
Multi-dimensional Unit Test Classification

Ziming Wang, School of Computer Science

McGill University, Montreal

June, 2024

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Computer Science

©ZIMING WANG, 2024-06-06

Abstract

In software development projects, unit test names contribute to the overall quality of

the tests. Developers often encode rich contextual information in the test names to

enhance the test readability and maintainability. However, this information lacks a formal

structure, and thus cannot be systematically used to support software development

practices such as documentation and test refactoring. Additionally, large test suites

can still be hard to read and maintain, even with descriptive names. To address these

limitations, we propose to identify common types of information encoded in test names

and prevalent test naming conventions, and introduce a novel rule-based approach,

called Sift4J, to automatically extract latent semantic information encoded in the name of

a unit test. Information fragments we extract from test names can include the name of the

method under test, a description of the state of the object under test, or the expected result

of executing the unit under test. We then demonstrate how to perform multi-dimensional

classification of unit tests using this information. Finally, we evaluate the performance

of Sift4J on two samples of unit tests: our development set and a previously-unseen

evaluation benchmark. The results show that we can extract sufficient information from

test names to assist in meaningfully reorganizing the tests in test classes.

i

Abrégé

Dans les projets de développement de logiciels, les noms des tests unitaires contribuent

à la qualité globale des tests. Les développeurs encodent souvent des informations

contextuelles riches dans les noms des tests pour améliorer la lisibilité et la maintenabilité

des tests. Cependant, ces informations manquent de structure formelle et ne peuvent

donc pas être systématiquement utilisées pour soutenir les pratiques de développement

logiciel telles que la documentation et le refactoring des tests. De plus, les grandes

suites de tests peuvent toujours être difficiles à lire et à maintenir, même avec des

noms descriptifs. Pour répondre à ces limitations, nous proposons d’identifier les

types communs d’informations encodées dans les noms des tests et les conventions

de nommage des tests répandues, et d’introduire une nouvelle approche basée sur

des règles, appelée Sift4J, pour extraire automatiquement les informations sémantiques

latentes encodées dans le nom d’un test unitaire. Les fragments d’information que nous

extrayons des noms de tests peuvent inclure le nom de la méthode testée, une description

de l’état de l’objet testé, ou le résultat attendu de l’exécution de l’unité testée. Nous

démontrons ensuite comment effectuer une classification multidimensionnelle des tests

unitaires en utilisant ces informations. Enfin, nous évaluons les performances de Sift4J sur

deux échantillons de tests unitaires : notre ensemble de développement et un référentiel

d’évaluation précédemment non vu. Les résultats montrent que nous pouvons extraire

suffisamment d’informations des noms des tests pour aider à réorganiser de manière

significative les tests dans les classes de tests.

ii

Acknowledgements

First and foremost, I express my heartfelt gratitude to my supervisor, Prof. Martin P.

Robillard. His invaluable guidance carried me through all stages of this project, from

the initial proposal to the final thesis. It is a great honour and privilege to have had

the opportunity to work under his supervision. His conscientious academic spirit, high

ethical personality and great sense of humour inspires me both in research work and daily

life. I believe that I will continue to benefit from this experience throughout my entire life.

I am also deeply thankful to Prof. Robillard for providing me with funding through

the Natural Sciences and Engineering Research Council of Canada (NSERC). With this

financial support, I am able to fully dedicate myself to my research.

Next, I want to extend thanks to the members of the Software Technology Lab. I am

grateful for all the professional knowledge and insightful advice you have shared during

our weekly meetings. In addition, you have been my closest friends in Montreal, making

my graduate experience memorable.

Finally, and most importantly, I want to thank my parents. Without your endless

support and love, it would never have been possible to make this achievement happen. I

am especially grateful to my fiancée, Jiayu. You’ve been there for me when I needed you

most, and I could not have done it without you.

iii

Table of Contents

Abstract . i

Abrégé . ii

Acknowledgements . iii

List of Figures . vi

List of Tables . vii

1 Introduction 1

1.1 Contributions . 2

1.2 Thesis Organization . 3

2 Information Fragments in Test Names 4

2.1 Related Work . 5

2.2 Problem Formulation . 7

3 Types of Semantic Information Fragments 9

3.1 Methodology . 9

3.2 Results . 11

3.3 Limitations . 13

4 Extracting Semantic Information From Tests 15

4.1 Overall Architecture . 15

4.2 Extraction Techniques . 17

4.2.1 Rule Implementation . 19

iv

4.2.2 Limitations of the rules . 19

5 Multi-dimensional Test Classification 26

5.1 Overview of Multi-dimensional Test Classification 26

5.2 Sift4J Plug-in . 26

5.3 Example of Using Sift4J Plug-in . 27

6 Evaluation 29

6.1 Evaluation Benchmark . 29

6.2 Evaluation Metrics . 30

7 Results and Discussions 32

7.1 Development Set . 32

7.2 Evaluation Set . 35

8 Conclusions 38

8.1 Future Work . 39

A Evaluation Results on Development Set 46

B Evaluation Results on Evaluation Set 53

C CollectionUtilsTest Test Class 60

D CollectionUtilsTest Test Class Classified by Default Strategy 62

E CollectionUtilsTest Test Class Classified by Result Fragment 64

F CollectionUtilsTest Test Class Classified by Method Fragment 66

G CollectionUtilsTest Test Class Classified by State Fragment 68

v

List of Figures

4.1 A Sample Unit Test with Annotated Semantic Information Fragments 16

4.2 Sift4J Overall Design (Simplified) . 16

4.3 Example of reuse term in information semantic fragment. 22

5.1 The console view of the plug-in running on the sample test suite. Buttons

on the left side from top to bottom are: Classify by Default, Classify by

Method Fragment, Classify by Class Fragment, Classify by State Fragment,

Classify by Result Fragment, Classify by Scenario Fragment. 28

7.1 Sensitivity of threshold to small variations . 34

C.1 CollectionUtilsTest Test Class . 61

D.1 CollectionUtilsTest Test Class Classified by Default Strategy. 63

E.1 CollectionUtilsTest Test Class Classified by Result Fragment. 65

F.1 CollectionUtilsTest Test Class Classified by Method Fragment. 67

G.1 CollectionUtilsTest Test Class Classified by State Fragment. 69

vi

List of Tables

3.1 Naming Convention Families Observed in a Sample of 1245 Java Unit Tests 12

3.2 Types of Semantic Information Fragments Observed in a Sample of Java

Unit Tests . 13

4.1 Static Analysis Strategies for Extracting Semantic Fragments 23

4.2 Grammatical Relations between Semantic Information Fragments 24

4.3 Extraction Techniques Applied in Predefined Rule Set 25

7.1 Causes of classification errors in the development set 33

7.2 Cohen’s Kappa per Convention on the development set. The columns

indicate the number of true positives (TP), the number of false positives

(FP), the number of true negatives (TN), the number of false negatives (FN). 35

7.3 Causes of classification errors in the evaluation set 37

7.4 Cohen’s Kappa per Convention on the evaluation set. The columns

indicate the number of true positives (TP), the number of false positives

(FP), the number of true negatives (TN), the number of false negatives (FN). 37

A.1 Accuracy per Test Class on Development Set 47

B.1 Accuracy per Test Class on Evaluation Set . 54

vii

Chapter 1

Introduction

Readability and maintainability are the key quality attributes for unit tests [7]. Test

method names often have an impact on test suite readability and maintainability [4],

as they are one immediate source of information for understanding the intent of test

suites. Developers can benefit in multiple ways from descriptive names. For example,

descriptive names can help developers understand the intent of the unit test without

reading the test body, elicit the missing tests, etc. Thus, developers often encode rich

semantic information in the test names, (e.g., the name of the unit under test, the

feature under the test, and the expected outcome of the test). However, the encoding of

information along these different dimensions is unstructured and unsystematic, and thus

prone to inconsistencies and difficult to use by tools. In addition, long test suites with

descriptive names can still be hard to read and maintain. To overcome these problems,

we investigate three research questions:

RQ 1: What important information do developers commonly include in a test method

name?

RQ 2: How can this information be automatically identified?

RQ 3: How can this information help organize a test suite?

In this thesis, we first identify common types of information encoded in test names

and prevalent test naming conventions. Based on these findings, we propose a novel

1

rule-based approach, called Sift4J, for extracting information fragments from Java unit

tests. Sift4J comprises a collection of semantic fragment extraction rules, each of which is

associated with a naming convention. Sift4J uses an ensemble of information extraction

techniques that include textual analysis using regular expression, static analysis of the

test code, and natural language processing of the test names to convert the information

in test names to Java annotation. Furthermore, we developed an IntelliJ plug-in to allow

users to browse and organize the tests in a test class according to various dimensions

determined by the various information fragments detected.

Finally, we evaluated Sift4J by measuring its accuracy on two samples of unit tests:

a development set and a previously-unseen evaluation benchmark of Java unit tests that

use JUnit framework. The results show that we can extract sufficient information from

test names to assist in meaningfully reorganizing the tests in test classes.

1.1 Contributions

Overall, this work makes the following contributions:

1. A general and language-independent formulation of the problem of semantic

information fragment detection in a unit test name;

2. A catalogue of semantic information fragments identified from a sample of Java unit

tests;

3. A benchmark of unit test names and their applied naming conventions;

4. A prototype tool called Sift4J that automatically extracts the semantic information

fragments from Java unit tests that use the JUnit framework, and an IntelliJ plug-in

that performs multi-dimensional classification on the Java tests annotated by Sift4J;

5. Empirical data evaluating the performance of Sift4J tool for extracting information

from tests.

2

1.2 Thesis Organization

The remainder of this thesis is structured as follows. Chapter 2 discusses relevant

past research and presents a precise formulation of the semantic information fragment

detection problem. Chapter 3 details a formative study of test name conventions,

including its methodology and presents the resulting types of semantic information

fragments and prevalent naming conventions. Chapter 4 describes the design of the

Sift4J tool for extracting information fragments from test names, including a number of

information extraction techniques and a discussion of its limitations. Chapter 5 presents

how multi-dimensional test classification is achieved. Chapters 6 and 7 present the

design of the evaluation study and the results, respectively. Finally, Chapter 8 presents

the conclusions and directions for future work.

3

Chapter 2

Information Fragments in Test Names

This research is predicated on the observation that the names of unit tests commonly

encode information about different properties of the test, and this information may be

systematically organized through a naming convention. For example, a test named

testIsHorizontal False for a class representing a geometric line could encode two pieces of

information about the test: the name of the method being tested (isHorizontal), and the

expected outcome of the evaluation of this unit under test (in this case, a return value of

false). In this example, the information fragments are made prominent with the help of

two syntactic features: a test prefix marker (test), and a separator (), and the applied naming

convention can be expressed as test[FocalMethod] [ExpectedResult].

We henceforth refer to a cohesive piece of information about a unit test as a semantic

information fragment (or simply, fragment). We hypothesize that fragments can be extracted

from the names of unit tests with the help of naming conventions. As this work is scoped

in the context of the Java language, we consider that a unit test corresponds to a test

method as identified by the JUnit framework, and that the name of the test is simply the

test method’s simple name. A test name can be tokenized into a sequence of tokens based

on lexical or syntactic features, such as case or the use of separators. The example above

would be tokenized as test,Is, Horizontal, , False.

4

2.1 Related Work

There is ample evidence that developers informally encode semantic information as

fragments in unit test names. This evidence can be found both in the grey and the

scientific literature, and is easily confirmed by inspection of test suites (see Section 3). In

terms of grey literature, numerous blogs mention conventions for naming unit tests that

involve different kinds of semantic encoding (e.g., [10, 11, 14, 19, 28]). A common advice

is to encode the name of the unit under test (or focal method [6]) in the test name. Another

common recommendation is to include a description of the expected behavior of the unit

under test (same references). There is currently no common standard for structuring this

information in tests, and practices vary widely. Some conventions require prefix markers

(typically test), while some omit this marker. Likewise, token separation can be done

using different lexical features (e.g., CamelCase or snake case), or explicit tokens such as

should and when, or any combinations of the various possible alternatives.

Previous research also provides, directly or indirectly, useful insights about the kinds

of information that is or should be part of a test name. Test-to-code traceability techniques

aim to discover the link between test code and the code being tested (e.g., [6,21,23–25,27]).

The motivation for this research is that this link, useful for various test suite maintenance

activities, can be lost if it is not documented. Explicitly providing the name of the focal

method in the test name thereby helps avoid the cost of recovering this link. Ghafari et

al.’s work in particular focused on recovering focal methods using data-flow analysis [6].

Past work has also addressed the challenges of automatically generating names for unit

tests, or test templates from test names. From these efforts, we can learn about properties

of the information that is recommended to be present in test names by the designers of

the various approaches. Zhang et al. proposed to leverage information in test names

to generate an implementation template for the test [34]. Their proposal relies on the

assumption that the test name would follow a “well-defined grammatical structure”

that consists of a “action phrase” followed by a “predicate phrase”, both expressed

5

as verb phrases. In later work, the same research group proposed a technique to go

the other way, and automatically generate a test’s name that “summarizes the test’s

scenario and the expected outcome” [35]. Similarly, Daka et al. proposed a technique

to generate names that follow a three-part naming convention to generate descriptive test

method names, including the method under test, the state under test, and the expected

behavior [5]. Wu and Clause [31] devised a pattern-based approach to compare test

names and their corresponding bodies. In doing so, they also considered three types of

information from both the test method name and body: action, predicate, and scenario.

Wu and Clause [32, 33] further leveraged this information and proposed a uniqueness-

based approach to generate test names. Another interesting approach was introduced by

Allamanis et al. to predict the test name from the test body using a neural probabilistic

language model [1].

In addition, Peruma et al. used grammatical patterns to interpret test names for

the purpose of supporting their evolution [22]. As part of this work, they observed an

impressive variety of ways to express test information in test names. The previous work

has shown that descriptive test method names are an asset for improving the quality of

unit tests, and that it is reasonable to expect that tests can follow some naming convention.

However, we found that there is no agreement on what information should be included

in test method names and, more importantly, there is no uniform way to express this

information.

Finally, previous research has also provided indirect insights on how to manage large

test suites. Greiler et al. showed that the low cohesive test methods grouped in the same

class may result in test smells [8]. Kochhar et al. [13] conducted open-ended interviews to

identify 29 hypotheses that describe characteristics of good test cases, and surveyed 261

practitioners to validate these hypotheses. Key findings revealed that most respondents

agree that large test cases are hard to understand and maintain, and the use of tags or

categories is helpful to manage test suites in real practice, for example, running a specific

set of tests easily at a time. Several common testing frameworks like JUnit provided

6

a set of annotations to tag test cases. E.g., in JUnit 5, @Nested, and @Tag annotations

were used to help with organizing test suites. @Nested is designed to signal that the

annotated class is a nested test class. It can be used to group multiple test methods inside

multiple nested classes. Next, @Tag is designed to declare a tag for the annotated test

classes or test methods, which can be used to filter which tests are executed for a given

test plan. However, these techniques require much human effort and comprehensive

understanding on the test class from developers. Another related research is from Li et

al. [16], who predefined a catalogue of 21 stereotypes, which are mostly JUnit API-based.

And then they developed a prototype tool to automatically generate the stereotypes

from the test methods and tag the tests with the generated stereotypes, which can assist

navigation/classification of a group of tests.

2.2 Problem Formulation

If we accept that a test name is likely to follow a naming convention containing

information about the test, we wish to extract this information from the name by utilizing

the naming convention. We define the problem of extracting semantic information fragments

from test names (fragment extraction for short) as a function that takes as input a test

name and its context, and produces a convention C. C is a class that describes the

naming convention applied to the test, encoding a sequence of tagged fragment tuples

{(F1, T1), ...(Fn, Tn)}. In a tuple (F, T), F is a substring of the test name and T is a

configurable tag that describes the nature of the fragment. The concatenation of T in

the tuples represents an occurrence of the convention class C. In practice, the context for a

test name is the code base that contains the test together with its necessary dependencies.

Returning to our example above, one solution to the fragment extraction of

testIsHorizontal False could be, in a given context:

Method–Result: {(isHorizontal, FOCAL METHOD), (False, EXPECTED RESULT)}.

7

Designing a technique to solve the fragment extraction problem requires a precise

understanding of the types of fragments that it is possible to encounter in practice. We

conducted a formative study to elicit these types.

8

Chapter 3

Types of Semantic Information

Fragments

In this chapter, we conducted a formative study to answer the questions what types

of semantic fragments can we find in unit tests written in Java? How do they manifest?

The answers to these questions provide a framework for tagging semantic information

fragments in unit tests based on existing practice. The study consisted in assembling a

diverse sample of unit tests, then inspecting each test in context and manually classifying

the information fragments in its name using a qualitative coding process. The context for

a unit test name includes the source code of the test suite, including the test itself, which

we leveraged for the classification.

3.1 Methodology

We used GitHub Search and the GitHub Search API1 to collect 100 public repositories

with Java test code. We considered a repository eligible if it was tagged by GitHub as

containing Java code, and if it contained at least 50 test files. We define a test file as any

file that 1) has the .java extension and 2) contains the string test in its path, and 3) uses the

1github.com/search and docs.github.com/rest, resp.

9

JUnit framework.2 We conducted the query on 27 November 2022 and selected the 100

most-starred repositories that met these inclusion criteria.3

Next, we sampled unit tests from the 100 repositories with the goal of recording as

many different test name structures as possible for a reasonable manual inspection effort.

For this purpose, we randomly sampled one test class per repository, and inspected all its

test methods as identified with the @Test annotation. For each test, we assigned a label to

describe the naming convention used for the test. We then repeated the entire process until

we reached saturation, which we defined as inspecting 20 consecutive test classes without

encountering a new naming convention. We reached saturation after three iterations,

thereby collecting data 1263 test methods from 300 classes.4 Of these methods, 18 had

names that clearly captures no information about the test (e.g., methods named simply

test, or test1). We discarded these methods from further analysis, leaving us with a data set

of 1245 unit tests. We then collapsed the set of naming conventions into a set of convention

families, each capturing a different sequence of information fragments about a test.

Eliciting Naming Convention We labeled each test using a combination of keywords,

separators and placeholders to represent a naming convention. For example, we would

assign the label test[Focal Method] [Expected Result] to the method testIsHorizontal False. We

derived the labels describing each naming convention using a manual inspection process

informed by the grey literature on naming conventions for unit tests (see Section 2.1). In

a test name, keywords and separators can be readily identified by recognizing substrings

such as test or when. Identifying instances of placeholders is a more important task as its

outcome determines the types of information fragments we can detect from test names.

For this purpose we considered different groups of tokens in the test name and attempted

2We used the GitHub API to check if test files contained the string junit.
3In practice, we retrieved the 300 most-starred Java repositories and analyzed each in decreasing order

of stars until we collected 100 with testing code.
4When repeating the process, we ensured that any test class selected from a previously-sampled

repository was located in a different package from any of the test classes previously sampled from this
repository.

10

to match them with common testing concepts discussed in the grey literature, creating

new types of placeholders as necessary. A single investigator conducted this analysis.

Defining Convention Families Our focus is on the type of information we can extract

from tests. To pave over accidental differences in encoding style, we analyze our findings

in terms of naming convention families. We group naming conventions together in a family

if they differ only in terms of delimitation style (e.g., camelCamel case vs. snake case)

and/or choice of explicit token (e.g., test, return, with). For example, we grouped the

conventions [Method]Test and test [Method] together in the Method Only family. Finally, given

a convention family, we can trivially extract all the fragment types used as placeholders.

For example, from the convention family Method–Result we extract the information

fragments Focal Method and Expected Result.

3.2 Results

Table 3.1 lists the convention families we observed, with their frequency. Eighteen types

of convention with at least ten instances cover 96% of our sample test (1195/1245).

Additionally, the Method Only family is the most prevalent, constituting 16% of the

observations. These observations show that the vast majority of test names encode at

least one semantic information fragment. We thus seek a potential to leverage the most

common convention families to extract information fragments encoded in the test names.

Table 3.2 lists the fragment types we cataloged, together with statistics of their

observation frequency in our data set of 1245 test methods. The third column

(Obs.) provides the number of tests whose name included a semantic fragment of the

corresponding type. The fourth column (Prop.) divides this number by 1245 to provide a

ratio. The sum of ratios exceeds 100% because test names can include multiple fragments.

As expected, the main practices we detected involve specifying the name of the focal

method (37%). This practice also has the advantage of being unambiguous. Except when

11

Table 3.1: Naming Convention Families Observed in a Sample of 1245 Java Unit Tests

Convention Family Frequency

Method Only 204
Method–State 136
Result Only 134
State Only 123
Scenario Only 123
Result–State 113
Method–State–Result 49
Abbreviated Method Only 47
Class Only 46
Abbreviated Method–State 44
Scenario–State 40
State–Result 35
Class–State 24
Method–Result 21
Scenario–Result 18
State–Scenario–Result 14
Scenario–State–Result 12
Result–Method–State 12
Method–Result–State, Method–Method 7
Result–Scenario 6
Method–Class 4
State–Scenario, Scenario–Class 3
Class–Method–Method, Abbreviated Method–State–Result,
Method–State–Method, State–Abbreviated Method–Result,
Method–Method–State, Method–State–State

2

Method–State–Result–State, Class–Method, Scenario–State–State,
Scenario–Abbreviated Method, Method–State–Scenario–Result,
Class–Scenario, Scenario–Class–Result, Scenario–Result–State

1

testing overloaded or overridden methods accessed polymorphically, it can be possible

to refer to precisely the method under test. To a certain extent, precise references are also

possible for values of variables and arguments. Unfortunately, the same cannot be said

of vaguer concepts such as STATE or SCENARIO. Our research thus explores how to resolve

ambiguous references to this kind of semantic information.

12

Table 3.2: Types of Semantic Information Fragments Observed in a Sample of Java Unit

Tests

Fragment
Type

Description Obs. Prop.

METHOD Refer to the method under test [12]. The method
should be called within the test.

464 37%

ABBREVIATED

METHOD

Refer to a subset of the tokens that form the name of
the focal method. Indicates a test that may be broader
in scope that the focal method itself.

96 8%

CLASS Refer to the class under test. [30] 82 7%
STATE Refers to input state related to FOCAL METHOD 630 51%
RESULT Refers to the expected outcome of the test case, other

than EXCEPTION [12].
428 34%

SCENARIO A general description of the focus of the test when no
category applies that would be more specific. [12]

225 18%

3.3 Limitations

A main limitation of the study is that the sample is not uniformly random and therefore

cannot support the inference of fragment type proportions to a broader population of

unit tests. However, such inference was not the goal of study. The differences in

proportions we observe are sufficiently distinct to help us prioritize the development of

basic classification rules. For example, having observed 464 instances of unit tests that

name the focal method in the test name in some of the most popular Java projects on

GitHub, we have confidence that we are not attempting to support an exotic practice.

The second limitation concerns the accuracy of the manual classification. Classifying

fragment types according to the protocol described above amounts to a program

understanding task, which can leave some room for personal interpretation. We deemed

it unnecessary to employ a dual-coding approach with inter-rater reliability calculations

for this task for two reasons. First, it is a low-subjectivity task as many placeholders

map directly to program constructs (e.g., focal method, parameter name). Second, minor

mischaracterizations have limited practical impact as we are primarily interested in the

13

diversity of information types as opposed to the precise frequency of their occurrence in

our data set. Our data set is also available for independent verification.

14

Chapter 4

Extracting Semantic Information From

Tests

In this chapter, we contribute the design and implementation of a technique for extracting

information fragments from unit tests as formulated in Section 2.2. We implemented

a prototype for Java we call Sift4J (for Semantic Information From Tests for Java). Sift4J

serves as a proof of concept of the feasibility of extracting information fragments from

Java unit tests. The prototype is structured as a rule engine with a collection of semantic

fragment extraction rules applied sequentially to a unit test. Each rule is associated with

a naming convention family as identified in Table 3.1. The input to Sift4J is a test file

and associated code base. The output is an updated version of the input test file with

annotations indicating any detected information fragment. The listing of Figure 4.1 shows

an example of unit test annotated with Sift4J.

4.1 Overall Architecture

The Sift4J rule engine is implemented in Java and operates by parsing an input Java

source file containing unit tests, and then providing these tests to a number of extraction

rules. Figure 4.2 provides a simplified view of the essential elements of the Sift4J design.

15

1 @Test
2 @FocalMethod(‘‘IsEmpty’’)
3 @State(‘‘CollectionIsEmpty’’)
4 @ExpectedResult(‘‘ReturnTrue’’)
5 public void testIsEmpty whenCollectionIsEmpty thenReturnTrue() {
6 Collection<Object> testCollection = new ArrayList<>();
7 assertTrue(‘‘Should return true because collection is empty’’,
8 CollectionUtils.isEmpty(testCollection));
9 }

Figure 4.1: A Sample Unit Test with Annotated Semantic Information Fragments

Figure 4.2: Sift4J Overall Design (Simplified)

The RuleEngine relies on a CodeFactExtractor to obtain the list of unit tests for a Java source

file. These unit tests are returned in the form of a MethodDeclaration Abstract Syntax Tree

(AST) node. The CodeFactExtractor relies on the JavaParser library to parse source files and

resolve as many of the symbols therein as possible.1 The RuleEngine class can be configured

with any number of instances of type Rule. An instance of Rule provides the computation

necessary to detect a naming convention from a test’s names according to a given heuristic

(e.g., by linking text in the method name to a production focal method). An instance

of type Rule is employed by calling an apply method with a method declaration node

1We used JavaParser version 3.25.1 configured with a symbol solver that combines the JavaParserTypeSolver
and the ReflectionTypeSolver.

16

representing a unit test as input. Applying a rule returns an optional convention2 encoding

five potentially-empty string instances representing the types of semantic fragments we

identified in our formative study (see Section 2.2). In our design, an interface Rule is

extended by two categories:3 OneFragmentConventionRule and MultipleFragmentsConventionRule.

A rule is defined by extending the correspond class, instantiating it, and adding the

instance to the rule engine’s list of rules.

We designed and implemented a number of predefined extraction rules to demonstrate

the approach and support experimentation. As targets for our predefined rules, we

chose to implement support for all convention families for which we had observed over

ten instances in our formative study (see Table 3.1). However, in the list of 18 target

conventions, three were not amenable to automatic detection via heuristics: Scenario Only,

Scenario–Result, and Result–Method–State. Because of a lack of structure and constraints

for expressing such conventions (and in particular scenarios), there is no explicit feature

we can rely on to design extraction rules for these families. We implemented support

for extracting information fragments for all 15 remaining convention families. These

predefined rules are not intended to cover all conventions potentially in use, but they

enable our further empirical investigation. To support the pragmatic eventuality that

some projects may use idiosyncratic conventions to name their unit tests, we engineered

our solution as a flexible framework that allows users to define an open-ended collection

of arbitrary custom rules.

4.2 Extraction Techniques

We designed Sift4J’s predefined rules using a combination of four extraction techniques.

2Specifically an instance of a class Convention wrapped in an Optional type that remains empty if the rule is
not applicable.

3implemented as two different abstract classes in practice

17

Common Convention Pattern A number of test naming conventions use a well-

defined and unambiguous pattern than can be readily detected, e.g., the convention

given[State] then[Result]. We refer to such practices as common convention patterns. We

simply use a regular expression to detect instances of the convention and extract the

corresponding fragments. In our example, the instance of the convention can be

detected with the regular expression given(\w+) then(\w+) as part of executing the State–

Result rule. The resulting sequence of semantic fragments is extracted as {(EmptySets: State),

(ExpectNoChanges: Result)}.

Static Analysis We use static analysis to link the text in the test method name to the

program entities in the test. The static analysis strategy depend on the type of semantic

fragments to be extracted. For example, a test named testGetResources can be linked to a

focal method getResources if a call to such a method can be detected in the body of the test.

Table 4.1 provides additional details.

Grammatical Relations We observed in the formative study that certain grammatical

structures can be indicative of the presence of a specific type of semantic information. For

example, a prepositional phrase (e.g. withNull), appearing after a Method is likely to describe

the input State of the focal method (e.g., test isHorizontal withNull). Table 4.2 documents the

grammatical relations we observed and leverage. We use the part-of-speech (POS) tagger

of the Stanford Core NLP library [17] to perform the grammatical structure analysis.

Keywords We also leverage the simple heuristic that certain terms in a method name

can indicate the presence of specific types of information fragments [22]. E.g., the terms

empty, single, double are likely to describe the quantity of the input passed to the method

under test, implying that the fragment is State. A second example might be the term

is a proper noun, e.g., a test named testDetermineSampleSize PNG, “PNG” refers to a type of

image, when it appears after the method under test, then it is likely to suggest that “PNG”

is the input state of the focal method.

18

Table 4.3 reports the subset of techniques we employ for each rule.

4.2.1 Rule Implementation

Our implementation strategy for predefined rules follows an opportunistic approach with

fallbacks. In other words, we try to detect if a test name matches an extraction rule by

checking the least ambiguous cases first (i.e., common convention patterns), and then

falling back to other alternatives as necessary. In the case of extraction rules for multiple

fragments, we may need to take into account the partial matching of the test’s name by

one technique when applying other technique. For this reason, the rule metaheuristic

differs slightly for rules to extract a single fragment (Algorithm 1) from rules to extract

more than one fragment (Algorithm 2).

Algorithm 1 One-Fragment Convention Rule Extraction Algorithm
Input: U: Unit Test Declaration
Output: C: a Convention Instance

1: n← Unit Test Name
2: if n follows a Common Convention Pattern then
3: f ← APPLYREGULAREXPRESSION(n)
4: return BUILDCONVENTION(f)
5: end if
6: n← PREPROCESS(n) ▷ Remove underscores and “test” related filler words
7: f ← APPLYTESTTOCODETRACEBILITY(U)
8: if f matches n then
9: return BUILDCONVENTION(f)

10: else if n starts with Special Term then
11: return BUILDCONVENTION(f)
12: end if
13: return Empty

4.2.2 Limitations of the rules

We opted for a rule-base approach to provide a direct traceability between information

fragments and source code. In addition to providing a clear rationale for the detection of

a fragment (though the rule family employed to detect it), the use of a rule-base approach

19

Algorithm 2 Two-Fragments Convention Rule Extraction Algorithm
Input: U: Unit Test Declaration
Output: C: a Convention Instance

1: n← Unit Test Name
2: if n follows a Common Convention Pattern then
3: f1, f2← APPLYREGULAREXPRESSION(n)
4: return BUILDCONVENTION(f1, f2)
5: end if
6: n← PREPROCESS(n) ▷ Remove underscores and “test” related filler words
7: f1, f2← APPLYTESTTOCODETRACEABILITY(U)
8: if n starts with f1 ∧ ends with f2 then
9: return BUILDCONVENTION(f1, f2)

10: end if
11: if n starts with f1 ∨ ends with f2 then
12: f ← the matched fragment
13: remain← remove f from n
14: if remain follows Grammatical Relation ∨ starts with Special Term then
15: return BUILDCONVENTION(f, remain)
16: end if
17: end if
18: return Empty

provides clear guidance for developers wishing to encode semantic fragments in their test

name. The limitations of Sift4J are thus a manifestation of the fundamental limitations of

rule-base systems applied to our context. First, not all information can be encoded by

following simple conventions. Second, a heuristic approach to match natural language

is ambiguous and incomplete by nature. Third, the performance of the approach is

impacted by technical aspects of the extraction techniques.

The first limitation is a reflection that test names are often in free-form natural

language that does not follow any detectable convention. In our framework, this situation

is explicitly captured by convention families with potentially unspecified fragments, such

as STATE, RESULT, and SCENARIO (see Table 3.1). In cases where developers use free-form text

to describe a scenario that involves an arbitrary collection of code elements, there is no

clear traceability principle that can be used to identify semantic fragments. For example,

if a test is named sanity to indicates that the test case is validating the basic functionality

for a method, Sift4J will be unable to establish a connection between the test name an

20

any fragment. This limitation is compounded by the reality that, even when a project

uses a well-defined convention, it is possible that not all test names consistently follow

the naming convention. Consistency is in particular impacted by the challenges of co-

evolving test and code [29]. For example, if a production method named getParams is

renamed params, but the corresponding test testGetParams is not updated accordingly, Sift4J

will not detect an instance of the METHODONLY convention.

A second limitation is that, because test names do not have to follow a formal structure

checked by the compiler, ambiguities can occur, or the heuristic rules can be insufficiently

precise to detect the encoded information. An example of ambiguity is a test named

maxDelayIsNotMissedTooMuch making a call to a production method named is. In this case,

Sift4J will falsely identify is as the focal method. Another example is of a test named

testFloorDoubleNumber, whose focal class and focal method are both named Floor (see 4.3).

The third limitation is that the implementation of all four of our extraction techniques

(Section 4.2) impacts the performance of the approach. For Textual Patterns, the

implementation needs to include patterns used in a project for the approach to perform

well. Similarly, the Keywords approach will be sensitive to the glossary used as hints that

certain tokens represent certain types of fragments. The static analysis technique relies on

the correct parsing and type resolution of incomplete Java source code, which is itself an

approximate process. For example, we rely on the JavaParser built-in JavaSymbolSolver,

to resolve overloaded method calls. However, the developers of JavaParser have

observed potential bugs4 in the library, possibly caused by lambda functions or variadic

parameters. As for matching the names of detected methods to the test name, we rely

on a threshold value. However, we conducted a sensitivity analysis to ensure we were

working with a optimal value (see Section 7.1 for details). Finally, a word may have

a different part-of-speech (POS) tag than usual in a software-specific context [3, 9, 18],

which could negatively impact the result of Grammatical Relations technique. However,

the performance of the Stanford Part-of-Speech Tagger has previously been considered

4https://github.com/javaparser/javaparser/issues/1643#issuecomment-396492324

21

https://github.com/javaparser/javaparser/issues/1643#issuecomment-396492324

Figure 4.3: Example of reuse term in information semantic fragment.

1 @Test
2 public void testFloorDoubleNumber()
3 {
4 assertEquals(0, Floor.floor(0.1));
5 assertEquals(1, Floor.floor(1.9));
6 assertEquals(−2, Floor.floor(−1.1));
7 assertEquals(−43, Floor.floor(−42.7));
8 }

satisfactory on analysing the grammar pattern of software identifiers [2, 22, 31]. Our

primary means for mitigating the technical limitations of extraction techniques is our

reliance on a fallback approach, wherein we systematically apply the most precise

approaches first and only rely on less precise alternatives when no other option succeeds.

22

Table 4.1: Static Analysis Strategies for Extracting Semantic Fragments

Fragment
Type

Extraction Strategy Tagged Text

METHOD Combine a set of independent heuristics to produce
a score following the strategy of White et al. [30].
Obtain the name of all methods called directly within
the body of the test, compute four case-insensitive
similarity measures between the name of the method
called and the name of the unit test, and add
the results. The similarity measures are: exact
name match, exact name containment, Levenshtein
distance, and longest common subsequence.

The name of the
called method
identified as
similar to the test
name.

CLASS Use the same approach above. Instead of collecting
method calls, we collect classes of the objects created
as well as the classes passed to the focal method as
method arguments within the test body.

The name of the
class identified as
similar to the test
name.

STATE Generate a state description based on the API-
Coverage goal following the strategy of Daka [5].
Obtain the names and values of all arguments
declared in the test method and, if the name is longer
than one character, check if they are contained in
the unit test name. If not, generate a description to
describe the collected arguments based on their type
and quantity, and identify if the description is similar
as part of the test name.

The name of
the argument or
the generated
state description
identified as
similar to the test
name.

RESULT Generate a result description based on the assert
statement type following the strategy of Zhang. [35].
Obtain the last assert statement in the test body,
generate a description based on the assertion type
and the arguments passed to the assert statement, and
identify if the description is similar as part of the test
name. In addition, Exception is a special type of Result
of unit test, we used three common JUnit framework
error handling mechanisms to extract the exception
thrown. Specifically, 1. Use the expected attribute of
JUnit’s @Test annotation 2. Use try-catch idiom with
a call to JUnit’s fail method in the catch block 3. Use
JUnit’s assertThrows method

The generated
result description
or the name of
the exception
identified as
similar to the test
name

23

Table 4.2: Grammatical Relations between Semantic Information Fragments

Rule Pattern Example

METHOD–STATE Method + NP
Method + PP
Method + ADJP

edgesConnecting disconnectedNodes
decrementByNegativeDelta
testGetInReplyTo empty

ABBREVIATED METHOD–STATE Abbreviated Method
+ NP
Abbreviated Method
+ PP
Abbreviated Method
+ ADJP

As above

RESULT–STATE Result + NP
Result + PP
Result + ADJP

As above

METHOD–RESULT Method + VP isValid shouldValidateConfigRepo
STATE–RESULT State + VP aUUIDStringReturnsAUUIDObject
SCENARIO–STATE NP + State cycleOfMixedWithImmutableRoot
RESULT–STATE VP + State testReturnsFalseIfFinishingFails

24

Table 4.3: Extraction Techniques Applied in Predefined Rule Set

Convention Type Common
Convention
Pattern

Test-to-Code
Traceability

Grammatical
Relation

Special Term

METHOD ONLY No Yes No No
STATE ONLY No Yes No Yes
METHOD–STATE Yes Yes Yes Yes
RESULT ONLY Yes Yes No Yes
RESULT–STATE Yes Yes Yes Yes
SCENARIO–STATE Yes No No No
ABBREVIATED METHOD

ONLY

No Yes No No

METHOD–STATE–RESULT Yes No No No
CLASS ONLY No Yes No No
ABBREVIATED METHOD–
STATE

Yes Yes Yes Yes

STATE–RESULT Yes Yes No Yes
METHOD–RESULT No Yes Yes Yes
BAD CONVENTION No No No Yes
SCENARIO–STATE–
RESULT

Yes No No Yes

RESULT–METHOD–STATE Yes No No No
STATE–SCENARIO–
RESULT

Yes No No No

25

Chapter 5

Multi-dimensional Test Classification

This chapter presents how multi-dimensional classification is achieved leveraging the

semantic fragments. It describes the implementation of the plug-in built upon Sift4J and

presents a demonstration on a real test file.

5.1 Overview of Multi-dimensional Test Classification

Once unit tests are annotated with semantic information fragments (as illustrated in

Figure 4.1), it becomes straightforward to use an annotation processor to reorganize a test

file to group tests according to the different dimensions that correspond to the different

information types. For example, a test class could be organized by focal test method, by

common input states (e.g., an empty structure), or by expected result (e.g., all tests for

conditions throwing exceptions).

5.2 Sift4J Plug-in

As a proof of concept, we implemented a sample test organization tool as an IntelliJ

plug-in we refer to as the Sift4J plug-in. The Sift4J plug-in allows a user to semi-

automatically restructure a test file by leveraging the information fragments therein. By

26

default, the plug-in groups the unit tests based on the most frequent semantic fragment

value observed in the test file (e.g., focal method). The plug-in also supports grouping

tests in terms of multiple dimensions (for example, first by focal method, then input

state). Although grouping tests by multiple levels is likely excessive for small test classes,

the feature allows exploring latent test suite design strategies for large test classes.

In addition to allowing developers to browse the tests in a class by different semantic

groups, the plug-in also supports the option to encode a desired grouping in the test file.

For this purpose we use the @Nested annotation provided by the JUnit5 framework. The

@Nested annotation was originally designed to help organize tests into classes that can

share the scaffolding available via an instance of their enclosing class. We additionally

leverage this feature to signal that a group of unit tests shares the same semantic

fragments, and thereby encode the relationship among several groups of tests.

5.3 Example of Using Sift4J Plug-in

We illustrate the workflow supported by the Sift4J plug-in with a walk-through of a

relatively simple test file called CollectionUtilsTest.java1 (see Figure 4.1). This class contains

tests of the miscellaneous collection utility methods used in the corresponding project.

The test class contains six test cases. Conveniently, the test names consistently adhere

to the METHOD–STATE–RESULT convention family. To automatically annotate tests with

semantic fragment information, one would right-click on the target test class file in

the IntelliJ project view and select the “Run Sift4J” command. The identified semantic

fragments are presented in the bottom console organized in a method-by-fragment table

(see Figure 5.1). After running Sift4J on this test class, each test case is correctly tagged

with annotations that encode semantic fragments. However, use of the Sift4J plug-in is

independent from the performance of the automated fragment extraction process. For

imperfect fragment extraction outcomes, developers can adjust the fragment annotations

1https://github.com/perwendel/spark/blob/54079b0f95f0076dd3c440e1255a7d449d9489f1/
src/test/java/spark/utils/CollectionUtilsTest.java/

27

https://github.com/perwendel/spark/blob/54079b0f95f0076dd3c440e1255a7d449d9489f1/src/test/java/spark/utils/CollectionUtilsTest.java/
https://github.com/perwendel/spark/blob/54079b0f95f0076dd3c440e1255a7d449d9489f1/src/test/java/spark/utils/CollectionUtilsTest.java/

Figure 5.1: The console view of the plug-in running on the sample test suite. Buttons on

the left side from top to bottom are: Classify by Default, Classify by Method Fragment,

Classify by Class Fragment, Classify by State Fragment, Classify by Result Fragment,

Classify by Scenario Fragment.

in the test file as desired. It is also possible to envision adoption scenarios where

fragments are manually created at test creation time, or the possibility of automatically

injecting annotations using in-house tools (e.g., relying on traceability to test plans).

In any case, once tests are annotated with semantic information fragments, developers

can use the plug-in to explore and/or refactor the test suite structure. Developers

can select one of the classification strategies by clicking a correspond button. Each

classification strategy prioritizes grouping unit tests based on a different type of semantic

fragment. In the case of CollectionUtilsTest, the test cases are organized into two nested

classes based on the Method information fragment type, as two focal methods are

detected: isEmpty and isNotEmpty. Within each class, we further group the test cases based

on the most frequent fragment value, excluding those already used. For the isEmpty class,

two test cases shared the same Result fragment, ReturnFalse, we thus generate a new nested

class to group the test cases accordingly. A similar process is followed in the isNotEmpty

class. This grouping process continues until no test cases within the enclosing class share

the same fragment value. The complete code of the CollectionUtilsTest.java file as well as

different versions produced by the Sift4J plug-in are available in Appendix C, D, E, F, G.

28

Chapter 6

Evaluation

In this chapter, our goal was to evaluate Sift4J as an initial assessment of the feasibility

of recovering semantic information fragments about unit tests in existing code. Once

recovered, information fragments can be explicitly encoded via annotations, and thus

provide long-term added value to the code base. However, multi-dimensional unit

test classification is not a current practice and unit test naming conventions are neither

standardized nor systematically followed in practice [26]. Hence, an estimate of the effort

involved in recovering information fragments from code can guide adoption efforts. We

designed a benchmark study to answer two research questions:

RQ1: How effective is Sift4J at correctly identifying conventions associated with

predefined rules?

RQ1: For a correctly identified convention, how effective is Sift4J at extracting semantic

information fragments encoded in test names?

6.1 Evaluation Benchmark

In developing the approach we leveraged a development set consisting of all the tests in 100

Java test classes. For each test class included in the development set, we had recorded the

name of the selected repository and its version number, the name of the selected test class,

29

and the names of all the test methods within the selected test class. For each test method,

the first author manually determined the applicable convention family. The development

set is documented in Table A.1 in Appendix A.

To evaluate the approach on unseen data, we created an evaluation set of 100 Java

test classes by randomly selecting 100 additional (unseen) test classes from the data

collected in our formative study. We followed the same sampling procedure as described

in Section 3.1, with an additional constraint that each test class should have at least ten

test methods. We added this additional constraint for two reasons. First, we wanted

to support an analysis of the performance on a per-class basis, which is only insightful

if there is a minimum number of tests in the class. Second, our multi-dimensional test

classification approach is only valuable for classes with many tests, as there is no point in

spending effort organizing a class with only a handful of tests. Hence, selecting classes

with a high number of tests better aligns our sample with the natural target for our

approach. Table B.1 in Appendix B lists the test classes in our evaluation set.

Our benchmark thus consists of a total of 200 test classes combined from the

development and evaluation sets. The development set contains 442 unit tests and the

evaluation set contains 1398 unit tests. The larger number of tests in our evaluation set is

the consequence of our constraint to only select classes with at least ten test methods.

6.2 Evaluation Metrics

A data point in our evaluation is the application of Sift4J to a given unit test. The

expected convention (family) for a unit test is the convention (family) used for the unit

test as annotated by the first author (see Table 3.1). In this section, we henceforth refer

to convention families simply as conventions for short. The detected convention is the

convention output by Sift4J.

As we are applying Sift4J to unseen, randomly-selected test code, we anticipate that

some unit tests will not follow any of the conventions we can detect. To capture this

30

important factor of the evaluation, we define applicable tests as the set of benchmark tests

whose expected convention is implemented by the predefined rules. The development set

contains 391 applicable tests out of the 442 tests (88.5%), and the evaluation set contains

1268 applicable tests out of the 1398 tests (90.7%).

We answer the research questions in terms of two metrics: accuracy and Cohen’s

kappa (κ). Accuracy provides a simple overview of the performance of the approach

through the ratio of tests for which Sift4J can detect the expected convention. We use two

formulations of accuracy. Accuracyg (global) is the ratio of tests for which the detected

convention is the expected convention over all tests. In contrast, Accuracya is the ratio of

tests for which the detected convention is the expected convention over applicable tests.

The two metrics allow us to evaluate two different aspects of the approach: Accuracya

provides sense of the performance of the current implementation of Sif4J’s predefined

rules, while Accuracyg gives an overview of the performance of the approach we could

expect if we deployed it in practice. We compute the accuracy metrics both globally

(i.e., over applicable/all tests across all test classes), and on a per-class basis (i.e., over

applicable/all tests in a given test class).

In addition to overall performance, we also study the performance for each predefined

convention. For this purpose we use Cohen’s κ (kappa) statistic [15]. For each convention,

we construct a 2 × 2 confusion matrix that distinguishes expected vs. not-expected in

one dimension and detected vs. not-detected in the other. We use the κ statistics for this

evaluation to mitigate the effect of class imbalance.1

Our second research question only considers cases where Sift4J detected the correct

convention for a unit test. For such cases, we compute the fragment-level accuracy

Accuracyf as the number of correctly identified fragments over the total number of

expected fragments for all tests for which the correct convention was detected in a class.

1For each convention except the most popular ones, most tests will naturally be classified as not expected,
leading to a class imbalance. In such cases, a large proportion of matches is not informative as they could
occur by chance. The κ statistics accounts for this factor so that higher κ values robustly represent higher
agreement beyond what can be expected by chance.

31

Chapter 7

Results and Discussions

In this chapter, We separately present the evaluation results for the development set and

evaluation set.

7.1 Development Set

The accuracy over applicable tests (accuracya) is 97%, while the accuracy over all tests

(accuracyg) is 86% (see Appendix A). Table 7.1 documents the causes of classification

errors for the development set. The table organizes the causes of classification errors in six

categories, also discussed in Section 4.2.2. For each category, we report the total number

of occurrences (Tot.), which we further break down in terms of the number of occurrences

that are false negatives (FN), false positives (FP), or misclassifications (Mis.). For a given

test, a false negative corresponds to Sift4J not triggering any rule when one is expected;

a false positive corresponds to Sift4J triggering a rule when none is applicable, and a

misclassification corresponds to selecting the incorrect rule (in effect a matching false

positive–false negative pair). Over 391 applicable tests, we observed 5 false negatives

and 8 misclassifications.

In these cases, we observed that in three cases a common term used in a method’s

name as well as in the name of its declaring class caused a misclassification. Second,

32

Table 7.1: Causes of classification errors in the development set

Cause Tot. FN Mis.

Reuse of a term 3 0 3
High level of abstraction 3 2 1
Idiosyncratic naming style 3 1 2
Limitation of the POS Tagger 2 0 2
Thresholding problem 2 2 0

Total 13 5 8

in three cases use of high-level language led to ambiguities and corresponding

misclassifications. For example, a test named testDiscoveryBlockingDisabled describes the

state of the test where a parameter ...discovery.blocking.enabled is set to false. However, this

caused in a false negative of the StateOnly rule, as the State fragment is described using

natural language that inverses the polarity of the state. Third, the use of idiosyncratic

names, including uncommon separation tokens in tests and poor production method

name, contributed to errors. Next, we noted two cases of errors caused by limitations

of the POS tagger. For example, a test named isTypeOf declaredType. In Java programming,

declaredType usually refers to the type of variable used in the declaration, which is expected

to be tagged as noun phrase, but the Stanford POS Tagger identified it as a verb phrase.

Finally, two errors could be traced to the threshold used for evaluating the similarity

between the identified text from the test and the test name impacted the results. To

determine this value, we conducted a sensitivity analysis by running Sift4J on the

development set with different values of threshold and computed the overall accuracy.

For example, a test named testFitForSameInputDifferentQuery was associated with the focal

method named fitProcess. In this case, the calculated similarity score between two texts

was below the selected threshold, resulting in a false negative. Figure 7.1 shows the

sensitivity of the threshold to small variation (0.1) on our development set. While we

consider the current threshold (0.5) to be a reasonable choice for our data set, the ideal

threshold value may vary between projects [30].

33

0 0.5 1 1.5 2
65%

70%

75%

80%

85%

90%

Threshold

A
cc

ur
ac

y(
O

ve
ra

ll)

Figure 7.1: Sensitivity of threshold to small variations

In summary, the majority of the classification errors are consistent with the limitations

discussed in Section 4.2.2, and thus confirm opportunities to improve the performance of

the tool. For instance, using a POS Tagger designed for software engineering contexts,

implementing more convention rules, etc.

Table 7.2 shows the evaluation results for each convention. Notably, the κ value

for each convention rule is greater than 0.8, indicating that each convention rule works

almost perfectly to detect the expected convention [15].

In addition, 604 out of 614 expected information fragments within the development

set were correctly identified. The accuracy over fragment-level (Accuracyf) is

thus near perfect (0.98). The few classifications errors we observed were

caused by the order of common convention patterns. E.g., a test named

shouldDoDefaultFormatForNestedCaseEndConditionWithFunctionsKeywords, which matches two

predefined convention patterns: testShould(\w+)For(\w+) and testShould(\w+)With(\w+). The

extraction result is affected by execution order of these patterns. Overall, the results

of the evaluation on the development set show the predefined rules can effectively

detect the correspond naming convention and extract the correct sequence of information

fragments.

34

Table 7.2: Cohen’s Kappa per Convention on the development set. The columns indicate

the number of true positives (TP), the number of false positives (FP), the number of true

negatives (TN), the number of false negatives (FN).

Convention Rule TP FP TN FN κ

Method Only 93 0 347 2 0.99
Result–State 58 2 381 1 0.97
Method–State 49 4 388 1 0.95
Result Only 27 0 413 2 0.96
Abbreviated Method–State 27 0 414 1 0.98
State Only 24 2 415 1 0.94
Class Only 20 0 422 0 1.00
Abbreviated Method Only 12 1 428 1 0.92
Result–Method–State 12 0 430 0 1.00
Class–State 9 0 430 3 0.85
State–Result 9 0 432 1 0.95
State–Scenario–Result 9 0 433 0 1.00
Method–State–Result 9 0 433 0 1.00
Method–Result 8 2 432 0 0.89
Scenario–State 8 2 432 0 0.89
Scenario–State-Result 4 0 438 0 1.00

7.2 Evaluation Set

The accuracy over applicable tests (accuracya) is 94% (compared to 97% for the

development set), while the overall accuracy for all tests (accuracyg) is 85.4% (compared

with 85.5% for the development set, see Appendix B). Notably, we observed relatively

low applicable accuracy for two specific test classes: NetUtilsTest (36%) and ResourcesTest

(29%). The NetUtilsTest class has seven classification failures due to typographical errors.

For example, a test named tetGetIPV6HostAndPort ReturnHostPort contained a misspelling of

test as tet. In the ResourcesTest class, all 12 errors are caused by idiosyncratic names. For

example, tests are prefixed with should and followed by the focal method’s name.

Table 7.3 shows the reasons for all failure cases and their occurrences in the evaluation

set, comprising 35 false negatives and 39 misclassifications among applicable tests. In

general, the causes for classification errors align with those observed in the development

35

set. The predominant cause of errors is idiosyncratic names, characterized by four specific

issues: improper use of filler words, poor production method names, typographical

errors, and variations in word forms. For example, a focal method named click is

manually traceable through the terms clicks and clicking in the test name, resulting in

a misclassification. The reason high level of abstraction in information fragments notably

impacted the accuracy of the State Only and Result Only convention families. Additionally,

the reason selection of threshold values predominantly affected the Abbreviated Method Only

and Abbreviated Method–State convention families. Despite the larger number of tests in

the evaluation set, the alignment of failure reasons with those in the development set

underscores that our evaluation effectively highlights the limitations of Sift4J.

Table 7.4 shows the evaluation results for each convention rule on the evaluation set.

Compared to the performance of each rule in the development set, the majority of the

convention rules maintain a high Cohen’s kappa value (≥0.8), except for the Abbreviated

Method–State rule. The primary reason for the lower agreement in the Abbreviated Method–

State rule is attributed to the typographical errors and the thresholding effect.

For the second evaluation question, 1999 out of 2005 expected information fragments

within the evaluation set were correctly identified. The accuracy over fragment-level

(Accuracyf) remains nearly perfect. All classification errors are due to the use of different

word forms. For example, a test named resolvesRelativeUrls associated with a production

method name resolve, however, the use of the third person singular form of the verb leads

to a false classification. Overall, the results of applying Sift4J on the evaluation set is

comparable to those obtained on the development set, showing that Sift4J can effectively

detect the correspond naming convention and extract the correct sequence of information

fragments.

36

Table 7.3: Causes of classification errors in the evaluation set

Cause Tot. FN Mis.

Reuse of a term 6 1 5
High level of abstraction 17 13 4
Idiosyncratic naming style 33 8 25
Limitation in POS Tagger 4 2 2
Selection of threshold value 14 12 2

Total 74 35 39

Table 7.4: Cohen’s Kappa per Convention on the evaluation set. The columns indicate

the number of true positives (TP), the number of false positives (FP), the number of true

negatives (TN), the number of false negatives (FN).

Convention Rule TP FP TN FN κ

Method Only 354 0 1031 13 0.98
Method–State 236 4 1143 15 0.95
Result–State 183 18 1193 4 0.93
Method–State–Result 83 0 1311 4 0.97
Result Only 67 7 1318 6 0.91
Abbreviated Method Only 52 1 1335 10 0.90
Method–Result 42 2 1349 5 0.92
Class–State 44 9 1343 2 0.88
State–Scenario–Result 46 0 1352 0 1.00
State Only 35 2 1352 9 0.86
Abbreviated Method–State 22 8 1363 5 0.77
Scenario–State 14 6 1378 0 0.82
Class Only 8 0 1390 0 1.00
State–Result 4 0 1393 1 0.89
Scenario–State–Result 4 0 1394 0 1.00
Result–Method–State 0 0 1398 0 1.00

37

Chapter 8

Conclusions

Motivated by the observation that test names often encode latent semantic information

and the difficulty of maintaining large test suites, we designed Sift4J, a novel rule-based

approach to automatically extract the semantic information fragments encoded in the

name of a unit test. Our formative study identified five common types of information

and prevalent test naming conventions. We identified six common types of information

fragments, including METHOD, ABBREVIATED METHOD, CLASS, STATE, RESULT, and SCENARIO.

We also observed eighteen types of prevalent naming conventions in our sample tests,

which cover 96% of them. The Method Only family had the most observations. With Sift4J,

we further contributed a solution to manage large test suites through multi-dimensional

classification. Our observation of an accuracy of 94% in naming convention detection

and near-optimum accuracy when extracting fragments on an unseen sample of Java

tests demonstrates the practical applicability of the approach to legacy code, in addition

to being usable in forward-engineering scenarios. Although the current version of the

tool focuses on Java tests using JUnit framework, the tool’s architecture is language-

independent.

38

8.1 Future Work

Our comprehensive evaluation revealed that Sift4J can extract sufficient information from

test names to assist in meaningfully reorganizing the tests in test classes. Two promising

directions for future work in this area are test convention consistency and test refactoring.

Currently, our approach can detect naming conventions applied to test names, if they

are implemented in the predefined rule set. It will be interesting to implement more

convention rules and explore how to our approach can be integrated with the current

static analysis tools to measure the test naming convention consistency. As for test

refactoring, we provided a new refactoring strategy to help developers manage large

test suites, which can naturally increase the cohesion between tests by listing them in

a meaningful order within a test class, among others. However, future work is needed

to evaluate how much this classification strategy can improve the test quality in terms of

readability and maintainability, potentially using a set of software metrics [8, 20].

39

Bibliography

[1] ALLAMANIS, M., BARR, E. T., BIRD, C., AND SUTTON, C. Suggesting accurate

method and class names. In Proceedings of the 10th Joint Meeting on Foundations of

Software Engineering (2015), p. 38–49. https://doi.org/10.1145/2786805.2786849.

[2] ARNAOUDOVA, V., ESHKEVARI, L. M., PENTA, M. D., OLIVETO, R., ANTONIOL,

G., AND GUÉHÉNEUC, Y.-G. Repent: Analyzing the nature of identifier

renamings. IEEE Transactions on Software Engineering 40, 5 (2014), 502–532.

https://doi.org/10.1109/TSE.2014.2312942.

[3] BINKLEY, D., HEARN, M., AND LAWRIE, D. Improving identifier

informativeness using part of speech information. In Proceedings of the

8th Working Conference on Mining Software Repositories (2011), p. 203–206.

https://doi.org/10.1145/1985441.1985471.

[4] BUTLER, S., WERMELINGER, M., YU, Y., AND SHARP, H. Exploring the influence

of identifier names on code quality: An empirical study. In Proceedings of the 14th

European Conference on Software Maintenance and Reengineering (2010), pp. 156–165.

https://doi.org/10.1109/CSMR.2010.27.

[5] DAKA, E., ROJAS, J. M., AND FRASER, G. Generating unit tests with descriptive

names or: would you name your children thing1 and thing2? In Proceedings of the

26th ACM SIGSOFT International Symposium on Software Testing and Analysis (2017),

pp. 57–67. https://doi.org/10.1145/3092703.3092727.

40

https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1109/TSE.2014.2312942
https://doi.org/10.1145/1985441.1985471
https://doi.org/10.1109/CSMR.2010.27
https://doi.org/10.1145/3092703.3092727

[6] GHAFARI, M., GHEZZI, C., AND RUBINOV, K. Automatically identifying focal

methods under test in unit test cases. In Proceedings of the IEEE 15th International

Working Conference on Source Code Analysis and Manipulation (2015), pp. 61–70.

https://doi.org/10.1109/SCAM.2015.7335402.

[7] GRANO, G., DE IACO, C., PALOMBA, F., AND GALL, H. C. Pizza versus pinsa:

On the perception and measurability of unit test code quality. In Proceedings of the

IEEE International Conference on Software Maintenance and Evolution (2020), pp. 336–

347. https://doi.org/10.1109/ICSME46990.2020.00040.

[8] GREILER, M., VAN DEURSEN, A., AND STOREY, M.-A. Automated detection of

test fixture strategies and smells. In Proceedings of the IEEE Sixth International

Conference on Software Testing, Verification and Validation (2013), pp. 322–331.

https://doi.org/10.1109/ICST.2013.45.

[9] GUPTA, S., MALIK, S., POLLOCK, L., AND VIJAY-SHANKER, K. Part-of-speech

tagging of program identifiers for improved text-based software engineering tools.

In Proceedings of the 21st International Conference on Program Comprehension (2013),

pp. 3–12. https://doi.org/10.1109/ICPC.2013.6613828.

[10] JON, R. Unit test naming: The 3 most important parts. Personal blog, Apr 2020.

Verified 2024-05-20. https://qualitycoding.org/unit-test-naming/.

[11] KAINULAINEN, P. Writing clean tests: Naming

matters. Personal blog, Jan 2018. Verified 2023-04-24.

https://www.petrikainulainen.net/programming/testing/writing-clean-tests-

naming-matters/.

[12] KHORIKOV, V. Unit Testing Principles, Practices, and Patterns. January 2020.

[13] KOCHHAR, P. S., XIA, X., AND LO, D. Practitioners’ views on good

software testing practices. In Proceedings of the IEEE/ACM 41st International

41

https://doi.org/10.1109/SCAM.2015.7335402
https://doi.org/10.1109/ICSME46990.2020.00040
https://doi.org/10.1109/ICST.2013.45
https://doi.org/10.1109/ICPC.2013.6613828
https://qualitycoding.org/unit-test-naming/
https://www.petrikainulainen.net/programming/testing/writing-clean-tests-naming-matters/
https://www.petrikainulainen.net/programming/testing/writing-clean-tests-naming-matters/

Conference on Software Engineering: Software Engineering in Practice (2019), pp. 61–70.

https://doi.org/10.1109/ICSE-SEIP.2019.00015.

[14] KUMAR, A. 7 popular strategies: Unit test naming conventions. DZone article, Jun

2021. Verified 2023-04-24. https://dzone.com/articles/7-popular-unit-test-naming.

[15] LANDIS, J. R., AND KOCH, G. G. The measurement of observer agreement for

categorical data. Biometrics 33, 1 (1977), 159–174.

[16] LI, B., VENDOME, C., LINARES-VASQUEZ, M., AND POSHYVANYK, D. Aiding

comprehension of unit test cases and test suites with stereotype-based tagging. In

Proceedings of the IEEE/ACM 26th International Conference on Program Comprehension

(2018), pp. 52–5211. https://doi.org/10.1145/3196321.3196339.

[17] MANNING, C., SURDEANU, M., BAUER, J., FINKEL, J., BETHARD, S., AND

MCCLOSKY, D. The Stanford CoreNLP natural language processing toolkit.

In Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics: System Demonstrations (2014), K. Bontcheva and J. Zhu, Eds., pp. 55–60.

https://doi.org/10.3115/v1/P14-5010.

[18] OLNEY, W., HILL, E., THURBER, C., AND LEMMA, B. Part of speech

tagging java method names. In Proceedings of the IEEE International

Conference on Software Maintenance and Evolution (2016), pp. 483–487.

https://doi.org/10.1109/ICSME.2016.80.

[19] OSHEROVE, R. Naming standards for unit tests. Personal blog, Apr 2005.

Verified 2023-08-04. https://osherove.com/blog/2005/4/3/naming-standards-for-

unit-tests.html.

[20] PALOMBA, F., PANICHELLA, A., ZAIDMAN, A., OLIVETO, R., AND DE LUCIA, A.

Automatic test case generation: what if test code quality matters? In Proceedings of

the 25th International Symposium on Software Testing and Analysis (2016), p. 130–141.

https://doi.org/10.1145/2931037.2931057.

42

https://doi.org/10.1109/ICSE-SEIP.2019.00015
https://dzone.com/articles/7-popular-unit-test-naming
https://doi.org/10.1145/3196321.3196339
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.1109/ICSME.2016.80
https://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html
https://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html
https://doi.org/10.1145/2931037.2931057

[21] PARIZI, R. M. On the gamification of human-centric traceability tasks in software

testing and coding. In Proceedings of the IEEE 14th International Conference on

Software Engineering Research, Management and Applications (2016), pp. 193–200.

https://doi.org/10.1109/SERA.2016.7516146.

[22] PERUMA, A., HU, E., CHEN, J., ALOMAR, E. A., MKAOUER, M. W., AND

NEWMAN, C. D. Using grammar patterns to interpret test method name evolution.

In Proceedings of the IEEE/ACM 29th International Conference on Program Comprehension

(2021), p. 335–346. https://doi.org/10.1109/ICPC52881.2021.00039.

[23] QUSEF, A., BAVOTA, G., OLIVETO, R., DE LUCIA, A., AND BINKLEY, D. SCOTCH:

Test-to-code traceability using slicing and conceptual coupling. In Proceedings

of the IEEE 27th International Conference on Software Maintenance (2011), p. 63–72.

https://doi.org/10.1109/ICSM.2011.6080773.

[24] QUSEF, A., BAVOTA, G., OLIVETO, R., DE LUCIA, A., AND BINKLEY, D. Recovering

test-to-code traceability using slicing and textual analysis. Journal of Systems and

Software 88 (2014), 147–168. https://doi.org/10.1016/j.jss.2013.10.019.

[25] QUSEF, A., OLIVETO, R., AND DE LUCIA, A. Recovering traceability links

between unit tests and classes under test: An improved method. In Proceedings

of the IEEE International Conference on Software Maintenance (2010), pp. 1–10.

https://doi.org/10.1109/ICSM.2010.5609581.

[26] ROBILLARD, M. P., NASSIF, M., AND SOHAIL, M. Understanding test convention

consistency as a dimension of test quality. ACM Transactions on Software Engineering

and Methodology (2024), Accepted 2024–05–22.

[27] ROMPAEY, B. V., AND DEMEYER, S. Establishing traceability links between

unit test cases and units under test. In Proceedings of the 13th European

Conference on Software Maintenance and Reengineering (2009), pp. 209–218.

https://doi.org/10.1109/CSMR.2009.39.

43

https://doi.org/10.1109/SERA.2016.7516146
https://doi.org/10.1109/ICPC52881.2021.00039
https://doi.org/10.1109/ICSM.2011.6080773
https://doi.org/10.1016/j.jss.2013.10.019
https://doi.org/10.1109/ICSM.2010.5609581
https://doi.org/10.1109/CSMR.2009.39

[28] TRENK, A. Testing on the toilet: Writing descriptive test names. Google Testing Blog,

Oct 2014. Verified 2024-05-10. https://testing.googleblog.com/2014/10/testing-on-

toilet-writing-descriptive.html.

[29] WANG, S., WEN, M., LIU, Y., WANG, Y., AND WU, R. Understanding and

facilitating the co-evolution of production and test code. In Proceedings of the

IEEE International Conference on Software Analysis, Evolution and Reengineering (2021),

pp. 272–283. https://doi.org/10.1109/SANER50967.2021.00033.

[30] WHITE, R., KRINKE, J., AND TAN, R. Establishing multilevel test-to-code

traceability links. In Proceedings of the ACM/IEEE 42nd International Conference on

Software Engineering (2020), pp. 861–872. https://doi.org/10.1145/3377811.3380921.

[31] WU, J., AND CLAUSE, J. A pattern-based approach to detect and improve

non-descriptive test names. Journal of Systems and Software 168 (2020), 110639.

https://doi.org/10.1016/j.jss.2020.110639.

[32] WU, J., AND CLAUSE, J. Automated identification of uniqueness in JUnit

tests. ACM Transactions on Software Engineering and Methodology 32, 1 (2023).

https://doi.org/10.1145/3533313.

[33] WU, J., AND CLAUSE, J. A uniqueness-based approach to provide descriptive

junit test names. Journal of Systems and Software 205 (2023), 111821.

https://doi.org/10.1016/j.jss.2023.111821.

[34] ZHANG, B., HILL, E., AND CLAUSE, J. Automatically generating test

templates from test names (n). In Proceedings of the 30th IEEE/ACM

International Conference on Automated Software Engineering (2015), pp. 506–511.

https://doi.org/10.1109/ASE.2015.68.

[35] ZHANG, B., HILL, E., AND CLAUSE, J. Towards automatically generating

descriptive names for unit tests. In Proceedings of the 31st IEEE/ACM

44

https://testing.googleblog.com/2014/10/testing-on-toilet-writing-descriptive.html
https://testing.googleblog.com/2014/10/testing-on-toilet-writing-descriptive.html
https://doi.org/10.1109/SANER50967.2021.00033
https://doi.org/10.1145/3377811.3380921
https://doi.org/10.1016/j.jss.2020.110639
https://doi.org/10.1145/3533313
https://doi.org/10.1016/j.jss.2023.111821
https://doi.org/10.1109/ASE.2015.68

International Conference on Automated Software Engineering (2016), pp. 625–636.

https://doi.org/10.1145/2970276.2970342.

45

https://doi.org/10.1145/2970276.2970342

Appendix A

Evaluation Results on Development Set

46

Ta
bl

e
A

.1
:A

cc
ur

ac
y

pe
r

Te
st

C
la

ss
on

D
ev

el
op

m
en

tS
et

R
ep

os
it

or
y

C
om

m
it

Te
st

C
la

ss
ac
cu
ra
cy

a
ac
cu
ra
cy

g
ac
cu
ra
cy

f

al
ib

ab
a/

ea
sy

ex
ce

l
2d

5d
b8

9
Po

iF
or

m
at

Te
st

1.
00

1.
00

1.
00

Th
eA

lg
or

it
hm

s/
Ja

va
e9

bb
f3

5
Fl

oo
rT

es
t

0.
00

0.
00

1.
00

bu
m

pt
ec

h/
gl

id
e

0e
69

12
a

U
ni

tT
ra

ns
fo

rm
at

io
nT

es
t

1.
00

0.
50

1.
00

go
og

le
/a

ut
o

26
f0

73
f

M
or

eT
yp

es
Is

Ty
pe

O
fT

es
t

0.
80

0.
80

1.
00

fa
ce

bo
ok

/f
re

sc
o

91
a0

93
5

C
lo

se
ab

le
Bi

tm
ap

Te
st

1.
00

0.
50

1.
00

al
ib

ab
a/

na
co

s
de

5e
c3

5
A

bs
tr

ac
tN

am
in

gC
lie

nt
Pr

ox
yT

es
t

1.
00

1.
00

1.
00

ap
ac

he
/z

oo
ke

ep
er

4b
1b

33
e

R
eq

ue
st

Th
ro

tt
le

rT
es

t
1.

00
0.

75
1.

00

ap
ac

he
/k

af
ka

60
10

51
3

K
Ta

bl
eK

Ta
bl

eF
or

ei
gn

K
ey

Jo
in

M
at

er
ia

liz
at

io
nI

nt
eg

ra
ti

on
Te

st
1.

00
1.

00
1.

00

al
ib

ab
a/

na
co

s
82

92
d9

e
D

is
tr

oC
on

fig
Te

st
1.

00
0.

83
1.

00

al
ib

ab
a/

fa
st

js
on

e8
ec

59
e

Te
st

Is
su

e3
67

1
1.

00
1.

00
1.

00

za
pr

ox
y/

za
pr

ox
y

81
ee

5d
0

Po
st

Ba
se

dA
ut

he
nt

ic
at

io
nM

et
ho

d-

Ty
pe

U
ni

tT
es

t
1.

00
1.

00
1.

00

ne
tt

y/
ne

tt
y

f4
3a

9d
d

O
sC

la
ss

ifi
er

sT
es

t
1.

00
1.

00
1.

00

al
ib

ab
a/

Se
nt

in
el

38
32

f2
b

C
om

m
an

dC
en

te
rT

es
t

N
A

0.
00

1.
00

ap
ac

he
/d

ub
bo

37
2f

6a
6

C
om

m
an

dH
el

pe
rT

es
t

1.
00

1.
00

1.
00

ap
ac

he
/d

ub
bo

0e
66

de
1

Sp
ri

ng
C

on
ta

in
er

Te
st

1.
00

1.
00

1.
00

ec
lip

se
-v

er
tx

/v
er

t.x
62

c3
99

6
U

R
LB

un
dl

eF
ile

R
es

ol
ve

rT
es

t
1.

00
1.

00
1.

00

47

ap
ac

he
/k

af
ka

ab
ab

c4
2

Se
ss

io
nW

in
do

w
ed

K
St

re
am

Im
pl

Te
st

1.
00

1.
00

1.
00

fa
ce

bo
ok

/f
re

sc
o

b7
77

8f
c

A
sh

m
em

M
em

or
yC

hu
nk

Po
ol

Te
st

1.
00

1.
00

1.
00

an
tl

r/
an

tl
r4

e1
45

5c
0

Te
st

In
te

rp
re

te
rD

at
aR

ea
de

r
1.

00
1.

00
1.

00

be
n-

m
an

es
/c

af
fe

in
e

a7
d3

1f
5

Ty
pe

sa
fe

C
on

fig
ur

at
io

nT
es

t
1.

00
1.

00
1.

00

ap
ac

he
/c

as
sa

nd
ra

45
26

b3
f

To
pP

ar
ti

ti
on

sT
es

t
N

A
0.

00
1.

00

ap
ac

he
/fl

in
k

80
cd

04
a

Py
th

on
Ta

bl
eF

un
ct

io
nO

pe
ra

to
rT

es
tB

as
e

1.
00

0.
60

1.
00

al
ib

ab
a/

fa
st

js
on

7a
bc

84
f

R
ec

ta
ng

le
Te

st
N

A
0.

00
1.

00

ap
ac

he
/fl

in
k

94
91

5d
6

A
gg

re
ga

te
dT

as
kD

et
ai

ls
In

fo
Te

st
N

A
0.

00
1.

00

co
de

ce
nt

ri
c/

sp
ri

ng
-b

oo
t-

ad
m

in

56
8d

10
2

Bu
ild

Ve
rs

io
nT

es
t

1.
00

1.
00

1.
00

m
yb

at
is

/m
yb

at
is

-3
e9

a0
80

5
R

efl
ec

to
rT

es
t

1.
00

1.
00

1.
00

dr
om

ar
a/

hu
to

ol
28

fe
fd

e
Z

ip
W

ri
te

rT
es

t
1.

00
1.

00
1.

00

al
ib

ab
a/

ca
na

l
63

40
7d

c
Ph

oe
ni

xS
yn

cT
es

t
1.

00
1.

00
1.

00

di
an

pi
ng

/c
at

73
2b

7e
e

M
et

ri
cT

es
t

1.
00

1.
00

1.
00

an
tl

r/
an

tl
r4

e1
45

5c
0

Te
st

C
ha

rS
up

po
rt

1.
00

1.
00

1.
00

ap
ac

he
/k

af
ka

d3
13

0f
2

Sa
sl

Ex
te

ns
io

ns
Te

st
0.

67
0.

67
1.

00

zx
in

g/
zx

in
g

40
c2

e2
e

Bi
tV

ec
to

rT
es

tC
as

e
1.

00
0.

75
1.

00

ab
el

53
3/

M
ap

pe
r

60
6f

02
6

Sp
ri

ng
A

nn
ot

at
io

nT
es

t
1.

00
1.

00
1.

00

dr
op

w
iz

ar
d/

m
et

ri
cs

3a
c2

0d
3

D
ef

au
lt

O
bj

ec
tN

am
eF

ac
to

ry
Te

st
1.

00
1.

00
1.

00

A
ct

iv
it

i/
A

ct
iv

it
i

d5
f4

9b
e

Ti
m

er
Sc

he
du

le
dL

is
te

ne
rD

el
eg

at
eT

es
t

1.
00

1.
00

1.
00

48

dr
op

w
iz

ar
d/

m
et

ri
cs

bf
85

ca
4

In
st

r u
m

en
te

dA
pp

en
de

rC
on

fig
Te

st
1.

00
1.

00
1.

00

N
at

io
na

lS
ec

ur
it

yA
ge

nc
y-

/g
hi

dr
a

e4
37

2a
3

A
rr

ay
St

ri
ng

ab
le

Te
st

1.
00

1.
00

1.
00

ap
ac

he
/c

as
sa

nd
ra

57
07

32
3

Pa
gi

ng
Te

st
1.

00
1.

00
1.

00

ec
lip

se
-v

er
tx

/v
er

t.x
64

66
06

6
C

on
cu

rr
en

tC
yc

lic
Se

qu
en

ce
Te

st
1.

00
0.

88
1.

00

fa
ce

bo
ok

/f
re

sc
o

e0
54

3e
f

D
ow

ns
am

pl
eU

ti
lT

es
t

1.
00

1.
00

1.
00

si
gn

al
ap

p/
Si

gn
al

-A
nd

ro
id

f7
b9

94
2

C
al

lP
ar

ti
ci

pa
nt

Li
st

U
pd

at
eT

es
t

1.
00

1.
00

1.
00

ap
ac

he
/p

ul
sa

r
82

23
7d

3
Si

nk
Te

st
1.

00
1.

00
1.

00

ap
ac

he
/z

oo
ke

ep
er

de
7c

58
6

R
ea

dO
nl

yZ
oo

K
ee

pe
rS

er
ve

rT
es

t
1.

00
1.

00
1.

00

be
n-

m
an

es
/c

af
fe

in
e

ff
58

db
e

O
SG

iT
es

t
1.

00
0.

50
1.

00

ec
lip

se
-v

er
tx

/v
er

t.x
9a

a0
e9

f
Is

ol
at

in
gC

la
ss

Lo
ad

er
Te

st
0.

80
0.

80
1.

00

al
ib

ab
a/

ot
te

r
24

22
bd

8
N

io
U

ti
ls

Te
st

1.
00

0.
67

1.
00

al
ib

ab
a/

dr
ui

d
2d

b8
32

1
C

ir
cl

eT
es

t
N

A
0.

00
1.

00

an
dr

oi
da

nn
ot

at
io

ns
-

/a
nd

ro
id

an
no

ta
ti

on
s

43
81

94
2

R
C

la
ss

Fi
nd

er
Te

st
1.

00
1.

00
1.

00

an
dr

oi
da

nn
ot

at
io

ns
-

/a
nd

ro
id

an
no

ta
ti

on
s

17
49

4d
6

Sh
ar

ed
Pr

ef
N

am
in

gT
es

t
1.

00
1.

00
1.

00

al
ib

ab
a/

sp
ri

ng
-c

lo
ud

-a
lib

ab
a

29
0d

fa
7

R
oc

ke
tM

Q
M

es
sa

ge
C

on
ve

rt
er

Su
pp

or
tT

es
t

1.
00

1.
00

1.
00

ap
ol

lo
co

nfi
g/

ap
ol

lo
cd

77
fd

5
N

am
es

pa
ce

Br
an

ch
Se

rv
ic

eT
es

t
1.

00
1.

00
1.

00

ba
om

id
ou

/m
yb

at
is

-p
lu

s
16

ea
67

1
R

efl
ec

ti
on

K
it

Te
st

1.
00

1.
00

1.
00

49

ju
ni

t-
te

am
/j

un
it

4
a7

53
70

8
JU

ni
tC

om
m

an
dL

in
eP

ar
se

R
es

ul
tT

es
t

1.
00

1.
00

0.
83

be
n-

m
an

es
/c

af
fe

in
e

97
96

06
0

C
oa

le
sc

in
gB

ul
kl

oa
de

rT
es

t
0.

00
0.

00
1.

00

ap
ac

he
/s

ky
w

al
ki

ng
38

3a
5b

b
C

ou
nt

er
W

in
do

w
Te

st
N

A
0.

00
1.

00

al
ib

ab
a/

ca
na

l
7a

ae
e7

b
Js

on
U

ti
ls

Te
st

1.
00

1.
00

1.
00

ap
ac

he
/d

ol
ph

in
sc

he
du

le
r

14
ec

4a
2

C
om

m
on

U
ti

ls
Te

st
1.

00
1.

00
1.

00

ap
ac

he
/s

ky
w

al
ki

ng
b8

cf
95

d
Su

m
Pe

rM
in

Fu
nc

ti
on

Te
st

1.
00

1.
00

1.
00

qu
es

td
b/

qu
es

td
b

d8
c9

84
8

To
D

at
eV

C
Fu

nc
ti

on
Fa

ct
or

yT
es

t
1.

00
1.

00
1.

00

th
un

de
rn

es
t/

k-
9

fd
b8

65
5

M
ai

lT
oT

es
t

1.
00

1.
00

1.
00

al
ib

ab
a/

ea
sy

ex
ce

l
0e

54
6c

3
Fi

llT
es

t
1.

00
0.

17
1.

00

al
ib

ab
a/

dr
ui

d
11

ca
e3

e
W

al
lU

pd
at

eC
he

ck
Te

st
0.

00
0.

00
1.

00

th
in

gs
bo

ar
d/

th
in

gs
bo

ar
d

31
12

43
1

D
ef

au
lt

D
ev

ic
eS

ta
te

Se
rv

ic
eT

es
t

1.
00

1.
00

1.
00

si
gn

al
ap

p/
Si

gn
al

-A
nd

ro
id

f7
b9

94
2

Pa
rt

ic
ip

an
tC

ol
le

ct
io

nT
es

t
1.

00
1.

00
1.

00

ap
ol

lo
co

nfi
g/

ap
ol

lo
ec

2d
ab

e
D

ef
au

lt
C

on
fig

Fa
ct

or
yT

es
t

1.
00

0.
67

1.
00

re
di

s/
je

di
s

61
8a

85
0

D
oc

um
en

tT
es

t
1.

00
0.

67
1.

00

go
cd

/g
oc

d
5c

7c
6c

2
C

re
at

eC
on

fig
R

ep
oC

om
m

an
dT

es
t

1.
00

1.
00

1.
00

ba
om

id
ou

/m
yb

at
is

-p
lu

s
25

35
74

d
Pa

ge
C

ac
he

Te
st

1.
00

1.
00

1.
00

al
ib

ab
a/

fa
st

js
on

a4
5e

6d
5

St
ri

ng
Te

st
02

1.
00

1.
00

1.
00

ap
ac

he
/p

ul
sa

r
40

f0
43

8
M

an
ag

ed
C

ur
so

rI
nd

iv
id

ua
l-

D
el

et
ed

M
es

sa
ge

sT
es

t
N

A
0.

00
1.

00

ba
om

id
ou

/m
yb

at
is

-p
lu

s
25

35
74

d
ID

ia
le

ct
Te

st
1.

00
1.

00
1.

00

50

it
yo

uk
no

w
/s

pr
in

g-
bo

ot
-

ex
am

pl
es

85
3b

7d
f

M
ai

lS
er

vi
ce

T e
st

1.
00

0.
80

1.
00

se
at

a/
se

at
a

ed
bf

25
2

D
at

aB
as

eS
es

si
on

M
an

ag
er

Te
st

1.
00

0.
90

1.
00

pa
ge

he
lp

er
/M

yb
at

is
-

Pa
ge

H
el

pe
r

51
43

08
e

O
ff

se
tT

es
t

1.
00

1.
00

1.
00

ap
ac

he
/d

ol
ph

in
sc

he
du

le
r

49
d5

81
d

W
eb

ex
Te

am
sA

le
rt

C
ha

nn
el

Fa
ct

or
yT

es
t

0.
50

0.
50

1.
00

A
ct

iv
it

i/
A

ct
iv

it
i

ee
17

9a
3

EL
R

es
ol

ve
rR

efl
ec

ti
on

Bl
oc

ke
rD

ec
or

at
or

Te
st

1.
00

1.
00

1.
00

ap
ac

he
/r

oc
ke

tm
q

53
ba

ee
7

Pl
ai

nA
cc

es
sC

on
tr

ol
Fl

ow
Te

st
1.

00
1.

00
1.

00

dr
op

w
iz

ar
d/

dr
op

w
iz

ar
d

90
86

57
7

Js
on

Fo
rm

at
te

rT
es

t
1.

00
0.

50
1.

00

db
ea

ve
r/

db
ea

ve
r

f6
bb

e7
0

Po
st

gr
eD

ia
le

ct
Fu

nc
ti

on
sT

es
t

1.
00

1.
00

1.
00

js
on

-p
at

h/
Js

on
Pa

th
84

21
15

9
D

em
oT

es
t

1.
00

1.
00

1.
00

Th
eA

lg
or

it
hm

s/
Ja

va
ee

26
29

c
Pa

ng
ra

m
Te

st
1.

00
1.

00
1.

00

ba
ze

lb
ui

ld
/b

az
el

95
56

d0
b

M
em

oi
ze

rT
es

t
1.

00
0.

40
1.

00

So
na

rS
ou

rc
e/

so
na

rq
ub

e
8f

2b
35

b
Ed

uc
at

io
nW

it
h4

Li
nk

ed
C

od
e-

Sn
ip

pe
ts

Se
ns

or
Te

st
1.

00
1.

00
1.

00

pe
rw

en
de

l/
sp

ar
k

9c
5c

ab
7

C
ol

le
ct

io
nU

ti
ls

Te
st

1.
00

1.
00

1.
00

al
ib

ab
a/

Se
nt

in
el

e5
a6

2c
b

Se
nt

in
el

D
ub

bo
Pr

ov
id

er
Fi

lt
er

Te
st

1.
00

1.
00

1.
00

ap
ac

he
/s

ky
w

al
ki

ng
43

9f
84

3
By

te
U

ti
lT

es
t

N
A

0.
00

1.
00

ba
ze

lb
ui

ld
/b

az
el

01
a4

6f
0

Ja
va

In
fo

Te
st

1.
00

1.
00

1.
00

ap
ac

he
/c

as
sa

nd
ra

45
26

b3
f

Pr
ofi

le
Lo

ad
Te

st
N

A
0.

00
1.

00

51

m
oc

ki
to

/m
oc

ki
to

51
2e

e3
9

St
ub

bi
ng

R
et

ur
ns

Se
lf

Te
st

1.
00

1.
00

1.
00

ap
ol

lo
co

nfi
g/

ap
ol

lo
9b

1c
d8

f
D

ef
au

lt
M

es
sa

ge
Pr

od
uc

er
M

an
ag

er
Te

st
1.

00
1.

00
1.

00

dr
op

w
iz

ar
d/

dr
op

w
iz

ar
d

97
5e

d6
9

La
zy

Lo
ad

in
gT

es
t

0.
67

0.
67

1.
00

ap
ac

he
/fl

in
k

6f
f6

97
8

Py
th

on
G

ro
up

W
in

do
w

-

A
gg

re
ga

te
Js

on
Pl

an
Te

st
N

A
0.

00
1.

00

db
ea

ve
r/

db
ea

ve
r

f2
ef

ce
7

SQ
LF

or
m

at
te

rT
ok

en
iz

ed
Te

st
1.

00
1.

00
0.

79

re
al

m
/r

ea
lm

-ja
va

a1
b9

84
d

O
sO

bj
ec

tS
to

re
Te

st
s

1.
00

1.
00

1.
00

ab
el

53
3/

M
ap

pe
r

60
6f

02
6

Id
Te

st
1.

00
1.

00
1.

00

ba
ze

lb
ui

ld
/b

az
el

b1
94

65
3

Ed
it

D
ur

in
gB

ui
ld

Te
st

1.
00

1.
00

1.
00

dr
om

ar
a/

hu
to

ol
d8

73
b6

e
C

ac
he

ab
le

Sy
nt

he
si

ze
dA

nn
ot

at
io

n-

A
tt

ri
bu

te
Pr

oc
es

so
rT

es
t

1.
00

1.
00

1.
00

go
og

le
/E

xo
Pl

ay
er

85
bd

08
0

R
ts

pS
es

si
on

Ti
m

in
gT

es
t

1.
00

1.
00

1.
00

Th
eA

lg
or

it
hm

s/
Ja

va
00

28
2e

f
N

ex
tF

it
Te

st
0.

80
0.

80
1.

00

al
ib

ab
a/

sp
ri

ng
-c

lo
ud

-a
lib

ab
a

8d
97

90
b

N
ac

os
D

is
co

ve
ry

C
lie

nt
C

on
fig

ur
at

io
nT

es
t

0.
50

0.
50

1.
00

52

Appendix B

Evaluation Results on Evaluation Set

53

Ta
bl

e
B

.1
:A

cc
ur

ac
y

pe
r

Te
st

C
la

ss
on

Ev
al

ua
ti

on
Se

t

R
ep

os
it

or
y

C
om

m
it

Te
st

C
la

ss
ac
cu
ra
cy

a
ac
cu
ra
cy

g
ac
cu
ra
cy

f

O
pe

nR
efi

ne
/O

pe
nR

efi
ne

cf
e9

d3
7

R
df

Tr
ip

le
Im

po
rt

er
Te

st
s

1.
00

1.
00

1.
00

js
on

-p
at

h/
Js

on
Pa

th
af

03
1c

d
W

it
hJ

so
nP

at
hT

es
t

1.
00

1.
00

1.
00

be
n-

m
an

es
/c

af
fe

in
e

4e
54

c9
6

A
sy

nc
Te

st
1.

00
0.

82
1.

00

sp
ri

ng
-p

r o
je

ct
s/

sp
ri

ng
-

fr
am

ew
or

k

3b
2b

36
d

A
cc

es
sC

on
tr

ol
Te

st
s

0.
96

0.
96

1.
00

th
un

de
rb

ir
d/

th
un

de
rb

ir
d-

an
dr

oi
d

94
2e

cb
5

M
im

eU
ti

lit
yT

es
t

1.
00

1.
00

1.
00

ne
o4

j/
ne

o4
j

67
53

f1
7

By
te

U
ni

tT
es

t
1.

00
0.

69
1.

00

ap
ac

he
/fl

in
k

c6
99

7c
9

Ex
ce

pt
io

nU
ti

ls
Te

st
0.

85
0.

79
1.

00

si
gn

al
ap

p/
Si

ng
al

-A
nd

ro
id

f0
68

17
f

Pr
ofi

le
N

am
eT

es
t

0.
93

0.
93

1.
00

dr
op

w
iz

ar
d/

dr
op

w
iz

ar
d

f1
96

ef
9

Jd
bi

Te
st

0.
82

0.
82

1.
00

dr
om

ar
a/

hu
to

ol
dd

c4
fd

b
D

bT
es

t
1.

00
1.

00
1.

00

Se
le

ni
um

H
Q

/s
el

en
iu

m
02

74
4a

c
C

lic
kT

es
t

0.
92

0.
82

0.
95

ap
ac

he
/i

nc
ub

at
or

-s
ea

ta
80

48
2e

e
R

pc
C

on
te

xt
Te

st
0.

92
0.

92
1.

00

re
si

lie
nc

e4
j/

re
si

lie
nc

e4
j

29
7d

c7
1

V
av

rR
et

ry
Te

st
1.

00
1.

00
1.

00

O
pe

nF
ei

gn
/f

ei
gn

30
81

4a
1

R
ea

ct
iv

eF
ei

gn
In

te
gr

at
io

nT
es

t
0.

82
0.

64
1.

00

re
di

ss
on

/r
ed

is
so

n
ce

a6
dc

4
R

ed
is

so
nD

eq
ue

Te
st

1.
00

1.
00

1.
00

54

go
og

le
/c

lo
su

r e
-c

om
pi

le
r

6a
c4

65
6

T i
m

el
in

eT
es

t
0.

80
0.

33
1.

00

ap
ac

he
/d

ol
ph

in
sc

he
du

le
r

d4
6e

46
5

D
A

G
Te

st
1.

00
1.

00
1.

00

N
at

io
na

lS
ec

ur
it

yA
ge

nc
y-

/g
hi

dr
a

47
37

3d
2

Fo
nt

V
al

ue
Te

st
0.

56
0.

45
1.

00

si
gn

al
ap

p/
Si

gn
al

-A
nd

ro
id

f0
68

17
f

Pr
ofi

le
N

am
eT

es
t

0.
93

0.
93

1.
00

Se
le

ni
um

H
Q

/s
el

en
iu

m
43

eb
1e

5
N

et
w

or
kU

ti
ls

Te
st

0.
57

0.
40

1.
00

go
og

le
/E

xo
Pl

ay
er

05
3e

14
a

M
at

ri
xU

ti
ls

Te
st

1.
00

1.
00

1.
00

ha
lo

-d
ev

/h
al

o
c4

00
c8

5
M

et
er

U
ti

ls
Te

st
1.

00
1.

00
1.

00

re
di

s/
je

di
s

24
65

3
St

ri
ng

V
al

ue
sC

om
m

an
ds

Te
st

Ba
se

1.
00

0.
96

1.
00

je
nk

in
sc

i/
je

nk
in

s
b5

3e
5a

c
A

ct
io

na
bl

eT
es

t
1.

00
0.

86
1.

00

ec
lip

se
-v

er
tx

/v
er

t.x
69

4d
9b

2
A

sy
nc

hr
on

ou
sL

oc
kT

es
t

0.
86

0.
43

1.
00

ap
ac

he
/d

ub
bo

73
06

95
a

R
eg

is
tr

yC
on

fig
Te

st
0.

95
0.

95
1.

00

So
na

rS
ou

rc
e/

so
na

rq
ub

e
19

77
da

9
G

ro
up

D
ao

IT
0.

90
0.

90
1.

00

N
et

fli
x/

zu
ul

7a
37

5f
5

H
tt

pQ
ue

ry
Pa

ra
m

sT
es

t
1.

00
0.

90
1.

00

th
in

gs
bo

ar
d/

th
in

gs
bo

ar
d

c5
a7

2e
d

U
se

rS
er

vi
ce

Te
st

1.
00

1.
00

1.
00

go
og

le
/g

so
n

04
eb

52
d

M
ix

ed
St

re
am

Te
st

1.
00

0.
15

1.
00

m
at

er
ia

l-

co
m

po
ne

nt
s/

m
at

er
ia

l-

co
m

po
ne

nt
s-

an
dr

oi
d

fd
40

fe
a

M
at

er
ia

lS
ha

pe
D

ra
w

ab
le

Te
st

0.
92

0.
92

1.
00

55

ap
ac

he
/s

ha
r d

in
gs

ph
er

e-

el
as

ti
cj

ob

d4
13

b4
4

Jo
bR

eg
is

tr
yT

es
t

1.
00

1.
00

1.
00

db
ea

ve
r/

db
ea

ve
r

3e
1d

56
0

A
rr

ay
U

ti
ls

Te
st

1.
00

1.
00

1.
00

fa
ce

bo
ok

/b
uc

k
63

1d
1a

9
Ty

pe
sT

es
t

0.
88

0.
88

1.
00

N
at

io
na

lS
ec

ur
it

yA
ge

nc
y-

/g
hi

dr
a

79
d8

f1
6

R
ed

Bl
ac

kT
re

eT
es

t
1.

00
0.

92
1.

00

A
ct

iv
it

i/
A

ct
iv

it
i

c9
d3

98
e

A
pp

lic
at

io
nU

pg
ra

de
IT

1.
00

0.
70

1.
00

fa
ce

bo
ok

/l
it

ho
f8

09
3d

2
Sc

ro
llS

ta
te

D
et

ec
to

rT
es

t
1.

00
0.

83
1.

00

ap
ac

he
/d

ol
ph

in
sc

he
du

le
r

a0
70

aa
9

W
or

ke
rG

ro
up

Se
rv

ic
eT

es
t

1.
00

1.
00

1.
00

ap
ol

lo
co

nfi
g/

ap
ol

lo
66

57
a5

8
En

vT
es

t
0.

88
0.

83
1.

00

st
an

fo
rd

nl
p/

C
or

eN
LP

48
e7

48
f

Se
nt

en
ce

IT
es

t
0.

75
0.

55
1.

00

go
og

le
/c

lo
su

re
-c

om
pi

le
r

eb
77

dc
5

Q
ua

lifi
ed

N
am

eT
es

t
0.

87
0.

87
1.

00

pi
np

oi
nt

-a
pm

/p
in

po
in

t
52

ab
c3

0
St

ri
ng

U
ti

ls
Te

st
1.

00
1.

00
0.

82

si
gn

al
ap

p/
Si

gn
al

-A
nd

ro
id

46
56

cf
4

Ex
pi

ra
ti

on
U

ti
lT

es
t

1.
00

1.
00

1.
00

ha
lo

-d
ev

/h
al

o
57

fb
64

4
Q

ue
ry

In
de

xV
ie

w
Im

pl
Te

st
0.

75
0.

75
1.

00

bu
m

pt
ec

h/
gl

id
e

e9
b8

75
8

H
tt

pU
rl

Fe
tc

he
rT

es
t

0.
58

0.
54

0.
88

gr
pc

/g
rp

c-
ja

va
8c

4f
4e

0
C

on
te

xt
sT

es
t

1.
00

1.
00

1.
00

m
yb

at
is

/m
yb

at
is

-3
f4

2b
1e

7
R

es
ou

rc
es

Te
st

0.
29

0.
29

1.
00

R
ea

ct
iv

eX
/R

xJ
av

a
1c

35
94

c
M

ay
be

R
et

ry
Te

st
1.

00
0.

40
1.

00

ap
ac

he
/s

ky
w

al
ki

ng
38

3a
5b

b
C

on
ne

ct
U

ti
lT

es
tC

as
e

0.
89

0.
89

1.
00

56

qu
es

td
b/

qu
es

td
b

d8
c9

84
8

Bo
ol

Li
st

T e
st

1.
00

0.
64

1.
00

ap
ac

he
/s

ha
rd

in
gs

ph
er

e-

el
as

ti
cj

ob

94
25

11
0

Jo
bO

pe
ra

te
A

PI
Im

pl
Te

st
1.

00
1.

00
1.

00

ap
ac

he
/c

as
sa

nd
ra

34
fa

4e
2

Em
pt

yV
al

ue
sT

es
t

1.
00

1.
00

1.
00

re
di

ss
on

/r
ed

is
so

n
a4

f4
87

9
R

ed
is

so
nS

et
R

xT
es

t
1.

00
0.

94
1.

00

re
al

m
/r

ea
lm

-ja
va

a1
b9

84
d

R
ea

lm
C

ol
le

ct
io

nT
es

ts
1.

00
1.

00
1.

00

fa
ce

bo
ok

/f
re

sc
o

b7
77

8f
c

Po
ol

ed
By

te
Bu

ff
er

In
pu

tS
tr

ea
m

Te
st

1.
00

0.
77

1.
00

fa
ce

bo
ok

/b
uc

k
97

bf
73

6
A

ap
tS

te
pT

es
t

1.
00

1.
00

1.
00

ap
ac

he
/p

ul
sa

r
82

23
7d

3
N

am
es

pa
ce

N
am

eT
es

t
0.

92
0.

82
1.

00

bu
m

pt
ec

h/
gl

id
e

fa
b2

ae
d

W
id

eG
am

ut
Te

st
1.

00
0.

70
1.

00

m
oc

ki
to

/m
oc

ki
to

ea
6f

f8
c

In
va

lid
U

sa
ge

Te
st

1.
00

0.
86

1.
00

eu
ge

np
/t

ut
or

ia
ls

e1
4e

a6
6

C
SV

U
ni

tT
es

t
1.

00
1.

00
1.

00

al
ib

ab
a/

na
co

s
68

b8
e6

1
D

is
kU

ti
ls

Te
st

1.
00

1.
00

1.
00

ap
ac

he
/k

af
ka

2b
26

db
0

Pr
od

uc
er

Pe
rf

or
m

an
ce

Te
st

1.
00

0.
62

1.
00

N
et

fli
x/

H
ys

tr
ix

67
fd

60
a

Ba
si

cO
bs

er
va

bl
eT

es
t

0.
60

0.
60

1.
00

go
og

le
/a

ut
o

7d
93

86
7

M
or

eE
le

m
en

ts
Te

st
1.

00
1.

00
1.

00

go
og

le
/t

su
na

m
i-

se
cu

ri
ty

-

sc
an

ne
r

2c
8a

c4
f

Tc
sC

lie
nt

Te
st

1.
00

0.
91

1.
00

an
tl

r/
an

tl
r

4d
5a

6b
f

Te
st

U
ti

ls
1.

00
1.

00
1.

00

xk
co

di
ng

/s
pr

in
g-

bo
ot

-d
em

o
45

bc
d4

9
Pe

rs
on

R
ep

os
it

or
yT

es
t

0.
75

0.
30

1.
00

57

za
pr

ox
y/

za
pr

ox
y

ec
3b

94
0

St
at

is
ti

cs
U

ni
tT

es
t

1.
00

1.
00

1.
00

m
at

er
ia

l-

co
m

po
ne

nt
s/

m
at

er
ia

l-

co
m

po
ne

nt
s-

an
dr

oi
d

f4
d0

f5
6

U
tc

D
at

es
Te

st
1.

00
0.

93
1.

00

ap
ac

he
/z

oo
ke

ep
er

bc
1f

c6
d

Q
uo

ru
m

Se
rv

er
Te

st
1.

00
0.

40
1.

00

N
et

fli
x/

eu
re

ka
9f

a8
43

7
Eu

re
ka

En
ti

ty
Fu

nc
ti

on
sT

es
t

1.
00

1.
00

1.
00

ne
tt

y/
ne

tt
y

3e
fd

96
4

O
bj

ec
tU

ti
lT

es
t

1.
00

1.
00

1.
00

sw
ag

ge
r-

ap
i/

sw
ag

ge
r-

co
re

06
3a

5d
f

R
efl

ec
ti

on
U

ti
ls

Te
st

1.
00

0.
87

1.
00

ap
ac

he
/z

oo
ke

ep
er

37
02

a4
5

N
et

U
ti

ls
Te

st
0.

36
0.

33
1.

00

go
og

le
gu

av
a/

gu
av

a
41

e0
33

8
G

ra
ph

Pr
op

er
ti

es
Te

st
1.

00
1.

00
1.

00

go
og

le
/a

ut
o

73
73

b9
8

Bu
ild

er
R

eq
ui

re
dP

ro
pe

rt
ie

sT
es

t
1.

00
1.

00
1.

00

za
pr

ox
y/

za
pr

ox
y

ec
3b

94
0

K
bU

ni
tT

es
t

1.
00

1.
00

1.
00

ja
va

-n
at

iv
e-

ac
ce

ss
/j

na
8c

fb
55

2
D

xv
a2

Te
st

1.
00

1.
00

1.
00

fa
ce

bo
ok

/f
re

sc
o

b7
77

8f
c

Jfi
fT

es
tU

ti
ls

Te
st

0.
90

0.
90

1.
00

ba
ze

lb
ui

ld
/b

az
el

cf
ef

67
d

C
hu

nk
er

Te
st

0.
89

0.
67

1.
00

ap
ac

he
/r

oc
ke

tm
q

e0
21

3f
b

A
cl

U
ti

ls
Te

st
1.

00
0.

87
1.

00

qu
es

td
b/

qu
es

td
b

e0
65

40
0

R
ec

or
dT

es
t

1.
00

1.
00

1.
00

M
yC

A
TA

pa
ch

e/
M

yc
at

-S
er

ve
r

02
f0

ec
1

U
TF

8S
tr

in
gS

ui
te

0.
96

0.
92

1.
00

ch
ec

ks
ty

le
/c

he
ck

st
yl

e
85

31
fe

c
Sa

ri
fL

og
ge

rT
es

t
0.

92
0.

85
1.

00

jh
y/

js
ou

p
4e

a7
68

d
St

ri
ng

U
ti

lT
es

t
1.

00
0.

75
1.

00

58

dr
om

ar
a/

hu
to

ol
ac

b4
03

2
H

tm
lU

ti
lT

es
t

1.
00

0.
89

1.
00

go
og

le
/E

xo
Pl

ay
er

b0
a3

bc
5

Fl
ag

Se
tT

es
t

1.
00

0.
90

1.
00

pe
rw

en
de

l/
sp

ar
k

69
45

ea
9

Se
rv

ic
eT

es
t

1.
00

0.
79

1.
00

si
gn

al
ap

p/
Si

gn
al

-S
er

ve
r

7d
48

3c
7

K
ey

sM
an

ag
er

Te
st

0.
89

0.
89

1.
00

ab
el

53
3/

M
ap

pe
r

60
6f

02
6

Te
st

Lo
gi

cD
el

et
e

0.
94

0.
94

1.
00

ne
o4

j/
ne

o4
j

67
53

f1
7

Lo
ad

er
Te

st
1.

00
1.

00
1.

00

go
cd

/g
oc

d
67

fb
d6

3
St

ag
eT

es
t

1.
00

0.
94

1.
00

sp
ri

ng
-p

ro
je

ct
s/

sp
ri

ng
-

se
cu

ri
ty

3e
93

b0
2

A
cl

C
la

ss
Id

U
ti

ls
Te

st
s

1.
00

1.
00

1.
00

ec
lip

se
-v

er
tx

/v
er

t.x
ba

56
8e

5
H

os
tA

nd
Po

rt
Te

st
0.

89
0.

89
1.

00

ap
ac

he
/d

ub
bo

73
06

95
a

St
ac

kT
es

t
1.

00
0.

90
1.

00

sq
ua

re
/r

et
ro

fit
7d

e5
ed

9
M

ay
be

Te
st

1.
00

1.
00

1.
00

dr
op

w
iz

ar
d/

dr
op

w
iz

ar
d

e3
b7

da
7

H
ea

lt
hC

he
ck

M
an

ag
er

Te
st

1.
00

1.
00

1.
00

ap
ac

he
/s

ha
rd

in
gs

ph
er

e-

el
as

ti
cj

ob

06
6b

55
6

Ta
sk

C
on

te
xt

Te
st

1.
00

0.
54

1.
00

re
di

s/
je

di
s

4d
1d

e1
8

Se
tC

om
m

an
ds

Te
st

1.
00

0.
95

1.
00

co
de

ce
nt

ri
c/

sp
ri

ng
-b

oo
t-

ad
m

in

d2
4e

dc
2

In
st

an
ce

D
is

co
ve

ry
Li

st
en

er
T e

st
1.

00
1.

00
1.

00

59

Appendix C

CollectionUtilsTest Test Class

60

Figure C.1: CollectionUtilsTest Test Class

1 public class CollectionUtilsTest {
2 @Test
3 @FocalMethod(”IsEmpty”)
4 @State(”CollectionIsEmpty”)
5 @ExpectedResult(”ReturnTrue”)
6 public void testIsEmpty whenCollectionIsEmpty thenReturnTrue() {
7 Collection<Object> testCollection = new ArrayList<>();
8 assertTrue(”Should return true because collection is empty”, CollectionUtils.isEmpty(testCollection));
9 }

10 @Test
11 @FocalMethod(”IsEmpty”)
12 @State(”CollectionIsNotEmpty”)
13 @ExpectedResult(”ReturnFalse”)
14 public void testIsEmpty whenCollectionIsNotEmpty thenReturnFalse() {
15 Collection<Integer> testCollection = new ArrayList<>();
16 testCollection.add(1);
17 testCollection.add(2);
18 assertFalse(”Should return false because collection is not empty”, CollectionUtils.isEmpty(testCollection));
19 }
20 @Test
21 @FocalMethod(”IsEmpty”)
22 @State(”CollectionIsNull”)
23 @ExpectedResult(”ReturnTrue”)
24 public void testIsEmpty whenCollectionIsNull thenReturnTrue() {
25 Collection<Integer> testCollection = null;
26 assertTrue(”Should return true because collection is null”, CollectionUtils.isEmpty(testCollection));
27 }
28 @Test
29 @FocalMethod(”IsNotEmpty”)
30 @State(”CollectionIsEmpty”)
31 @ExpectedResult(”ReturnFalse”)
32 public void testIsNotEmpty whenCollectionIsEmpty thenReturnFalse() {
33 Collection<Object> testCollection = new ArrayList<>();
34 assertFalse(”Should return false because collection is empty”, CollectionUtils.isNotEmpty(testCollection));
35 }
36 @Test
37 @FocalMethod(”IsNotEmpty”)
38 @State(”CollectionIsNotEmpty”)
39 @ExpectedResult(”ReturnTrue”)
40 public void testIsNotEmpty whenCollectionIsNotEmpty thenReturnTrue() {
41 Collection<Integer> testCollection = new ArrayList<>();
42 testCollection.add(1);
43 testCollection.add(2);
44 assertTrue(”Should return true because collection is not empty”, CollectionUtils.isNotEmpty(testCollection));
45 }
46 @Test
47 @FocalMethod(”IsNotEmpty”)
48 @State(”CollectionIsNull”)
49 @ExpectedResult(”ReturnFalse”)
50 public void testIsNotEmpty whenCollectionIsNull thenReturnFalse() {
51 Collection<Object> testCollection = null;
52 assertFalse(”Should return false because collection is null”, CollectionUtils.isNotEmpty(testCollection));
53 }
54 }

61

Appendix D

CollectionUtilsTest Test Class Classified

by Default Strategy

62

Figure D.1: CollectionUtilsTest Test Class Classified by Default Strategy.

1 public class CollectionUtilsTest {
2 @Nested
3 class IsNotEmpty {
4 @Nested
5 class ReturnFalse {
6 @Test
7 @FocalMethod(”IsNotEmpty”)
8 @State(”CollectionIsEmpty”)
9 @ExpectedResult(”ReturnFalse”)

10 public void testIsNotEmpty whenCollectionIsEmpty thenReturnFalse() {
11 ...
12 }
13 @Test
14 @FocalMethod(”IsNotEmpty”)
15 @State(”CollectionIsNull”)
16 @ExpectedResult(”ReturnFalse”)
17 public void testIsNotEmpty whenCollectionIsNull thenReturnFalse() {
18 ...
19 }
20 @Test
21 @FocalMethod(”IsNotEmpty”)
22 @State(”CollectionIsNotEmpty”)
23 @ExpectedResult(”ReturnTrue”)
24 public void testIsNotEmpty whenCollectionIsNotEmpty thenReturnTrue() {
25 ...
26 }
27 }
28 @Nested
29 class IsEmpty {
30 @Nested
31 class ReturnTrue {
32 @Test
33 @FocalMethod(”IsEmpty”)
34 @State(”CollectionIsNull”)
35 @ExpectedResult(”ReturnTrue”)
36 public void testIsEmpty whenCollectionIsNull thenReturnTrue() {
37 ...
38 }
39 @Test
40 @FocalMethod(”IsEmpty”)
41 @State(”CollectionIsEmpty”)
42 @ExpectedResult(”ReturnTrue”)
43 public void testIsEmpty whenCollectionIsEmpty thenReturnTrue() {
44 ...
45 }
46 }
47 @Test
48 @FocalMethod(”IsEmpty”)
49 @State(”CollectionIsNotEmpty”)
50 @ExpectedResult(”ReturnFalse”)
51 public void testIsEmpty whenCollectionIsNotEmpty thenReturnFalse() {
52 ...
53 }
54 }
55 }

63

Appendix E

CollectionUtilsTest Test Class Classified

by Result Fragment

64

Figure E.1: CollectionUtilsTest Test Class Classified by Result Fragment.

1 public class CollectionUtilsTest {
2 @Nested
3 class ReturnFalse {
4 @Nested
5 class IsNotEmpty {
6 @Test
7 @FocalMethod(”IsNotEmpty”)
8 @State(”CollectionIsEmpty”)
9 @ExpectedResult(”ReturnFalse”)

10 public void testIsNotEmpty whenCollectionIsEmpty thenReturnFalse() {
11 ...
12 }
13 @Test
14 @FocalMethod(”IsNotEmpty”)
15 @State(”CollectionIsNull”)
16 @ExpectedResult(”ReturnFalse”)
17 public void testIsNotEmpty whenCollectionIsNull thenReturnFalse() {
18 ...
19 }
20 }
21 @Test
22 @FocalMethod(”IsEmpty”)
23 @State(”CollectionIsNotEmpty”)
24 @ExpectedResult(”ReturnFalse”)
25 public void testIsEmpty whenCollectionIsNotEmpty thenReturnFalse(){
26 ...
27 }
28 }
29 @Nested
30 class ReturnTrue {
31 @Nested
32 class IsEmpty {
33 @Test
34 @FocalMethod(”IsEmpty”)
35 @State(”CollectionIsNull”)
36 @ExpectedResult(”ReturnTrue”)
37 public void testIsEmpty whenCollectionIsNull thenReturnTrue() {
38 ...
39 }
40 @Test
41 @FocalMethod(”IsEmpty”)
42 @State(”CollectionIsEmpty”)
43 @ExpectedResult(”ReturnTrue”)
44 public void testIsEmpty whenCollectionIsEmpty thenReturnTrue() {
45 ...
46 }
47 }
48 @Test
49 @FocalMethod(”IsNotEmpty”)
50 @State(”CollectionIsNotEmpty”)
51 @ExpectedResult(”ReturnTrue”)
52 public void testIsNotEmpty whenCollectionIsNotEmpty thenReturnTrue() {
53 ...
54 }
55 }
56 }

65

Appendix F

CollectionUtilsTest Test Class Classified

by Method Fragment

66

Figure F.1: CollectionUtilsTest Test Class Classified by Method Fragment.

1 public class CollectionUtilsTest {
2 @Nested
3 class IsNotEmpty {
4 @Nested
5 class ReturnFalse {
6 @Test
7 @FocalMethod(”IsNotEmpty”)
8 @State(”CollectionIsEmpty”)
9 @ExpectedResult(”ReturnFalse”)

10 public void testIsNotEmpty whenCollectionIsEmpty thenReturnFalse() {
11 ...
12 }
13 @Test
14 @FocalMethod(”IsNotEmpty”)
15 @State(”CollectionIsNull”)
16 @ExpectedResult(”ReturnFalse”)
17 public void testIsNotEmpty whenCollectionIsNull thenReturnFalse() {
18 ...
19 }
20 }
21 @Test
22 @FocalMethod(”IsNotEmpty”)
23 @State(”CollectionIsNotEmpty”)
24 @ExpectedResult(”ReturnTrue”)
25 public void testIsNotEmpty whenCollectionIsNotEmpty thenReturnTrue() {
26 ...
27 }
28 }
29 @Nested
30 class IsEmpty {
31 @Nested
32 class ReturnTrue {
33 @Test
34 @FocalMethod(”IsEmpty”)
35 @State(”CollectionIsNull”)
36 @ExpectedResult(”ReturnTrue”)
37 public void testIsEmpty whenCollectionIsNull thenReturnTrue() {
38 ...
39 }
40 @Test
41 @FocalMethod(”IsEmpty”)
42 @State(”CollectionIsEmpty”)
43 @ExpectedResult(”ReturnTrue”)
44 public void testIsEmpty whenCollectionIsEmpty thenReturnTrue() {
45 ...
46 }
47 }
48 @Test
49 @FocalMethod(”IsEmpty”)
50 @State(”CollectionIsNotEmpty”)
51 @ExpectedResult(”ReturnFalse”)
52 public void testIsEmpty whenCollectionIsNotEmpty thenReturnFalse() {
53 ...
54 }
55 }
56 }

67

Appendix G

CollectionUtilsTest Test Class Classified

by State Fragment

68

Figure G.1: CollectionUtilsTest Test Class Classified by State Fragment.

1 public class CollectionUtilsTest {
2 @Nested
3 class CollectionIsEmpty {
4 @Test
5 @FocalMethod(”IsNotEmpty”)
6 @State(”CollectionIsEmpty”)
7 @ExpectedResult(”ReturnFalse”)
8 public void testIsNotEmpty whenCollectionIsEmpty thenReturnFalse() {
9 ...

10 }
11 @Test
12 @FocalMethod(”IsEmpty”)
13 @State(s”CollectionIsEmpty”)
14 @ExpectedResult(”ReturnTrue”)
15 public void testIsEmpty whenCollectionIsEmpty thenReturnTrue() {
16 ...
17 }
18 }
19 @Nested
20 class CollectionIsNotEmpty {
21 @Test
22 @FocalMethod(”IsEmpty”)
23 @State(”CollectionIsNotEmpty”)
24 @ExpectedResult(”ReturnFalse”)
25 public void testIsEmpty whenCollectionIsNotEmpty thenReturnFalse() {
26 ...
27 }
28 @Test
29 @FocalMethod(”IsNotEmpty”)
30 @State(”CollectionIsNotEmpty”)
31 @ExpectedResult(”ReturnTrue”)
32 public void testIsNotEmpty whenCollectionIsNotEmpty thenReturnTrue() {
33 ...
34 }
35 }
36 @Nested
37 class CollectionIsNull {
38 @Test
39 @FocalMethod(”IsNotEmpty”)
40 @State(”CollectionIsNull”)
41 @ExpectedResult(”ReturnFalse”)
42 public void testIsNotEmpty whenCollectionIsNull thenReturnFalse() {
43 ...
44 }
45 @Test
46 @FocalMethod(”IsEmpty”)
47 @State(”CollectionIsNull”)
48 @ExpectedResult(”ReturnTrue”)
49 public void testIsEmpty whenCollectionIsNull thenReturnTrue() {
50 ...
51 }
52 }
53 }

69

	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Contributions
	Thesis Organization

	Information Fragments in Test Names
	Related Work
	Problem Formulation

	Types of Semantic Information Fragments
	Methodology
	Results
	Limitations

	Extracting Semantic Information From Tests
	Overall Architecture
	Extraction Techniques
	Rule Implementation
	Limitations of the rules

	Multi-dimensional Test Classification
	Overview of Multi-dimensional Test Classification
	Sift4J Plug-in
	Example of Using Sift4J Plug-in

	Evaluation
	Evaluation Benchmark
	Evaluation Metrics

	Results and Discussions
	Development Set
	Evaluation Set

	Conclusions
	Future Work

	Evaluation Results on Development Set
	Evaluation Results on Evaluation Set
	CollectionUtilsTest Test Class
	CollectionUtilsTest Test Class Classified by Default Strategy
	CollectionUtilsTest Test Class Classified by Result Fragment
	CollectionUtilsTest Test Class Classified by Method Fragment
	CollectionUtilsTest Test Class Classified by State Fragment

