IMPROVING SOFTWARE MODULARITY THROUGH
CROSSCUTTING CONCERN EXTRACTION

by
Isaac Yuen

School of Computer Science
McGill University, Montreal

April 2009

A THESIS SUBMITTED TOMCGILL UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF
MASTER OFSCIENCE

Copyright(© 2009 by Isaac Yuen

Abstract

Aspect-oriented programming (AOP) is a programming paradior improving the
modularity of software systems by localizing crosscuttingcerns in the system into as-
pects. Aspect-oriented refactorings extend AOP to leggstems, by identifying and
encapsulating existing crosscutting concerns througkaspining (discovery of cross-
cutting concerns) and aspect refactoring (semantic-priegecode transformation to ex-
tract the crosscutting code into aspects). However, ndhalbata obtained from aspect-
mining corresponds to crosscutting concerns, and existapgct languages may not be
capable of refactoring all crosscutting concerns into etspeln this thesis, we describe
an approach for extracting crosscutting concerns in a sygiea form that is suitable for
refactoring. This process includes identifying the presest crosscutting code clusters in
aspect-mining results; assessing if the concerns showddtbected using various metrics;
and performing code transformation to extract the crossgutlusters into standalone
methods with a common method signature and parameters. dtealso describes the
ConcernExtractor a software tool that implements the concern cluster etitnadech-
nique. We applyConcernExtractoto assess and extract the crosscutting concerns in ex-
isting systems to evaluate the prevalence of crosscuttingerns that are refactorable,
and the applicability of our approach for generating aspafetctoring opportunities.

Résum é

La programmation orientée-aspect (POA) est un paradigauet pour but d’améliorer
la modularité du logiciel en localisant les préoccupagi@parpillées dans des aspects.
La refactorisation orientée-aspect étend les avantdgda POA par lidentification et
I'encapsulation des préoccupations existantes a I'diddorage d’aspects (aspect mi-
ning), et par leur refactorisation en aspects a l'aide desfiormations de code. Cepen-
dant, certains résultats du forage d’'aspects ne corrégpbrpas a des préoccupations
éparpillees, et les languages aspects existants ne rsepippas la refactorisation de tous
les préoccupations en aspects. Cette these décrit pnecy@ pour extraire les préoccupa-
tions éparpillées dans une forme qui se préte a la m@iaetion. Le processus inclue
I'identi-fication des préoccupations refactorisablesma les résultats de forage d’aspects,
I'évaluation de la valeur de I'extraction potentielle)'ektraction proprement dite a I'aide
de transformations de code. La these décrit aussi CoBgeactor, I'outil que nous avons
réalisé pour supporter cette approche. Nous avons ajgpigncernExtractor pour évaluer
I'approche sur plusieurs systemes existants.

Acknowledgments

The journey of undertaking and completing this work is a disagrand self experience
for me. On numerous occasions | was on the verge of givindhupking that my work was
not good enough, or | did not meet the expectations of my nignftamily, and friends.
Yet it was their continuous encouragements, and prayeosiginout that have sustained
me. Words alone cannot fully express my gratitude to them all

| am most indebted my supervisor Martin Robillard, from whbimave learned the
integrity and meticulosity to scientific research, whichahanly hope to emulate in my
career. | am thankful for his guidance, and challenges thaght me to become vigilant
to the quality of my work and research. However, | am mostejuhtfor his continuous
encouragements and patience with me. “The great teaclhpraa’s— so thank you Martin,
for keeping me from stopping to believe in myself.

The sustenance of my family is the most vital force that cdsipge to pursue my
goal and not to give and | just want to tell them, “Dad, Mom, &isl, thank you for your
prayers and your patience with me. Now that I'm finally don@st hope that you would
be proud of me”.

Last but not least, thank you for all my family and friends whoever ceased to offer
their encouragements, occasional rebukesand prayers. Without them, | would have
long forgotten my “mission” and settled for complacency.

And thank you Lord Jesus. Your grace is sufficient, and Youvgyas made perfect in
my weaknesses.

Contents

Abstract

Résune
Acknowledgments
Contents

List of Figures

List of Tables
Contents

1 Introduction
1.1 Motivation. e

1.2 Anexample of refactorable CCC

1.3 Overview of the dissertation

2 Background
21 Aspectmining e
2.2 Refactoringand AOP
2.3 Tool-based AOPrefactoring

Vi

Vil

viii

3 Concern Extraction Techniques

3.1
3.2
3.3
3.4
3.5

Crosscuting concern assessment and extraction

Analyzing crosscutting candidates
Matching isomorphicclusters
Statementreaggregation oo
Extracting isomorphic code snippetso
3.5.1 Extracting instance and argumentsintolocals
3.5.2 Rearranging the extracted local declarations
3.5.3 Extracting isomorphic crosscutting clusters

4 Quantitative Evaluation

4.1
4.2
4.3
4.4
4.5

Experimental Environment oL Lo
Evaluation procedure and variables
Question 1: Identifying refactorable crosscuttingeeod
Question 2: Flow Analysis
Question 3: Concernextraction

5 Conclusions

20
21
25
28
31
33
35
35
37

11
1.2

3.1
3.2
3.3
3.4

List of Figures

Location of URL management codedrg.apache.tomcat.util.npiackage 2
Location of logging code iarg.apache.tomcat.util.nglackage

Effects of statement aggregation 23
ConcernMapper 27
AST structure of thexecut eAct i on statement in Listing3.4 30
AST structure of thexecut eAct i on statement in Listing3.5 30

Vi

11

4.1
4.2
4.3
4.4
4.5
4.6

List of Tables

Summary of the fan-in values of the method calls inAlsdon Control
concernof FreeMind

Listoftargetsystems,
Summary of crosscutting cluster distribution in thgéaisystems

List of clusters that contain more than or equal to 3 seetthoals
List of clusters that contain only 2 seed methods
Summary of flow analysisresults
Summary of positions of method clusters relative tarttheclaring method
bodies

Vii

11

1.2
1.3

1.4

15

1.6
1.7

3.1
3.2
3.3

3.4
3.5

3.6
3.7
3.8

Listings

An AspectJ example for clipping the X,y co-ordinates pémtions that

draw lines and rectangleonacanvas
An example obegin/endoattern inJEdi t Text Wi t er classjEdit4.2 . . 7
An illustration of Transactional Control concerrfaidAr r owLi nkAct i on
classfFreeMind 9
An example of a code fragment of the crosscutting contaund in a

complex control flow structure iBdgeCol or Acti on classFreeMind . . 10
An example of th&ransactional concerof Edi t Act i on class FreeMind

where the code that belongs to the concern are not consecutiv. . . . 11
The extracted method of thansctional concern. 12

Pointcut expression that specifies the joinpoint ofeetéd method in List-

INgL.6 12
A method cluster with consecutive seed methods 22
A method cluster with non-consecutive seed methods 22

A method that contains seed method statements, but dbeomntain a
methodcluster. 23
An instance of crosscutting method clusteEdint Act i on class FreeMind 25
Aninstance oéxecut eAct i on method statement kddAr r owLi nkAct i on

classFreeMind 25
Reaggregated snippet of the example in Listing3.4 31
The extracted form of the method cluster in Listing3.6 33
The extracted form of the method cluster in Listing3.5 34

viii

3.9 Applying Extract Local Variables on the arguments ofseed methods. . 36
3.10 Reaggregating the temporary local declarations. 37

Chapter 1

Introduction

Object-oriented programmin@OP) is probably the most popular programming paradigm

of this generation and is the principal methodology for gesig and implementing soft-
ware systems today. By modeling each concern or functignialio a separate module,
the OOP intends to bring better modularity to the design efdysstem. However, OOP
Is not without its imperfections. Since OOP implicitly manes that a functionality be
modularized in only one dimension (objects), many kindsafaerns that do not align
with that dimension become scattered across many modutiesmagled with one another
— the phenomenon that is called ttyganny of the dominant decompositif86]. These
types of scattered and tangled concerns are describedsscutting concerns

Crosscutting concerns (CCC) describe computational timatisprovide similar func-
tionalities, but cannot be abstracted into a standalonaufeatiie to the limitations of the
programming language. One of the much-cited examples afcridting concern is the
logging functionality in Apache Tomcat server system.

Figure 1.1 shows a mapping of the classes in the JBoss Webet®brking package
In the graph, each column represents a file that containsronere classes in the package,
and each line of code in the file is represented by a row of pikethe column. The
highlighted area in the diagram represents the code thatated to URL management.

lorg. apache. tontat. util.net package

B

=
-

Ap.. | Ba.. | De.. | Jlo... | Le... | Ma... | Nio... | Nio... | Nio... | Nio... | Po... | SS... | 55... | Se.. | Se.. | So.. | So.. | Tc... | Tc.. - | IS | IS | IS

I

| 00

4
4
4
4
4
4

Figure 1.1: Location of URL management codeig.apache.tomcat.util.ngtackage

This URL management concern, as the diagram shows, is welliranzed inside a single
class.

However, not every concern in the package can be encapduhedesingle class. Fig-
ure 1.2 shows the locations of the logging-related functalts in the system, and one
can observe that the calls are dispersed among many clagseh, is a classic example
of a crosscutting concerim a system. The presence of crosscutting concerns in asyste
means that some functionalities getsatteredacross different components, and become
tangledwith other components. As a result, the system not only bedess readable and
traceable, but individual components are less reusablkeulseahey include functionality
that may not apply to the context in which the code is reused.

Aspect-oriented programming (AOP) provides a solutiorh® drosscutting problem
by supporting the modularization of crosscutting concenna new construct calleds-
pect[21]. From the OOP’s perspective, an aspect can be undeérsto@ special class
with functions that do not need to be directly referencednather class in order to be
invoked. Aspects allow a programmer to localize the crassguconcerns in the system

53 orp.apachetomeatudtibnet 55 BRI B

Ap... | Ba.. | De... | Jlo... } JS... | JS... } JS... | JS.. | JS.. | Le... | Ma... | Nio... | Nio... | Nio... | Nio... | Po... | SS... | SS... | Se... | Se.. | So... | So.. } Tc.. j Te.. J UR..

Figure 1.2: Location of logging code org.apache.tomcat.util.ngtackage

from the core modules, and remas@atteringla common code fragment dispersed at mul-
tiple locations) andangling(a code fragment that serves different unrelated funcliiyha
problems in the code.

Among modern aspect languages, Aspeitdthe most widely known and studied.
Implemented as an AOP extension of Java, AspectJ introdueay new programming
constructs, such agpintcutsandadvice which became standard construct for most aspect
languages.

A pointcutis an expression for specifying a setjoinpoints which are well-defined
points in the execution flow of a program. After specifying fhointcuts to locate the
targeted joinpoints in the program, additional code candpdied before or after the join-
points to introduce additional behavior. These additimuale fragments are defined in a
special type of method body calledlvice Bothadvicesandpointcutsare declared in an
aspect Typical joinpoints in OOP systems are method invocatiarfeetd accesses.

Listing 1.1 shows an example of an aspect class in Aspecdtintipeements clipping

2Aspectd. See http://www.eclipse.org/aspect;

aspect BoundaryClippingAspect {

poi ntcut checkLi neBound(int x1, int yl, int x2, int y2):
(call (void Graphics.drawLine(int, int, int, int)) &&
args(xl, yl, x2, y2))

poi ntcut checkRectBound(int x1, int yl, int width, int height):
(call (void Graphics.drawRect(int, int, int, int)) &&
args(x1l, yl, width, height));

void around(int x1, int yl, int x2, int y2): checkLineBound(x1, yl, x2, y2)

{
if (xL < MN.X)

x1 = M N_X;

else if (x1 > MAX_X)
x1 = MAX_X;

if (x2 > MAX_X)
X2 = MAX_X;

else if (x2 < MN_X)
X2 = M N_X;

if (yl < MNY)
yl = MN_Y;

else if (yl > MAX_Y)
yl = MAX_y;

if (y2 > MAX_Y)
y2 = MAX_y;

else (y2 < MN_Y)
y2 = MN_y;

/1 Call the drawLine nmethod with the clipped paraneters
proceed(x1, yl, x2, y2);
1

void around(int x1, int yl, int width, int height):
checkRect Bound(x1, yl1l, width, height)
{
if (x1 < MNX)
x1 = M N_X;
if (x2+width > MAX_X)
wi dth = MAX_X - x1;
if (yl < MNY)
yl = MN_Y;
if (y2+height > MAX_Y)
height = MAX_y - y1;

/1 Call the drawRect nmethod with the clipped paraneters
proceed(x1, yl, width, height);
1

}

Listing 1.1: An Aspectd example for clipping the x,y co-oraties of operations that draw
lines and rectangle on a canvas

in the G aphi cs. dr awoperations. The intention is to clip the arguments of thefioms

if the method attempts to draw beyond the pre-defined boweslaHowever, instead of
adding a pre-condition check before evarawLi ne ordr awRect call, as the typical OOP
practice dictates, the clipping operation is modularizeéd an aspect class. In the aspect
definition, two pointcuts are created to intercept any aathiedr awLi ne anddr awRect
methods. The advices then check if the arguments of the migtaee within the pre-
defined boundaries, and if not, modify the value of the argum® achieve the clipping
effect.

The availability of AOP technology suggests that it shouddpossible to incremen-
tally refactor an existing object-oriented (OO) systeno iatmore modularized AO equiv-
alent. However, refactoring case studies [6, 9] show thatuabhaspect refactoring is
time-consuming and often not scalable in large applicatiohis simply too onerous to
manually inspect code to find cross-cutting concerns, amdaioually transform the code
to mitigate them. The scalability problem produced two seasin AOP researclaspect-
mining (automated detection of CCC in an OO systems) tadtbased AO refactoring
(automated code transformation into aspect). Howeverfaagibility of combining the
technigues from both domains to reduce the efforts in the Agyation process remains a
challenge, due to the following reasons:

e Aspect-mining techniques are not precise and only collemjiamming elements
that exhibit crosscutting attributes. It often requiresniam judgment to determine
if they form a distinct crosscutting concern, and how toctgait into an aspect.

e The code snippets that belong to a common crosscutting comaeely have the
same code structure. For instance, the sequence of exexutiay differ between
each code snippet, or the execution maybe not be conse{3@lyanaking it diffi-
cult to automate code refactorings.

e Existing AOP languages such as AspectJ impose constraatinder the refac-
toring into aspects. For instance, AspectJ semantics dugsovide access to local

1.1. Motivation

variables$, and it is not possible to encapsulate two identical mettadid that are
declared in the same method body with one pointcut expne$sjo

1.1 Motivation

Although crosscutting concernsnply functionalities that are not modularizable using
classes or modules, there is no criteria that explicitledatne if some code snippets
constitute a crosscutting concern and should be implerdentaspects.

Marin et al. classified crosscutting concerns into differtsbased on their intents
and their associated AO refactoring strategy [25]. In galneonsistent behavio the
consistent calling of a method from several points in thegpam, is the most prevalent
crosscutting sort. A concern that belongs to tbasistent behaviasort appears in three
formats:

1. A method invocation independent of the context of itsezaBuch as logging, trac-
ing.

2. Variations of thebegi n-/ end- coding pattern that execute the code between the
begi n- andend- methods in a different context. Examples of such patterns in
clude theJavaj ava. util.concurrent.|ocks. Lock interface (thel ock() and
unl ock() methodsj or theBatch Editconcern found in jEdit (see Listing 1.2).

3. A sequence of method invocation statements that arestently executed sequen-
tially at multiple locations throughout the system.

We deem that it is most useful to refactor the third class okstutting concern,
namely, the multiple methods that are repeatedly invokgdtteer throughout the system,
because the “clustering” of these methods is a better itidicaf a non-trivial concern

3Aspect FAQs. See http://www.eclipse.org/aspectj/dteased/fag.php
4Java Lock interface API. See http://java.sun.com/j28edldocs/api/java/util/concurrent/locks/Lock.html

1.1. Motivation

public void writeNewStyleltem(String name, Map props) {
/1 ... formatting code is omtted

try {
buffer.begi nCompoundEdit();

if (i == -1) {
start = area.getCaretPosition();

} else {
start = i;
int closingBracket = bufferText.indexOf ("\}", i);
if (closingBracket !'= -1) {

buffer.remove(start, closingBracket - start + 1);
1
}
buffer.insert(start, text);
} finally {
buffer. endCompoundEdit();
1
}

Listing 1.2: An example obegin/endpattern inJEdi t Text Wi t er classjEdit 4.2

that is more granular than a single function. By grouping ieafdctoring these concerns,
we can improve the modularity of the system. Moreover, stheeconcerns become more
localized, it is easier for a programmer to navigate theesysand to evolve a particu-

lar functionality in the system without affecting unreldteode bases. Our research will
therefore focus on this class cbnsistent behaviotoncerns. More specifically, we want
to assess the refactorability of these crosscutting alsisted provide the mechanisms for
the identification and extraction of these clusters thatnaost convenient for software

evolution and potential aspect refactoring purposes.

We define such crosscutting clustergefaictorable crosscutting conce{nCCC):

A cluster of code that consists of multiple adjacent or pmate method in-
vocations that crosscuts multiple locations in a recurgatiern and that can
be refactored into aspects using simple pointcut expressio

However, our previous case study [38] of crosscutting corecehows that it can be
difficult, if not impossible, to completely encapsulateathsscutting clusters of a concern
into an aspect without creating a complex and rigid poinéxiression.

7

1.2. An example of refactorable CCC

1.2 An example of refactorable CCC

In the case study we mentioned in the previous section, wiestithe nature of cross-

cutting concerns in existing systems, and investigategbtbsence of refactorable cross
cutting concerns in an open-source Java project calledviing®. From the results of the
aspect mining analysis (see Section 2.1 for details), wigedta group of methods that
were consistently executed in the same sequence. We gléssffe method invocations
into the same concern because the invoked methods belohg sate class and two of
them havestart- andend- prefixes. The aspect-mining results show that these three
methods are called in conjunction across 32 different nktiexlaration bodies(see Table
1.1).

Table 1.1: Summary of the fan-in values of the method calte@ction Controlconcern
of FreeMind

Crosscutting method Fan-in
ActionFactory. startTransaction(String) 33
ActionFact ory. execut eAction(Acti onPair) 37
ActionFact ory. endTransacti on(String) 33
Intersection 32

Listing 1.3 shows an instance of the concern, where a calkézut eAction() is
preceded by acall tet art Transact i on() and followed by a call tendTr ansacti on() .
This sequence of invocation is consistently found in 3Zansés. Moreover, in most cases,
these three methods are called consecutively. Initialeybelieved that the simplicity of
this concern would make it straight-forward to refactoistboncern into aspect, using
Java-based aspect extension, such as AspectJ.

5See http://freemind.sourceforge.net

1.2. An example of refactorable CCC

public void addLi nk(M ndMapNode source, M ndMapNode target)

{
modeControl | er. getActi onFactory().startTransaction(String) getValue(NAME));
modeControl | er.getActi onFactory().executeAction(getActionPair(source,target));
modeControl | er. getActi onFactory().endTransaction((String) getVal ue(NAME));

}

Listing 1.3: An illustration of Transactional Control cara in AddArr owLi nkActi on
class,FreeMind

Challenges for AO refactoring The code for this concern exhibitgansistent be-
haviourand the method signatures reveal that the concern servdgrasaf transactional
control. Initially, we believed that there are two approaxitio extract the crosscutting
code into an aspect:

Approach 1. Refactor the callssdart Transact i on() andendTr ansacti on() into
an ‘around’ advice of the containing method

Around advices an type of advice that surrounds a join point such as a rdetivoca-
tion, and performs custom behavior before and after theifspegoin point. In this case,
the join point will be the the location of the methods thatteamthese two methods. This
options requires thaitt art Transact i on() andendTransacti on() always be located at
the start or end of the method body, which does not hold truevery instance of this
concern.

Listing 1.4 shows a variant of the transactional controlcawn in a class in FreeMind.
In this file, the concern code is contained withitrg block and an f statement. For this
instance, it is not clear how it can be refactored into as@spe

1.2. An example of refactorable CCC

public Transferable cut(List nodeList) {
c.sortNodesByDept h(nodeList);
Transferable total Copy = c.getModel ().copy(nodeList, null);
try
{

/+%* initialization code omtted for brevity %/

if (doAction.getCompoundActionOr Sel ect NodeActi onOr Cut NodeAction().size() > 0)
{
c.getActionFactory().startTransaction(text);
c. getActionFactory().executeAction(new ActionPair (doAction, undo));
c.getActionFactory().endTransaction(text);
1
return total Copy;
} catch (JAXBException e) {
e.printStackTrace();
1
return total Copy;

}

Listing 1.4: An example of a code fragment of the crosscgttioncern found in a complex
control flow structure iredgeCol or Act i on class FreeMind

Approach 2. Refactor thetart Transaction() and endTransaction() into an
‘around’ advice ofexecut eAction().

While this second approach solves the problem in the exaofdlesting 1.4, it does
not solve all types of crosscutting concerns found in FreeMiFor instance, there are
alternative implementations of the transactional concermvhich some unrelated state-
ments interleave with the statements belonging to the ¢ar(see Listing 1.5).

The fan-in analysis (see Table 1.1) also shows éixatut eAction() has a higher
fan-in value than the other two methods, and we found sevwestdnces in the system
wherestart Transaction() andendTransaction() are not invoked in conjunction
with execut eAction(). A pointcut expression that must cover these exceptiorel sc
narios would be difficult to create.

10

1.2. An example of refactorable CCC

public void setNodeText (M ndMapNode selected, String newText)

{

String oldText = selected.toString();

try
{

c.getActionFactory().

Edi t NodeAction EditAction = c.getActionXm Factory().createEditNodeAction();

Edi t Action. set Node(c. get Nodel D(sel ected));

Edi t Action. set Text (newText);

Edi t NodeAction undoEditAction = c.getActi onXm Factory(). createEditNodeAction();

undoEdi t Action. set Node(c. get Nodel D(sel ected));

undoEdi t Action. set Text (ol dText);

c.getActionFactory().

c.getActionFactory()
} catch (JAXBException e) {

e.printStackTrace();

}
}

startTransaction(c. getText ("edit_node"));

execut eAction(new ActionPair (EditAction, undoEditAction));
.endTransaction(c. get Text ("edit_node"));

Listing 1.5: An example of théransactional concerrof Edi t Acti on class FreeMind
where the code that belongs to the concern are not consecutiv

Refactoring solution

From the above examples, we can generalize that there are

two common issues in refactoring crosscutting concernasfzects in a legacy system:

1. The code fragment of the concern is located at an arbikoagtion in the declaring

method body,

2. The code that forms the concern is not continuous, but@seed with other code.

Therefore, the first step of refactoring must resolve thesblpms In most cases all

three calls in the cluster are adjacent to each other, andesteapproach is to ‘correct’

the type of variant found in Listing 1.5 and change the laoatiofst art Tr ansact i on()

andendTransacti on() to make them adjacent to tle@ecut eActi on() call. The main

challenge of this change is that we need to verify if the stat@s reordering does not

introduce unexpected side-effects. For this particulaxceon, we manually verified that

the reordering was safe.

After the statements are reordered, the sequence of thiledbeaomes consecutive.

However, the goal is to be able to capture the joinpoint ofcttesscutting methods using

one single pointcut expression. Instead of specifying #draeaof either three methods in

11

1.2. An example of refactorable CCC

the pointcut, we opted for another approach: we usedtiteact Methodtechnique to
extract the cluster in each class into a new method calledr ansact i on (see Listing

1.6). After the refactoring, we can create a simple poinéyaression that intercepts all
crosscutting clusters (see Listing 1.7).

protected void runTransaction(ActionPair target, String startName, String endName)
{

modeControl | er. get Acti onFactory().startTransaction(startName);

modeControl | er. get Acti onFactory(). executeAction(target);

modeControl | er. get Acti onFactory(). endTransaction(endName);

}

Listing 1.6: The extracted method of thransctional concern

poi ntcut actionControl(): call(* *.runTransaction(ActionPair, String, String));

Listing 1.7: Pointcut expression that specifies the joinpof extracted method in Listing
1.6

The main reasons for extracting the crosscutting methdsl iceitb a new methods are:

e The crosscutting code is clustered and its behavior becamesistent across its
callers;

e The intent of crosscutting clusters are disassociated thenoriginal context into a
distinct method instance, which reduces the effort for progcomprehension in an
OOP perspective.

e The addition of the new join point (the newly extracted methallows program-
mers to devise a simple pointcut expression that interddgt€rosscutting code.
We reduce the needs of using a combination of complicatestqgi expressions,
or pointcuts that contain wildcard characters in methodenamtich may introduce
undesirable side-effects such as creating a larger matghimpoint set than it orig-
inally intended [1].

12

1.3. Overview of the dissertation

In our study, we concluded that due to the variations in theeecdt was difficult to
choose a refactoring that neatly encapsulated the crasgrabncerns in a system with-
out sacrificing the readability and simplicity of the pomtalescriptor. To mitigate this
challenge, we concluded that it was necessary to use a catidrirof statement reorder-
ing andExtract Methodefactoring to resolve these variations so that AO refaatozould
be applicable.

1.3 Overview of the dissertation

Our research focuses on the refactoring of the third typeookistent behaviotoncern,
because we believe that crosscutting code clusters betoaglass of crosscutting con-
cerns that can be located, extracted, and refactored iptectss using simple pointcut
expressions. Furthermore, the identification and the foamstion process of such con-
cerns can be automated with minimal human guidance and doknaiwledge. In this
dissertation, we describe a “concern extraction” techaiigu assessing the refactorability
of the crosscutting candidates that are obtained from &spiing tools, and applying
OO0 transformation to targeted crosscutting code such tleani be easily refactored into
maintainable aspects. In the course of this work, we willradsl the following three ques-
tions:

1. How can we automatically assess the results of an aspeerrand distinguish
refactorable crosscutting conceramong the candidates?

2. How can we automatically apply OO transformations to @iec and resolve the
variations in the crosscutting code and isolate its intgnéxtracting the targeted
code cluster into a separate method?

3. Is the concern extraction technique sufficient for redgdhe complexity of the
potential pointcut expressions and improve the refactttybf the concern?

The goal of our research is to utilize the data from aspeaifgiand identify refac-
torable crosscutting concerns that facilitates the patergfactoring process. We present

13

1.3. Overview of the dissertation

ConcernExtractora tool that:
1. Automatically identifies the presence of crosscuttindecolusters in a system,
2. Assesses if the concerns can be extracted using variaussnand

3. Performs code transformation that extracts the crossgutlusters into standalone
methods that share a common method name and parameters.

TheConcernExtractors implemented as a plugin for the Eclipse IDE, and uses ths-ex
ing refactoring modules in the Eclipse framework for co@amsformation.

We have implemented our technique and applied it to ideméfgctorable concerns
from the results of an aspect-mining tool. We extracted tbescutting concern candidates
from 5 medium-size (20 - 80 KLOC) Java projects using an cgaurce tool developed
by a different team.

Our contributions include a description of our automatchtéque for the detection
of assessment and code transformation process and a detadeunt of the validation
procedure of this technique in existing systems.

In Chapter 2, we describe foundational works that motivat @mplement our re-
search. In Chapter 3, we provide the details of our techriguielentifying and assessing
the refactorability of the crosscutting code cluster. Weatlibe a quantitative evaluation
of the effectiveness of our technique, and the applicglitConcernExtractor in Chapter
4, and conclude in Chapter 5.

14

Chapter 2

Background

Aspect-oriented programming (AOP) is a programming pagmadhat enables a mod-
ular implementation of crosscutting concerns in a systehh [@rosscutting concernare
functionalities that need to be split up and integrated oifterent modules . Services
such as logging and transaction control are often contdigedethods from independent
modules. The presence of crosscutting concerns violageprihciples ofseparation of
concernsand leads taode scatteringandtangling [30]. Crosscutting concerns reduce
the readability and maintainability of a system. AOP prasos solution by encapsulating
the crosscutting concerns from a system into new modulas gailedaspectd21]. As-
pectd [20] is the most popular AOP extension of the Java lagesiand it provides new
programming constructs such agintcut expressionsndadvicesto implement crosscut-
ting code in aspects.

Aspect-oriented (AO) refactoring [22] synergisticallynabines AOP with object-oriented
refactoring practices [13] to extract crosscutting eletadrom existing systems to im-
prove modularity. The study of AO refactoring can be furtbategorized into two major
branches of researclaspect miningwhich studies the techniques for locating the cross-
cutting concerns in existing systems, aagpect refactoringr aspect extractionwhich
explores the patterns and practices for separating theautisxg concern code from the
core module into aspects [28](Ch. 9).

15

2.1. Aspect mining

2.1 Aspect mining

Aspect mining is the methodology for automatically ideyitify the crosscutting concerns
in source code. Aspect-mining techniques are primarilgnded for refactoring cross-
cutting concerns into aspects. Early aspect-mining tooth sas Aspect Mining Tool
(AMT) [17] use query-based approaches and locate crogsgatements based on textual
and type similarities in the source code. However, lateeeismining researches focus on
a complete automation of the mining process. Marin et al] ifZfoducefan-in analysis
which determines the degrees of scattering of code basdtearumber of times a method
is being invoked throughout the project. Since method aaiésthe simplest program
element that can be refactored using pointcut-based AOtrwmts such as AspectJ, the
fan-in values of crosscutting methods provide a quantifssstesment of the potential of
AO refactoring, and motivates our research to assess taetoedbility of tightly coupled
methods with high fan-in values. The fan-in analysis is ienpénted as a part of the FINT
framework. The FINT framework is used as the primary aspect miner iresgarch.

A version-history based approach by Breu and Zimmermanarj&lyzes the addition
and evolution of program elements over time and correldiesdata with the author and
timestamp data from the version history. This approach ieersoalable in large projects
and its precision in locating crosscutting concerns irgesavith the project size and his-
tory. Zhang et al. [40] use i@ndom walkalgorithm to explore the incomingp@pularity)
and outgoinggignificance of references to each program element. Their random walk al
gorithm differs from other syntax-based approaches meati@bove because it attempts
to distinguish crosscutting elements from those represkintthe core functionality of the
system.Timna by Shephard et al. [34], is a framework that uses machineilggatech-
niques to augment the precision of other aspect mining tqaks such as fan-in analysis.
The drawback is that it requires a user to manually tag relgmeogram elements for the
offline training phase.

Many aspect-mining research project appdymal concept analysi§FCA) [14] to
explore relationship between different program elements$ identify aspects. Tonella

Ihttp://swerl.tudelft.nl/bin/view/AMR/FINT

16

2.2. Refactoring and AOP

and Ceccato [37] use concept analysis to analyze the egadutices from use cases and
identify crosscutting element®ynAMit, created by Breu et al. [4], is another FCA tool
based on trace history. However, in general the runtime & BEC=xponential [23] and
therefore its applicability is constrained to analyses graduce a small dataset, such as
dynamic analysis. The FINT framework also includes a coneeplysis tool [26] that
locates the a group of crosscutting method calls in a sysesadon their fan-in values.
We use FINT to extract the crosscutting candidates becagseerates a comprehensive
set of method calls that are both crosscutting and highlpleals However, the exponential
complexity of FCA places a constraint on its applicabilityjarge systems.

2.2 Refactoring and AOP

Identified crosscutting concerns can be refactoring infzeeiseither manually or with
automated refactoring tool. Monteiro et al. [30] presentoiection of low-level AO
refactoring techniques that solve specific crosscuttinggms in systems. At the de-
sign level, Hannemann et al. [18] solve the code scattenmjtangling that are intro-
duced through design patterns by reimplementing the pattesing AspectJ. Several case
studies [3, 24, 29] describe the application of these AOctefangs in a small system to
demonstrate how AO refactoring can remodularize crossgutioncerns. Using tech-
niques described in [30], Monteiro et al. [29] illustrate tlefactoring process in a simple
example that implements the Observer pattern. Marin [2d]Binkley et al. [2] refactor
the Undo concern in JHotDraw manually and with tool-supp@spectively. However,
all authors conclude that the refactored aspect code wdtl reedditional refactoring to
simplify the pointcut expression and the architecture efabpect classes.

AO refactoring in large systems is more complex because=ofahations in the cross-
cutting concern implementation. Bruntink et al. [6] invgate the tracing concern in C-
based components and show that it exhibits significant bditiawhich makes it difficult
to refactor into aspects. Colyer et al. [9] manually refadtee Enterprise JavaBe&t
support component in a large Java middleware system usipgcAs However, the AO

17

2.3. Tool-based AOP refactoring

refactoring involves a heavy use of intertype declaratiomgared to the use of advice.
They argue that the design and flexibility of AO refactorinig) e superior to traditional
object-oriented refactoring. Both studies rely on the atghknowledge of a particular
non-invasive concern and the experience is not applicahbieore domain-specific cross-
cutting concerns.

2.3 Tool-based AOP refactoring

Automation reduces the efforts in refactoring crosscgttioncerns into aspects. However,
human guidance in the process is usually necessary: a geveieeds to verify the iden-
tified crosscutting concerns and evaluate if refactorindeisirable. AOPMigrator [3] is a
semi-automated Eclipse-based refactoring toolkit thaléments low-level code transfor-
mations and automatically infers the AspectJ implememtatif the annotated Java code
fragments. Nevertheless, each refactoring is applicabbaly one instance of code frag-
ment and cannot extract multiple crosscutting instancég generated aspects are often
not intuitive and require manual fine-tuning. Hannemannl.etimplement role-based
refactoring [19] to address the crosscutting problem framoalularization perspective. A
user needs to map selected program elements accordingttofgpse-defined schema, and
the tool automatically generates the aspect implememtaficthe mapping and performs
the code transformation based on the user input. This tgakns most appropriate if the
predefined schema match exactly with the mapped elemewgtsasicanonical implemen-
tations of design patterns, but its applicability in thei@at implementations remains an
open question. The authors [3,16] all conclude that OO toamstions should be applied
extensively to reduce the code complexity such that the A&rtering actually simplifies
the design. Our research is motivated by the benefit in extiabighly tangled method
calls using OO refactoring to reduce the complexity in sgbsat AO refactoring.
Another major hurdle in AO refactoring is in devising poimt@xpression that can
describe the targeted joinpoints and is comprehensiblenaaidtainable. Anbalagan et
al. [1] propose an automated approach that uses the resutissh aspect mining tool and

18

2.3. Tool-based AOP refactoring

infers pointcut expressions for these aspects. The inferengine performs a clustering
phase based on the textual and syntactic similarity of thet@at, and outputs the most
succinct form that crosscuts all targeted joinpoints. Hamvethe authors show that the
average size of the pointcut statement remains quite confplé8 pointcut expressions)
in large projects despite the clustering. This work inspise to consider approaches that
can unify different crosscutting methods into one methgaaiure, which simplifies the
pointcut expression that will be needed to refactor thesmaiing code into aspects.

19

Chapter 3

Concern Extraction Techniques

Aspect-mining techniques generally identify crosscgttioncerns based on tkeat-
tering [8, 27] or thecoupling[4, 5] of different method calls. However, our main focus
is the presence of clusters with multiple method invocasitaiements in the code base.
Moreover, these methods should be invoked sequentiallposecutively in a recurring
pattern. We set the refactoring targets on multiple metheddation statements because
they imply a large functionality that requires multiple gge More importantly, if the
method calls in the clusters are invoked consecutively) these statements would be
extractable into a separate instance such as a method eallaztvice in an aspect.

The goal of our work is to be able to identify this type refactorablecrosscutting
concern in a system and extract these crosscutting clustesss different locations into
standalone methods, so that these concerns are relaseddyad from the core function,
are easily identifiable, and can be readily refactored ispeats if necessary.

For a candidate concern containing multiple method cali$ #éne considered to be
crosscutting either manually or automatically by aspeictimg tools, the concern extrac-
tion tool should:

¢ Identify the presence of refactorable crosscutting chusta code base and provide
visualization and navigation support of the targeted elusbde.

e Automatically assess if the concern could be extracteddoase/arious metrics.

20

3.1. Crosscuting concern assessment and extraction

e Perform the code transformation that extracts the crogsgutlusters into stan-
dalone methods with a unified method name and parameters.

The following section describes the details of our approanplemented in th€on-
cernExtractor a plugin for the Eclipse IDE that provides assessment atre@on mech-
anisms for crosscutting concerns. The ConcernExtracbuiisupon theConcernMapper
a bookmarking tool for programmers to organize program ef@si(i.e. class, method, or
field) that are considered related into arbitrary moduldedaoncerndgnside the Eclipse
IDE (see Section 3.2 for a detailed description of the Camndewpper).

The rationale behind building our technique in the Eclipsenfework is that the Java
Development Tool (JDT) package of Eclipse provides powestwrce code search and
manipulation functionalities that we can leverage. Furtigre, various aspect-mining
tools [5, 27] are already built on top of Eclipse. Therefongth minor modifications,
results from the aspect-mining tools can be exported int&Mh format that is readable
by the ConcernMapper model. The ConcernMapper can quicklymelements that are
considered crosscutting into a “concern” node in the modake ConcernExtractor then
analyzes the elements in each concern and assesses th@lippssiextracting them into
aspects.

3.1 Crosscuting concern assessment and extraction

The assessment and extraction technique in ConcernExttiaativided into a four-stage
process:

1. Ildentify crosscutting method calls in the source code.
2. Analyze and match code with similar structures into azotiig clusters of code.

3. Perform flow-analysis on non-consecutive code snippetssess if the snippet can
beclusteredand extracted into a method.

4. Extract the selected code snippets into a new method.

21

3.1. Crosscuting concern assessment and extraction

void run(Foo f)

{

f.bar(); // a nethod cluster
f.foobar();

}

Listing 3.1: A method cluster with consecutive seed methods

void run2(Foo f)

{
f.bar(); // a nethod cluster
System. out.printin(‘‘Hello World'");
f.foobar();

}

Listing 3.2: A method cluster with non-consecutive seedhoés

Before we elaborate on the detailed implementation of etgeswe define a number
of key terms:

Definition 1. Seed method A seed method is a method that is called multiple
times in different method declaration bodies and is idedifis crosscultting.

Definition 2: Method cluster A method cluster consists of multiple method invo-
cation statements that invoke the seed methods, and atedos#hin the same block The
reason for considering only method invocation statemeittsmthe same block is that it is
the simplest form of multiple statement execution that weaansider as “crosscutting”.

For example, assume that there are two seed methods, nban¢ly andf oobar ().
In the declaration of methodun() (see Listing 3.1), since both method statements of
bar () andfoobar () are invoked consecutively, these two statements coresatuethod
cluster.

Two seed method statements may form a method cluster evegyiire not consecu-
tive, as long as they are syntactically located in the samekbl

However, the method statementsbaf () andf oobar () in Listing 3.3 are not con-
sidered a method cluster, because the statements are atdooside the same block.

22

3.1. Crosscuting concern assessment and extraction

void run3(Foo f)

{

f.bar(); // a nethod cluster
if (f.toString() '= null)
{

f.foobar();

}
}

Listing 3.3: A method that contains seed method statemieuitsloes not contain a method
cluster

Definition 3: Statement reaggregation Reggregatiordescribes the code trans-
formation process that rearranges the order of statemesitéeia Java block, such that
certain targeted statements become adjacent to each ¢tbemrver, the invocation se-
guence of the target statements should be preserved.

Figure 3.1 shows an example of statement reaggregationgethaudr un(), where
the statements in the method bodyroh() need to be swapped such that the statement
that containg-00. bar () is adjacent to the method statementFob. f oobar (). After
the reaggregation the statements in the body are swapped, but the cdlboobar ()
still precedes to the call tboo. f oobar () — the sequence of the execution of these two
methods remains the same after the reaggregation.

void run(Foo f) void run(Foo f)

{
f.bar(); = /] irrelevant code
/1 irrel evant code f.bar();
f.foobar(); f.foobar();

} }

Figure 3.1: Effects of statement aggregation

23

3.1. Crosscuting concern assessment and extraction

Definition 4: Isomorphic clusters Two method clusters aisomorphicf
1. they contain the same number of statements,

2. The method invocations statements are invoked in the sameence for both clus-
ters, and

3. For each method invocation statementin a cluster, teeredrresponding statement
in the other cluster that has the same method signature meathod invocation
expression.

Listings 3.4 and 3.5 show two instances of method declardtamlies inFreemind In
the code snippets, the method calls that are underlinedsept the seed methods. In both
scenarios, each declaration contains a method clustezdhaists okt art Tr ansact i on,
execut eAct i on, andendTr ansact i on statements. Also, these three methods are invoked
in this order respectively. In this example, the clusterbath snippets are isomorphic,
since the method signatures of the seed methods in botreduste isomorphic. For
instance, thexecut eAct i on statements in both clusters are isomorphic because the iden
tifiers of theexecut eAct i on method in both clusters belong to tiendMapNode type,
and each parameter of the method expects expression thatgenAct i onPai r object
(see Section 3.3 for more details).

24

3.2. Analyzing crosscutting candidates

0 ~NO O WNPE

public void setNodeText (M ndMapNode selected, String newText)
{

try

{

c.getActionFactory().startTransacti on(c. getText("edit_node"));

Edi t NodeAction editAction = c.getActionXm Factory().createEditNodeAction();
edit Action. set Node(c. get Nodel D(selected));

edit Action. set Text (newText);

Edi t NodeAction undoEditAction = c.getActionXm Factory(). createEditNodeAction();
undoEdi t Action. set Node(c. get Nodel D(sel ected));
undoEdi t Action. set Text (ol dText);

c.getActionFactory(). executeAction(new ActionPair (editAction, undoEditAction));
c.getActionFactory().endTransaction(c. getText("edit_node"));
} catch (JAXBException e) {
e.printStackTrace();
}
}

Listing 3.4: An instance of crosscutting method clusteednt Act i on class,FreeMind

A WN PR

O © o0 ~NO U,

e

public void addLink(M ndMapNode source, M ndMapNode target)
{
String value = (String) getValue(NAME);
ActionPair actionPair = getActionPair(source,target);
String value_2 = (String) getVal ue(NAME);

modeControl | er. get Acti onFactory().startTransaction(val ue);
modeControl | er. get Acti onFactory(). executeAction(actionPair);
modeControl | er. get Acti onFactory(). endTransaction(value_2);

}

Listing 3.5: An instance oéxecut eAct i on method statement iAddAr r owLi nkAct i on

class FreeMind

3.2 Analyzing crosscutting candidates

To better qualify the identification afefactorable crosscutting concermve define the

following criteria necessary for a concern candidate toresscutting and contain cross-

cutting method clusters:

1. It consists of at least two distinct method calls in sefgatade statements.

25

3.2. Analyzing crosscutting candidates

2. The statements are always executed in the same sequence.

3. The target statements are executed consecuijeeb call is immediately followed
by another) at least at one location in the project. The pies®f consecutive
statements suggests a behavior that is composed of matptas/method calls. If
this consecutive pattern is found in at least one locatiancan be more confident
that these seed methods actually form a concern.

4. The target clusters or sequences are found in at leastdigtinct locations. Al-
though a cluster can be described as “crosscutting” if ibisnfl in more than one
instance in the source code, we believe that the presenbeesf tlistinct instances
makes a stronger case for a crosscutting concern.

Initially, we wanted to create a user-friendly approachetgorogrammer declare a set
of program elements as crosscutting candidates for exdiracthis requirement motivated
us to built the ConcernExtractor as an extension of Conceppdr [33] (see Figure 3.2
for a screenshot of ConcernMapper). ConcernMapper preddightweight approach for
concern modeling by enabling programmers to drag-and-pirogram elements (fields or
methods) in a project into a separate view for quick refarenand navigation inside the
Eclipse IDE. Program elements that are considered asdetatebe dragged into an node
called “concern”. The primary objective of the ConcernMapfs to let programmers
record and keep track of program elements from differerssga or files into one view to
reduce the efforts in source comprehension and navigation.

Nevertheless, some aspect-mining techniques, such asndytraces [4, 37], do not
provide any additional information other than suggestioge elements are related. A
“concern”, therefore, serves as the starting point for gihogi seed methods. The respon-
sibility of the ConcernExtractor is to locate the call sitdshe seed methods to check if
any forms a method cluster.

ConcernExtractor uses the Java search engine in the Edljdseomponent for search-
ing the locations in the project that reference the seed mdsthThe Java search engine

10ur initial investigation showed that the number of refaict crosscutting concern decreases sharply
if the criterion is higher than three.

26

3.2. Analyzing crosscutting candidates

v 2 H

Ed
o]

W ConcernMapper &)]
- [@10: {al;a2; }

P @A
= [&11 ! {Action; end; start; }

= @ Action

@ Action(String)

= (@ Transaction

@ end()

o start(String)
12 : {end; start; }
19 : {Action; end; start; }
21 1 {end; start; }
8 1 {Action; end; run; start; }
8 1 {Action; end; start; }

2 9 1 {Action; end; run; start; }

] Gl Bl Gl Bel G el

o 9 1 {Action; end; run; start; } (1)

Be

Figure 3.2: ConcernMapper

returns the method declarations and their correspondingeediles that contain calls to
seed methods. ConcernExtractor then analyzes these ddescand tries to search for
method clusters from the method declaration bodies thbtreakeed methods.

This information provides the minimally-required scopectmstruct method clusters
in the source files. In the ConcernExtractor, two statemamtstitute anethod clusteif:

1. Both statements contain calls to the seed methods,
2. Their innermost containing blocks are the same, and

3. None of these statements contain an inner block.

(According to theJava Language Specificati¢h5], ablockis a sequence of state-
ments, local class declarations and local variable deabaratatements within braces.

27

3.3. Matching isomorphic clusters

Examples of statements that contain an inner-block inci@ymous classf and
whi | e statements anidor loop.)

By confining the scope to statements within the same bloclcamestart exploring the
possibility of refactoring these statements into a new wetfdiscussed in Section 3.5).
This type of refactoring is calleBxtract Method13], and the purpose of this refactoring
is to turn a snippet of code into a standalone method that ediartexplain its purpose. In
the context of our research, the purpose for the refactasitwextract crosscutting clusters
into methods that share common name that can better expeegsiént the crosscutting
concern.

However, it is not always possible to extract any arbitraxgecsnippets into new meth-
ods: a snippet contained in a complex control flow structusesnippets that have mul-
tiple return statements, will be not be considered extldethy the JDT Extract Method
refactoring. To make sure that every instance oftiethod clusteis extractable, we
only consider isomorphic clusters that only contain metimodcation statements. From a
CCC perspective, a sequential execution of multiple statgsithat is consistently being
invoked across different modules is the most common fornragscutting behavior that
sufficiently justifies the method extraction.

However, our criteria allows a method cluster to contaitesteents that are not con-
secutive. In this case, a cluster may not be immediatelyaetable. In Section 3.4, we
will discuss how to resolve the interleaving between théagements throughtatement
reaggregation

3.3 Matching isomorphic clusters

After obtaining the method clusters, the next stage in threeem extraction involves as-
sessing if any two clusters have the same behavior and bébotige same crosscutting
concern. To verify if the clusters have the same behaviom&esl to check that the state-
ments in the clusters have the same method signature (sefingion ofisomorphic

clusterd which is done through examining the abstract syntax tre&&l{(of the statements

28

3.3. Matching isomorphic clusters

in both clusters to see if the structure of the statements@ualent in both clusters, and
therefore produce similar behaviors.

The Eclipse SDK provides aASTMat cher class to compare if two ASTs asgruc-
turally isomorphi¢ meaning that the AST structures are identical. Howevquirang two
AST to be structurally isomorphic is too constraining for @uirpose. To illustrate, we
will examine the issue with the isomorphic clusters moregptiem Listings 3.4 and 3.5.

Figures 3.3 and 3.4 show the AST structures of éRecut eAct i on statements in
both instances. The AST nodes from both statements areigdeat the root and at the
identifier level (a.k.a. left sub-tree). However, the diffleces between both statements are
at the parameter of thexecut eAct i on.

Although both statements accept dkwe i onPai r object, line 15 of Listing 3.4 shows
that the parameter afxecut eActi on is not an identifier, but a constructor call to an
Act i onPai r object, which itself contains two argumentstof t NodeAct i on type. How-
ever, both statements invoke the same function and shoutdmsdered as belonging to
the same concern. Therefore, it requires a more liberalmragscheme such that these
two statements can be considersdmorphicin our model. For our assessment purpose,
we relax the requirement adomorphicAST to only consider the root node of the AST
and the datatype of the subnodes. For instancegxbeuteActiostatements are consid-
ered isomorphic because the identifiers of the method seatebelong tdVl ndMapNode
type, and the expressions in the arguments returAcanonPai r object. Therefore, the
customized AST matchers only verifies that both method iation statements have the
same method signature. This relaxed isomorphic requiremedequate to ensure the
clusters that are isomorphic will have the same behaviat,that these clusters can be
madestructurally isomorphigidentical AST structure in the clusters) through codegran
formation, such as by extracting all the identifier and argotexpressions the statements
into local variables.

Our customized AST matcher initially selects a cluster tiwaittains only consecutive
statements as the match target, such that it guaranteeasatolee crosscutting cluster
Is extractable (sincExtract Methodrefactoring only targets a code snippet that contains

29

3.3. Matching isomorphic clusters

Method Invocation

executelction()

Method Invocation Method Invocation

getActionFactory () new ActionPair ()

Type: ActionFactory Type: EditAction Type: EditAction

c doAction undoAction

c.getAction.Factory().executeAction(new ActionPair(doAction, undoAction))

Figure 3.3: AST structure of thexecut eAct i on statement in Listing 3.4

Method Invocation

executelction()

Method Invocation Type: EditAction
getActionFactory () myAction

/

Type: ActionFactory

modeController

modeController.getActionFactory().executeAction(myAction)

Figure 3.4: AST structure of thexecut eAct i on statement in Listing 3.5

consecutive statements). It then performs a statemestdigment match with all other
method clusters and checks if any cluster contains a subsittements that is isomorphic
to the original cluster. An isomorphic cluster should proelihe same behavior as the
target cluster if the seed method statements are executedssively and therefore they
belong to the same crosscutting concern.

30

3.4. Statement reaggregation

3.4 Statement reaggregation

Before the clusters are extracted, we need to perform amietiiate code transformation
to ensure that the statements in the clusters are consecliheExtract Methodefactor-
ing turns a continuous fragment of code into a new method. d¥ew not all statements
in the same isomorphic cluster set are necessarily conigyubhe statements of a target
cluster may be interleaved with unrelated statements,asitthgging calls or local variable
declaration code. (In fact, it is often a justified codinggtiee to declare local variables
just before they are referenced to reduce thpan[10].)

Statement reaggregatidnvolve rearranging the execution order of the statements i
the enclosing block of the target cluster, such that all ®hibn-consecutive statements
are moved to a location adjacent to the last target statemdhe cluster. Listing 3.6
shows the effect of reaggregation on the method clustereidht Act i on class found in
Listing 3.4. After reaggregation, all of the seed methodesteents in the cluster become
consecutive in the declaring method body.

public void setNodeText (M ndMapNode selected, String newText) {

String oldText = selected.toString();

try

{
Edi t NodeAction editAction = c.getActionXm Factory().createEditNodeAction();
editAction. set Node(c. get Nodel D(selected));
edi t Action. set Text (newText);
Edi t NodeAction undoEditAction = c.getActionXm Factory(). createEditNodeAction();
undoEdi t Action. set Node(c. get Nodel D(sel ected));
undoEdi t Action. set Text (ol dText);

/1 Reaggregated sni ppet

c.getActionFactory().startTransacti on(c. getText("edit_node"));
c.getActionFactory(). executeAction(new ActionPair (editAction, undoEditAction));
c.getActionFactory().endTransaction(c. getText("edit_node"));

}
catch (JAXBException e) {
e.printStackTrace();
1
}

Listing 3.6: Reaggregated snippet of the example in LisBidg

31

3.4. Statement reaggregation

In general, we consider it “safe” to push a particular staetm a method body further
in the execution order (i.e. cut a particular line, and pastemewhere after its previous
position in the same declaration), only if it is syntactigalorrect, and satisfies either of
these conditions:

1. It does not write to any variable that are referenced &f&earevious position , or;

2. The variables that it writes to are not read by any stat¢snbiat precedés new
position.

If either condition is not met, then it is almost certain that the same input, the
output of the function and the internal state of the systefthhei different from the un-
modified version of the method. Since the order of which threattes are read or written
is disrupted, the previous assumptions of the logic of adrfitow could become invalid,
and we cannot assume that the modified code replicates treelsgtmvior as the unmod-
ified version. To prevent the unintended change in behawiertd reaggregation, our
extraction technique would perform a flow analysis on thestelts that contain isomor-
phic but non-consecutive statements, such that reaggvagsonly “safe” if the targeted
statementtmt) and all the interleaving statemenist() between the target statements and
the final statement of this isomorphic sstriit) do notinterfere

readSetstmt) £ writeSetint;)
writeSetstmt) # read Setint;)
writeSetstmt) # writeSetint;)

Nevertheless, even if the flow analysis confirms there is terference, it does not
guarantee the reaggregation is truly safe: the targetéenstamts maybe contain subtle
side-effects that change the states of some other variabtas the scope of the cluster,
and rearranging the execution order of these statementeraghte unintended behavior.
However, a full-scale side-effect analysis on the affestiatiement incurs excessive run-
time penalty and produces an over-conservative resulgwtontradicts the spirit of our

32

3.5. Extracting isomorphic code snippets

lightweight approach. Therefore, we compromise for thigctkncy by explicitly prompt-
ing a user for enabling reaggregation for each non-consedatget cluster deemed reag-
gregable by flow-analysis. Itis up to the programmer to detdideaggregation is suitable
in the context of each non-consecutive cluster.

3.5 Extracting isomorphic code snippets

Reaggregation solves the interleaving problem in non-ecuis/e clusters and all iso-
morphic clusters that are subject to extraction should noly only contain consecutive
statements. For the extraction phase, we reuse the EclipBeejactoring components
that are available for extracting the clusters, rather tbaewrite our own refactorings.

However, the Extract Method refactoring implementatiord DT is insufficient be-
cause it often does not recognize two code fragments ascdtgphlvhen the behavior of
the two fragments are essentially equivalent. For instaatieough the snippets in List-
ings 3.4 and 3.5 are essentially equivalent in behavioextracted forms of both snippets
would not be identical (see Listings 3.7 and 3.8 for the eté@form of the method by di-
rectly applying the JDExtract Methodrefactoring to the snippets). MoreoverEktract
Methodrefactoring is directly applied to the method clusters, aermot guarantee that the
signature of the extracted methods are all identical. Thisame is undesirable for aspect
refactoring purpose, because itis not always possibles@tera singlgointcut expression
that intercepts the extracted methods and caatli@ their arguments. Without knowing
all the arguments that are passed to the extracted methediripossible to refactor the
code from the extracted methods to an advice.

public void runTransaction(Action doAction, Action undoAction)

{
c.getActionFactory().startTransacti on(c. getText("Edit_note");
c.getActionFactory(). executeAction(new ActionPair (doAction, undoAction));
c.getActionFactory().endTransaction(c.getText("Edit_note");}

}

Listing 3.7: The extracted form of the method cluster in ingt3.6

33

3.5. Extracting isomorphic code snippets

public void runTransaction(string valuel, Action myAction, string value?2)
{

modeControl | er. get Acti onFactory(). startTransacti on(valuel);

modeControl | er. get Acti onFactory(). executeActi on(myAction);

modeControl | er. get Acti onFactory(). endTransaction(value2);}

}

Listing 3.8: The extracted form of the method cluster in ingt3.5

O’Connor et al. [31] investigated the internal implemeiotatof JDT and identified
cases when the JDT Extract Method refactoring will not rexzg potentially duplicate
code in the same source file. One of the findings in the studgatsthe JDT Extract
Method refactoring often does not consider two subnodewdndifferent ASTs that are
of the same scope and the same type identical. The problenatisah AST node that
belongs to théi mpl eNane type, (which represents a local variable or a field in the JDT
terminology), only matches with anoth8irnpl eType instance, but not with an expres-
sion that returns the same datatype. This explains why JEaEteging does not match
the otherwise identical code snippets in 3.7 and 3.8. Toesthlis inadequacy, the paper
describes a sequence of micro-refactorings that convetsdlected code into a normal-
ized form, such that the JDT Extract Method refactoring atgm will considered two
matching snippets as equivalent.

Inspired by their approach, ConcernExtractor implemerdsralar refactoring strat-
egy that normalizes the targeted crosscutting snippeterialized statement in a method
cluster contains one method invocation expression wittdantifier as the instance, and
local variable(s) as its argument(s). Through normalmgteach statement in a cluster
becomesstructurally isomorphido its counterpart in the other cluster. The JDT Extract
Method algorithm will recognize that the isomorphic snifgpas duplicate, and the ex-
tracted forms of these snippets will have a common methocdereand parameters.

34

3.5. Extracting isomorphic code snippets

3.5.1 Extracting instance and arguments into locals

Recall from the previous section that our isomorphic ASTahat only checks the data-
type of the instance and arguments of a seed method, regsuadle/hether it is an expres-
sion or a variable. In order to normalize the statement, €oriextractor needs to convert
the AST nodes that represent the instance and argumentse gse#d method into local
variable using th&xtract Local Variablerefactoring. TheExtract Local Variablé refac-
toring takes an expression that is being used directly asidresit to a local variable first
and this variable is then used where the expression used &mbes also implemented in
the Eclipse JDT package. Local variable extraction doeshange the semantics of the
targeted clusters when it is performed on expressions tilgtn@ed to be evaluated once
in the block that contains the cluster. After the extractahthe nodes that represent the
instances and the arguments of the seed methods will be efStyppl eType. The JDT
Extract Method refactoring can then recognize the targetesscutting clusters that are
in the same source file as duplicates. Also, the extractedsorf the crosscutting clusters
are guaranteed to have the same parameters.

3.5.2 Rearranging the extracted local declarations

One side effect oExtract Local Variableefactoring is that the local variables are declared
just above the statement where it get extracted from. Ilgs3i® shows the result of the
Extract Local Variablaefactoring when it is applied automatically by the IDE te #rgu-
ments of the seed methodsHdi t Act i on. set NodeText . After the refactoring, the seed
methods invocation are interleaved with the local varia@elarations, and the statements
of the method cluster are not invoked consecutively anyndirece the statements are not
clustered, they cannot be extracted in a new method as opgetni

To deal with this problem, O’Connor et al. create the CodeitdoRefactoring, which

2See http://www.ibm.com/developerworks/library/osedtr

35

3.5. Extracting isomorphic code snippets

public void setNodeText (M ndMapNode selected, String newText)
{

String oldText = selected.toString();

try

{
Edi t NodeAction editAction = c.getActionXm Factory().createEditNodeAction();

Edi t Action. set Node(c. get Nodel D(sel ected));
Edi t Action. set Text (newText);
Edi t NodeAction undoEditAction = c.getActionXm Factory().createEditNodeAction();
undoEdi t Action. set Node(c. get Nodel D(sel ected));
undoEdi t Action. set Text (ol dText);
String tmp = c.getText("edit_node");
ActionFactory factory = c.getActionFactory();
factory.startTransaction(tm);
ActionPair action = new ActionPair (EditAction, undoEditAction);
ActionFactory factory 2 = c.getActionFactory();
factory 2.getActionFactory(). executeAction(action);
String tmp 2 = c.getText("edit_node");
ActionFactory factory 3 = c.getActionFactory();
factory 3.getActionFactory().endTransaction(tmp 2);

}

catch (JAXBException e) {
e.printStackTrace();

1

}

Listing 3.9: Applying Extract Local Variables on the argumeeof the seed methods.

moves a specified snippet of code to a different location. él@w it is conceptually equiv-
alent to the Statement Reaggregation in ConcernExtragitarge both transformations at-
tempt to rearrange the execution order of the statementshidicase, we are concerned
only with the movement of variable declaration statemespggifically, those statements
just created by the JDT Extract Local Variable refactori@yr aim is to move the local
declaration statements directly above the statementseatb&cted, so ensure that the ex-
traction target again forms a cluster of consecutive statem(see Listing 3.10). Since
the local variables are newly introduced by the Extract Léwfactoring in the previous
stage, it is not necessary to use flow analysis to verify thecthess of the reaggregation.

36

3.5. Extracting isomorphic code snippets

public void setNodeText (M ndMapNode selected, String newText)

{
String oldText = selected.toString();
try
{
Edi t NodeAction editAction = c.getActionXm Factory().createEditNodeAction();

Edi t Action. set Node(c. get Nodel D(sel ected));

Edi t Action. set Text (newText);

Edi t NodeAction undoEditAction = c.getActionXm Factory().createEditNodeAction();
undoEdi t Action. set Node(c. get Nodel D(sel ected));

undoEdi t Action. set Text (ol dText);

String tmp = c.getText("edit_node");

ActionFactory factory = c.getActionFactory();

ActionPair action = new ActionPair (EditAction, undoEditAction);
ActionFactory factory 2 = c.getActionFactory();

String tmp 2 = c.getText("edit_node");

ActionFactory factory 3 = c.getActionFactory();

factory.startTransaction(tm);
factory 2.getActionFactory(). executeAction(action);
factory 3.getActionFactory().endTransaction(tmp 2);
} catch (JAXBException e) {
e.printStackTrace();
1
}

Listing 3.10: Reaggregating the temporary local declaresti

3.5.3 Extracting isomorphic crosscutting clusters

After the Statement Reaggregation is performed, the JDaEixiMethod refactoring API

is called on each identified isomorphic cluster. A user isnpted once to insert the name
of the extracted method. After inserting a name, the Extxethod refactoring is auto-
matically applied to all of the targeted clusters with themeanethod name. The Extract
Method refactoring API also handles all the preconditioaaits that ensure the syntactic
correctness of th&lethod Extractprocess. At the end of the this stage, all isomorphic
clusters that were subjected for extraction are extractiedstandalone methods that share
a common method name and parameters.

37

Chapter 4

Quantitative Evaluation

Our concern extraction technique is intended to complegrect-mining technology
by identifying crosscutting candidates that are refadtieraFurthermore, it mitigates the
difficulties of refactoring to aspects by extracting thesesscutting clusters into methods
with a common method signature. It enables aspect-refagttwols to produce intuitive
and understandable pointcuts for the aspects. Howeverpfmst our claims, we evaluate
our concern extraction approach to answer the followingstiaes.

e Does concern extraction help distinguish refactorablessrutting concerns from
the results aspect-mining techniquelb answer this question, we apply aspect-
mining to a software system and collect program elementstieaconsidered cross-
cutting by the aspect-mining tool, and applying the ConEg&tractor to this data to
obtain the number of refactorable crosscutting methodeiss Using the results,
we can evaluate the percentage of the concerns that arelecesirefactorable over
of the mined results.

¢ Is flow analysis adequate for determining if non-conseeutiesscutting code is ex-
tractable?For this purpose we collect the number of non-consecutivetets from
the identified crosscutting concerns, and apply flow analygsthese clusters to de-
termine if they can be reaggregated. We then assess theto@se of flow analysis

38

4.1. Experimental Environment

by manually checking if the statement reaggregation woubdlppce undesired side
effects.

e Is the concern extraction necessary for localizing croftseg clusters such that
they can be refactored to an aspect, or does direct aspesttaing suffice in most
scenario?In this section we manually check the position of the eaclssmotting
cluster in its containing block, and evaluate the improvenoéthe number of clus-
ters that become refactorable to aspect due to clustercéiwtnaover the clusters
that can be directly refactored by simple pointcut expmssi

4.1 Experimental Environment

Our evaluation is preceded by an aspect-mining phase whitdtts crosscutting program
elements to serve as the candidate for concern extraction.

We selected FINT as the aspect-mining engine to collect to the initial dataofar
evaluation, since it only requires the source code of tasgstems as inputs and is most
suitable for our needs. FINT is an aspect-mining researchthat provides a common
framework for mining crosscutting concerns using variotffeent techniques from the
Eclipse IDE environment [26]. In particular, FINT contaimg aspect mining techniques
that are useful for our evaluation. FINT implements thie-in analysis (see Section 2.1),
which collects and analyzes the number of different metmyddations in the system.
Furthermore, thgrouped callsanalysis extends the bad@&n-in analysis, by collecting
the fan-in of a group of method calls — it applies formal concept analysis [23] t@a
get systems and finds groups of calleatirjputeg that are consistently invoked together
by the same callerobjecty. Therefore, it requires at least two method calls that are
consistently called together to form a crosscutting camc€ompare to the normén-
in analysis, which only counts the number of individual meticad sites, the results of
grouped calls analysis is more refined.

1See http://swerl.tudelft.nl/bin/view/AMR/FINT.

39

4.2. Evaluation procedure and variables

The running time of concept analysis@n?), n being the total number of method
invocations in the system. In order to collect adequate @étan a reasonable time con-
straint (within 24 hrs in our evaluation), we limit the sizétarget systems to 6085
KLOC. We used a Linux desktop workstation with a Pentium 4035Hz processor and
3 GB memory as the default configuration of evaluation.

In our initial evaluation we selected 5 open sources prsjest the target systems.
Table 4.1 contains an overview of the five target systemsabaised for the evaluation.

Table 4.1: List of target systems

System Version kLOC Total no. of grouped calls
JB0ossAOP 4.0 66 924
jEdit 4.3 63 1404
FreeMind 0.8.0 65 241
Ant 1.7 86 1882
ArtOflllusion 2.4.1 79 3718

4.2 Evaluation procedure and variables

In our evaluation, we only consider groups with a commonifaaof at least 10: a group
must contains at leasivo seed methods that share a caller at minintandifferent loca-
tions in the system. In our evaluation, we turned off the di#tex in FINT, which would
otherwise ignore the following groups of candidates:

Candidates that contain methods of the JUnit library (a.Xit testcases);

Candidates that contain Java collection utilities suckiag(),iterator();

The callees in a candidate group are always called in a silagie statement.

Candidates thainly contain callees with the same prefixes, sucbeds, r ead- or

wite- .

40

4.3. Question 1: Identifying refactorable crosscuttingeo

We disabled the filter to collect as many candidates as pessibd for our evalution,
use this value as the total number of grouped calls/con@rdidates in the system. How-
ever, for practical purpose, any candidates that belonigg@toups mentioned above are
not considered for extraction. We developed a customizesioreof FINT that exports the
results from the grouped calls analysis to ConcernMappeh§roup is converted into a
“concern node” (see Figure 3.2), and its seed methods bettammncern elements.

During the evaluation, we evaluated each concern candidatethe ConcernMapper
using the ConcernExtractor and obtained the distributidtinecrosscutting clusters. Since
our objective is to find “crosscutting” methods, and our ustending of “crosscutting”
implies that there should be more than two instances of tbescutting clusters in the
system, we only considered concerns that contain at leastn3drphic clusters as a valid
result. We also did not considers clusters that contain asgfgnment statements, since
they will not be extractable to a method.

4.3 Question 1: Identifying refactorable crosscutting cod e

Criterion: Effectiveness of ConcernExtractor to identdyactorable crosscutting code.

Using the data collected from grouped calls analysis, wdiegphConcernExtractor to
compute the number of refactorable clusters. We break dbevdistribution of the refac-
torable concerns in evaluation into the following categeiin Table 4.2:

Total no. of grouped calls from FINT: the number describes the number of grouped
calls obtained from FINT, where each group consists of pl@ttcommon methods that
are invoked together in the same method body more than once.

Cluster groups with > 3 statements the number of different grouped calls that is
considered refactorable by the ConcernExtractor. Eaalpgmuust consist of at least three
methods.

41

4.3. Question 1: Identifying refactorable crosscuttingeo

Cluster groups with 2 statements the number of different grouped calls that is con-
sidered refactorable by the ConcernExtractor. Each grougt nonsist of only twaneth-
ods. Cluster groups with more than three methods are exatlude this set.

> Refactorable cluster groups the sum of refactorable clusters.

% of refactable cluster groups 2 cractorable cluster groups

Number of grouped calls from FINT

Table 4.2: Summary of crosscutting cluster distributiothie target systems

Target Size of Total no. of Cluster Cluster %

System system grouped calls groups with groups with refactable refactorable
kLOC from FINT >3 statements 2 statements cluster groups cluster groups

JEdit 63 1404 2 2 4 0.2%

FreeMind 65 241 2 1 3 1.2%

JBossAOP 66 924 2 3 5 0.5%

ArtOflllusion 79 3718 2 0 2 0.02 %

Ant 86 1882 2 8 10 0.5%

Average 72 1633 2 3 5 0.3%

We made several observations from the result of the TableT4he first observation is
that the number of refactorable cluster groups are scareadh system, compared with
the quantity of concern candidates in each system. Thidtnesses some doubts about
the validity and usefulness of our extraction and refantptiechnique. First of all, it
suggests that the existence of refactorable crosscuttingecns are not prevalent in the
target systems, which puts the necessity of the crossgudtincern extraction into doubt.
Secondly, the result can alternatively suggest that oterasih for a crosscutting cluster is
too conservative, which may miss some opportunities faateiing (i.e. blocks of code
that are repeatedly called).

Nevertheless, we emphasize that our goal is to discmfactorableconcerns, and
that multiple sequential method invocations within a blaokstitutes the simplest form
of code snippet that we consider as extractable. If thisiais weakened, then even if we
can identify code snippets that belong to the same crogsgutbncern, it will be difficult
to verify if they can always be extracted to a standalone otkth

42

4.4. Question 2: Flow Analysis

The results collected from grouped calls also convince as tiie original aspect-
mining results are full of noise. For instance, the aspeaainyg result of GUI-based ap-
plication would contain a large amount of grouped calls thelbng to the Java Swing
library. Moreover, the FINT's grouped calls analysis useoarse criteria to relate two
different method invocations: two method invocations avasidered related as long as
they are called inside the same method definition, regaadiethe sequence or the con-
text of the calls. Therefore, systems that contain largehots (which is considered a
bad coding practice) will produce a larger quantity of gredigalls than systems that are
well refactored and structured. The fact that all of ouréagystems (which have similar
sizes) contain a consistent number of refactorable clgsterps implies the existence of
such crosscutting concern in a system with reasonable BimeConcernExtractor allows
a user to reduce the original aspect-mining data to a set tifads that are closely related
due to the proximity of their locations.

As another interesting observation, the number of actdiatterable concerns in each
system is not proportional to the number of grouped callstelad, the value seems to
correlate to the size of the system: the percentage of mefde cluster groups remains
consistent for the five target systems, which have simildesaze.

4.4 Question 2: Flow Analysis

Criterion: Safety from side effects when ConcernExtrastaygests statement reaggrega-
tion

One of the main objectives of ConcernExtractor is to be abtietermine if a crosscutting
concern can be extracted into a standalone method. TheViEfiod Extractefactoring
can only be applied to a series of consecutive code statsmdotvever, we need to also
consider method clusters that belong to a refactorablescutiéng concern, but are inter-
leaved with other statements. In order to extract thesearosavith interleaved statements
(hereby referred to ason-consecutive clustgrghe ConcernExtractor uses flow analysis

43

4.4. Question 2: Flow Analysis

to verify if the executed order of the code statement can belezed (eaggregatedl and
reorder the statements that belong to the crosscuttingecoso that they can be extracted.
Since it is impractical to perform full static analysis fanfying if the state of each
object would change during reaggregation, we only apply #oadysis in the scope of the
cluster. We verify that the objects being called, passedetmrned in the statement that
we want to reorder, are not being called or passed in the qubséstatements. However,
we do not recursively inspect the internals of the methodshexk for state changes in
passed objects. This use of flow analysis exposes a potdafielency, that we could not
automatically verify if the reaggregation can produce wieel side-effects.

To the evaluate the effectiveness and the accuracy of statesaggregation, we apply
flow analysis to each cluster group and categorize the eckisteeach cluster group into
the following categories:

Consecutive clustersClusters where seed methods are executed consecutively.

Non-consecutive clustersClusters where the seed methods statements are not con-
tiguous.

Reaggregable clustersNon-consecutive clusters; however, the flow analysis esiggy
that the seed methods statements can be safatjgregatedvithout causing side-effects.

Non-reaggregable clustersNon-consecutive clusters with statements that cannot be
reaggregated safely.

False positive Non-consecutive clusters that are determined by our floalyars as
reaggregable however, reordering the statements would introduce enohéd behaviour
or errors, therefore is not desirable to reaggregate tiensents.

Tables 4.3 and 4.4 describe the data of our analysis foreshugiroups that contain
more than two and only two seed method statements, resplgctive shows the number
of consecutive clusters alongside the non-consecutiwtarisito emphasize the frequency
of the non-consecutive clusters in a cluster group.

From the results of the evaluation, we made the followingeoketions.

44

4.4. Question 2: Flow Analysis

Table 4.3: List of clusters that contain more than or equal $eed methods

Target
System

Concern Methods?

Consecutive
Clusters

Non-Consecutive|
Clusters

Flow Analysis

Reaggregabl® Non-Reaggregable

False Positi

JB0sSsAOP

JB0ssAOP

jEdit

jEdit

Freemind

Freemind

ArtOflllusion

ArtOflllusion

Ant

Ant

Ant

make()
setnodifier()
addMet hod()

make()
setnodifier()
addMet hod()

set Locati onRel ativeTo()
pack()
setVisible()

set Locati onRel ativeTo()
pack()
set Visible()

start Transacti on()
executionAction()
endTransaction()

startEl enent ()
chil dAsURI s()
endNanespaceDecl s()
chil dAsAttributes()
endAttributes()
chi | dAsEl enent Body()
endEl enent ()

get Obj ect ()
set Vert exPosi tion()
obj ect Changes() ()

set Vert exPosi tion()
updat el mage()
obj ect Changes() ()

ConmandLi ne. ctor ()
set Execut abl e()
set Val ue() ()

Execute. ctor()
set Ant Run()
set ConmandLi ne() ()
set Worki ngDirectory() ()

Execute. ctor()
set Ant Run()
set ConmandLi ne() ()
set Worki ngDirectory() ()

17

29

17

26

aSince we only include the method name in the table, there @meerns that seem to be identical. In
fact, the signatures of these methods are all different.
bTotal number of clusters flaggeeaggregabldy the ConcernExtractor

45

4.4. Question 2: Flow Analysis

Table 4.4: List of clusters that contain only 2 seed methods

Target Concermn Methods? Consecutive Non-Consecutive Flow Analysis
System Clusters Clusters Reaggregabl® Non-Reaggregable False Positi
make()
JBossAOP addMet hod() 16 1 1 0 1
make()
JBossAOP addMet hod() 8 0 0 0 0
set Modi fiers()
JBossAOP addFi el d() 21 0 0 0 0
set Modi fiers()
JB0ossAOP addFi el d() 6 0 0 0 0
N openNodeScope()
JEdit jj treeOpenNodeScope() 38 0 0 0 0
N openNodeScope()
JEdit jj treeQpenNodeScope() 13 0 0 0 0
N cl oseNodeScope()
JEdit jjtreed oseNodeScope() 51 0 0 0 0
. text()
FreeMind | | dasAttri butes() 148 0 0 0 0
. updat el mage()
ArtOflllusion obj ect Changed() 17 0 0 0 0
. updat el mage()
ArtOflllusion obj ect Changed() 11 0 0 0 0
Ant set Val ue() 1 8 8 0 0
set ConmandLi ne()
set Val ue()
Ant set Worki ngDi rectory() 10 0 0 0 0
set ConmandLi ne()
Ant set Worki ngDi rectory() 10 0 0 0 0
Ant set ConmandLi ne() 7 0 0 0 0
log()
createTenpFil e()
Ant del et enExi t () 4 0 0 0 0
createTenpFil e()
Ant del et enExi t () 4 0 0 0 0
Ant createTenpFil e() 2 0 0 0 0

del et eOnExi t ()

aSince we only include the method name in the table, there @meecns that seem to be identical. In
fact, the signatures of these methods are all different.
bTotal number of clusters flaggeeaggregabléy the ConcernExtractor

46

4.4. Question 2: Flow Analysis

e The number of non-consecutive clusters is generally musshtlean the consecutive
clusters within a cluster group, with the exception of augfroups that contain only
one consecutive cluster.

e Most non-consecutive clusters are considered reaggeegaiilow analysis. How-
ever, flow analysis should not be considered as 'safe’ dues tow but significant
inaccuracy.

e For a group of method clusters that are considered isomogiheast one of the
clusters must be consecutive, otherwise it is not feasthietermine if the cross-
cutting code is a consistent behavior concern, and if it maense to extract it to
aspect. However, we observed from the results, there arg olaster groups that
contain only one consecutive cluster. The prevalence sftiie of cluster group
suggests that:

1. The cluster that contains consecutive crosscutting owalebe a code defect
or,

2. The groupis incorrectly labelled as crosscutting (falsgitive) when the meth-
ods in the cluster do not belong to the same crosscuttingeconc

e We noticed that in all cases where reaggregation introduicespected side-effects,
the concern group only contains 1 or 2 non-consecutivealsistompared with an
overwhelming ratio of consecutive clusters in that clugi@up. This property in-
dicates that the particular non-consecutive cluster iseaiapcase of that concern,
when the crosscutting statements need to be interleavédotvier method calls in
the execution.

From the observations stated above, we conclude that theisegeral factors which
diminish the percentage accuracy of flow analysis in ouruatedn. However, given the
scarcity of non-consecutive clusters within a concern grdhe scalability issue of the
analysis may not be as critical as we initially assumed angtecbde-based side effect

47

4.5. Question 3: Concern extraction

Table 4.5: Summary of flow analysis results

Reaggregable clusters Mis— flagged clusters by FA

0 0

Cluster Type Yo Non—consecutive clusters /o Reaggregable clusters

Clusters with>3 statements 80 % 33%
Clusters with 2 statements 100 % 16 %

analysis using tools such as the Soot Frametvosn be substituted for better accuracy.
Moreover, aspect refactoring tools generally requiresa ts manually determine if a
candidate crosscutting concern should be refactored tcasphus, user intervention is
unavoidable in most cases. The ConcernExtractor reduees/grhead in this process by
mapping out crosscutting code and refining the scope ofetgion by the user.

4.5 Question 3: Concern extraction

Criterion: the necessity of concern extraction to isoldtte identified crosscutting clusters.

The ConcernExtractor contains an annotated source codewibat enables a user to
quickly browse to the location of the cluster in the source filence, the user can easily
navigate to the method and the control block that contaiedarget cluster, and check if
the cluster is located at tletart/end of the method body, or if it is nested byt ay block,
afor loop, or other control structure

With the help of the ConcernExtractor, we can estimate tfiiedlity in directly refac-
toring a segment of code into aspect, based on the controldimimhe structures of its
surrounding code. The basic principle of refactoring ige€hg internal structure (of
existing code) without changing its external behavior”][1Blready, we have seen that
aspect refactoring sometimes requires loosening thisii@ia&preservation criteria in or-
der to refactor the crosscutting concern into aspect (set@re3.4, [16]). However, we

2See http://www.sable.mcgill.ca/soot.

48

4.5. Question 3: Concern extraction

(or the developer) should expect that the control flow of tkexation before and after the
refactoring to remain largely the same — the aspect codeldl@iwoven at the same
location before it was refactored.

On the other hand, a refactoring that preserves the sameottatv is often not pos-
sible, due to the limitations in the pointcut languages.ikstance, AspectJ only provides
pointcut designators that intercept join points at cerpd@ces in the control flow, such as
the start of a method call, or before an instance variabledsssed (to see the complete
list of pointcut descriptors, please refer to the AspectyRrmming Guid®).

Our concern extraction approach circumvents this problgrareating new methods
for isolating the crosscutting code. The extracted methbds contain the isomorphic
clusters will have a common method signature. To extractthsscutting clusters into
a single aspect, a user can create a pointcut expressiomtbtepts the join points of
these methods, and then consolidate the concern to aspesttfagting the content of
the methods intmne single advice. In this case, the extracted methods are eamaty
merely placeholders for the pointcut. During compilation un-time), the aspect com-
piler (weaver) can weave the crosscutting code in the adback at its invocation location,
and replicate the pre-extraction behavior.

However, does this approach offer a substantial increassfactoring opportunities?
Moreover, out of the refactorable crosscutting clustessairered by the ConcernExtrac-
tor, how many clusters do not need the extraction to a standamnethod and can be
directly refactored into aspect? In this section, we atteto@nswer this question by
assessing the numbers of clusters in a refactorable crtisgcaoncern that ardirectly
refactorable clusters that can be immediately refactored into an asp&og a simple
pointcut expression. To help us to obtain this value, wesieain equation based on the
location of a crosscutting method cluster relative to itstaming body.

3See http://www.eclipse.org/aspectj/doc/releasedprintp/semantics-pointcuts.html.

49

4.5. Question 3: Concern extraction

No. of clusters
No. of refactorable No. of clusters No. of clusters No. of clusters inside }

clusters - atthe start/end ¢ — insidetry block U inside a loop block U conditional block

of method body
Constraint 1: Only method clusters that are located at thgitn@ing or the end of a
method can be considered as a candidate of a concern thatsthyi refactorable.

In general, code snippets that are located at the beginminigeoend of a method
declaration can be extracted into aspects using a simphéqubiexpression that consists a
cal | orexecuti on pointcut designator. However, if the cluster is locatechmniddle of
the containing method body, creating a pointcut expresiahintercepts the join points
before or after the cluster involves at least two pointusigigators: a control flow-based
designator (i.e.cf | ow or cf | owbel ow) that locates the containing method body, and a
method call designator (i.€al | or executi on) using the statement above or below the
cluster. This type of pointcuts must be carefully crafteévoid unintended side effects,
and a side-effects-proof pointcut must account for all tagations, which adds additional
complexity to the pointcut expression. Therefore, we doawotsider the cluster located
in the middle of its containing method body to be directhactbrable.

Constraint 2: Clusters in &ry block should not be refactored.

To correctly refactor a segment of code insidier & block to anadvicein the aspect
class requires that:

1. The advice catches any exceptions the statements inrtfet taode segment may
throw, but this approaches implies that tre¢ ch block must also be refactored into
the aspect; or

2. The advice re-throws any exception thrown by the code sagnHowever, since
the aspect code will be called before of after the actual otettode(depending on
the type of advice used), any exception thrown by the aspele will not be caught

50

4.5. Question 3: Concern extraction

by anytry blocks within the method body. The enclosing method will ché®
declare in its signature any exception the aspect may thotverwise it will cause
a compile-time/run-time error. Adding new exceptions tea/method changes the
control flow of the system and therefore is not an acceptaféetoring.

Constraint 3: Clusters inside a loop are not considered cefeable.

AspectJ does not have support for a pointcut designatoptblas out join points at a
f or/whi |l e loop clause.

Constraint 4: Clusters inside a conditional statem@ng.i f/ el se/ swi t ch) are also
not considered refactorable.

Although AspectJ provides ari conditionalpointcut designator, it can only be used
as a conditional for another join point (i.e. to evaluate jbim point should be weaved
based on another conditional expression), but it cannosbkd to intercept the join point
at ani f conditional statement.)

In the previous sections, we identified groupsedactorable crosscutting clusteus-
ing the ConcernExtractor. In this section, for each grougetsctorable crosscutting clus-
ters, we manually inspect the position of each clusteriveab its containing block and
method body, to determine whether it is:

a. Located the the beginning or the end of the method body, and
b. Contained within a loop, or arf statement.

Using the formula we described above, we can determine thaucofdirectly refac-
torable clusters from the results. In our evaluation, we limit theyéd to only groups of
clusters that contain at leabiree statements.

Table 4.6 depicts a summary of the positions of method aisistdative to each of
their declaring method. The concerns in the table are daigntlentical to the concerns

51

4.5. Question 3: Concern extraction

Table 4.6: Summary of positions of method clusters relativéheir declaring method
bodies

Clusters at Clusters Clusters Clusters Directly Extrdetdb
System Concern begin/endf insidetry insidefor insideif refactorable clusters
method body block block block clusters

JBossAOP Add Method | 17 12 0 1 4 26
JBossAOP Add Method Il 9 0 0 0 9 9
ArtOflllusion Reset Vertex | 3 0 0 0 3 9
ArtOflllusion Reset Vertex || 3 0 0 0 3 6
Ant Run Ant Command | 5 5 0 0 0 5
Ant Run Ant Command Il 3 3 0 0 0 3
FreeMind XML Serialize 4 0 0 4 0 4

FreeMind Transaction 32 22 0 1 9 32

that were listed in Table 4.3. However, for some of the comgethe name of their seed
methods overlap. These methods only differ in the numbetlatypes of the parameters.
In order to distinguish between different concerns thaerlthe same functionalities, we
abbreviate the labels of the concern and denote the conatina number (i.e. 1 & II) to
show the difference.

From the result, we can observe that the numbesxtfactableclusters are substan-
tially more than the number of clusters that are directhacedrable. However, the result
also provides additional insights about the adequacy okAispas the target aspect lan-
guage for refactoring.

One of the original expectations from the results is thatniim@ber of clusters located
at the start or the end of a method is scant, compared to theeruimat are in the middle
of the method body. Nevertheless, among the refactoringscrdgting concerns that serve
as the subject of this evaluation, most of them contains @ifgignt proportion & 50%)
of method clusters that are located at the start or end of gdeblodies. Although the
results do not imply that AspectJ provides adequate pdidiesignators for refactoring, it
suggests that the beginning or the end of a method is a conweatidn for crosscutting
concerns, and these major refactoring opportunities caaptired using simple pointcut
provided by AspectJ.

52

4.5. Question 3: Concern extraction

Also, for a system with significant size, code for exceptiandiing should be preva-
lent, and it will be common to find method code that is totalbyered by a ry block.
We observed some instances of a largg block in the clusters from JBossAOP and Free-
Mind, and the evaluation shows that it is the most signifitdmtk pattern that prevents the
method clusters from being directly refactorable. One coamexception handler scenario
that we found in the target systems involves a candidateesliccated at the beginning of
a huget ry block that encapsulates the rest of the method code.eXbeption handling
pattern [22] is an AspectJ refactoring that is capable ofmdetely extracting the exception
handling component from a method body into an aspect. Orefaréuture work may be
the evaluation of the applicability of such patterns foronegring more opportunities for
refactoring the crosscutting clusters insider & block.

53

Chapter 5

Conclusions

We proposed a technique for bridging the gap between aspeatg and AO refactor-
ing, and implemented our approach in a tool called ConceraEtor. ConcernExtractor is
capable of assessing the results of an aspect-mining tadedify the refactorable cross-
cutting concerns in the system. It also supports applyingri@s of code transformations
to extract these crosscutting code segments into new dtaredaethods using a common
method signature. As a result, the inherent regularityettiosscutting is captured explic-
itly in the structure of the code, which can be leveraged terekthe code with additional
aspects.

We evaluated our approach by applying it to five medium-szenesource systems.
From our evaluation, we found that the number of crossauyititistances that are con-
sidered refactorable by ConcernExtractor are scarce, amdpo the size of the target
systems. We conclude that AOP refactoring has limited piatiior improving the mod-
ularity in an existing system that lacks initial consideras for crosscutting concerns.

In conclusion, we believe the major contribution of thise@<h is to provide mech-
anism to filter the results from aspect-mining, and to idgritie program elements that
truly constitute a crosscutting concern that can be refadtmto aspect. For existing sys-
tems, we believe that it is essential for a programmer to Eewf the existence of such
crosscutting concerns, regardless of the necessity aftoefag to aspect.

54

We developed the ConcernExtractor because current asp@cignechniques do not
always produce results that we can intuitively recognize asosscutting concern, and
these candidates do not equate to code fragments thataceoraible to aspects. To ensure
a minimal set of requirement for refactorable concerns, edeice the refactoring candi-
dates to a small set of constructs in the Java language (e#hath invocation statements)
that can be mapped to AspectJ. An interesting area for fuasearch would be expand-
ing the candidates from method invocation statements t@momplex expressions that
contain the seed methods, and explore the required Aspatsracts to refactor them.

We also propose that the concept of method cluster be fuddngloped. Currently,
a method cluster is limited to a contiguous statements ohatkinvocation. However,
there are other scenarios of crosscutting, such as methatlare called at the beginning
and end of a method, or inside ay- f i nal | y block, that are not captured because of the
requirement of contiguousness. Method cluster could baredgd to incorporate these
crosscutting concerns.

The current ConcernExtractor is intended to facilitate A@fctoring using aspect-
mining results. To further validate the concern extractimechanism and the usefulness
of aspect refactoring, we suggest that the ConcernExtrattould incorporate aspect-
refactoring functionality and become a comprehensivectefang framework. It will help
us to conduct comprehensive aspect refactoring studiag aspect-mining results.

55

Bibliography

[1]

[2]

[3]

[4]

[5]

P. Anbalagan and T. Xie. Automated inference of poirgéntaspect-oriented refac-
toring. InProceedings of the 29th International Conference on Soéwagineer-
ing, pages 127-136, 2007.

D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. ToaeAutomated refactoring
of object oriented code into aspects. Rroceedings of the 21st IEEE International
Conference on Software Maintenanpages 27-36, 2005.

D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Toaellool-supported refac-
toring of existing object-oriented code into aspedEEE Transactions on Software
Engineering 32(9):698-717, 2006.

S. Breu and J. Krinke. Aspect mining using event tracarbceedings of the 19th
IEEE International Conference on Automated Software Eegiimg pages 310-315,
2004.

S. Breu and T. Zimmermann. Mining aspects from versiatdry. InProceedings of
the 21th IEEE International Conference on Automated Soé\agineeringpages
221-230, 2006.

56

Bibliography

[6]

[7]

[8]

M. Bruntink, A. van Deursen, M. D’Hondt, and T. Tourwé.ingle crosscutting
concerns are not so simple: analysing variability in lasgale idioms-based imple-
mentations. IProceedings of the 6th International Conference on Aspeatnted
Software Developmerpages 199-211, 2007.

M. Bruntink, A. van Deursen, and T. Tourwé. Isolatingahatic crosscutting con-
cerns. InProceedings of the 21st IEEE International Conference ditwioe Main-
tenancepages 37-46, 2005.

M. Bruntink, A. van Deursen, T. Tourwé, and R. van EngeleAn evaluation of
clone detection techniques for crosscutting concernsPréteedings of the 20th
IEEE International Conference on Software Maintengmagges 200—209, 2004.

[9] A. Colyer and A. Clement. Large-scale AOSD for middlematn Proceedings of

[10]

[11]

[12]

[13]

[14]

the 3rd International Conference on Aspect-Oriented SoftviDevelopmentpages
56-65, 2004.

S. D. Conte, H. E. Dunsmore, and V. Y. SheBoftware Engineering metrics and
models Benjamin-Cummings Publishing Co., Inc., Redwood City, CKSA, 1986.

B. Dagenais, S. Breu, F. W. Warr, and M. P. Robillardehnihg structural patterns for
concern traceability in evolving software. Rroceedings of the 22nd IEEE/ACM In-
ternational Conference on Automated Software Engineepages 254-263, 2007.

A.v. Deursen, M. Marin, and L. Moonen. Aspect mining aathctoring. InProceed-
ings of the First International Workshop on REFactoringhwesements, Challenges,
Effects (REFACEO3niversity of Waterloo, Canada, 2003.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Robeefactoring: Improving
the Design of Existing CodAddison-Wesley Professional, June 1999.

B. Ganter, G. Stumme, and R. Wille, editoFarmal Concept Analysis, Foundations
and Applicationsvolume 3626 ofLecture Notes in Computer Scienc&pringer,
2005.

57

Bibliography

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

J. Gosling, B. Joy, G. Steele, and G. Braclava Language Specification, Second
Edition: The Java SeriesAddison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

J. Hannemann. Aspect-oriented refactoring: Clasgibc and challenges. IRro-
ceedings of 5th Workshop on Linking Aspect Technology amdutan (LATE)
2005.

J. Hannemann and G. Kiczales. Overcoming the prevalecwmposition in legacy
code. InProceedings of Workshop on Advanced Separation of Conckresna-
tional Conference on Software Engineering (ICSE 202@p1.

J. Hannemann and G. Kiczales. Design pattern impleatientin Java and aspectJ.
In Proceedings of the 17th ACM SIGPLAN Conference on Objeigr@d Program-
ming, Systems, Languages, and Applicatipages 161-173, 2002.

J. Hannemann, G. C. Murphy, and G. Kiczales. Role-baséattoring of cross-
cutting concerns. IProceedings of the 4th International Conference on Aspect-
Oriented Software Developmepiges 135-146, 2005.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.iRahnd W. Griswold. Getting
started with AspectlCommunications of ACM}4(10):59-65, 2001.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C.&xpl.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. Rroceedings of European Conference on
Object-Oriented Programmingolume 1241, pages 220-242. 1997.

R. Laddad.Aspect Oriented Refactoring\ddison-Wesley Professional, 2008.
C. Lindig. Fast Concept AnalysisShaker Verlag, August 2000.

M. Marin. Refactoring JHotDraw’s Undo concern to Asfiedn Proceedings of the
1st Workshop on Aspect Reverse Engineering (WAR&)4.

58

Bibliography

[25] M. Marin, L. Moonen, and A. van Deursen. A classificatafrtrosscutting concerns.
In Proceedings of the 21st IEEE International Conference diwsoe Maintenance
pages 673-676, 2005.

[26] M. Marin, L. Moonen, and A. van Deursen. A common framekvior aspect min-
ing based on crosscutting concern sortsPtaceedings of the 13th IEEE Working
Conference on Reverse Engineeripgges 29-38, 2006.

[27] M. Marin, A. van Deursen, and L. Moonen. Identifying asfs using fan-in analysis.
In Proceedings of the 11th IEEE Working Conference on Revergmeering pages
132-141, 2004.

[28] T. Mens and S. Demeyer, editoiSoftware EvolutionSpringer, 2008.

[29] M. P. Monteiro and J. M. Fernandes. Refactoring a Jawke diase to AspectJ: an
illustrative example. IrProceedings of the 21st IEEE International Conference on
Software Maintenan¢gages 17-26, 2005.

[30] M. P. Monteiro and J. M. Fernandes. Towards a catalogpéet-oriented refactor-
ings. InProceedings of the 4th International Conference on Aspeatnted Soft-
ware Developmenpages 111-122, 2005.

[31] A.O’Connor, M. Shonle, and W. Griswold. Star diagranttvautomated refactorings
for Eclipse. InProceedings of the 2005 OOPSLA workshop on Eclipse tecgynolo
eXchangepages 16-20, 2005.

[32] W. F. Opdyke. Refactoring object-oriented framework®hD thesis, University of
lllinois at Urbana-Champaign, Champaign, IL, USA, 1992.

[33] M. P. Robillard and F. Weigand-Warr. ConcernMappemsie view-based separa-
tion of scattered concerns. Rroceedings of the 2005 OOPSLA workshop on Eclipse
technology eXchangeages 65—-69, 2005.

59

Bibliography

[34] D. Shepherd, J. Palm, L. Pollock, and M. Chu-Carrollnfia: a framework for au-
tomatically combining aspect mining analyses Phoceedings of the 20th IEEE In-
ternational Conference on Automated Software Engineepages 184-193, 2005.

[35] D. Shepherd, L. Pollock, and K. Vijay-Shanker. Towasdpporting on-demand vir-
tual remodularization using program graphsPhoceedings of the 5th International
Conference on Aspect-Oriented Software Developnpages 3—14, 2006.

[36] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton. @gmkes of separation:
Multi-dimensional separation of concerns. Rroceedings of the 21st International
Conference on Software Engineerjipgges 107-119, 1999.

[37] P. Tonella and M. Ceccato. Aspect mining through theni@rconcept analysis of
execution traces. IRroceedings of the 11th IEEE Working Conference on Reverse
Engineeringpages 112-121, 2004.

[38] I. Yuen and M. Robillard. Bridging the gap between aspaming and refacctor-
ing. In Proceedings of 6th Workshop on Linking Aspect TechnologyEaslution
(LATE), 2007.

[39] C. Zhang and H.-A. Jacobsen. Quantifying aspects indtewdare platforms. In
Proceedings of the 2nd International Conference on As@etnted Software De-
velopmentpages 130-139, 2003.

[40] C. Zhang and H.-A. Jacobsen. Efficiently mining cro$8og concerns through ran-
dom walks. InProceedings of the 6th International Conference on Aspeanted
Software Developmemages 226—238, 2007.

60

