
IMPROVING SOFTWARE MODULARITY THROUGH
CROSSCUTTING CONCERN EXTRACTION

by

Isaac Yuen

School of Computer Science

McGill University, Montreal

April 2009

A THESIS SUBMITTED TOMCGILL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OFSCIENCE

Copyright c© 2009 by Isaac Yuen

Abstract

Aspect-oriented programming (AOP) is a programming paradigm for improving the

modularity of software systems by localizing crosscuttingconcerns in the system into as-

pects. Aspect-oriented refactorings extend AOP to legacy systems, by identifying and

encapsulating existing crosscutting concerns through aspect-mining (discovery of cross-

cutting concerns) and aspect refactoring (semantic-preserving code transformation to ex-

tract the crosscutting code into aspects). However, not allthe data obtained from aspect-

mining corresponds to crosscutting concerns, and existingaspect languages may not be

capable of refactoring all crosscutting concerns into aspects. In this thesis, we describe

an approach for extracting crosscutting concerns in a system to a form that is suitable for

refactoring. This process includes identifying the presence of crosscutting code clusters in

aspect-mining results; assessing if the concerns should beextracted using various metrics;

and performing code transformation to extract the crosscutting clusters into standalone

methods with a common method signature and parameters. The work also describes the

ConcernExtractor, a software tool that implements the concern cluster extraction tech-

nique. We applyConcernExtractorto assess and extract the crosscutting concerns in ex-

isting systems to evaluate the prevalence of crosscutting concerns that are refactorable,

and the applicability of our approach for generating aspectrefactoring opportunities.

i

Résum é

La programmation orientée-aspect (POA) est un paradigme ayant pour but d’améliorer

la modularité du logiciel en localisant les préoccupations éparpillées dans des aspects.

La refactorisation orientée-aspect étend les avantagesde la POA par l’identification et

l’encapsulation des préoccupations existantes à l’aidedu forage d’aspects (aspect mi-

ning), et par leur refactorisation en aspects à l’aide de transformations de code. Cepen-

dant, certains résultats du forage d’aspects ne correspondent pas à des préoccupations

éparpillées, et les languages aspects existants ne supportent pas la refactorisation de tous

les préoccupations en aspects. Cette thèse décrit une approche pour extraire les préoccupa-

tions éparpillées dans une forme qui se prête à la refactorisation. Le processus inclue

l’identi-fication des préoccupations refactorisables parmis les résultats de forage d’aspects,

l’évaluation de la valeur de l’extraction potentielle, etl’extraction proprement dite à l’aide

de transformations de code. La thèse décrit aussi ConcernExtractor, l’outil que nous avons

réalisé pour supporter cette approche. Nous avons appliqué ConcernExtractor pour évaluer

l’approche sur plusieurs systèmes existants.

ii

Acknowledgments

The journey of undertaking and completing this work is a daunting and self experience

for me. On numerous occasions I was on the verge of giving up, thinking that my work was

not good enough, or I did not meet the expectations of my mentors, family, and friends.

Yet it was their continuous encouragements, and prayers throughout that have sustained

me. Words alone cannot fully express my gratitude to them all.

I am most indebted my supervisor Martin Robillard, from whomI have learned the

integrity and meticulosity to scientific research, which I can only hope to emulate in my

career. I am thankful for his guidance, and challenges that taught me to become vigilant

to the quality of my work and research. However, I am most grateful for his continuous

encouragements and patience with me. “The great teacher inspires” – so thank you Martin,

for keeping me from stopping to believe in myself.

The sustenance of my family is the most vital force that compels me to pursue my

goal and not to give and I just want to tell them, “Dad, Mom, andSis, thank you for your

prayers and your patience with me. Now that I’m finally done, Ijust hope that you would

be proud of me”.

Last but not least, thank you for all my family and friends whom never ceased to offer

their encouragements, occasional rebukes,, and prayers. Without them, I would have

long forgotten my “mission” and settled for complacency.

And thank you Lord Jesus. Your grace is sufficient, and Your power is made perfect in

my weaknesses.

iii

Contents

Abstract i

Résuḿe ii

Acknowledgments iii

Contents iv

List of Figures vi

List of Tables vii

Contents viii

1 Introduction 1

1.1 Motivation . 6

1.2 An example of refactorable CCC .8

1.3 Overview of the dissertation .. 13

2 Background 15

2.1 Aspect mining . 16

2.2 Refactoring and AOP . 17

2.3 Tool-based AOP refactoring .18

iv

3 Concern Extraction Techniques 20

3.1 Crosscuting concern assessment and extraction 21

3.2 Analyzing crosscutting candidates 25

3.3 Matching isomorphic clusters .. . 28

3.4 Statement reaggregation .31

3.5 Extracting isomorphic code snippets 33

3.5.1 Extracting instance and arguments into locals 35

3.5.2 Rearranging the extracted local declarations 35

3.5.3 Extracting isomorphic crosscutting clusters 37

4 Quantitative Evaluation 38

4.1 Experimental Environment .39

4.2 Evaluation procedure and variables 40

4.3 Question 1: Identifying refactorable crosscutting code 41

4.4 Question 2: Flow Analysis . 43

4.5 Question 3: Concern extraction .. . 48

5 Conclusions 54

v

List of Figures

1.1 Location of URL management code inorg.apache.tomcat.util.netpackage 2

1.2 Location of logging code inorg.apache.tomcat.util.netpackage 3

3.1 Effects of statement aggregation 23

3.2 ConcernMapper . 27

3.3 AST structure of theexecuteAction statement in Listing 3.4 30

3.4 AST structure of theexecuteAction statement in Listing 3.5 30

vi

List of Tables

1.1 Summary of the fan-in values of the method calls in theAction Control

concern of FreeMind . 8

4.1 List of target systems . 40

4.2 Summary of crosscutting cluster distribution in the target systems 42

4.3 List of clusters that contain more than or equal to 3 seed methods 45

4.4 List of clusters that contain only 2 seed methods 46

4.5 Summary of flow analysis results .. 48

4.6 Summary of positions of method clusters relative to their declaring method

bodies . 52

vii

Listings

1.1 An AspectJ example for clipping the x,y co-ordinates of operations that

draw lines and rectangle on a canvas . 4

1.2 An example ofbegin/endpattern inJEditTextWriter class,jEdit 4.2 . . 7

1.3 An illustration of Transactional Control concern inAddArrowLinkAction

class,FreeMind . 9

1.4 An example of a code fragment of the crosscutting concernfound in a

complex control flow structure inEdgeColorAction class,FreeMind . . 10

1.5 An example of thetransactional concernof EditAction class ,FreeMind,

where the code that belongs to the concern are not consecutive 11

1.6 The extracted method of thetransctional concern. 12

1.7 Pointcut expression that specifies the joinpoint of extracted method in List-

ing 1.6 . 12

3.1 A method cluster with consecutive seed methods 22

3.2 A method cluster with non-consecutive seed methods 22

3.3 A method that contains seed method statements, but does not contain a

method cluster . 23

3.4 An instance of crosscutting method cluster inEditAction class,FreeMind 25

3.5 An instance ofexecuteActionmethod statement inAddArrowLinkAction

class,FreeMind . 25

3.6 Reaggregated snippet of the example in Listing 3.4 31

3.7 The extracted form of the method cluster in Listing 3.6 33

3.8 The extracted form of the method cluster in Listing 3.5 34

viii

3.9 Applying Extract Local Variables on the arguments of theseed methods. . 36

3.10 Reaggregating the temporary local declarations. 37

ix

Chapter 1

Introduction

Object-oriented programming(OOP) is probably the most popular programming paradigm

of this generation and is the principal methodology for designing and implementing soft-

ware systems today. By modeling each concern or functionality into a separate module,

the OOP intends to bring better modularity to the design of the system. However, OOP

is not without its imperfections. Since OOP implicitly mandates that a functionality be

modularized in only one dimension (objects), many kinds of concerns that do not align

with that dimension become scattered across many modules and tangled with one another

– the phenomenon that is called thetyranny of the dominant decomposition[36]. These

types of scattered and tangled concerns are described ascrosscutting concerns.

Crosscutting concerns (CCC) describe computational unitsthat provide similar func-

tionalities, but cannot be abstracted into a standalone module due to the limitations of the

programming language. One of the much-cited examples of crosscutting concern is the

logging functionality in Apache Tomcat server system.

Figure 1.1 shows a mapping of the classes in the JBoss Web API networking package1.

In the graph, each column represents a file that contains one or more classes in the package,

and each line of code in the file is represented by a row of pixels in the column. The

highlighted area in the diagram represents the code that is related to URL management.

1org.apache.tomcat.util.net package

1

Figure 1.1: Location of URL management code inorg.apache.tomcat.util.netpackage

This URL management concern, as the diagram shows, is well modularized inside a single

class.

However, not every concern in the package can be encapsulated in a single class. Fig-

ure 1.2 shows the locations of the logging-related functioncalls in the system, and one

can observe that the calls are dispersed among many classes,which is a classic example

of a crosscutting concernin a system. The presence of crosscutting concerns in a system

means that some functionalities getsscatteredacross different components, and become

tangledwith other components. As a result, the system not only become less readable and

traceable, but individual components are less reusable because they include functionality

that may not apply to the context in which the code is reused.

Aspect-oriented programming (AOP) provides a solution to the crosscutting problem

by supporting the modularization of crosscutting concernsin a new construct calledas-

pect [21]. From the OOP’s perspective, an aspect can be understood as a special class

with functions that do not need to be directly referenced in another class in order to be

invoked. Aspects allow a programmer to localize the crosscutting concerns in the system

2

Figure 1.2: Location of logging code inorg.apache.tomcat.util.netpackage

from the core modules, and removescattering(a common code fragment dispersed at mul-

tiple locations) andtangling(a code fragment that serves different unrelated functionality)

problems in the code.

Among modern aspect languages, AspectJ2 is the most widely known and studied.

Implemented as an AOP extension of Java, AspectJ introducesmany new programming

constructs, such as,pointcutsandadvice, which became standard construct for most aspect

languages.

A pointcut is an expression for specifying a set ofjoinpoints, which are well-defined

points in the execution flow of a program. After specifying the pointcuts to locate the

targeted joinpoints in the program, additional code can be applied before or after the join-

points to introduce additional behavior. These additionalcode fragments are defined in a

special type of method body calledadvice. Bothadvicesandpointcutsare declared in an

aspect. Typical joinpoints in OOP systems are method invocations or field accesses.

Listing 1.1 shows an example of an aspect class in AspectJ that implements clipping

2AspectJ. See http://www.eclipse.org/aspectj

3

aspect BoundaryClippingAspect {

pointcut checkLineBound(int x1, int y1, int x2, int y2):
(call(void Graphics.drawLine(int, int, int, int)) &&
args(x1, y1, x2, y2))

pointcut checkRectBound(int x1, int y1, int width , int height):
(call(void Graphics.drawRect(int, int, int, int)) &&
args(x1, y1, width , height));

void around(int x1, int y1, int x2, int y2): checkLineBound(x1, y1, x2, y2)
{
if (x1 < MIN_X)

x1 = MIN_X;
else if (x1 > MAX_X)

x1 = MAX_X;
if (x2 > MAX_X)

x2 = MAX_X;
else if (x2 < MIN_X)

x2 = MIN_X;
if (y1 < MIN_Y)

y1 = MIN_Y;
else if (y1 > MAX_Y)

y1 = MAX_y;
if (y2 > MAX_Y)

y2 = MAX_y;
else (y2 < MIN_Y)

y2 = MIN_y;

// Call the drawLine method with the clipped parameters
proceed(x1, y1, x2, y2);

}

void around(int x1, int y1, int width , int height):
checkRectBound(x1, y1, width , height)
{
if (x1 < MIN_X)

x1 = MIN_X;
if (x2+width > MAX_X)

width = MAX_X - x1;
if (y1 < MIN_Y)

y1 = MIN_Y;
if (y2+height > MAX_Y)

height = MAX_y - y1;

// Call the drawRect method with the clipped parameters
proceed(x1, y1, width , height);

}
}

Listing 1.1: An AspectJ example for clipping the x,y co-ordinates of operations that draw
lines and rectangle on a canvas

4

in theGraphics.draw operations. The intention is to clip the arguments of the functions

if the method attempts to draw beyond the pre-defined boundaries. However, instead of

adding a pre-condition check before everydrawLine ordrawRect call, as the typical OOP

practice dictates, the clipping operation is modularized into an aspect class. In the aspect

definition, two pointcuts are created to intercept any call to thedrawLine anddrawRect

methods. The advices then check if the arguments of the methods are within the pre-

defined boundaries, and if not, modify the value of the arguments to achieve the clipping

effect.

The availability of AOP technology suggests that it should be possible to incremen-

tally refactor an existing object-oriented (OO) system into a more modularized AO equiv-

alent. However, refactoring case studies [6, 9] show that manual aspect refactoring is

time-consuming and often not scalable in large applications: it is simply too onerous to

manually inspect code to find cross-cutting concerns, and tomanually transform the code

to mitigate them. The scalability problem produced two subareas in AOP research:aspect-

mining (automated detection of CCC in an OO systems) andtool-based AO refactoring

(automated code transformation into aspect). However, thefeasibility of combining the

techniques from both domains to reduce the efforts in the AO migration process remains a

challenge, due to the following reasons:

• Aspect-mining techniques are not precise and only collect programming elements

that exhibit crosscutting attributes. It often requires human judgment to determine

if they form a distinct crosscutting concern, and how to refactor it into an aspect.

• The code snippets that belong to a common crosscutting concern rarely have the

same code structure. For instance, the sequence of executions may differ between

each code snippet, or the execution maybe not be consecutive[38], making it diffi-

cult to automate code refactorings.

• Existing AOP languages such as AspectJ impose constraints that hinder the refac-

toring into aspects. For instance, AspectJ semantics does not provide access to local

5

1.1. Motivation

variables3, and it is not possible to encapsulate two identical method calls that are

declared in the same method body with one pointcut expression [1].

1.1 Motivation

Although crosscutting concernsimply functionalities that are not modularizable using

classes or modules, there is no criteria that explicitly determine if some code snippets

constitute a crosscutting concern and should be implemented in aspects.

Marin et al. classified crosscutting concerns into different sortsbased on their intents

and their associated AO refactoring strategy [25]. In general, consistent behavior— the

consistent calling of a method from several points in the program, is the most prevalent

crosscutting sort. A concern that belongs to theconsistent behaviorsort appears in three

formats:

1. A method invocation independent of the context of its caller, such as logging, trac-

ing.

2. Variations of thebegin-/end- coding pattern that execute the code between the

begin- andend- methods in a different context. Examples of such patterns in-

clude theJava java.util.concurrent.locks.Lock interface (thelock() and

unlock() methods)4 or theBatch Editconcern found in jEdit (see Listing 1.2).

3. A sequence of method invocation statements that are consistently executed sequen-

tially at multiple locations throughout the system.

We deem that it is most useful to refactor the third class of crosscutting concern,

namely, the multiple methods that are repeatedly invoked together throughout the system,

because the “clustering” of these methods is a better indication of a non-trivial concern

3Aspect FAQs. See http://www.eclipse.org/aspectj/doc/released/faq.php
4Java Lock interface API. See http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/locks/Lock.html

6

1.1. Motivation

public void writeNewStyleItem(String name , Map props) {
// ... formatting code is omitted
try {

buffer.beginCompoundEdit();

if (i == -1) {
start = area.getCaretPosition();

} else {
start = i;
int closingBracket = bufferText .indexOf("\}", i);
if (closingBracket != -1) {

buffer.remove(start , closingBracket - start + 1);
}

}
buffer.insert(start , text);

} finally {
buffer.endCompoundEdit();

}
}

Listing 1.2: An example ofbegin/endpattern inJEditTextWriter class,jEdit 4.2

that is more granular than a single function. By grouping andrefactoring these concerns,

we can improve the modularity of the system. Moreover, sincethe concerns become more

localized, it is easier for a programmer to navigate the system and to evolve a particu-

lar functionality in the system without affecting unrelated code bases. Our research will

therefore focus on this class ofconsistent behaviorconcerns. More specifically, we want

to assess the refactorability of these crosscutting clusters, and provide the mechanisms for

the identification and extraction of these clusters that aremost convenient for software

evolution and potential aspect refactoring purposes.

We define such crosscutting clusters asrefactorable crosscutting concern(rCCC):

A cluster of code that consists of multiple adjacent or proximate method in-

vocations that crosscuts multiple locations in a recurringpattern and that can

be refactored into aspects using simple pointcut expressions.

However, our previous case study [38] of crosscutting concerns shows that it can be

difficult, if not impossible, to completely encapsulate allcrosscutting clusters of a concern

into an aspect without creating a complex and rigid pointcutexpression.

7

1.2. An example of refactorable CCC

1.2 An example of refactorable CCC

In the case study we mentioned in the previous section, we studied the nature of cross-

cutting concerns in existing systems, and investigated thepresence of refactorable cross-

cutting concerns in an open-source Java project called FreeMind5. From the results of the

aspect mining analysis (see Section 2.1 for details), we noticed a group of methods that

were consistently executed in the same sequence. We classify these method invocations

into the same concern because the invoked methods belong to the same class and two of

them havestart- andend- prefixes. The aspect-mining results show that these three

methods are called in conjunction across 32 different method declaration bodies(see Table

1.1).

Table 1.1: Summary of the fan-in values of the method calls intheAction Controlconcern
of FreeMind

Crosscutting method Fan-in
ActionFactory.startTransaction(String) 33
ActionFactory.executeAction(ActionPair) 37
ActionFactory.endTransaction(String) 33

Intersection 32

Listing 1.3 shows an instance of the concern, where a call toexecuteAction() is

preceded by a call tostartTransaction()and followed by a call toendTransaction().

This sequence of invocation is consistently found in 32 instances. Moreover, in most cases,

these three methods are called consecutively. Initially, we believed that the simplicity of

this concern would make it straight-forward to refactor this concern into aspect, using

Java-based aspect extension, such as AspectJ.

5See http://freemind.sourceforge.net

8

1.2. An example of refactorable CCC

public void addLink(MindMapNode source , MindMapNode target)
{

modeController.getActionFactory().startTransaction(String) getValue(NAME));
modeController.getActionFactory().executeAction(getActionPair(source ,target));
modeController.getActionFactory().endTransaction((String) getValue(NAME));

}

Listing 1.3: An illustration of Transactional Control concern in AddArrowLinkAction

class,FreeMind

Challenges for AO refactoring The code for this concern exhibits aconsistent be-

haviourand the method signatures reveal that the concern serves as akind of transactional

control. Initially, we believed that there are two approaches to extract the crosscutting

code into an aspect:

Approach 1. Refactor the calls tostartTransaction() andendTransaction() into

an ‘around’ advice of the containing method.

Around adviceis an type of advice that surrounds a join point such as a method invoca-

tion, and performs custom behavior before and after the specified join point. In this case,

the join point will be the the location of the methods that contain these two methods. This

options requires thatstartTransaction() andendTransaction() always be located at

the start or end of the method body, which does not hold true for every instance of this

concern.

Listing 1.4 shows a variant of the transactional control concern in a class in FreeMind.

In this file, the concern code is contained within atry block and anif statement. For this

instance, it is not clear how it can be refactored into as aspect.

9

1.2. An example of refactorable CCC

public Transferable cut(List nodeList) {
c.sortNodesByDepth(nodeList);
Transferable totalCopy = c.getModel ().copy(nodeList , null);
try
{
/*** initialization code omitted for brevity ***/

if (doAction.getCompoundActionOrSelectNodeActionOrCutNodeAction().size() > 0)
{

c.getActionFactory().startTransaction(text);
c.getActionFactory().executeAction(new ActionPair (doAction, undo));
c.getActionFactory().endTransaction(text);

}
return totalCopy;

} catch (JAXBException e) {
e.printStackTrace();

}
return totalCopy ;

}

Listing 1.4: An example of a code fragment of the crosscutting concern found in a complex
control flow structure inEdgeColorAction class,FreeMind

Approach 2. Refactor thestartTransaction() and endTransaction() into an

‘around’ advice ofexecuteAction().

While this second approach solves the problem in the exampleof Listing 1.4, it does

not solve all types of crosscutting concerns found in FreeMind. For instance, there are

alternative implementations of the transactional concern, in which some unrelated state-

ments interleave with the statements belonging to the concern (see Listing 1.5).

The fan-in analysis (see Table 1.1) also shows thatexecuteAction() has a higher

fan-in value than the other two methods, and we found severalinstances in the system

wherestartTransaction() and endTransaction() are not invoked in conjunction

with executeAction(). A pointcut expression that must cover these exceptional sce-

narios would be difficult to create.

10

1.2. An example of refactorable CCC

public void setNodeText (MindMapNode selected, String newText)
{

String oldText = selected.toString ();
try
{

c.getActionFactory(). startTransaction(c.getText("edit_node"));
EditNodeAction EditAction = c.getActionXmlFactory(). createEditNodeAction();
EditAction .setNode(c.getNodeID(selected));
EditAction .setText(newText);
EditNodeAction undoEditAction = c.getActionXmlFactory(). createEditNodeAction();
undoEditAction.setNode(c.getNodeID (selected));
undoEditAction.setText(oldText);
c.getActionFactory(). executeAction(new ActionPair (EditAction , undoEditAction));
c.getActionFactory(). endTransaction(c.getText("edit_node"));

} catch (JAXBException e) {
e.printStackTrace();

}
}

Listing 1.5: An example of thetransactional concernof EditAction class ,FreeMind,
where the code that belongs to the concern are not consecutive

Refactoring solution From the above examples, we can generalize that there are

two common issues in refactoring crosscutting concern intoaspects in a legacy system:

1. The code fragment of the concern is located at an arbitrarylocation in the declaring

method body,

2. The code that forms the concern is not continuous, but interleaved with other code.

Therefore, the first step of refactoring must resolve these problems In most cases all

three calls in the cluster are adjacent to each other, and thebest approach is to ‘correct’

the type of variant found in Listing 1.5 and change the locations ofstartTransaction()

andendTransaction() to make them adjacent to theexecuteAction() call. The main

challenge of this change is that we need to verify if the statements reordering does not

introduce unexpected side-effects. For this particular concern, we manually verified that

the reordering was safe.

After the statements are reordered, the sequence of three calls becomes consecutive.

However, the goal is to be able to capture the joinpoint of thecrosscutting methods using

one single pointcut expression. Instead of specifying the name of either three methods in

11

1.2. An example of refactorable CCC

the pointcut, we opted for another approach: we used theExtract Methodtechnique to

extract the cluster in each class into a new method calledrunTransaction (see Listing

1.6). After the refactoring, we can create a simple pointcutexpression that intercepts all

crosscutting clusters (see Listing 1.7).

protected void runTransaction(ActionPair target , String startName , String endName)
{

modeController.getActionFactory(). startTransaction(startName);
modeController.getActionFactory(). executeAction(target);
modeController.getActionFactory(). endTransaction(endName);

}

Listing 1.6: The extracted method of thetransctional concern

pointcut actionControl(): call(* *.runTransaction(ActionPair , String , String));

Listing 1.7: Pointcut expression that specifies the joinpoint of extracted method in Listing
1.6

The main reasons for extracting the crosscutting method calls into a new methods are:

• The crosscutting code is clustered and its behavior becomesconsistent across its

callers;

• The intent of crosscutting clusters are disassociated fromthe original context into a

distinct method instance, which reduces the effort for program comprehension in an

OOP perspective.

• The addition of the new join point (the newly extracted method) allows program-

mers to devise a simple pointcut expression that interceptsthe crosscutting code.

We reduce the needs of using a combination of complicated pointcut expressions,

or pointcuts that contain wildcard characters in method name, which may introduce

undesirable side-effects such as creating a larger matching join point set than it orig-

inally intended [1].

12

1.3. Overview of the dissertation

In our study, we concluded that due to the variations in the code, it was difficult to

choose a refactoring that neatly encapsulated the crosscutting concerns in a system with-

out sacrificing the readability and simplicity of the pointcut descriptor. To mitigate this

challenge, we concluded that it was necessary to use a combination of statement reorder-

ing andExtract Methodrefactoring to resolve these variations so that AO refactoring could

be applicable.

1.3 Overview of the dissertation

Our research focuses on the refactoring of the third type ofconsistent behaviorconcern,

because we believe that crosscutting code clusters belong to a class of crosscutting con-

cerns that can be located, extracted, and refactored into aspects using simple pointcut

expressions. Furthermore, the identification and the transformation process of such con-

cerns can be automated with minimal human guidance and domain knowledge. In this

dissertation, we describe a “concern extraction” technique for assessing the refactorability

of the crosscutting candidates that are obtained from aspect-mining tools, and applying

OO transformation to targeted crosscutting code such that it can be easily refactored into

maintainable aspects. In the course of this work, we will address the following three ques-

tions:

1. How can we automatically assess the results of an aspect miner and distinguish

refactorable crosscutting concernsamong the candidates?

2. How can we automatically apply OO transformations to discover and resolve the

variations in the crosscutting code and isolate its intent by extracting the targeted

code cluster into a separate method?

3. Is the concern extraction technique sufficient for reducing the complexity of the

potential pointcut expressions and improve the refactorability of the concern?

The goal of our research is to utilize the data from aspect-mining and identify refac-

torable crosscutting concerns that facilitates the potential refactoring process. We present

13

1.3. Overview of the dissertation

ConcernExtractor, a tool that:

1. Automatically identifies the presence of crosscutting code clusters in a system,

2. Assesses if the concerns can be extracted using various metrics, and

3. Performs code transformation that extracts the crosscutting clusters into standalone

methods that share a common method name and parameters.

TheConcernExtractoris implemented as a plugin for the Eclipse IDE, and uses the exist-

ing refactoring modules in the Eclipse framework for code transformation.

We have implemented our technique and applied it to identifyrefactorable concerns

from the results of an aspect-mining tool. We extracted the crosscutting concern candidates

from 5 medium-size (20 - 80 KLOC) Java projects using an open-source tool developed

by a different team.

Our contributions include a description of our automatic technique for the detection

of assessment and code transformation process and a detailed account of the validation

procedure of this technique in existing systems.

In Chapter 2, we describe foundational works that motivate and complement our re-

search. In Chapter 3, we provide the details of our techniquefor identifying and assessing

the refactorability of the crosscutting code cluster. We describe a quantitative evaluation

of the effectiveness of our technique, and the applicability of ConcernExtractor in Chapter

4, and conclude in Chapter 5.

14

Chapter 2

Background

Aspect-oriented programming (AOP) is a programming paradigm that enables a mod-

ular implementation of crosscutting concerns in a system [21]. Crosscutting concernsare

functionalities that need to be split up and integrated intodifferent modules . Services

such as logging and transaction control are often containedby methods from independent

modules. The presence of crosscutting concerns violates the principles ofseparation of

concernsand leads tocode scatteringand tangling [30]. Crosscutting concerns reduce

the readability and maintainability of a system. AOP proposes a solution by encapsulating

the crosscutting concerns from a system into new modular units calledaspects[21]. As-

pectJ [20] is the most popular AOP extension of the Java languages and it provides new

programming constructs such aspointcut expressionsandadvicesto implement crosscut-

ting code in aspects.

Aspect-oriented (AO) refactoring [22] synergistically combines AOP with object-oriented

refactoring practices [13] to extract crosscutting elements from existing systems to im-

prove modularity. The study of AO refactoring can be furthercategorized into two major

branches of research:aspect mining, which studies the techniques for locating the cross-

cutting concerns in existing systems, andaspect refactoringor aspect extraction, which

explores the patterns and practices for separating the crosscutting concern code from the

core module into aspects [28](Ch. 9).

15

2.1. Aspect mining

2.1 Aspect mining

Aspect mining is the methodology for automatically identifying the crosscutting concerns

in source code. Aspect-mining techniques are primarily intended for refactoring cross-

cutting concerns into aspects. Early aspect-mining tools such as Aspect Mining Tool

(AMT) [17] use query-based approaches and locate crosscutting elements based on textual

and type similarities in the source code. However, later aspect mining researches focus on

a complete automation of the mining process. Marin et al. [27] introducefan-in analysis,

which determines the degrees of scattering of code based on the number of times a method

is being invoked throughout the project. Since method callsare the simplest program

element that can be refactored using pointcut-based AO constructs such as AspectJ, the

fan-in values of crosscutting methods provide a quantified assessment of the potential of

AO refactoring, and motivates our research to assess the refactorability of tightly coupled

methods with high fan-in values. The fan-in analysis is implemented as a part of the FINT

framework1. The FINT framework is used as the primary aspect miner in ourresearch.

A version-history based approach by Breu and Zimmermann [5]analyzes the addition

and evolution of program elements over time and correlates this data with the author and

timestamp data from the version history. This approach is more scalable in large projects

and its precision in locating crosscutting concerns increases with the project size and his-

tory. Zhang et al. [40] use arandom walkalgorithm to explore the incoming (popularity)

and outgoing (significance) of references to each program element. Their random walk al-

gorithm differs from other syntax-based approaches mentioned above because it attempts

to distinguish crosscutting elements from those represented in the core functionality of the

system.Timna, by Shephard et al. [34], is a framework that uses machine learning tech-

niques to augment the precision of other aspect mining techniques such as fan-in analysis.

The drawback is that it requires a user to manually tag relevant program elements for the

offline training phase.

Many aspect-mining research project applyformal concept analysis(FCA) [14] to

explore relationship between different program elements and identify aspects. Tonella

1http://swerl.tudelft.nl/bin/view/AMR/FINT

16

2.2. Refactoring and AOP

and Ceccato [37] use concept analysis to analyze the execution traces from use cases and

identify crosscutting elements.DynAMit, created by Breu et al. [4], is another FCA tool

based on trace history. However, in general the runtime of FCA is exponential [23] and

therefore its applicability is constrained to analyses that produce a small dataset, such as

dynamic analysis. The FINT framework also includes a concept analysis tool [26] that

locates the a group of crosscutting method calls in a system based on their fan-in values.

We use FINT to extract the crosscutting candidates because it generates a comprehensive

set of method calls that are both crosscutting and highly coupled. However, the exponential

complexity of FCA places a constraint on its applicability in large systems.

2.2 Refactoring and AOP

Identified crosscutting concerns can be refactoring into aspect either manually or with

automated refactoring tool. Monteiro et al. [30] present a collection of low-level AO

refactoring techniques that solve specific crosscutting symptoms in systems. At the de-

sign level, Hannemann et al. [18] solve the code scattering and tangling that are intro-

duced through design patterns by reimplementing the patterns using AspectJ. Several case

studies [3, 24, 29] describe the application of these AO refactorings in a small system to

demonstrate how AO refactoring can remodularize crosscutting concerns. Using tech-

niques described in [30], Monteiro et al. [29] illustrate the refactoring process in a simple

example that implements the Observer pattern. Marin [24] and Binkley et al. [2] refactor

the Undo concern in JHotDraw manually and with tool-support, respectively. However,

all authors conclude that the refactored aspect code will need additional refactoring to

simplify the pointcut expression and the architecture of the aspect classes.

AO refactoring in large systems is more complex because of the variations in the cross-

cutting concern implementation. Bruntink et al. [6] investigate the tracing concern in C-

based components and show that it exhibits significant variability which makes it difficult

to refactor into aspects. Colyer et al. [9] manually refactor the Enterprise JavaBeanT M

support component in a large Java middleware system using AspectJ. However, the AO

17

2.3. Tool-based AOP refactoring

refactoring involves a heavy use of intertype declaration compared to the use of advice.

They argue that the design and flexibility of AO refactoring will be superior to traditional

object-oriented refactoring. Both studies rely on the authors’ knowledge of a particular

non-invasive concern and the experience is not applicable to more domain-specific cross-

cutting concerns.

2.3 Tool-based AOP refactoring

Automation reduces the efforts in refactoring crosscutting concerns into aspects. However,

human guidance in the process is usually necessary: a developer needs to verify the iden-

tified crosscutting concerns and evaluate if refactoring isdesirable. AOPMigrator [3] is a

semi-automated Eclipse-based refactoring toolkit that implements low-level code transfor-

mations and automatically infers the AspectJ implementation of the annotated Java code

fragments. Nevertheless, each refactoring is applicable to only one instance of code frag-

ment and cannot extract multiple crosscutting instances. The generated aspects are often

not intuitive and require manual fine-tuning. Hannemann et al. implement role-based

refactoring [19] to address the crosscutting problem from amodularization perspective. A

user needs to map selected program elements according to a set of pre-defined schema, and

the tool automatically generates the aspect implementation of the mapping and performs

the code transformation based on the user input. This technique is most appropriate if the

predefined schema match exactly with the mapped elements, such as canonical implemen-

tations of design patterns, but its applicability in the variant implementations remains an

open question. The authors [3,16] all conclude that OO transformations should be applied

extensively to reduce the code complexity such that the AO refactoring actually simplifies

the design. Our research is motivated by the benefit in extracting highly tangled method

calls using OO refactoring to reduce the complexity in subsequent AO refactoring.

Another major hurdle in AO refactoring is in devising pointcut expression that can

describe the targeted joinpoints and is comprehensible andmaintainable. Anbalagan et

al. [1] propose an automated approach that uses the results from an aspect mining tool and

18

2.3. Tool-based AOP refactoring

infers pointcut expressions for these aspects. The inference engine performs a clustering

phase based on the textual and syntactic similarity of the pointcut, and outputs the most

succinct form that crosscuts all targeted joinpoints. However, the authors show that the

average size of the pointcut statement remains quite complex (> 8 pointcut expressions)

in large projects despite the clustering. This work inspires us to consider approaches that

can unify different crosscutting methods into one method signature, which simplifies the

pointcut expression that will be needed to refactor the crosscutting code into aspects.

19

Chapter 3

Concern Extraction Techniques

Aspect-mining techniques generally identify crosscutting concerns based on thescat-

tering [8, 27] or thecoupling [4, 5] of different method calls. However, our main focus

is the presence of clusters with multiple method invocationstatements in the code base.

Moreover, these methods should be invoked sequentially or consecutively in a recurring

pattern. We set the refactoring targets on multiple method invocation statements because

they imply a large functionality that requires multiple steps. More importantly, if the

method calls in the clusters are invoked consecutively, then these statements would be

extractable into a separate instance such as a method call oran advice in an aspect.

The goal of our work is to be able to identify this type ofrefactorablecrosscutting

concern in a system and extract these crosscutting clustersacross different locations into

standalone methods, so that these concerns are relatively isolated from the core function,

are easily identifiable, and can be readily refactored into aspects if necessary.

For a candidate concern containing multiple method calls that are considered to be

crosscutting either manually or automatically by aspect-mining tools, the concern extrac-

tion tool should:

• Identify the presence of refactorable crosscutting cluster in a code base and provide

visualization and navigation support of the targeted cluster code.

• Automatically assess if the concern could be extracted based on various metrics.

20

3.1. Crosscuting concern assessment and extraction

• Perform the code transformation that extracts the crosscutting clusters into stan-

dalone methods with a unified method name and parameters.

The following section describes the details of our approach, implemented in theCon-

cernExtractor, a plugin for the Eclipse IDE that provides assessment and extraction mech-

anisms for crosscutting concerns. The ConcernExtractor isbuilt upon theConcernMapper,

a bookmarking tool for programmers to organize program elements (i.e. class, method, or

field) that are considered related into arbitrary modules called concernsinside the Eclipse

IDE (see Section 3.2 for a detailed description of the ConcernMapper).

The rationale behind building our technique in the Eclipse framework is that the Java

Development Tool (JDT) package of Eclipse provides powerful source code search and

manipulation functionalities that we can leverage. Furthermore, various aspect-mining

tools [5, 27] are already built on top of Eclipse. Therefore,with minor modifications,

results from the aspect-mining tools can be exported into anXML format that is readable

by the ConcernMapper model. The ConcernMapper can quickly group elements that are

considered crosscutting into a “concern” node in the model.The ConcernExtractor then

analyzes the elements in each concern and assesses the possibility of extracting them into

aspects.

3.1 Crosscuting concern assessment and extraction

The assessment and extraction technique in ConcernExtractor is divided into a four-stage

process:

1. Identify crosscutting method calls in the source code.

2. Analyze and match code with similar structures into crosscutting clusters of code.

3. Perform flow-analysis on non-consecutive code snippets to assess if the snippet can

beclusteredand extracted into a method.

4. Extract the selected code snippets into a new method.

21

3.1. Crosscuting concern assessment and extraction

void run(Foo f)
{

f.bar(); // a method cluster
f.foobar();

}

Listing 3.1: A method cluster with consecutive seed methods

void run2(Foo f)
{

f.bar(); // a method cluster
System.out.println(‘‘Hello World’’);
f.foobar();

}

Listing 3.2: A method cluster with non-consecutive seed methods

Before we elaborate on the detailed implementation of each stage, we define a number

of key terms:

Definition 1: Seed method A seed method is a method that is called multiple

times in different method declaration bodies and is identified as crosscutting.

Definition 2: Method cluster A method cluster consists of multiple method invo-

cation statements that invoke the seed methods, and are located within the same block The

reason for considering only method invocation statements within the same block is that it is

the simplest form of multiple statement execution that we can consider as “crosscutting”.

For example, assume that there are two seed methods, namelybar() andfoobar().

In the declaration of methodrun() (see Listing 3.1), since both method statements of

bar() andfoobar() are invoked consecutively, these two statements constitute amethod

cluster.

Two seed method statements may form a method cluster even if they are not consecu-

tive, as long as they are syntactically located in the same block.

However, the method statements ofbar() andfoobar() in Listing 3.3 are not con-

sidered a method cluster, because the statements are not located inside the same block.

22

3.1. Crosscuting concern assessment and extraction

void run3(Foo f)
{

f.bar(); // a method cluster
if (f.toString() != null)
{

f.foobar();
}

}

Listing 3.3: A method that contains seed method statements,but does not contain a method
cluster

Definition 3: Statement reaggregation Reggregationdescribes the code trans-

formation process that rearranges the order of statements inside a Java block, such that

certain targeted statements become adjacent to each other.However, the invocation se-

quence of the target statements should be preserved.

Figure 3.1 shows an example of statement reaggregation, in methodrun(), where

the statements in the method body ofrun() need to be swapped such that the statement

that containsFoo.bar() is adjacent to the method statement ofFoo.foobar(). After

the reaggregation, the statements in the body are swapped, but the call toFoo.bar()

still precedes to the call toFoo.foobar() — the sequence of the execution of these two

methods remains the same after the reaggregation.

void run(Foo f)
{

f.bar();
// irrelevant code
f.foobar();

}

⇒

void run(Foo f)
{
// irrelevant code
f.bar();
f.foobar();

}

Figure 3.1: Effects of statement aggregation

23

3.1. Crosscuting concern assessment and extraction

Definition 4: Isomorphic clusters Two method clusters areisomorphicif

1. they contain the same number of statements,

2. The method invocations statements are invoked in the samesequence for both clus-

ters, and

3. For each method invocation statement in a cluster, there is a corresponding statement

in the other cluster that has the same method signature in itsmethod invocation

expression.

Listings 3.4 and 3.5 show two instances of method declaration bodies inFreemind. In

the code snippets, the method calls that are underlined represent the seed methods. In both

scenarios, each declaration contains a method cluster thatconsists ofstartTransaction,

executeAction, andendTransaction statements. Also, these three methods are invoked

in this order respectively. In this example, the clusters inboth snippets are isomorphic,

since the method signatures of the seed methods in both clusters are isomorphic. For

instance, theexecuteAction statements in both clusters are isomorphic because the iden-

tifiers of theexecuteAction method in both clusters belong to theMindMapNode type,

and each parameter of the method expects expression that returns anActionPair object

(see Section 3.3 for more details).

24

3.2. Analyzing crosscutting candidates

1
2 public void setNodeText (MindMapNode selected, String newText)
3 {
4 try
5 {
6 c.getActionFactory(). startTransaction(c.getText("edit_node"));
7 EditNodeAction editAction = c.getActionXmlFactory(). createEditNodeAction();
8 editAction .setNode(c.getNodeID (selected));
9 editAction .setText(newText);

10
11 EditNodeAction undoEditAction = c.getActionXmlFactory().createEditNodeAction();
12 undoEditAction.setNode(c.getNodeID(selected));
13 undoEditAction.setText(oldText);
14
15 c.getActionFactory(). executeAction(new ActionPair (editAction , undoEditAction));
16 c.getActionFactory(). endTransaction(c.getText("edit_node "));
17 } catch (JAXBException e) {
18 e.printStackTrace();
19 }
20 }

Listing 3.4: An instance of crosscutting method cluster inEditAction class,FreeMind

1
2 public void addLink(MindMapNode source , MindMapNode target)
3 {
4 String value = (String) getValue(NAME);
5 ActionPair actionPair = getActionPair(source ,target);
6 String value_2 = (String) getValue(NAME);
7
8 modeController.getActionFactory(). startTransaction(value);
9 modeController.getActionFactory(). executeAction(actionPair);

10 modeController.getActionFactory(). endTransaction(value_2);
11 }

Listing 3.5: An instance ofexecuteAction method statement inAddArrowLinkAction
class,FreeMind

3.2 Analyzing crosscutting candidates

To better qualify the identification ofrefactorable crosscutting concern, we define the

following criteria necessary for a concern candidate to be crosscutting and contain cross-

cutting method clusters:

1. It consists of at least two distinct method calls in separate code statements.

25

3.2. Analyzing crosscutting candidates

2. The statements are always executed in the same sequence.

3. The target statements are executed consecutively(one call is immediately followed

by another) at least at one location in the project. The presence of consecutive

statements suggests a behavior that is composed of multipleactions/method calls. If

this consecutive pattern is found in at least one location, we can be more confident

that these seed methods actually form a concern.

4. The target clusters or sequences are found in at least three distinct locations1. Al-

though a cluster can be described as “crosscutting” if it is found in more than one

instance in the source code, we believe that the presence of three distinct instances

makes a stronger case for a crosscutting concern.

Initially, we wanted to create a user-friendly approach to let programmer declare a set

of program elements as crosscutting candidates for extraction. This requirement motivated

us to built the ConcernExtractor as an extension of ConcernMapper [33] (see Figure 3.2

for a screenshot of ConcernMapper). ConcernMapper provides a lightweight approach for

concern modeling by enabling programmers to drag-and-dropprogram elements (fields or

methods) in a project into a separate view for quick referencing and navigation inside the

Eclipse IDE. Program elements that are considered as related can be dragged into an node

called “concern”. The primary objective of the ConcernMapper is to let programmers

record and keep track of program elements from different classes or files into one view to

reduce the efforts in source comprehension and navigation.

Nevertheless, some aspect-mining techniques, such as dynamic traces [4, 37], do not

provide any additional information other than suggesting some elements are related. A

“concern”, therefore, serves as the starting point for grouping seed methods. The respon-

sibility of the ConcernExtractor is to locate the call sitesof the seed methods to check if

any forms a method cluster.

ConcernExtractor uses the Java search engine in the EclipseJDT component for search-

ing the locations in the project that reference the seed methods. The Java search engine

1Our initial investigation showed that the number of refactoring crosscutting concern decreases sharply
if the criterion is higher than three.

26

3.2. Analyzing crosscutting candidates

Figure 3.2: ConcernMapper

returns the method declarations and their corresponding source files that contain calls to

seed methods. ConcernExtractor then analyzes these sourcefiles and tries to search for

method clusters from the method declaration bodies that call the seed methods.

This information provides the minimally-required scope toconstruct method clusters

in the source files. In the ConcernExtractor, two statementsconstitute amethod clusterif:

1. Both statements contain calls to the seed methods,

2. Their innermost containing blocks are the same, and

3. None of these statements contain an inner block.

(According to theJava Language Specification[15], ablock is a sequence of state-

ments, local class declarations and local variable declaration statements within braces.

27

3.3. Matching isomorphic clusters

Examples of statements that contain an inner-block includeanonymous class,if and

while statements andfor loop.)

By confining the scope to statements within the same block, wecan start exploring the

possibility of refactoring these statements into a new method (discussed in Section 3.5).

This type of refactoring is calledExtract Method[13], and the purpose of this refactoring

is to turn a snippet of code into a standalone method that can better explain its purpose. In

the context of our research, the purpose for the refactoringis to extract crosscutting clusters

into methods that share common name that can better express the intent the crosscutting

concern.

However, it is not always possible to extract any arbitrary code snippets into new meth-

ods: a snippet contained in a complex control flow structures, or snippets that have mul-

tiple return statements, will be not be considered extractable by the JDT Extract Method

refactoring. To make sure that every instance of themethod clusteris extractable, we

only consider isomorphic clusters that only contain methodinvocation statements. From a

CCC perspective, a sequential execution of multiple statements that is consistently being

invoked across different modules is the most common form of crosscutting behavior that

sufficiently justifies the method extraction.

However, our criteria allows a method cluster to contain statements that are not con-

secutive. In this case, a cluster may not be immediately extractable. In Section 3.4, we

will discuss how to resolve the interleaving between these statements throughstatement

reaggregation.

3.3 Matching isomorphic clusters

After obtaining the method clusters, the next stage in the concern extraction involves as-

sessing if any two clusters have the same behavior and belongto the same crosscutting

concern. To verify if the clusters have the same behavior, weneed to check that the state-

ments in the clusters have the same method signature (see thedefinition of isomorphic

clusters) which is done through examining the abstract syntax tree (AST) of the statements

28

3.3. Matching isomorphic clusters

in both clusters to see if the structure of the statements areequivalent in both clusters, and

therefore produce similar behaviors.

The Eclipse SDK provides anASTMatcher class to compare if two ASTs arestruc-

turally isomorphic, meaning that the AST structures are identical. However, requiring two

AST to be structurally isomorphic is too constraining for our purpose. To illustrate, we

will examine the issue with the isomorphic clusters more deeply in Listings 3.4 and 3.5.

Figures 3.3 and 3.4 show the AST structures of theexecuteAction statements in

both instances. The AST nodes from both statements are identical at the root and at the

identifier level (a.k.a. left sub-tree). However, the differences between both statements are

at the parameter of theexecuteAction.

Although both statements accept oneActionPair object, line 15 of Listing 3.4 shows

that the parameter ofexecuteAction is not an identifier, but a constructor call to an

ActionPair object, which itself contains two arguments ofEditNodeAction type. How-

ever, both statements invoke the same function and should beconsidered as belonging to

the same concern. Therefore, it requires a more liberal matching scheme such that these

two statements can be consideredisomorphicin our model. For our assessment purpose,

we relax the requirement ofisomorphicAST to only consider the root node of the AST

and the datatype of the subnodes. For instance, theexecuteActionstatements are consid-

ered isomorphic because the identifiers of the method statement belong toMindMapNode

type, and the expressions in the arguments return anActionPair object. Therefore, the

customized AST matchers only verifies that both method invocation statements have the

same method signature. This relaxed isomorphic requirement is adequate to ensure the

clusters that are isomorphic will have the same behavior, and that these clusters can be

madestructurally isomorphic(identical AST structure in the clusters) through code trans-

formation, such as by extracting all the identifier and argument expressions the statements

into local variables.

Our customized AST matcher initially selects a cluster thatcontains only consecutive

statements as the match target, such that it guarantees at least one crosscutting cluster

is extractable (sinceExtract Methodrefactoring only targets a code snippet that contains

29

3.3. Matching isomorphic clusters

Figure 3.3: AST structure of theexecuteAction statement in Listing 3.4

Figure 3.4: AST structure of theexecuteAction statement in Listing 3.5

consecutive statements). It then performs a statement-by-statement match with all other

method clusters and checks if any cluster contains a subset of statements that is isomorphic

to the original cluster. An isomorphic cluster should produce the same behavior as the

target cluster if the seed method statements are executed successively and therefore they

belong to the same crosscutting concern.

30

3.4. Statement reaggregation

3.4 Statement reaggregation

Before the clusters are extracted, we need to perform an intermediate code transformation

to ensure that the statements in the clusters are consecutive. TheExtract Methodrefactor-

ing turns a continuous fragment of code into a new method. However, not all statements

in the same isomorphic cluster set are necessarily contiguous. The statements of a target

cluster may be interleaved with unrelated statements, suchas logging calls or local variable

declaration code. (In fact, it is often a justified coding practice to declare local variables

just before they are referenced to reduce theirspan[10].)

Statement reaggregationinvolve rearranging the execution order of the statements in

the enclosing block of the target cluster, such that all of its non-consecutive statements

are moved to a location adjacent to the last target statementin the cluster. Listing 3.6

shows the effect of reaggregation on the method cluster in theEditAction class found in

Listing 3.4. After reaggregation, all of the seed method statements in the cluster become

consecutive in the declaring method body.

public void setNodeText (MindMapNode selected, String newText) {

String oldText = selected.toString ();
try
{

EditNodeAction editAction = c.getActionXmlFactory(). createEditNodeAction();
editAction .setNode(c.getNodeID (selected));
editAction .setText(newText);
EditNodeAction undoEditAction = c.getActionXmlFactory().createEditNodeAction();
undoEditAction.setNode(c.getNodeID(selected));
undoEditAction.setText(oldText);

// Reaggregated snippet
c.getActionFactory(). startTransaction(c.getText("edit_node"));
c.getActionFactory(). executeAction(new ActionPair (editAction , undoEditAction));
c.getActionFactory(). endTransaction(c.getText("edit_node "));

}
catch (JAXBException e) {

e.printStackTrace();
}

}

Listing 3.6: Reaggregated snippet of the example in Listing3.4

31

3.4. Statement reaggregation

In general, we consider it “safe” to push a particular statement in a method body further

in the execution order (i.e. cut a particular line, and pasteit somewhere after its previous

position in the same declaration), only if it is syntactically correct, and satisfies either of

these conditions:

1. It does not write to any variable that are referenced afterits previous position , or;

2. The variables that it writes to are not read by any statements that precedeits new

position.

If either condition is not met, then it is almost certain thatfor the same input, the

output of the function and the internal state of the system will be different from the un-

modified version of the method. Since the order of which the variables are read or written

is disrupted, the previous assumptions of the logic of control flow could become invalid,

and we cannot assume that the modified code replicates the same behavior as the unmod-

ified version. To prevent the unintended change in behavior due to reaggregation, our

extraction technique would perform a flow analysis on the clusters that contain isomor-

phic but non-consecutive statements, such that reaggregation is only “safe” if the targeted

statement(stmti) and all the interleaving statements (inti) between the target statements and

the final statement of this isomorphic set (stmtf) do notinterfere:

readSet(stmti) 6= writeSet(inti)

writeSet(stmti) 6= readSet(inti)

writeSet(stmti) 6= writeSet(inti)

Nevertheless, even if the flow analysis confirms there is no interference, it does not

guarantee the reaggregation is truly safe: the targeted statements maybe contain subtle

side-effects that change the states of some other variablesnot in the scope of the cluster,

and rearranging the execution order of these statement maybe create unintended behavior.

However, a full-scale side-effect analysis on the affectedstatement incurs excessive run-

time penalty and produces an over-conservative result, which contradicts the spirit of our

32

3.5. Extracting isomorphic code snippets

lightweight approach. Therefore, we compromise for this deficiency by explicitly prompt-

ing a user for enabling reaggregation for each non-consecutive target cluster deemed reag-

gregable by flow-analysis. It is up to the programmer to decide if reaggregation is suitable

in the context of each non-consecutive cluster.

3.5 Extracting isomorphic code snippets

Reaggregation solves the interleaving problem in non-consecutive clusters and all iso-

morphic clusters that are subject to extraction should now only only contain consecutive

statements. For the extraction phase, we reuse the Eclipse JDT refactoring components

that are available for extracting the clusters, rather thanto rewrite our own refactorings.

However, the Extract Method refactoring implementation inJDT is insufficient be-

cause it often does not recognize two code fragments as duplicate when the behavior of

the two fragments are essentially equivalent. For instance, although the snippets in List-

ings 3.4 and 3.5 are essentially equivalent in behavior, theextracted forms of both snippets

would not be identical (see Listings 3.7 and 3.8 for the extracted form of the method by di-

rectly applying the JDTExtract Methodrefactoring to the snippets). Moreover, ifExtract

Methodrefactoring is directly applied to the method clusters, we cannot guarantee that the

signature of the extracted methods are all identical. This outcome is undesirable for aspect

refactoring purpose, because it is not always possible to create a singlepointcut expression

that intercepts the extracted methods and captureall of their arguments. Without knowing

all the arguments that are passed to the extracted method, itis impossible to refactor the

code from the extracted methods to an advice.

public void runTransaction(Action doAction, Action undoAction)
{

c.getActionFactory(). startTransaction(c.getText("Edit_note ");
c.getActionFactory(). executeAction(new ActionPair (doAction, undoAction));
c.getActionFactory(). endTransaction(c.getText("Edit_note");}

}

Listing 3.7: The extracted form of the method cluster in Listing 3.6

33

3.5. Extracting isomorphic code snippets

public void runTransaction(string value1 , Action myAction, string value2)
{

modeController.getActionFactory(). startTransaction(value1);
modeController.getActionFactory(). executeAction(myAction);
modeController.getActionFactory(). endTransaction(value2);}

}

Listing 3.8: The extracted form of the method cluster in Listing 3.5

O’Connor et al. [31] investigated the internal implementation of JDT and identified

cases when the JDT Extract Method refactoring will not recognize potentially duplicate

code in the same source file. One of the findings in the study is that the JDT Extract

Method refactoring often does not consider two subnodes in two different ASTs that are

of the same scope and the same type identical. The problem is that an AST node that

belongs to theSimpleName type, (which represents a local variable or a field in the JDT

terminology), only matches with anotherSimpleType instance, but not with an expres-

sion that returns the same datatype. This explains why JDT refactoring does not match

the otherwise identical code snippets in 3.7 and 3.8. To solve this inadequacy, the paper

describes a sequence of micro-refactorings that converts the selected code into a normal-

ized form, such that the JDT Extract Method refactoring algorithm will considered two

matching snippets as equivalent.

Inspired by their approach, ConcernExtractor implements asimilar refactoring strat-

egy that normalizes the targeted crosscutting snippets. A normalized statement in a method

cluster contains one method invocation expression with an identifier as the instance, and

local variable(s) as its argument(s). Through normalization, each statement in a cluster

becomesstructurally isomorphicto its counterpart in the other cluster. The JDT Extract

Method algorithm will recognize that the isomorphic snippets as duplicate, and the ex-

tracted forms of these snippets will have a common method name and parameters.

34

3.5. Extracting isomorphic code snippets

3.5.1 Extracting instance and arguments into locals

Recall from the previous section that our isomorphic AST matcher only checks the data-

type of the instance and arguments of a seed method, regardless of whether it is an expres-

sion or a variable. In order to normalize the statement, ConcernExtractor needs to convert

the AST nodes that represent the instance and arguments of the seed method into local

variable using theExtract Local Variablerefactoring. TheExtract Local Variable2 refac-

toring takes an expression that is being used directly and assigns it to a local variable first

and this variable is then used where the expression used to be, and is also implemented in

the Eclipse JDT package. Local variable extraction does notchange the semantics of the

targeted clusters when it is performed on expressions that only need to be evaluated once

in the block that contains the cluster. After the extraction, all the nodes that represent the

instances and the arguments of the seed methods will be of type SimpleType. The JDT

Extract Method refactoring can then recognize the targetedcrosscutting clusters that are

in the same source file as duplicates. Also, the extracted forms of the crosscutting clusters

are guaranteed to have the same parameters.

3.5.2 Rearranging the extracted local declarations

One side effect ofExtract Local Variablerefactoring is that the local variables are declared

just above the statement where it get extracted from. Listing 3.9 shows the result of the

Extract Local Variablerefactoring when it is applied automatically by the IDE to the argu-

ments of the seed methods inEditAction.setNodeText. After the refactoring, the seed

methods invocation are interleaved with the local variabledeclarations, and the statements

of the method cluster are not invoked consecutively anymore. Since the statements are not

clustered, they cannot be extracted in a new method as one snippet.

To deal with this problem, O’Connor et al. create the Code Motion Refactoring, which

2See http://www.ibm.com/developerworks/library/os-ecref/.

35

3.5. Extracting isomorphic code snippets

public void setNodeText (MindMapNode selected, String newText)
{

String oldText = selected.toString ();
try
{

EditNodeAction editAction = c.getActionXmlFactory(). createEditNodeAction();
EditAction .setNode(c.getNodeID (selected));
EditAction .setText(newText);
EditNodeAction undoEditAction = c.getActionXmlFactory().createEditNodeAction();
undoEditAction.setNode(c.getNodeID(selected));
undoEditAction.setText(oldText);
String tmp = c.getText("edit_node");
ActionFactory factory = c.getActionFactory();
factory.startTransaction(tmp);
ActionPair action = new ActionPair (EditAction , undoEditAction);
ActionFactory factory_2 = c.getActionFactory();
factory_2 .getActionFactory().executeAction(action);
String tmp_2 = c.getText("edit_node");
ActionFactory factory_3 = c.getActionFactory();
factory_3 .getActionFactory().endTransaction(tmp_2);

}
catch (JAXBException e) {

e.printStackTrace();
}

}

Listing 3.9: Applying Extract Local Variables on the arguments of the seed methods.

moves a specified snippet of code to a different location. However, it is conceptually equiv-

alent to the Statement Reaggregation in ConcernExtractor,since both transformations at-

tempt to rearrange the execution order of the statements. Inthis case, we are concerned

only with the movement of variable declaration statements;specifically, those statements

just created by the JDT Extract Local Variable refactoring.Our aim is to move the local

declaration statements directly above the statements to beextracted, so ensure that the ex-

traction target again forms a cluster of consecutive statements (see Listing 3.10). Since

the local variables are newly introduced by the Extract Local Refactoring in the previous

stage, it is not necessary to use flow analysis to verify the correctness of the reaggregation.

36

3.5. Extracting isomorphic code snippets

public void setNodeText (MindMapNode selected, String newText)
{

String oldText = selected.toString ();
try
{

EditNodeAction editAction = c.getActionXmlFactory(). createEditNodeAction();
EditAction .setNode(c.getNodeID (selected));
EditAction .setText(newText);
EditNodeAction undoEditAction = c.getActionXmlFactory().createEditNodeAction();
undoEditAction.setNode(c.getNodeID(selected));
undoEditAction.setText(oldText);

String tmp = c.getText("edit_node");
ActionFactory factory = c.getActionFactory();
ActionPair action = new ActionPair (EditAction , undoEditAction);
ActionFactory factory_2 = c.getActionFactory();
String tmp_2 = c.getText("edit_node");
ActionFactory factory_3 = c.getActionFactory();

factory.startTransaction(tmp);
factory_2 .getActionFactory().executeAction(action);
factory_3 .getActionFactory().endTransaction(tmp_2);

} catch (JAXBException e) {
e.printStackTrace();

}
}

Listing 3.10: Reaggregating the temporary local declarations.

3.5.3 Extracting isomorphic crosscutting clusters

After the Statement Reaggregation is performed, the JDT Extract Method refactoring API

is called on each identified isomorphic cluster. A user is prompted once to insert the name

of the extracted method. After inserting a name, the ExtractMethod refactoring is auto-

matically applied to all of the targeted clusters with the same method name. The Extract

Method refactoring API also handles all the precondition checks that ensure the syntactic

correctness of theMethod Extractprocess. At the end of the this stage, all isomorphic

clusters that were subjected for extraction are extracted into standalone methods that share

a common method name and parameters.

37

Chapter 4

Quantitative Evaluation

Our concern extraction technique is intended to complementaspect-mining technology

by identifying crosscutting candidates that are refactorable. Furthermore, it mitigates the

difficulties of refactoring to aspects by extracting these crosscutting clusters into methods

with a common method signature. It enables aspect-refactoring tools to produce intuitive

and understandable pointcuts for the aspects. However, to support our claims, we evaluate

our concern extraction approach to answer the following questions.

• Does concern extraction help distinguish refactorable crosscutting concerns from

the results aspect-mining technique?To answer this question, we apply aspect-

mining to a software system and collect program elements that are considered cross-

cutting by the aspect-mining tool, and applying the ConcernExtractor to this data to

obtain the number of refactorable crosscutting method clusters. Using the results,

we can evaluate the percentage of the concerns that are considered refactorable over

of the mined results.

• Is flow analysis adequate for determining if non-consecutive crosscutting code is ex-

tractable?For this purpose we collect the number of non-consecutive clusters from

the identified crosscutting concerns, and apply flow analysis to these clusters to de-

termine if they can be reaggregated. We then assess the correctness of flow analysis

38

4.1. Experimental Environment

by manually checking if the statement reaggregation would produce undesired side

effects.

• Is the concern extraction necessary for localizing crosscutting clusters such that

they can be refactored to an aspect, or does direct aspect refactoring suffice in most

scenario? In this section we manually check the position of the each crosscutting

cluster in its containing block, and evaluate the improvement of the number of clus-

ters that become refactorable to aspect due to cluster extraction, over the clusters

that can be directly refactored by simple pointcut expression.

4.1 Experimental Environment

Our evaluation is preceded by an aspect-mining phase which collects crosscutting program

elements to serve as the candidate for concern extraction.

We selected FINT1 as the aspect-mining engine to collect to the initial data for our

evaluation, since it only requires the source code of targetsystems as inputs and is most

suitable for our needs. FINT is an aspect-mining research tool that provides a common

framework for mining crosscutting concerns using various different techniques from the

Eclipse IDE environment [26]. In particular, FINT containstwo aspect mining techniques

that are useful for our evaluation. FINT implements thefan-in analysis (see Section 2.1),

which collects and analyzes the number of different method invocations in the system.

Furthermore, thegrouped callsanalysis extends the basicfan-in analysis, by collecting

the fan-in of a groupof method calls — it applies formal concept analysis [23] to atar-

get systems and finds groups of callees (attributes) that are consistently invoked together

by the same callers (objects). Therefore, it requires at least two method calls that are

consistently called together to form a crosscutting concern. Compare to the normalfan-

in analysis, which only counts the number of individual methodcall sites, the results of

grouped calls analysis is more refined.

1See http://swerl.tudelft.nl/bin/view/AMR/FINT.

39

4.2. Evaluation procedure and variables

The running time of concept analysis isO(n2), n being the total number of method

invocations in the system. In order to collect adequate datawithin a reasonable time con-

straint (within 24 hrs in our evaluation), we limit the size of target systems to 60∼85

KLOC. We used a Linux desktop workstation with a Pentium 4 - 3.40 GHz processor and

3 GB memory as the default configuration of evaluation.

In our initial evaluation we selected 5 open sources projects as the target systems.

Table 4.1 contains an overview of the five target systems thatwe used for the evaluation.

Table 4.1: List of target systems
System Version kLOC Total no. of grouped calls
JBossAOP 4.0 66 924
jEdit 4.3 63 1404
FreeMind 0.8.0 65 241
Ant 1.7 86 1882
ArtOfIllusion 2.4.1 79 3718

4.2 Evaluation procedure and variables

In our evaluation, we only consider groups with a common fan-in of at least 10: a group

must contains at leasttwo seed methods that share a caller at minimumtendifferent loca-

tions in the system. In our evaluation, we turned off the datafilter in FINT, which would

otherwise ignore the following groups of candidates:

• Candidates that contain methods of the JUnit library (a.k.a. JUnit testcases);

• Candidates that contain Java collection utilities such assize(), iterator();

• The callees in a candidate group are always called in a singleJava statement.

• Candidates thatonly contain callees with the same prefixes, such asget-, read- or

write- .

40

4.3. Question 1: Identifying refactorable crosscutting code

We disabled the filter to collect as many candidates as possible, and for our evalution,

use this value as the total number of grouped calls/concern candidates in the system. How-

ever, for practical purpose, any candidates that belong to the groups mentioned above are

not considered for extraction. We developed a customized version of FINT that exports the

results from the grouped calls analysis to ConcernMapper. Each group is converted into a

“concern node” (see Figure 3.2), and its seed methods becomethe concern elements.

During the evaluation, we evaluated each concern candidatefrom the ConcernMapper

using the ConcernExtractor and obtained the distribution of the crosscutting clusters. Since

our objective is to find “crosscutting” methods, and our understanding of “crosscutting”

implies that there should be more than two instances of the crosscutting clusters in the

system, we only considered concerns that contain at least 3 isomorphic clusters as a valid

result. We also did not considers clusters that contain onlyassignment statements, since

they will not be extractable to a method.

4.3 Question 1: Identifying refactorable crosscutting cod e

Criterion: Effectiveness of ConcernExtractor to identifyrefactorable crosscutting code.

Using the data collected from grouped calls analysis, we applied ConcernExtractor to

compute the number of refactorable clusters. We break down the distribution of the refac-

torable concerns in evaluation into the following categories in Table 4.2:

Total no. of grouped calls from FINT: the number describes the number of grouped

calls obtained from FINT, where each group consists of multiple common methods that

are invoked together in the same method body more than once.

Cluster groups with ≥ 3 statements: the number of different grouped calls that is

considered refactorable by the ConcernExtractor. Each group must consist of at least three

methods.

41

4.3. Question 1: Identifying refactorable crosscutting code

Cluster groups with 2 statements: the number of different grouped calls that is con-

sidered refactorable by the ConcernExtractor. Each group must consist of only twometh-

ods. Cluster groups with more than three methods are excluded from this set.

∑ Refactorable cluster groups: the sum of refactorable clusters.

% of refactable cluster groups: ∑ Re f actorable cluster groups
Number o f grouped calls f rom FINT

Table 4.2: Summary of crosscutting cluster distribution inthe target systems
Target Size of Total no. of Cluster Cluster ∑ %
System system grouped calls groups with groups with refactorable refactorable

kLOC from FINT ≥3 statements 2 statements cluster groups cluster groups
jEdit 63 1404 2 2 4 0.2%
FreeMind 65 241 2 1 3 1.2%
JBossAOP 66 924 2 3 5 0.5%
ArtOfIllusion 79 3718 2 0 2 0.02 %
Ant 86 1882 2 8 10 0.5%

Average 72 1633 2 3 5 0.3%

We made several observations from the result of the Table 4.2. The first observation is

that the number of refactorable cluster groups are scarce ineach system, compared with

the quantity of concern candidates in each system. This result raises some doubts about

the validity and usefulness of our extraction and refactoring technique. First of all, it

suggests that the existence of refactorable crosscutting concerns are not prevalent in the

target systems, which puts the necessity of the crosscutting concern extraction into doubt.

Secondly, the result can alternatively suggest that our criterion for a crosscutting cluster is

too conservative, which may miss some opportunities for refactoring (i.e. blocks of code

that are repeatedly called).

Nevertheless, we emphasize that our goal is to discoverrefactorableconcerns, and

that multiple sequential method invocations within a blockconstitutes the simplest form

of code snippet that we consider as extractable. If this criteria is weakened, then even if we

can identify code snippets that belong to the same crosscutting concern, it will be difficult

to verify if they can always be extracted to a standalone method.

42

4.4. Question 2: Flow Analysis

The results collected from grouped calls also convince us that the original aspect-

mining results are full of noise. For instance, the aspect-mining result of GUI-based ap-

plication would contain a large amount of grouped calls thatbelong to the Java Swing

library. Moreover, the FINT’s grouped calls analysis uses acoarse criteria to relate two

different method invocations: two method invocations are considered related as long as

they are called inside the same method definition, regardless of the sequence or the con-

text of the calls. Therefore, systems that contain large methods (which is considered a

bad coding practice) will produce a larger quantity of grouped calls than systems that are

well refactored and structured. The fact that all of our target systems (which have similar

sizes) contain a consistent number of refactorable clustergroups implies the existence of

such crosscutting concern in a system with reasonable size.The ConcernExtractor allows

a user to reduce the original aspect-mining data to a set of methods that are closely related

due to the proximity of their locations.

As another interesting observation, the number of actual refactorable concerns in each

system is not proportional to the number of grouped calls. Instead, the value seems to

correlate to the size of the system: the percentage of refactorable cluster groups remains

consistent for the five target systems, which have similar code size.

4.4 Question 2: Flow Analysis

Criterion: Safety from side effects when ConcernExtractorsuggests statement reaggrega-

tion

One of the main objectives of ConcernExtractor is to be able to determine if a crosscutting

concern can be extracted into a standalone method. The JDTMethod Extractrefactoring

can only be applied to a series of consecutive code statements. However, we need to also

consider method clusters that belong to a refactorable crosscutting concern, but are inter-

leaved with other statements. In order to extract these concerns with interleaved statements

(hereby referred to asnon-consecutive clusters), the ConcernExtractor uses flow analysis

43

4.4. Question 2: Flow Analysis

to verify if the executed order of the code statement can be reordered (reaggregated), and

reorder the statements that belong to the crosscutting concern so that they can be extracted.

Since it is impractical to perform full static analysis for verifying if the state of each

object would change during reaggregation, we only apply flowanalysis in the scope of the

cluster. We verify that the objects being called, passed, orreturned in the statement that

we want to reorder, are not being called or passed in the subsequent statements. However,

we do not recursively inspect the internals of the methods tocheck for state changes in

passed objects. This use of flow analysis exposes a potentialdeficiency, that we could not

automatically verify if the reaggregation can produce undesired side-effects.

To the evaluate the effectiveness and the accuracy of statement reaggregation, we apply

flow analysis to each cluster group and categorize the clusters in each cluster group into

the following categories:

Consecutive clusters: Clusters where seed methods are executed consecutively.

Non-consecutive clusters: Clusters where the seed methods statements are not con-

tiguous.

Reaggregable clusters: Non-consecutive clusters; however, the flow analysis suggests

that the seed methods statements can be safelyreaggregatedwithout causing side-effects.

Non-reaggregable clusters: Non-consecutive clusters with statements that cannot be

reaggregated safely.

False positive: Non-consecutive clusters that are determined by our flow analysis as

reaggregable; however, reordering the statements would introduce unintended behaviour

or errors, therefore is not desirable to reaggregate the statements.

Tables 4.3 and 4.4 describe the data of our analysis for clusters groups that contain

more than two and only two seed method statements, respectively. We shows the number

of consecutive clusters alongside the non-consecutive clusters to emphasize the frequency

of the non-consecutive clusters in a cluster group.

From the results of the evaluation, we made the following observations.

44

4.4. Question 2: Flow Analysis

Table 4.3: List of clusters that contain more than or equal to3 seed methods

Target
Concern Methodsa Consecutive Non-Consecutive Flow Analysis

System Clusters Clusters Reaggregableb Non-Reaggregable False Positive

JBossAOP
make()

9 2 2 0 2setmodifier()
addMethod()

JBossAOP
make()

17 1 1 0 0setmodifier()
addMethod()

jEdit
setLocationRelativeTo()

8 1 1 0 1pack()
setVisible()

jEdit
setLocationRelativeTo()

2 1 1 0 1pack()
setVisible()

Freemind
startTransaction()

29 3 3 0 0executionAction()
endTransaction()

Freemind

startElement()

4 0 0 0 0

childAsURIs()
endNamespaceDecls()
childAsAttributes()

endAttributes()
childAsElementBody()

endElement()

ArtOfIllusion
getObject()

1 5 2 0 0setVertexPosition()
objectChanges()()

ArtOfIllusion
setVertexPosition()

17 0 0 0 0updateImage()
objectChanges()()

Ant
CommandLine.ctor()

26 0 0 0 0setExecutable()
setValue()()

Ant

Execute.ctor()

3 2 2 0 0
setAntRun()

setCommandLine()()
setWorkingDirectory()()

Ant

Execute.ctor()

3 0 0 0 0
setAntRun()

setCommandLine()()
setWorkingDirectory()()

aSince we only include the method name in the table, there are concerns that seem to be identical. In
fact, the signatures of these methods are all different.

bTotal number of clusters flaggedreaggregableby the ConcernExtractor

45

4.4. Question 2: Flow Analysis

Table 4.4: List of clusters that contain only 2 seed methods

Target
Concern Methodsa Consecutive Non-Consecutive Flow Analysis

System Clusters Clusters Reaggregableb Non-Reaggregable False Positive

JBossAOP
make()

16 1 1 0 1
addMethod()

JBossAOP
make()

8 0 0 0 0
addMethod()

JBossAOP
setModifiers()

21 0 0 0 0
addField()

JBossAOP
setModifiers()

6 0 0 0 0
addField()

jEdit
openNodeScope()

38 0 0 0 0
jjtreeOpenNodeScope()

jEdit
openNodeScope()

13 0 0 0 0
jjtreeOpenNodeScope()

jEdit
closeNodeScope()

51 0 0 0 0
jjtreeCloseNodeScope()

FreeMind
text()

148 0 0 0 0
childAsAttributes()

ArtOfIllusion
updateImage()

17 0 0 0 0
objectChanged()

ArtOfIllusion
updateImage()

11 0 0 0 0
objectChanged()

Ant
setValue()

1 8 8 0 0
setCommandLine()

Ant
setValue()

10 0 0 0 0
setWorkingDirectory()

Ant
setCommandLine()

10 0 0 0 0
setWorkingDirectory()

Ant
setCommandLine()

7 0 0 0 0
log()

Ant
createTempFile()

4 0 0 0 0
deleteOnExit()

Ant
createTempFile()

4 0 0 0 0
deleteOnExit()

Ant
createTempFile()

2 0 0 0 0
deleteOnExit()

aSince we only include the method name in the table, there are concerns that seem to be identical. In
fact, the signatures of these methods are all different.

bTotal number of clusters flaggedreaggregableby the ConcernExtractor

46

4.4. Question 2: Flow Analysis

• The number of non-consecutive clusters is generally much less than the consecutive

clusters within a cluster group, with the exception of cluster groups that contain only

one consecutive cluster.

• Most non-consecutive clusters are considered reaggregable by flow analysis. How-

ever, flow analysis should not be considered as ’safe’ due to its low but significant

inaccuracy.

• For a group of method clusters that are considered isomorphic at least one of the

clusters must be consecutive, otherwise it is not feasible to determine if the cross-

cutting code is a consistent behavior concern, and if it makes sense to extract it to

aspect. However, we observed from the results, there are many cluster groups that

contain only one consecutive cluster. The prevalence of this type of cluster group

suggests that:

1. The cluster that contains consecutive crosscutting codemay be a code defect

or,

2. The group is incorrectly labelled as crosscutting (falsepositive) when the meth-

ods in the cluster do not belong to the same crosscutting concern.

• We noticed that in all cases where reaggregation introducesunexpected side-effects,

the concern group only contains 1 or 2 non-consecutive clusters compared with an

overwhelming ratio of consecutive clusters in that clustergroup. This property in-

dicates that the particular non-consecutive cluster is a special case of that concern,

when the crosscutting statements need to be interleaved with other method calls in

the execution.

From the observations stated above, we conclude that there are several factors which

diminish the percentage accuracy of flow analysis in our evaluation. However, given the

scarcity of non-consecutive clusters within a concern group, the scalability issue of the

analysis may not be as critical as we initially assumed and a bytecode-based side effect

47

4.5. Question 3: Concern extraction

Table 4.5: Summary of flow analysis results
Cluster Type % Reaggregable clusters

Non−consecutive clusters % Mis− f lagged clusters by FA
Reaggregable clusters

Clusters with≥3 statements 80 % 33 %

Clusters with 2 statements 100 % 16 %

analysis using tools such as the Soot Framework2 can be substituted for better accuracy.

Moreover, aspect refactoring tools generally requires a user to manually determine if a

candidate crosscutting concern should be refactored to aspect. Thus, user intervention is

unavoidable in most cases. The ConcernExtractor reduces the overhead in this process by

mapping out crosscutting code and refining the scope of intervention by the user.

4.5 Question 3: Concern extraction

Criterion: the necessity of concern extraction to isolate the identified crosscutting clusters.

The ConcernExtractor contains an annotated source code viewer that enables a user to

quickly browse to the location of the cluster in the source file. Hence, the user can easily

navigate to the method and the control block that contains the target cluster, and check if

the cluster is located at thestart/end of the method body, or if it is nested by atry block,

afor loop, or other control structure

With the help of the ConcernExtractor, we can estimate the difficulty in directly refac-

toring a segment of code into aspect, based on the control flowand the structures of its

surrounding code. The basic principle of refactoring is “altering internal structure (of

existing code) without changing its external behavior” [13]. Already, we have seen that

aspect refactoring sometimes requires loosening this behavioral preservation criteria in or-

der to refactor the crosscutting concern into aspect (see section 3.4, [16]). However, we

2See http://www.sable.mcgill.ca/soot.

48

4.5. Question 3: Concern extraction

(or the developer) should expect that the control flow of the execution before and after the

refactoring to remain largely the same — the aspect code should be woven at the same

location before it was refactored.

On the other hand, a refactoring that preserves the same control flow is often not pos-

sible, due to the limitations in the pointcut languages. Forinstance, AspectJ only provides

pointcut designators that intercept join points at certainplaces in the control flow, such as

the start of a method call, or before an instance variable is accessed (to see the complete

list of pointcut descriptors, please refer to the AspectJ Programming Guide3).

Our concern extraction approach circumvents this problem by creating new methods

for isolating the crosscutting code. The extracted methodsthat contain the isomorphic

clusters will have a common method signature. To extract thecrosscutting clusters into

a single aspect, a user can create a pointcut expression thatintercepts the join points of

these methods, and then consolidate the concern to aspect byextracting the content of

the methods intoone single advice. In this case, the extracted methods are emptyand

merely placeholders for the pointcut. During compilation (or run-time), the aspect com-

piler (weaver) can weave the crosscutting code in the adviceback at its invocation location,

and replicate the pre-extraction behavior.

However, does this approach offer a substantial increase inrefactoring opportunities?

Moreover, out of the refactorable crosscutting clusters discovered by the ConcernExtrac-

tor, how many clusters do not need the extraction to a standalone method and can be

directly refactored into aspect? In this section, we attempt to answer this question by

assessing the numbers of clusters in a refactorable crosscutting concern that aredirectly

refactorable: clusters that can be immediately refactored into an aspectusing a simple

pointcut expression. To help us to obtain this value, we devise an equation based on the

location of a crosscutting method cluster relative to its containing body.

3See http://www.eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html.

49

4.5. Question 3: Concern extraction

No. of refactorable

clusters
=

No. of clusters

at the start/end

of method body

−

{

No. of clusters

insidetry block

⋃ No. of clusters

inside a loop block

⋃ No. of clusters inside

conditional block

}

Constraint 1: Only method clusters that are located at the beginning or the end of a

method can be considered as a candidate of a concern that is directly refactorable.

In general, code snippets that are located at the beginning or the end of a method

declaration can be extracted into aspects using a simple pointcut expression that consists a

call or execution pointcut designator. However, if the cluster is located in the middle of

the containing method body, creating a pointcut expressionthat intercepts the join points

before or after the cluster involves at least two pointuct designators: a control flow-based

designator (i.e.cflow or cflowbelow) that locates the containing method body, and a

method call designator (i.e.call or execution) using the statement above or below the

cluster. This type of pointcuts must be carefully crafted toavoid unintended side effects,

and a side-effects-proof pointcut must account for all the variations, which adds additional

complexity to the pointcut expression. Therefore, we do notconsider the cluster located

in the middle of its containing method body to be directly refactorable.

Constraint 2: Clusters in atry block should not be refactored.

To correctly refactor a segment of code inside atry block to anadvicein the aspect

class requires that:

1. The advice catches any exceptions the statements in the target code segment may

throw, but this approaches implies that thecatch block must also be refactored into

the aspect; or

2. The advice re-throws any exception thrown by the code segment. However, since

the aspect code will be called before of after the actual method code(depending on

the type of advice used), any exception thrown by the aspect code will not be caught

50

4.5. Question 3: Concern extraction

by anytry blocks within the method body. The enclosing method will need to

declare in its signature any exception the aspect may throw;otherwise it will cause

a compile-time/run-time error. Adding new exceptions to a new method changes the

control flow of the system and therefore is not an acceptable refactoring.

Constraint 3: Clusters inside a loop are not considered refactorable.

AspectJ does not have support for a pointcut designator thatpicks out join points at a

for/while loop clause.

Constraint 4: Clusters inside a conditional statement(e.g.if/else/switch) are also

not considered refactorable.

Although AspectJ provides anif conditionalpointcut designator, it can only be used

as a conditional for another join point (i.e. to evaluate if ajoin point should be weaved

based on another conditional expression), but it cannot be used to intercept the join point

at anif conditional statement.)

In the previous sections, we identified groups ofrefactorable crosscutting clustersus-

ing the ConcernExtractor. In this section, for each group ofrefactorable crosscutting clus-

ters, we manually inspect the position of each cluster relative to its containing block and

method body, to determine whether it is:

a. Located the the beginning or the end of the method body, and

b. Contained within a loop, or anif statement.

Using the formula we described above, we can determine the number ofdirectly refac-

torableclusters from the results. In our evaluation, we limit the target to only groups of

clusters that contain at leastthree statements.

Table 4.6 depicts a summary of the positions of method clusters relative to each of

their declaring method. The concerns in the table are essentially identical to the concerns

51

4.5. Question 3: Concern extraction

Table 4.6: Summary of positions of method clusters relativeto their declaring method
bodies

Clusters at Clusters Clusters Clusters Directly Extractable
System Concern begin/endof insidetry insidefor insideif refactorable clusters

method body block block block clusters

JBossAOP Add Method I 17 12 0 1 4 26

JBossAOP Add Method II 9 0 0 0 9 9

ArtOfIllusion Reset Vertex I 3 0 0 0 3 9

ArtOfIllusion Reset Vertex II 3 0 0 0 3 6

Ant Run Ant Command I 5 5 0 0 0 5

Ant Run Ant Command II 3 3 0 0 0 3

FreeMind XML Serialize 4 0 0 4 0 4

FreeMind Transaction 32 22 0 1 9 32

that were listed in Table 4.3. However, for some of the concerns, the name of their seed

methods overlap. These methods only differ in the number andthe types of the parameters.

In order to distinguish between different concerns that have the same functionalities, we

abbreviate the labels of the concern and denote the concernswith a number (i.e. I & II) to

show the difference.

From the result, we can observe that the number ofextractableclusters are substan-

tially more than the number of clusters that are directly refactorable. However, the result

also provides additional insights about the adequacy of AspectJ as the target aspect lan-

guage for refactoring.

One of the original expectations from the results is that thenumber of clusters located

at the start or the end of a method is scant, compared to the number that are in the middle

of the method body. Nevertheless, among the refactoring crosscutting concerns that serve

as the subject of this evaluation, most of them contains a significant proportion (> 50%)

of method clusters that are located at the start or end of method bodies. Although the

results do not imply that AspectJ provides adequate pointcut designators for refactoring, it

suggests that the beginning or the end of a method is a common location for crosscutting

concerns, and these major refactoring opportunities can becaptured using simple pointcut

provided by AspectJ.

52

4.5. Question 3: Concern extraction

Also, for a system with significant size, code for exception handling should be preva-

lent, and it will be common to find method code that is totally covered by atry block.

We observed some instances of a largetry block in the clusters from JBossAOP and Free-

Mind, and the evaluation shows that it is the most significantblock pattern that prevents the

method clusters from being directly refactorable. One common exception handler scenario

that we found in the target systems involves a candidate cluster located at the beginning of

a hugetry block that encapsulates the rest of the method code. Theexception handling

pattern [22] is an AspectJ refactoring that is capable of completely extracting the exception

handling component from a method body into an aspect. One area for future work may be

the evaluation of the applicability of such patterns for recovering more opportunities for

refactoring the crosscutting clusters inside atry block.

53

Chapter 5

Conclusions

We proposed a technique for bridging the gap between aspect-mining and AO refactor-

ing, and implemented our approach in a tool called ConcernExtractor. ConcernExtractor is

capable of assessing the results of an aspect-mining tool toidentify the refactorable cross-

cutting concerns in the system. It also supports applying a series of code transformations

to extract these crosscutting code segments into new standalone methods using a common

method signature. As a result, the inherent regularity of the crosscutting is captured explic-

itly in the structure of the code, which can be leveraged to extend the code with additional

aspects.

We evaluated our approach by applying it to five medium-size open-source systems.

From our evaluation, we found that the number of crosscutting instances that are con-

sidered refactorable by ConcernExtractor are scarce, compared to the size of the target

systems. We conclude that AOP refactoring has limited potential for improving the mod-

ularity in an existing system that lacks initial considerations for crosscutting concerns.

In conclusion, we believe the major contribution of this research is to provide mech-

anism to filter the results from aspect-mining, and to identify the program elements that

truly constitute a crosscutting concern that can be refactored into aspect. For existing sys-

tems, we believe that it is essential for a programmer to be aware of the existence of such

crosscutting concerns, regardless of the necessity of refactoring to aspect.

54

We developed the ConcernExtractor because current aspect mining techniques do not

always produce results that we can intuitively recognize asa crosscutting concern, and

these candidates do not equate to code fragments that are refactorable to aspects. To ensure

a minimal set of requirement for refactorable concerns, we reduce the refactoring candi-

dates to a small set of constructs in the Java language (i.e. method invocation statements)

that can be mapped to AspectJ. An interesting area for futureresearch would be expand-

ing the candidates from method invocation statements to more complex expressions that

contain the seed methods, and explore the required AspectJ constructs to refactor them.

We also propose that the concept of method cluster be furtherdeveloped. Currently,

a method cluster is limited to a contiguous statements of method invocation. However,

there are other scenarios of crosscutting, such as methods that are called at the beginning

and end of a method, or inside atry-finally block, that are not captured because of the

requirement of contiguousness. Method cluster could be expanded to incorporate these

crosscutting concerns.

The current ConcernExtractor is intended to facilitate AOPrefactoring using aspect-

mining results. To further validate the concern extractionmechanism and the usefulness

of aspect refactoring, we suggest that the ConcernExtractor should incorporate aspect-

refactoring functionality and become a comprehensive refactoring framework. It will help

us to conduct comprehensive aspect refactoring studies using aspect-mining results.

55

Bibliography

[1] P. Anbalagan and T. Xie. Automated inference of pointcuts in aspect-oriented refac-

toring. In Proceedings of the 29th International Conference on Software Engineer-

ing, pages 127–136, 2007.

[2] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella. Automated refactoring

of object oriented code into aspects. InProceedings of the 21st IEEE International

Conference on Software Maintenance, pages 27–36, 2005.

[3] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella. Tool-supported refac-

toring of existing object-oriented code into aspects.IEEE Transactions on Software

Engineering, 32(9):698–717, 2006.

[4] S. Breu and J. Krinke. Aspect mining using event traces. In Proceedings of the 19th

IEEE International Conference on Automated Software Engineering, pages 310–315,

2004.

[5] S. Breu and T. Zimmermann. Mining aspects from version history. InProceedings of

the 21th IEEE International Conference on Automated Software Engineering, pages

221–230, 2006.

56

Bibliography

[6] M. Bruntink, A. van Deursen, M. D’Hondt, and T. Tourwé. Simple crosscutting

concerns are not so simple: analysing variability in large-scale idioms-based imple-

mentations. InProceedings of the 6th International Conference on Aspect-Oriented

Software Development, pages 199–211, 2007.

[7] M. Bruntink, A. van Deursen, and T. Tourwé. Isolating idiomatic crosscutting con-

cerns. InProceedings of the 21st IEEE International Conference on Software Main-

tenance, pages 37–46, 2005.

[8] M. Bruntink, A. van Deursen, T. Tourwé, and R. van Engelen. An evaluation of

clone detection techniques for crosscutting concerns. InProceedings of the 20th

IEEE International Conference on Software Maintenance, pages 200–209, 2004.

[9] A. Colyer and A. Clement. Large-scale AOSD for middleware. In Proceedings of

the 3rd International Conference on Aspect-Oriented Software Development, pages

56–65, 2004.

[10] S. D. Conte, H. E. Dunsmore, and V. Y. Shen.Software Engineering metrics and

models. Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1986.

[11] B. Dagenais, S. Breu, F. W. Warr, and M. P. Robillard. Inferring structural patterns for

concern traceability in evolving software. InProceedings of the 22nd IEEE/ACM In-

ternational Conference on Automated Software Engineering, pages 254–263, 2007.

[12] A. v. Deursen, M. Marin, and L. Moonen. Aspect mining andrefactoring. InProceed-

ings of the First International Workshop on REFactoring: Achievements, Challenges,

Effects (REFACE03). University of Waterloo, Canada, 2003.

[13] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.Refactoring: Improving

the Design of Existing Code. Addison-Wesley Professional, June 1999.

[14] B. Ganter, G. Stumme, and R. Wille, editors.Formal Concept Analysis, Foundations

and Applications, volume 3626 ofLecture Notes in Computer Science. Springer,

2005.

57

Bibliography

[15] J. Gosling, B. Joy, G. Steele, and G. Bracha.Java Language Specification, Second

Edition: The Java Series. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2000.

[16] J. Hannemann. Aspect-oriented refactoring: Classification and challenges. InPro-

ceedings of 5th Workshop on Linking Aspect Technology and Evolution (LATE),

2005.

[17] J. Hannemann and G. Kiczales. Overcoming the prevalentdecomposition in legacy

code. InProceedings of Workshop on Advanced Separation of Concerns, Interna-

tional Conference on Software Engineering (ICSE 2001), 2001.

[18] J. Hannemann and G. Kiczales. Design pattern implementation in Java and aspectJ.

In Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, pages 161–173, 2002.

[19] J. Hannemann, G. C. Murphy, and G. Kiczales. Role-basedrefactoring of cross-

cutting concerns. InProceedings of the 4th International Conference on Aspect-

Oriented Software Development, pages 135–146, 2005.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. Getting

started with AspectJ.Communications of ACM, 44(10):59–65, 2001.

[21] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and

J. Irwin. Aspect-oriented programming. InProceedings of European Conference on

Object-Oriented Programming, volume 1241, pages 220–242. 1997.

[22] R. Laddad.Aspect Oriented Refactoring. Addison-Wesley Professional, 2008.

[23] C. Lindig. Fast Concept Analysis. Shaker Verlag, August 2000.

[24] M. Marin. Refactoring JHotDraw’s Undo concern to AspectJ. InProceedings of the

1st Workshop on Aspect Reverse Engineering (WARE)., 2004.

58

Bibliography

[25] M. Marin, L. Moonen, and A. van Deursen. A classificationof crosscutting concerns.

In Proceedings of the 21st IEEE International Conference on Software Maintenance,

pages 673–676, 2005.

[26] M. Marin, L. Moonen, and A. van Deursen. A common framework for aspect min-

ing based on crosscutting concern sorts. InProceedings of the 13th IEEE Working

Conference on Reverse Engineering, pages 29–38, 2006.

[27] M. Marin, A. van Deursen, and L. Moonen. Identifying aspects using fan-in analysis.

In Proceedings of the 11th IEEE Working Conference on Reverse Engineering, pages

132–141, 2004.

[28] T. Mens and S. Demeyer, editors.Software Evolution. Springer, 2008.

[29] M. P. Monteiro and J. M. Fernandes. Refactoring a Java code base to AspectJ: an

illustrative example. InProceedings of the 21st IEEE International Conference on

Software Maintenance, pages 17–26, 2005.

[30] M. P. Monteiro and J. M. Fernandes. Towards a catalog of aspect-oriented refactor-

ings. InProceedings of the 4th International Conference on Aspect-Oriented Soft-

ware Development, pages 111–122, 2005.

[31] A. O’Connor, M. Shonle, and W. Griswold. Star diagram with automated refactorings

for Eclipse. InProceedings of the 2005 OOPSLA workshop on Eclipse technology

eXchange, pages 16–20, 2005.

[32] W. F. Opdyke.Refactoring object-oriented frameworks. PhD thesis, University of

Illinois at Urbana-Champaign, Champaign, IL, USA, 1992.

[33] M. P. Robillard and F. Weigand-Warr. ConcernMapper: simple view-based separa-

tion of scattered concerns. InProceedings of the 2005 OOPSLA workshop on Eclipse

technology eXchange, pages 65–69, 2005.

59

Bibliography

[34] D. Shepherd, J. Palm, L. Pollock, and M. Chu-Carroll. Timna: a framework for au-

tomatically combining aspect mining analyses. InProceedings of the 20th IEEE In-

ternational Conference on Automated Software Engineering, pages 184–193, 2005.

[35] D. Shepherd, L. Pollock, and K. Vijay-Shanker. Towardssupporting on-demand vir-

tual remodularization using program graphs. InProceedings of the 5th International

Conference on Aspect-Oriented Software Development, pages 3–14, 2006.

[36] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton. N degrees of separation:

Multi-dimensional separation of concerns. InProceedings of the 21st International

Conference on Software Engineering, pages 107–119, 1999.

[37] P. Tonella and M. Ceccato. Aspect mining through the formal concept analysis of

execution traces. InProceedings of the 11th IEEE Working Conference on Reverse

Engineering, pages 112–121, 2004.

[38] I. Yuen and M. Robillard. Bridging the gap between aspect mining and refacctor-

ing. In Proceedings of 6th Workshop on Linking Aspect Technology and Evolution

(LATE), 2007.

[39] C. Zhang and H.-A. Jacobsen. Quantifying aspects in middleware platforms. In

Proceedings of the 2nd International Conference on Aspect-Oriented Software De-

velopment, pages 130–139, 2003.

[40] C. Zhang and H.-A. Jacobsen. Efficiently mining crosscutting concerns through ran-

dom walks. InProceedings of the 6th International Conference on Aspect-Oriented

Software Development, pages 226–238, 2007.

60

