP_DAIRIES));

System.out.println(TaskUtil.checkInsertedItems(connection, "food", ITEM_GROUP_MEATS));

System.out.println();

System.out.println("----- Objective 7 -----");

staffConnection = objective7();

if (TaskUtil.isValidConnection(staffConnection, "staff")) {

System.out.println("Valid connection established");

}

else {

System.out.println("Invalid connection");

}

System.out.println();

System.out.println("----- Objective 8 -----");

229

APPENDIX C. REPLICATION DATA FOR CASDOC

objective8(staffConnection);

if (TaskUtil.isStaffUpdated(staffConnection)) {

System.out.println("Update successful");

}

System.out.println();

System.out.println("---- FINAL CONTENT ----");

TaskUtil.listTables(connection);

TaskUtil.listTables(staffConnection);

}

}

// Represents a food item to add to the database

public static class Item {

private final int id;

private final String name;

public Item(int id, String name) {

this.id = id;

this.name = name;

}

public int getId() {

return id;

}

public String getName() {

return name;

}

}

/*

* Interacting with a SQLite database with JDBC

* ==

*

* Implement the methods below to achieve the objective stated in the block comments,

* related to interacting with a SQLite database file using the JDBC API.

*

* You can:

* - write new helper code outside the methods;

* - run the main method as often as you want to check if an objective is complete;

* - look at the content of the database by running the main method.

*

* You can’t:

* - change the signature (name, parameters, etc.) of the objectiveX() methods;

* - modify the code above this comment.

*

* Other important notes:

* - You don’t need to worry about exception handling or leaked resources:

* write only the code to handle a normal scenario, and assume the database is well-formed.

* - The quality of the code you write is not important:

* just write code that solves the objective, and move on to the next.

* - There are subtle complexities to the objectives:

* you will likely need to read about some corner cases in the provided documentation.

*/

public static int objective1(Connection connection) throws Exception {

/*

* Fetch the content of the "food" table, which has 3 columns:

* - ‘id‘: integer;

* - ‘name‘: string;

* - ‘stock‘: integer, may be missing (i.e., NULL).

*

* Return the sum of all item stocks in the table.

* Ignore items with missing stock values.

*

* Use the Connection object provided as argument to this method

* to complete this objective.

*/

try (

230

APPENDIX C. REPLICATION DATA FOR CASDOC

Statement stmt = connection.createStatement();

ResultSet rs = stmt

.executeQuery("SELECT stock FROM food WHERE stock IS NOT NULL;");) {

int sum = 0;

while (rs.next()) {

sum += rs.getInt("stock");

}

return sum;

}

}

public static void objective2(Connection connection) throws Exception {

/*

* Print each row of the "food" table in the console on a separate line,

* separating values with tabs ("\t").

* If the ‘stock‘ value is missing, leave it blank (i.e., not "0").

*

* The top 3 lines should look like:

* 15 mango 4500

* 19 peach

* 27 milk 10000

*/

try (

Statement stmt = connection.createStatement();

ResultSet rs = stmt.executeQuery("SELECT * FROM food;")) {

while (rs.next()) {

int id = rs.getInt("id");

String name = rs.getString("name");

int stock = rs.getInt("stock");

if (rs.wasNull()) {

System.out.println(id + "\t" + name);

}

else {

System.out.println(id + "\t" + name + "\t" + stock);

}

}

}

}

public static int objective3(Connection connection) throws Exception {

/*

* Insert a new food item named "bread".

* The ID for this category should be automatically generated by the database.

* The ‘stock‘ value should be missing (i.e., NULL).

*

* Then, return the automatically generated ID, i.e., the ID of the new row

* where name = ’bread’.

*/

try (Statement stmt = connection.createStatement()) {

stmt.executeUpdate("INSERT INTO food VALUES (NULL, ’bread’, NULL);");

try (ResultSet rs = stmt.executeQuery("SELECT id FROM food WHERE name = ’bread’;")) {

rs.next();

return rs.getInt(1);

}

}

}

public static void objective4(Connection connection, List<Item> items) throws Exception {

/*

* Insert in the "food" table all items indicated by the first argument.

* The ‘id‘ and ‘name‘ of the items are provided by the Item objects.

* The ‘stock‘ value should be missing (i.e., NULL) for all items.

*

* Assume the list of items comes from an unknown source. You should write the

* code to prevent SQL injection attacks.

*/

try (

PreparedStatement stmt = connection

.prepareStatement("INSERT INTO food VALUES (?, ?, NULL);")) {

for (Item item : items) {

stmt.setInt(1, item.getId());

231

APPENDIX C. REPLICATION DATA FOR CASDOC

stmt.setString(2, item.getName());

stmt.executeUpdate();

}

}

}

public static void objective5(Connection connection) throws Exception {

/*

* Create a new table named "people" with the following columns and constraints:

* 1. ‘id‘: integer

* - automatically generated,

* - unique,

* - always present,

* - the primary key of the table.

* 2. ‘name‘: string

* - unique,

* - always present

* 3. ‘fav_food‘: integer

* - may be missing

*

* After creating the table, insert two rows:

* (autogenerated ID, "Mathieu", 15)

* (autogenerated ID, "Martin", NULL)

*/

try (Statement stmt = connection.createStatement()) {

stmt.executeUpdate("CREATE TABLE people (id INTEGER PRIMARY KEY, name TEXT UNIQUE NOT NULL, fav_food INT);");

stmt.executeUpdate("INSERT INTO people VALUES (NULL, ’Mathieu’, 15);");

stmt.executeUpdate("INSERT INTO people VALUES (NULL, ’Martin’, NULL);");

}

}

public static void objective6(Connection connection, List<Item> items) throws Exception {

/*

* Insert new items in the "food" table the same way as for objective 4.

*

* However, perform all insertions in a single transaction.

* If some items can’t be inserted (e.g., because they violate a constraint

* of one of the columns), roll back the transaction, so that none of the items

* are inserted.

*/

connection.setAutoCommit(false);

try {

objective4(connection, items);

connection.commit();

}

catch (SQLException e) {

connection.rollback();

}

}

public static Connection objective7() throws Exception {

/*

* Create a connection to the SQLite database contained in the file res/staff.db

* (i.e., the file "staff.db" located in the "res" folder), and return this connection.

*

* The necessary libraries containing the SQLite JDBC driver version 4.0 are already

* on the classpath. You only need to write code in this method to finish the objective.

*

* The database has the following properties:

* database vendor: SQLite

* driver version: 4.0

* file path: res/staff.db

* username/password: none required

*/

return DriverManager.getConnection("jdbc:sqlite:res/staff.db");

}

public static void objective8(Connection staffDbConnection) throws Exception {

/*

* The database contained in staff.db contains a table named "staff" with the

* following columns:

232

APPENDIX C. REPLICATION DATA FOR CASDOC

* - ‘id‘: integer;

* - ‘name‘: string;

* - ‘role‘: string, may be missing (NULL).

*

* Update this table to replace each missing value in the ‘role‘ column by the

* value ‘regular‘. Do not modify other values, or add or remove rows in the table.

*/

try (Statement stmt = staffDbConnection.createStatement()) {

stmt.executeUpdate("UPDATE staff SET role = ’regular’ WHERE role IS NULL;");

}

}

}

C.4 Intervention Guide for the Investigator During

the Study Sessions

Content of study-replication/intervention-guide.md from https://zenodo.org/records/10637079

The investigator should help the participant in the following situations:

• to confirm the success of a task if the participant is unsure;

• to reveal semantic errors in the current solution if the participant is unaware of them and

moves on to the next task;

• to provide technical information about Java syntax elements (e.g., the syntax of a for loop);

• to help the participant progress after:

– they spend more than 3 minutes stuck on an issue with no visible strategy to progress;

– they spend more than 5 minutes looking for the same information without progress;

– they spend more than 15 minutes on the same task;

• to notify the participant that 40 minutes have elapsed;

• to answer questions asked by the participant about the tasks’ environment and requirements

(decline answering questions about technical aspects of the tasks).

C.5 Annotation Guide for the Session Recordings

Content of analysis-data/coding-guide.md from https://zenodo.org/records/10637079

233

APPENDIX C. REPLICATION DATA FOR CASDOC

Phase 1

Identify each of the following events during the programming sessions. Indicate the time of the video

recording (in minutes and seconds) at which the even occurred or started. Indicate in the Details

column further details about the event when useful or required by the event. All event definitions

are described from the perspective of the participant (e.g., "read the instructions" denotes that the

participant is reading the instructions).

• Task: Events related to the progression on the tasks.

– instr-N: Read the instruction for task N. Use instr-0 for the introductory instructions.

Generally indicates the start of a task.

– code: Start writing code towards a solution or continue writing code after searching for

information or testing a previous solution.

– paste: Paste code copied from the documentation. Use in the same context as and as a

replacement for code, but when participants start from copied code. test: Execute the

program to verify their current solution.

• Window: Events related to the documents seen by participants. Ignore spurious events, e.g.,

where a participant cycles through multiple opened tabs before finding the right one.

– main: Open or look at the study website’s home page (index.html).

– ide: Open or look at their IDE.

– establish-connection, read-values, etc.: Open or look at the provided document. Use the

document’s file name, visible in the browser’s URL bar, as the code.

– ResultSet, Statement, etc.: Open or look at the API reference documentation on Oracle’s

website. Use the name of the type (e.g., ResultSet) or package (e.g., java.sql) as the code.

Use javadoc:root to denote the landing page of the reference documentation.

– side-by-side: Place the IDE and web browser side by side. In addition to this code, keep

tracking which window is looked at with other codes.

– single: Expand a single window to full screen. Opposite of side-by-side, all participants

are assumed to start in this configuration, unless coded otherwise. Also use this code if

one window takes most of the screen, with other windows partly visibles.

• Search: Events related to information searches.

– familiar: Start looking through the documents to get familiar with a general topic.

234

APPENDIX C. REPLICATION DATA FOR CASDOC

– search: Start searching for information. Do not code information searches that are only

within the IDE.

– quick: Start a short interaction with the documentation, e.g., to confirm an intuition,

re-find information, or revisit the result of the previous search while implementing the

solution. Mutually exclusive with search.

– found: Find information that ends the current search or changes the search target. Use

this code to denote events that visibly affect the participant’s search progress.

– solved: End the search after finding sufficient information to satisfy the original query.

– copy: End the search by copying code that satisfies the original query. Alternative to

solved.

– drop: Abandon the search without finding sufficient information.

– stopped: End the search due to an intervention by the investigator.

• Component: Events related to the usage of different components of a document.

– code: Read the code example at the top of a document. Do not use this code when

reading other code fragments in the Casdoc annotations or in the expanded text.

– text: Read or scan the expanded text below the top code example.

– casdoc: Use a feature of the Casdoc formt, such as popovers, dialogs, and the search bar.

Indicate in Details which element is used.

– source: Look for information in the source code of the task file, in the IDE. Only use

this code during information searches.

– other: Other events, such as using the web browser’s native search tool. Describe in

Details the nature of the event.

• Intervention: Events related to interactions between the participant and the investigator.

– qa: Ask a question to the investigator.

– help: Receive unprompted help by the investigator.

– process: Receive unprompted instructions from the investigator related to the session

process.

– end: End the current interaction with the investigator.

235

APPENDIX C. REPLICATION DATA FOR CASDOC

Phase 2

Start by identifying search fragments within each programming session. A search fragment is a

continuous period during which the participant searches for some information without making

progress in their current task. Consider the following constraints when identifying search fragments:

• A search fragment should require the participant to *search* for information. If the participant

only looks in document to read information they had already located, it does not constitute a

search fragment.

• The information sought during a single fragment can change. The participant does not need

to search for the same information throughout the fragment.

• A search fragment should involve at least one web document. Searches performed only within

the IDE should be excluded.

• The participant can alternate between reading web documents and looking at the IDE during

the same search fragment.

• When trying to debug an error in the code, the participant may alternate between searching

web documents and writing (and executing) code. This behavior constitutes a single search

fragment as long as there is no progression in the task (i.e., attempted fixes fail and the

participant does not change new parts of the code).

After identifying each search fragment, extract the following properties:

• ID: a sequential ID, unique among all participants;

• Participant: the ID of the participant involved;

• Task: the task that the participant is currently working on;

• Start: the time at which the search fragment starts, relative to the video recording (in minutes

and seconds);

• End: the time at which the search fragment ends;

• Documents: the web document(s) in which the participant looked for information during the

search fragment (exclude documents *seen* but not *used* by the participant);

• Intention: the intention of the search fragment, selected among the values below;

– familiar : the participant is trying to become more familiar with a concept or the

abstraction represented by a JDBC class, without a specific information need about that

concept or class.

236

APPENDIX C. REPLICATION DATA FOR CASDOC

– general solution: the participant is trying to find an initial implementation that can be

adapted to solve the task.

– targeted: the participant is looking for a specific piece of information about some aspect

of the task.

– debug: the participant is trying to find the cause of an error they are getting.

• Components: the list of documentation components used during the search, selected among

the values below;

– code: the code example at the top of each document.

– popover : an annotation in their temporary form (exclude unintentional popovers).

– dialog: an annotation in their pinned form (exclude unintentional dialogs).

– popover* : an unintentional popover that distracts the participant.

– search: the Casdoc search bar in the top right corner.

– text: any part of the expanded text below the top code example.

– browser-search: the web browser’s native search tool.

• Order: the order in which the components identified in the previous column were used (see

below for the format);

• Info (Casdoc): the type(s) of information sought when using a Casdoc-related component (see

below for the possible values);

• Info (Text): the type(s) of information sought when using a Text-related component (see

below for the possible values).

Order Values and Format

• List the sequence of components in the order they were used, separated by an arrow (->).

• Repeat components as necessary.

• Include transitions to and from the IDE using the code ide.

• If a participant alternates between two components, use a bidirectional arrow (<>). For

example, code <> popover is equivalent to code -> popover -> code -> popover ->

• Consider the following variation to the previous rule: If one of the components acts as

a secondary source of information to support the other component, show the secondary

component in square brackets. For example, code [<> popover] indicates that the participant

relied mainly on the code, but occasionally used popovers.

237

APPENDIX C. REPLICATION DATA FOR CASDOC

• If the participant used multiple documents, use one sequence per document, and separate

sequences with a semi-colon (;).

• Start each sequence with either new if this is the first time the participant uses the document,

or known if the participant already used the document. If the document is an API reference

documentation page, start the sequence with javadoc, regardless of prior activity.

• End a sequence with link if the participant clicked on a hyperlink to navigate to the next

document.

Information types

• how to: information about how to perform a specific operation.

• error cause: information that may help the participant understand what causes an error in

their code.

• element detail: information about a specific API element.

• code example explanation: information about the design, context, or implementation choices

of the code example at the top of the document.

• SQL syntax: information about the syntax of the SQL language or about SQL functions and

operators.

• concept: information about a concept, the abstraction represented by an API class, or the

domain of the tasks.

• content overview: overview of the topics addressed by a document, either to get familiar with

the document or when checking whether the document contains any more information about

the current search.

• Special cases

– link: use this code to indicate that the component was only used to access a hyperlink

(only applicable for Casdoc annotations).

– continue X : prepend the type with continue when a participant searched for the infor-

mation in another format first without success, and continues their search in a different

format.

– confirm X : prepend the type with confirm when a participant found the information

in another format first, but continues searching in a different to confirm their previous

finding.

238

APPENDIX C. REPLICATION DATA FOR CASDOC

– X (Y): indicate a secondary type in parentheses when the participant searches for some

type of information (X) as part of a broader information search for a different type (Y).

– confirm content overview: this special case indicates that the participant found some

information in one format, then looked for an overview of the document in the other

format to confirm that there was no more information related to their query.

Phase 3

For each search fragment (identified by its ID), indicate the presence of the following navigation

patterns by an x (or, when indicated, by the number of occurrences). Leave the column empty if

the pattern did not occur. The first level of the list, shown here for readability, is not represented in

the data file. The columns in the data file are in the same order as the second level presented here.

• RQ1.1, Format Used: each fragment falls in exactly one of those categories

– code only: the participant did not use either the Casdoc or the expanded text formats.

– casdoc: the participant used the Casdoc format but not the expanded text format.

– text: the participant used the expanded text format but not the Casdoc format.

– casdoc + text: the participant used both the Casdoc and the expanded text formats.

• RQ1.2a, Information Types for the Casdoc Format: for each column, mark an occurrence

only if the Casdoc format was used as the first format for each type (i.e., excluding continue

and confirm) and if the type was the primary (i.e., excluding types in parentheses)

– how to

– element detail

– error cause

– code example explanation

– SQL syntax

– concept

– link

• RQ1.2b, Information Types for the Expanded Format: follow the same rules as the previous

columns

– how to

– element detail

239

APPENDIX C. REPLICATION DATA FOR CASDOC

– error cause

– code example explanation

– SQL syntax

– concept

• RQ1.3, Second Format: indicate whether the participant continued a search started in a

different format (i.e., the Info columns in the second phase contains a continue X code)

– continue text: use the expanded text format to continue a search started in the Casdoc

format.

– continue annotations: use Casdoc annotations (without the search bar) to continue a

search started in the expanded text format.

– continue search: use the Casdoc search bar to continue a search started in the expanded

text format (the participant can reveal annotations found with the search).

• RQ1.4, Confirmation: indicate whether the participant confirmed a search started in a different

format (i.e., the Info columns in the second phase contains a confirm X code)

– confirm text

– confirm casdoc

• RQ2.1: Code Usage: indicate reliance on the code example at the top of each document

– code only: the participant only used the code example (same as the first column).

– no code: the participant did not use the code example at all during the entire search

fragment.

– new -> code: the participant first looked at the code example when opening a new

document (count the number of occurrences within the search fragment).

– new -> other: the participant first looked at any component other than the code example

when opening a new document (count the number of occurrences within the search

fragment).

• RQ2.2, Content Overview: indicate instances of participant looking for an overview of a

document’s content

– content overview (primary): content overview as the primary information type in either of

the Info columns from the second phase (include instances of confirm content overview).

240

APPENDIX C. REPLICATION DATA FOR CASDOC

– content overview (secondary): content overview as the secondary information type (i.e.,

coded as “(content overview)”) in either of the Info columns from the second phase.

• RQ2.3, Accidental Popovers: indicate instances of distracting popovers

– popover*: instance of the code popover* in the Components column from the second

phase

241

	Contents
	Abstract
	Résumé
	Contributions
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Thesis Organization
	Identifying Conceptual Dependencies
	Goal
	Motivation
	Research Design
	Summary of Findings

	Exploring Design Variations in Tutorials
	Goal
	Motivation
	Research Design
	Summary of Findings

	Designing an Interactive Documentation Format
	Goal
	Motivation
	Research Design
	Summary of Findings

	Background and Related Work
	Capturing Concepts Relevant to Software Projects
	Concept Linking
	Knowledge Graphs
	Community Search

	Studies of Documentation Needs and Usage Patterns
	Information Needs
	Documentation Usage Patterns
	Measuring Reading Behavior

	Designing Documentation Presentation Formats
	Interactive Formats
	Paper-Inspired Interaction Features

	Conceptual Dependencies of Software Documentation
	Motivation and Problem Definition
	Research Problem
	Wikipedia as a Source of Information
	Potential and Limitations of Wikification

	Comparison Protocol for Wikifiers
	Types of Software Resources
	Sample Selection
	Preprocessing of Posts
	Selection Procedure for Wikifiers
	Selection Procedure for Configuration Parameters
	Selected Wikifiers
	Data Annotation
	Annotation Task
	Annotators
	Annotation Sets

	Wikifiers Comparison Results
	Wikifiers Performance
	Effect of Additional Parameters
	Correlation Between Wikifiers
	Validated List of Computing Concepts
	Discussion
	Threats to Validity

	Concept Identification Approach
	Off-Line Preparation
	Explicit Concept Identification
	Implicit Concept and Topic Identification
	Implementing the Sample Application

	Scode Evaluation
	Study Design
	Precision of the Identified Concepts
	Consistency of the Identified Concepts
	Inclusion List of Computing Concepts
	Wikification and Community Search Algorithms
	Topic Cohesiveness
	Documentation or Source Code as Input
	Discussion
	Threats to Validity

	Variations in Software Tutorial Design
	Design Decisions
	Tutorial Organization
	Tutorial Content
	Towards a Systematic Approach to Tutorial Design

	Casdoc: Code Examples with Interactive Annotations
	The Casdoc Documentation Format
	Presentation Format
	Authoring Process
	Implementation

	Key Properties of Casdoc
	Focus on Code
	Gradual Reveal
	Small Fragments
	Explicit Hints
	External Content

	Field Study Design
	Research Method
	Participants
	Documents
	Data Collection Infrastructure
	Data Preparation
	Study Design Trade-Offs

	Field Study Results
	Casdoc Usage Patterns
	Implications
	Sampling Bias and Differences Between Sections

	Laboratory Study Design
	Study Environment
	Programming Tasks
	Documents Provided
	Data Collection and Analysis

	Laboratory Study Results
	Choice of Documentation Format (RQ 5.3)
	Support of Navigation Actions (RQ 5.4)
	Discussion
	Limitations

	Improving the Casdoc Format

	Discussion
	Recurring Themes in Documentation Design
	Adaptability of Documentation Guidelines to Various Contexts
	Selection of Topics to Include in Documentation
	Explicit Representations of Knowledge about Software Systems and Development

	Future Work
	Casdoc as an Extensible Instrument for Studying Documentation
	Challenges of Creating Documentation
	Further Improvements to the Casdoc Format

	Documentation in the Age of Language Models

	Conclusion
	Bibliography
	Replication Data for Conceptual Dependencies
	Wikifier Annotation Guide
	Sample of Wikification Annotations
	Scode Relatedness Annotation Guide
	List of Computing-Related Wikipedia Articles
	Open Source Android Projects

	Replication Data for Tutorial Design Variations
	Android-Related Stack Overflow Tags Used in Our Study
	List of Tutorial Pages
	Topic Coverage of Three Android Tutorials

	Replication Data for Casdoc
	Documentation Resources About the JDBC API
	Programming Tasks for the Laboratory Study
	Reference Solutions to the Programming Tasks
	Intervention Guide for the Investigator During the Study Sessions
	Annotation Guide for the Session Recordings

