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Abstract

Reference documentation is an important source of information on API usage.

Programmers, however, can easily overlook reference information because of its te-

dious nature, and because the information they seek can be buried among irrelevant or

boiler-plate text. We propose to detect and recommend fragments of API documen-

tation relevant and important to a task. We categorize pieces of information in API

documentation based on the type of knowledge they contain. From the pieces that

contain knowledge worthy of recommendation, we extract the composition and the

pattern of words, and use the patterns to automatically find new pieces that contain

similar knowledge. In an evaluation study, with a training set of manually-classified

reference documentation of about 1 000 API elements, we could issue recommenda-

tions with about, on average, 90% precision and 69% recall.
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Résumé

La documentation de référence est une source importante d’information sur l’usage

d’une API. Cependant, les programmeurs peuvent négliger cette information que

l’information recherchée se trouve enfouie au milieu de texte passe-partout et sans

pertinence. Nous proposons de détecter et recommender les fragments de documenta-

tion d’API pertinents à une tâche donnée de façon automatique. Nous catégorisons les

morceaux d’information dans la documentation d’API en fonction du type de savoir

qu’ils renferment. À partir des morceaux de savoir digne de recommendation, nous

extrayons des patrons de mots, puis utilisons ces patrons pour trouver automatique-

ment de nouveaux morceaux qui renferment un savoir similaire. Nous présentons les

résultats d’une évaluation expérimentale de notre système effectuée à partir de plus de

1 000 morceaux d’API, où nous trouvons que notre système offre de recommendations

adéquates 90% du temps avec un taux de rappel de 69%.
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Chapter 1

Introduction

Application Programming Interfaces (APIs) are a means of code reuse. They pro-

vide an interface to features and functionality in existing frameworks and libraries,

such as the Java Standard Edition libraries or the .NET framework. Reusing APIs

saves time and mitigates the risk of defects in implementing an equivalent feature

from scratch. Using large APIs, however, is often challenging to many program-

mers [13], [28], [30], [34]. This challenge can be attributed to factors like interdepen-

dencies between multiple APIs, obscure API naming convention, low cohesion of an

API, or lack of information on how to use them efficiently.

Providing extensive documentation for the APIs can help programmers under-

stand the APIs better [28]. Documentation is thus an important constituent of APIs

in particular and software projects in general. There exist different types of soft-

ware documentation, such as reference documentation, code comments, tutorials,

and white papers. Each of these types of documentation serves a specific purpose.

For instance, API reference documentation, such as Javadocs,1 provides information

specific to individual API elements, whereas a tutorial, such as the Java Tutorial,2

provides information used to accomplish an end-to-end task [2].

While extensive reference documentation can be useful for determining how to use

1By Javadocs we mean the documentation comment used in Java programs that describes the
code and is extracted by the Javadoc tool. For example, http://docs.oracle.com/javase/6/docs/api/

2http://docs.oracle.com/javase/tutorial/
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an API element, the content of the documentation can quickly become boilerplate.

Research has shown that most programmers resort to reference documentation only

after they are unsuccessful with information from many other sources [25]. Hence,

by the time these programmers refer the reference documentation, large parts of the

content has already become irrelevant because the programmers are equipped with a

basic understanding of the use of the API element. For these programmers, the ir-

relevant information in the documentation includes those related to the functionality

of the API element, the purpose and the basic properties of the element, the domain

knowledge required to understand the element, etc. What these programmers need

are fragments in the documentation that provide information not observable from

experimenting with the API element [25], [24]. Such fragments are, however, spread

throughout the documentation, and identifying them manually is tedious. In this the-

sis, we propose a technique to identify such documentation fragments automatically.

Using a grounded approach, we studied and identified properties of pieces of in-

formation present in API reference documentation and classified them into three

broad categories: those that are must know, those that are good to know,

and those that can be ignored by a programmer who has already identified the

corresponding element as relevant to a task. We created a set of properties for char-

acterizing the pieces of information that belong to the first two categories. We then

created a coding guide and performed an empirical validation of the properties with

an external participant, and observed high agreement on the classification of Javadocs

of 300 API elements. This classification of pieces of information in API ref-

erence documentation forms the first contribution of the thesis.

In order to identify such pieces of information automatically, we devised a tech-

nique to identify the structure and the patterns of usage of words in them, because

we often observed similarity in the usage of words in certain pieces of information

that convey similar message. We extracted patterns of words for the must know and

the good to know pieces of information from Javadocs of 900 random elements from

Java SE 6 APIs, and automatically identified similar pieces on Javadocs of 120 ran-

dom elements with a high precision; we employ natural language processing (NLP)

and linguistic analysis techniques in the process. This automated detection of

2



1.1. Motivating Example

important pieces of information in the reference documentation forms the

second contribution.

In order to improve API usability in programming situations, we created an Eclipse

plug-in, Krec, that recommends the first two categories of information from

the reference documentation of the API elements used in a block of code. This forms

the third contribution. We evaluated the approach end-to-end with sample Java

code blocks extracted from ten open source systems. Our evaluation shows that with

a training set consisting of about 1 000 manually-classified Javadocs, we can issue rec-

ommendations with about, on average, 90% precision and 69% recall. Furthermore,

the recommended knowledge represents a small subset — about 14% — of the docu-

mentation relevant to a programming (recommendation) context. We further verified

the recommendations on code blocks from a popular book that recommends efficient

ways of programming in Java, and found that for 6 out of 8 possible cases, Krec was

able to match the recommendation from the documentation with those expected in

the book.

1.1 Motivating Example

The following situation illustrates the need for classifying and recommending API

documentation.

In a programming task in Java with concurrency requirements, programmers typ-

ically create instances of a class implementing the Runnable interface and pass the

instances to new Thread instances as shown below.

public class Run implements Runnable {
public void run ( ) {

//some opera t ion

}
public stat ic void main ( St r ing args [ ] ) {

(new Thread (new Run( ) ) ) . s t a r t ( ) ;

}
}

If the task is composed of multiple jobs demanding parallel execution, creating and

3



1.1. Motivating Example

starting a new Thread for each job, as shown below, is not efficient in terms of resource

management and performance.

. . .

(new Thread (new Run( ) ) ) . s t a r t ( ) ;

(new Thread (new Run( ) ) ) . s t a r t ( ) ;

(new Thread (new Run( ) ) ) . s t a r t ( ) ;

. . .

To tackle some of these performance issues, Java Standard Edition 5.0 introduced3

the java.util.concurrent package, which offers improved support for concurrency

and, in particular, the Executor framework in java.util.concurrent. For the task

above, it is more efficient to use a single instance of a class implementing the Executor

interface, as shown below.

class AnExecutor implements Executor {
public void execute ( Runnable r ) {

r . run ( ) ;

}
}
. . .

Executor executor = new AnExecutor ( ) ;

executor . execute (new Run( ) ) ;

executor . execute (new Run( ) ) ;

executor . execute (new Run( ) ) ;

. . .

This recommendation of Executor over Threads is provided in the Javadoc of the

Executor interface:

An Executor is normally used instead of explicitly creating threads,

but buried in text that contains several different kinds of information, including code

examples. The quote above is not highlighted in any way. How would a user discover

this information? We cannot assume that users of the Thread class would be naturally

inclined to read the entire Javadocs of the three Java concurrency packages.

Our research provides an initial approach for surfacing this information and rec-

ommending it to programmers. In this situation our approach would leverage two key

3http://java.sun.com/developer/technicalArticles/releases/j2se15/
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1.2. Overview

pieces of information: linguistic patterns to detect that the quoted sentence above is

important, and the fact that the sentence contains the code word “Thread,” which we

resolve to a class initially used by the programmer.

1.2 Overview

In the remaining chapters, we describe the properties of the information categories,

and present a technique to automatically detect pieces of information of the must

know and the good to know types (Chapter 2). We introduce the Eclipse plug-in

Krec, that is used to identify important pieces of information in the documentation

of the API elements used in an input code block (Chapter 3). We present and discuss

the evaluation results, and the threats to validity (Chapter 4), discuss related work

(Chapter 5), and conclude the thesis (Chapter 6).

5



Chapter 2

Knowledge Items in Reference

Documentation

2.1 Knowledge Items

Recommending knowledge from API documentation requires classifying the knowl-

edge contained therein. In the first phase of our investigation, we manually studied

the content of the Java SE 6 Javadocs to elicit the properties that can help us distin-

guish information we can recommend.

2.1.1 Concepts and Terminologies

Reference documentation is mostly composed of text. In this thesis we focus on rec-

ommending text and ignore images and code. Textual documentation is composed of

sentences, and a sentence or a group of sentences contains a unit of information, i.e., a

self-contained message. For example, consider the following two units of information,1

If the limit array is not in ascending order, the results of formatting will be

incorrect.
and,

1All quoted examples are taken from the Javadocs of Java SE 6 APIs
(http://docs.oracle.com/javase/6/docs/api/).
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2.1. Knowledge Items

Note that the get and set methods operate on references. Therefore, one

must be careful not to share references between ParameterBlocks when this is

inappropriate.
In the first case, a single sentence contains a unit of information, while in the second,

there are two sentences. For uniformity, we refer to a sentence or a group of sentences

that contains a unit of information as a text segment. We refer to the documentation

specifically associated with an API element, i.e., a class, an interface, an enum, a

field, or a method, as a documentation unit. The documentation unit of a class or an

interface thus only documents the class or the interface, and not its member fields

or methods. A documentation unit consists of one or more text segments. If the

unit of information present in a text segment is worth recommending as part of a

programming task, we refer to such a text segment as a knowledge item (KI).

2.1.2 Knowledge Items

Based on extensive observation and use of documentation, we determined that ref-

erence knowledge relevant to a task falls into one of two categories: must know, and

good to know. We refer to the KIs in the must know category as indispensable KIs.

These are the pieces of information which the programmers cannot afford to ignore,

such as, the caveats, or the threats, in using certain API elements. We refer to the

good to know category of KIs as valuable KIs. These KIs could highlight the benefit

of using one method over another to achieve a similar objective. Figure 2.1 shows our

model of documentation content.

Some common high-level properties of both these categories are that the pieces

of information should be non-obvious and surprising for most programmers, and that

they should have the potential to impact the decisions of the programmer. For ex-

ample, “method X should not be called from method Y ” and “it is not safe to call

method X from method Y ” both instruct the programmer not to call method X from

method Y; the former sentence does it explicitly and the latter implicitly. Text seg-

ments that merely state the property or the purpose of an API element do not involve

programmer decisions, hence do not constitute a KI, for example, “this enables the

7



2.1. Knowledge Items

Figure 2.1: The documentation content model

programmer to write code in a compact and easy style.”

We created an initial set of properties to characterize these two categories of

KIs based on our own experience with API documentation [28], those of others in

the field [22], [11], and some established principles [2]. We further expanded these

properties using a grounded approach by closely studying the Javadocs of numerous

API elements, followed by multiple iterations of refinement.

We authored a coding guide intended to guide the manual classification of text

segments. The coding guide describes the two knowledge categories, their properties

with examples, and provides instructions on how to look for text segments that rep-

resent the two types of KIs in Javadocs. The characteristics of the two knowledge

categories are described next.

Indispensable Knowledge Items

This is the type of KI that is essential to be aware of in order to use an API ele-

ment. Programmers who ignore this category of information would either encounter

compilation or runtime errors or would be likely to introduce bugs. Indispensable

KIs instruct programmers to perform important actions to accomplish basic objec-

tives of an API element. An indispensable KI has properties related to one of the

subcategories below.

8



2.1. Knowledge Items

Usage Directives. It specifies non-optional directives or usage guidelines when using

an API element. For example,

This method should only be called by a thread that is the owner of this object’s

monitor.
or

If you reimplement this method, you should also reimplement ...

It is mandatory for the programmer to follow the specified guideline. Since we are

interested in what the programmers should or should not do when using the API ele-

ment, directives that are not mandatory constraints are not classified as indispensable

in our work. An example of such a directive is “may be null,” which essentially means

that any value is permissible. An example of a mandatory constraint is “must not be

null.” Hence, for our case, the former is not an indispensable KI while the latter is.

Hard Constraints. It specifies hard constraints or specific requirements. For ex-

ample,

A valid port value is between 0 and 65535.

The programmer cannot deviate from the specified requirement, or else the API

element would be unusable or would throw a runtime error.

Threats. It specifies usage of certain protocols, which would otherwise result in

programming threats or errors. For example,

A CannotProceedException instance is not synchronized against concur-

rent multithreaded access. Multiple threads trying to access and modify

CannotProceedException should lock the object.
As a consequence of such threats, the programmer is obliged to follow the protocol

or the specified convention.

Valuable Knowledge Items

This is the type of KI that conveys helpful and beneficial information. Programmers

who ignore this category of information are likely to use the API sub-optimally [17],

or spend an inordinate amount of time looking for information. As opposed to in-

dispensable KIs, ignoring valuable KIs may not result in immediate defects but could

have long-term repercussions. A valuable KI has properties related to one of the

subcategories below.

9



2.1. Knowledge Items

Alternative API elements. It recommends alternative API elements to accomplish

the same objective but more efficiently. For example,

When using a capacity-restricted deque, it is generally preferable to use

offerFirst.
Such recommendations usually exist in the reference documentation of API elements

that are developed in new releases and that have better features than a corresponding

API element in an earlier release. Also, different API elements could be relevant to

two different programming tasks with similar objectives.

Dependent API elements. It recommends dependent API elements to help com-

plete a task. For example, the getFamily() method in Font makes a reference to the

getName() method using the sentence,

Use getName to get the logical name of the font.

Such a piece of information, present in the documentation of a separate API element,

is useful to keep track of dependencies between API elements. It would help pro-

grammers figure out API elements that are dependent on the one the programmer is

working with [12].

Improvement Options. It recommends actions that could lead to improvement in

functionality or non-functional properties like performance. For example,

The implementor may, at his discretion, override one or more of the concrete

methods if the default implementation is unsatisfactory for any reason, such

as performance.
Best Practices. It recommends best practices, which would ideally help make opti-

mal use of the API element. For example,

While implementations are not required to throw an exception under these

circumstances, they are encouraged to do so.

Other Documentation

After we identify all the KIs from the reference documentation and classify them

as either indispensable or valuable, the remaining content can be ignored, chiefly

because they state facts that are unsurprising for programmers who have already

selected the element, like the basic objective of an API element [10]. We do not claim

that the information in those content has no value, but it ranks lower in terms of

10



2.1. Knowledge Items

the importance of the message it conveys. Assuming the programmer has already

selected an API element and has a basic understanding of what it does [10], ignoring

this category of information would neither have an immediate nor a long-term impact

on the usage of the element.

Some of the properties of information in this category are:

Obviousness. A piece of information that is obvious from the name of the API

element, for example, for the method getAudioClip(URL url, String name), the fol-

lowing line in its Javadoc contains an obvious piece of information,

Returns the AudioClip object specified by the URL and name arguments.

Unsurprising. A piece of information that is unsurprising for most programmers [10],

for example, the summary sentence of API elements, that provides a high-level ob-

jective or functionality of the element [2].

Predictability. A piece of information that is predictable based on the context, for

example,

Exception SQLException is thrown if a database access error occurs.

2.1.3 Reliability Assessment

For the purpose of manually coding information, the description of the categories

must be reliable. Reliability indicates with what consistency two independent coders

(persons) would assign the same category to the same text segment [23].

We conducted a preliminary validation of the reliability of the coding guide on

smaller test sets consisting of the Javadocs of 30 random API elements from the Java

SE 6 APIs, over two separate rounds of coding. We then validated the properties in

the coding guide with an external participant, a member of our lab not directly related

to this research, with three rounds of validation on 77, 74, and 148 API elements,

randomly selected from the Java SE 6 APIs and excluding those already included in

the preliminary analysis. The non-uniformity in the number of API elements in each

iteration was because the coding was counted at the end of a fixed period of one week

without regards to the total count in the period. The reason for three iterations was

to analyze the disagreements at the end of each iteration and fix common sources of

11



2.1. Knowledge Items

ambiguity in the coding guide, if any. The coding task involved the manual process of

reading the assigned Javadocs, identifying text segments that satisfy the properties,

and assigning them to the appropriate KI category.

We used the Cohen’s Kappa metric (k) [8] to measure the reliability between two

coders. Unlike a simple percent agreement calculation, Cohen’s Kappa takes into

account the chance agreement, i.e., the chance of two coders randomly selecting or

rejecting a given text segment as a KI purely by chance. As per existing work, values

of 0.61-0.80 for k are considered to indicate substantial agreement between two coders,

and values of 0.81-1.00 are considered almost perfect [20].

The coding guide stated that a text segment is constituted by grouping sentences

that provide a single unit of information. However, there were occasional disagree-

ments between the coders in deciding what constituted a text segment. In order to

resolve such a disagreement between two coders, we employed two heuristics. First,

if a sentence was chosen by both the coders to form a text segment, but one of them

included additional sentences either before or after the common sentence, we picked

the one with the more number of sentences to form the text segment. Second, if one

of the coders had selected two consecutive sentences as representing two different text

segments each forming a different KI, while the other had selected both the sentences

as part of a single KI, we chose the classification of the latter, and discarded the non-

matching category selected by the former. The basis for employing these heuristics

is that including more sentences as part of a text segment lowers the risk of breaking

a unit of information.

The measures of the agreement between one of the authors and the external par-

ticipant are presented in Table 2.1. The column API represents the total number of

API elements coded in the corresponding iteration, and T is the total number of text

segments across the Javadocs of all the API elements in the iteration. Text segments

were counted using the two heuristics mentioned above for those selected by at least

one of the coders, and manually examined by the authors for the rest. The number

of instances of such fragment misalignment due to the first reason stated above were

5, 5, and 8, in the three iterations, and were 1, 0, and 4 due to the second reason.

Thus, in total 23 misalignments had to be manually reconciled to compute agreement

12



2.1. Knowledge Items

Table 2.1: Reliability assessment

Iter. API T Ind. Val. Rest Dis. k

1 77 201 11 25 152 13 0.82

2 74 133 14 21 85 13 0.80

3 148 244 19 43 155 27 0.77

Total 299 578 44 89 392 53 0.80

values, i.e., only 4% of the total text segments eventually identified.

We calculated k for a 3-valued variable, i.e., each text segment could represent

either an indispensable KI, a valuable KI, or neither of the two. In Table 2.1, the

counts in the column Ind. indicates those text segments that were selected by both

the coders as indispensable KIs, and similarly Val. for valuable KIs. The column

Rest indicates the total text segments that were rejected by both the coders.

The values in the column Dis. indicate the number of instances of disagreement.

These are the cases where one of the coders selected a particular KI category for a

text segment, and the other selected the other KI category or rejected it. We elicit

the specific number of instances of such disagreements in Table 2.2. The values in the

brackets represent the disagreement instances in the three iterations. For example,

the value {1,2,2} in the Valuable row and the Indisp. column indicates that the

number of instances when coder 1 selected the valuable KI category for a text segment

and coder 2 selected the indispensable category are 1, 2, and 2 in the three iterations.

The overall disagreement was 9.2%, i.e., there were disagreements for 53 text segments

out of the total 578. The overall value of 0.80 for k, however, indicates substantial

agreement between the two coders and we conclude that the properties for the KI

categories are well-defined and that the instructions in the guide are clear.

Table 2.3 shows the agreement for the individual KI categories. In the individual

category, the column ts indicates the total text segments that are selected by both

the coders, and the column td indicates the text segments selected by either of the

two coders but not both. There is substantial agreement in both the categories.

13



2.1. Knowledge Items

Table 2.2: Instances of disagreement

Indisp. Valuable Rest Total

Indisp. - {0,0,2} {2,3,3} {2,3,5}
Valuable {1,2,2} - {4,4,5} {5,6,7}
Rest {1,2,5} {5,2,10} - {6,4,15}

Total {2,4,7} {5,2,12} {6,7,8} -

Table 2.3: Agreement on KI categories

Iteration Indispensable Valuable

ts td k ts td k

1 22 4 0.84 50 9 0.82

2 28 8 0.74 42 8 0.80

3 38 12 0.73 90 12 0.85

Total 88 24 0.77 182 29 0.82
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2.1. Knowledge Items

Table 2.4: Causes of major disagreements (%)

Reason Iter. 1 Iter. 2 Iter. 3 Avg.

Best Practices 8 13 21 14

Property 38 33 26 32

Alternate API 15 13 16 15

Disagreement Analysis

At the end of the first two iterations, we noted if there were more than one disagree-

ment due to a similar reason, for example, ambiguity in one specific property. Since

a common property of any KI is that it should involve the programmer to make a de-

cision regarding the usage of the API element, it was at times ambiguous to ascertain

if certain text segments involved such an action. This was noticed in the following

two types of information:

1. There were disagreements in understanding if certain best practices required

a programmer decision. For example, for the following best practice, one coder

assumed that it implicitly demanded a programmer decision and classified it as

a KI, while the other did not.

Updating an existing LineBreakMeasurer is much faster than creating a

new one.

2. It was often uncertain if an API element’s property and purpose involved a

decision from the programmer. For example,

Unlike sets, lists typically allow duplicate elements.

Surprisingly, we noticed that it was sometimes not obvious to detect alternate API

recommendation. For example, one of the coders failed to include the following KI,

The methods inherited from the BlockingQueue interface are precisely equiv-

alent to BlockingDeque methods as indicated in the following table.
The percentage of disagreements, in each iteration, due to these three reasons are

presented in Table 2.4. These were, however, not significant enough to impact the

overall agreement.
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2.2. Automatic Detection of Knowledge Items

2.2 Automatic Detection of Knowledge Items

KIs are tedious to find manually, and there is a lot of documentation. The reference

documentation for Java 6 SE alone comprises over 2.5 million words. We found

it impractical to manually extract all KIs from reference documentation, so we are

experimenting with techniques to find them automatically. The exact technical details

in our approach are being continually improved. Here we report on the most recent

stable iteration, which captures all the fundamental ideas we currently rely on.

In essence, the technique works by looking for pre-defined sentence patterns in

Javadocs. The patterns are discovered using a semi-automated iterative technique,

and then stored in a pattern database; they are not automatically discovered through

black-box text classification tools.

The primary justification for using specific patterns is two-fold. First, the cost

of producing a large enough training set for KI classification based on Bayesian or

Maximum Entropy techniques is prohibitive. Second, and more importantly, to a large

extent word patterns for KIs are predictable and dictated by the type of information

they encode. For example, we observed that KIs that represent directives usually have

a modal verb with other supporting words, KIs that recommend alternate APIs use

words like recommend, advise, or prefer, along with one or more code-like terms, or

groups of words like use and instead. When we extracted such words from manually

identified KIs and created additional combination of words by including those in the

synonym set of each of the original words, we were able to generate multiple patterns,

which provided us the means to find new KIs automatically; we used the WordNet2

dictionary to find synonym sets.

The existence of common linguistic patterns in Javadocs is not surprising. Java

programmers usually abide by the conventions specified in the Javadoc principles,

which include style guides, description formats, or the patterns in the use of termi-

nologies [2]. Some of these conventions state that the assertions in the specification

need to be implementation independent, the descriptions should be descriptive and

not prescriptive, and that the class or interface descriptions should ideally only state

2http://wordnet.princeton.edu/
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2.2. Automatic Detection of Knowledge Items

the object and not the subject [2]. Such conventions make it possible to identify

the words that are representative of the information conveyed in a sentence. Hence,

from the manually identified KIs, we extracted the words that are important to the

knowledge conveyed in the sentence, eliminating the words that are only supportive.

For instance, consider the valuable KI,

It may be more efficient to read the Pack200 archive to a file and pass the

File object, using the alternate method described below,
which provides an efficient alternative to unpack a Pack200 instance. For this KI, if

we extract the words may, efficient, and the code-like term File, then one of the text

segments, from a different Javadoc, that would match this pattern is the following,

Consult your JDBC driver documentation to determine if it might be more

efficient to use a version of updateBinaryStream which takes a length param-

eter,
which has the words might, which we categorize as a modal synonym of may, efficient,

and a code-like term updateBinaryStream. This text segment too can be classified

as a valuable KI; it provides an alternate recommendation that is potentially better

than the one the programmer is working with, to achieve a similar objective.

In our technique, a KI pattern is simply a set of words, optionally including a

special word that is a placeholder for code terms, such as File. A sentence will

match a KI pattern if it contains all the words in a pattern (or a synonym).

The remainder of this chapter is divided into three parts. First, we discuss the

approach to find KIs in training sets of Javadocs. Second, we present the technique

to extract patterns of words from the KIs. Third, we describe the process of using the

patterns for automatic detection of new KIs in test sets consisting of large numbers

of Javadocs.

2.2.1 Knowledge Item Identification

Patterns are derived from valid KIs. We developed some automated support to fa-

cilitate the identification of valid KIs from which we eventually derive patterns. Our

tool support for KI identification consists of two components: the preprocessor and

the automated filter. These are shown on the left side of Figure 2.2. In our case, the
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Figure 2.2: The knowledge item identification process

documentation units in the figure are represented by Javadocs.

Pre-processor

The pre-processor performs the following operations:

• segregates the Javadocs belonging to individual API elements, i.e., it separates

the Javadocs of methods and fields from the Javadoc of the type containing

them.

• strips the HTML tags from the Javadocs of individual API elements and extracts

the plain text, and identifies possible code-like terms, from the HTML code tags

or based on additional heuristics for those not within code tags. The heuristics

include identifying camel-cased tokens, identifying tokens that are equivalent to

the name of the API element the Javadoc belongs to, etc.

• converts the raw text into a list of sentences. We used the PunktSentenceTokenizer

module in the Natural Language Toolkit3 (NLTK) libraries to identify sentences

in a text.

3https://sites.google.com/site/naturallanguagetoolkit/Home
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2.2. Automatic Detection of Knowledge Items

• eliminates non-alphanumeric characters like curly braces at the beginning or at

the end of a sentence.

• groups sentences that begin with a conjunction, e.g., thus, hence, therefore, etc.,

with their preceding sentence because they would represent continuation of the

same information.

Thus, the pre-processor outputs a list of text segments.

Automated Filtering

We use an automated filter to eliminate some of the text segments output by the

pre-processor. The elimination is based on several heuristics as described below; we

created a pipeline of filters that performs the elimination.

• In Javadocs, the first sentence of “each member, class, interface, or package

description” contains a high-level summary of what the element is supposed to

do [2]. Since our recommendations assume that the programmer has already

selected an API element and has a basic understanding of what it should do,

recommending a functionality summary from its documentation would be re-

dundant as we would be recommending obvious information. We thus eliminate

the first sentence from consideration.

• Javadocs often contain a mix of text and code examples. We eliminate text

segments that only contain code blocks because we assume that the code would

ideally be supporting information in text segments present either before or after

the code. Hence the code block in isolation would neither contain indispensable

nor valuable KIs.

• We eliminate some of the independent clauses mentioned at the bottom of the

Javadocs of most API elements, especially methods. These include the clauses

Throws, See Also, Since, Specified by, and the first sentence in Returns. See

Appendix A for the rationale behind eliminating each of these clauses.
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2.2. Automatic Detection of Knowledge Items

The output of the automated filter is a cleaned up and simplified version of the

documentation text that can then be manually inspected and classified.

Manual Filtering

The automated filters described above eliminate text segments that are unlikely to

satisfy any of the properties of the two KI categories. This is, however, only a part

of the total text segments that need to be eliminated. The rest of the elimination is

done manually, i.e., the text segments that get past the automated filters are looked

at manually and compared against the properties defined for the two categories.

The text segments that satisfy the properties are then classified into the appropriate

category. Details of the manual filtering process followed to create a training set for

automatic detection of KIs is described in Chapter 2.2.3.

The output of the knowledge item identification phase is a list of KIs, as shown in

Figure 2.2. Also depicted in the figure is the use of such KIs to automatically detect

KIs from other documentation units. For this, however, the automated detector needs

patterns of words in the manually detected KIs, in order to match similar KIs. The

process of extracting such patterns is described next.

2.2.2 Identifying Patterns in Knowledge Items

Manually-classified KIs can be collected into a training set that is then used to iden-

tify patterns. The procedure for transforming a KI into a KI pattern is almost fully

automated, requiring only one simple word vetting phase at the end of the process.

The basic idea for generating a pattern from a KI is to get rid of words that do not

capture the essence of the KI. The steps required to transform a KI into a correspond-

ing pattern are described in the following subsection and are shown in Figure 2.3, in

the same order as they occur.

POS Tagging

In this phase, the sentences that are part of the KIs in the training set are tagged

with their part of speech (POS) using a tagger ; we used the NLTK implementation
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Figure 2.3: The pattern identification process

of the Penn Treebank tagger to tag words with their POS. We further augmented

the tagging technique to handle code-like terms and tag them distinctly. The output

of this phase is a list of KIs consisting of words each tagged with their POS.

To evaluate the performance of our POS tagger, we took the first 50 Javadocs

that were part of the reliability assessment exercise, and separately created two tag

lists: one using the Penn Treebank tagger, and the other a gold standard using a

different tagger followed by manual evaluation, and compared the two. To create

the gold standard, we used the default NLTK tagger based on the Brown corpus

to produce an initial tag list. The Penn Treebank and the Brown corpus differ in

important ways [36]. Unlike the taggers based on Penn Treebank, those based on

the Brown corpus do not take into consideration the syntactic context of a word in a

sentence [36].

For the 50 Javadcos, we generated about 1 500 tagged tokens. For those generated

using the default tagger, we manually inspected the output, and corrected false tags,

if any. On comparing the final tagged tokens with those generated by the Penn

Treebank, we observed an accuracy of 91%, where the accuracy was calculated by

comparing each tagged token. This is lower than the accuracy that the tagger could

have achieved on a regular english text, which in general is above 97% for most

taggers, because in Javadocs, especially those of methods, the first sentence usually

starts with a verb, which is uncommon syntax. For example, in the sentence “creates
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an empty border that takes up no space,” our tagger assumed “creates” to be a noun

(plural) whereas it is a verb (present). Since we disregard the first sentence from

consideration as explained earlier (Automated Filtering), such false tags pose less

risk in our objective of identifying phrases (Chunking) from text segments.

Chunking

The tagged KIs are then passed to a chunker that identifies different phrases present

in the sentences composing the KIs. These phrases could be either of noun, verb,

adjective, or modal phrase. In each of these phrases, there would be a headword

accompanied by other supporting words. For example, a noun phrase could have a

noun accompanied by a determiner and an adjective. The usefulness of such phrases

is that it makes it possible to extract just the headword leaving out the supporting

words in the phrase.

Code-like terms, such as addSource in the KI “a correct way to write the addSource

function is to clone the source,” are treated as nouns. A modal phrase has a modal

verb accompanied optionally by verbs and adjectives. We categorized modal verbs

into two categories: those that specify mandatory actions, i.e., must, ought to, shall,

and should, and those that specify optional actions, i.e., can, could, may, might, will,

and would.

The chunker relies on grammatical rules to create the different phrases. Our

initial set of rules include the standard English rules for the different phrase types. For

example, {NP:{<DT|PP$>?<JJ|VBN><NN|CW><VBN>*}}4 is a noun phrase. It

indicates that a phrase that has zero or one occurrence of a determiner or a possessive

pronoun, followed by an adjective or a past participle verb, and then a noun or a code-

like term is a noun phrase. Hence, we can extract the noun or the code-like term from

this phrase and eliminate other words. The elimination process is a combination of

automated and manual steps; the automated rules remove the obvious supporting

terms like the articles, and we manually remove the words that are classified as

headwords by the chunker but are still less significant.

4DT: determiner, PP$: possessive pronoun, JJ: adjective, VBN: verb, past participle, NN: Noun,
CW: Codeword
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To determine the initial grammatical rules for automated chunking, we used the

CoNLL 2000 corpus,5 which is annotated with POS and chunk tags, and used the

NLTK corpus module to access them. With observations from several KIs in the train-

ing set, we augmented the rules to handle code-like terms and to extract words, which

may not be important in general usage of the English language, but are important in

our context. For example, consider the KI,

JComponent subclasses must override this method like this:

From this sentence, a rule for noun phrase extracts the words JComponent and sub-

classes, and a rule for verb phrase, the word override. Our additional rules further

identifies JComponent as a code-like term from its POS tag, and our modal phrase

extracts the word must.

Extraction

From each phrase detected in a KI, all supporting words (non-headwords) are auto-

matically eliminated, i.e., not included in the pattern. The remaining list of head-

words is then produced as the output of the automated process. The final step

requires a human to look at the list of headwords and eliminate any word that does

not usefully capture the essense of the KI.

Because each of the patterns relates to a KI, and each KI is associated with a

category, the patterns are likewise associated with a category (i.e., indispensable or

valuable).

2.2.3 Automated Detection of Knowledge Items

To put the idea of recommending API documentation in practice, we must solve the

problem of finding all KIs for a given API, e.g., the Java 2 SE class libraries,6 which

consists of 206 packages, 3 869 types, 28 724 methods, and 6 158 fields. The Javadocs

of all these API elements total 2 632 232 words in 194 204 sentences.

5http://www.cnts.ua.ac.be/conll2000/
6http://docs.oracle.com/javase/6/docs/api/
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Our basic strategy for meeting this challenge is to manually find validated KIs for

a small random training set of API elements (with the tool support described above),

generate patterns from them, and then use these patterns to find the KIs in all

remaining unseen Javadocs. A key aspect of this strategy, however, is that we build

the training set incrementally through a combination of automated detection and

manual validation. In addition to speeding up the process of building the pattern

database, this process allows us to measure the performance of our automated KI

discovery process. We summarize the process as follows:

1. Manually generate a seed training set of validated KIs, and generate patterns

from them. Our seed training set consisted of the 299 KIs produced as part of

the development of the classification scheme (Chapter 2.1).

2. Generate a test set by randomly sampling 20 unseen Java elements.

3. Apply all known patterns to this test set. Calculate the precision and recall.

Precision is calculated by manually determining how many instances were falsely

identified as KIs. Recall is calculated by reading the entire Javadocs of all items

in the test set, and identifying false negatives (i.e., missing KIs).

4. Add the missing KIs identified in the previous step to the training set. Generate

patterns from them. Add the generated patterns to the pattern database.

5. Randomly sample 100 additional unseen Java elements. Manually identify KIs

in them, and add the corresponding patterns to the pattern database.

6. Go to step 2.

The high-level process is shown in Figure 2.4. The sample input in the figure consists

of both the training and the test sets. The training sets are passed through the semi-

automated approach of knowledge item and pattern identification processes, and the

test sets through the automated detector that is provided with the patterns. The

vetting step is where the test sets are further scrutinized for missing KIs.
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Figure 2.4: The iterative pattern application process

Results

Table 2.5 shows the results of using the automated detector on six test iterations

with 20 Javadocs in each test. The matched KI column indicates the total number of

sentences identified as KIs in the test Javadocs. Of these potential KIs, the number

of true positives is indicated in column correct matches. Precision shows the ratio.

The New KIs column lists the false negatives and Recall summarizes the ratio. After

six test iterations, we had evaluated 799 API elements in the training sets and 120

in the test sets. For the total of these 919 API elements, which is about 2.4% of

the total API elements in Java SE 6 libraries we collected 556 unique KI, and 361

unique patterns; 142 indispensable and 219 valuable. We find this to be a relatively

low yield for patterns, which explains that recall values remain modest. This result

is explained by the relatively small size of our test sets, which is constrained by the

high cost of manual validation. When applied to a larger corpus, patterns yield many

more instances (details below). More importantly, the precision of 92% for the 43

automatically matched KI is relatively high. A high precision-low recall tradeoff is

desirable in our case because programmers currently do not have any documentation

recommendations. We surmise that a few correct recommendations will improve

over nothing at all, while numerous bogus recommendations have a potential to be

aggravating. Based on our experience so far, we estimate that further increasing the

size of the pattern database in the same way will lead to higher recall and lower

precision. Given the massive investment required to produce the current database,
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Table 2.5: Iterative testing results

Test Matched Correct New Precision Recall

Round KI Matches KIs (%) (%)

1 3 3 7 100 30

2 4 4 8 100 33

3 5 4 2 80 67

4 17 14 9 82 61

5 10 9 11 90 45

6 4 4 5 100 44

Total 43 38 42 92 47

we opted to apply the pattern database at this point in the process.

General Application

From the remaining 97.6% of the unseen Javadocs, 56% of them (21 700) had one

or more sentences in their Javadocs after the automated filtering step. We then

applied the 361 patterns to automatically identify potential KIs in their Javadocs.

The automated detector was able to detect one or more KIs in the Javadocs of 8 396

(38.7%) of them. We stored the automatically detected KIs in a final KI database.

Table 2.6 presents the details of the KIs, generated by the automated detector

and those manually vetted. Out of the 8 396 elements for which there is one or more

KI in the corpus, 75% are methods, 20% are types, and the rest fields. Out of all the

automatically generated KIs, 80% belongs to Javadocs of methods.

The most effective pattern was the combination of the words CW, must, and pass,

where CW is a placeholder for a code-like term; it matched 1072 KIs across all the

Javadocs, which is 7.6% of the total KIs automatically identified. 265 out of the total

361 patterns matched one or more KIs. The average instances of a match per pattern

was 52 and the standard deviation 116.
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Table 2.6: Knowledge item corpus

Total With Manual Auto

KI Ind. Val. Ind. Val.

Types 3869 1685 91 148 797 1817

Methods 28724 6301 120 168 3514 7217

Fields 6158 410 10 19 190 506

Total 38751 8396 221 335 4501 9540
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Chapter 3

Knowledge Recommender

We developed an Eclipse plug-in called Krec (Knowledge Recommender), that

takes as input a Java file or a block of Java code, and recommends KIs from the

Javadocs of the API elements in the code. Krec uses the KI corpus generated by

the automated detector, presented in the earlier chapter, to identify KIs. Krec also

recommends KIs from the Javadocs of elements not present in the input code if they

mention one or more of the elements in the code. E.g., when using Thread in the

input code, it recommends a KI from the Javadoc of Executor, because this Javadoc

mentions Thread. Since code terms are tagged appropriately in the corpus, a search

for a code-like term only matches those with a code tag and not a regular word.

Figure 3.1 shows a screen shot of Krec; the programmer looks for recommendations

for lines of code in the program by selecting the code block and initiating Krec. Krec

identifies the API elements in the code and recommends KIs associated with the

elements, if it finds them in the corpus.
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Figure 3.1: Krec in action
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Chapter 4

Evaluation

We evaluated the impact and the use of KIs recommended by Krec in varied

programming situations. For input code blocks, we analyzed the recommendations

from Krec using the following metrics:

(a) Precision. This measures the precision of the automated detector by analyzing

the correctness of the generated KIs. For all the generated KIs, we also flag ap-

propriately those identified manually as part of the initial training phase (Chapter

2.2.3), and those identified by the automated detector. We measured separately

the precision of the KIs from the Javadocs of elements in the code, and those that

belong to elements not in the code but mention the elements.

(b) Recall. This measures the number of missed KIs. It is obtained by manually

studying the details of the Javadocs for API elements; we measured the recall for

only those elements that were present in the code blocks.

(c) Extraneous Information. This measures the number of text segments that

the programmer who has already selected an API element can afford to ignore.

These are the text segments in the documentation that are not KIs.

We further evaluated the recommendations by targeting code examples with one or

more inherent flaw ; the majority of the flaws in the snippets are not obvious to
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most programmers. The fix for the flaws come as recommendations from third-party

sources, and we compared those recommendations with the KIs recommended by

Krec. For such code snippets, we assess the following metric:

(d) Match. This measures whether or not the recommended KIs contain the ex-

pected recommendations; an expected recommendation for a sample of code block

is third-party recommendation on the means to improve the code or API usage

in the sample. For each input code sample, this metric had one of the following

values:

Yes If the expected recommendation matches a KI recommended by Krec.

No If the expected recommendation is present in the documentation but Krec

does not recommend it.

NA If the expected recommendation is not present in the documentation.

4.1 Design

To evaluate the usefulness of KI recommendations in different programming situa-

tions, we collected Java code samples from production settings, and suitable tar-

geted code examples from a popular book on Java programming.

Production Code

These are representative of code in use by open source programmers. Since our corpus

contains KIs present in the Javadocs of API elements in the Java Development Kit

(JDK) libraries, we picked systems that use the JDK APIs in different ways. We

chose ten open source systems from varying domains as our target (Table 4.1). We

used the following characteristics to choose the systems:

Domain. The systems represent different domains and each serves a different pur-

pose. The version of each of the systems used in the evaluation and their brief

purposes are presented in Table 4.1.
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Table 4.1: Target open source systems

System Version Purpose

ArgoUML 0.34 UML modelling application

FreeMind 0.9.0 Mind mapping application

Hadoop 1.0.3 Distributed processing framework

Hibernate 4.1.4 Object-relational mapping framework

JDT 3.7.2 Tools for Java IDE

JEdit 4.5.2 Text editor

Joda Time 2.1 Java library for date and time

JUnit 4.11 Testing framework

Tomcat 7.0.28 Web server

XStream 1.4.2 Serialize objects between Java and XML

Size. They vary significantly in their size, the details of which are extracted from

Ohloh.1 For instance, JUnit contains around 26K lines of code, compared to Tomcat,

which contains over 1.6 million lines of code. The average lines of code across the ten

systems is about 815K with a standard deviation of about 798K.

Use of JDK APIs. These systems differ in their use of the JDK APIs, for exam-

ple, Joda-Time uses only the fundamental JDK APIs like the containers, whereas

JEdit relies on the Abstract Window Toolkit libraries, and XStream heavily uses the

Reflection APIs.

Since the evaluation required extensive manual investigation, we used stratified

sampling to create a representative code sample from each system to input to Krec

for evaluation. To form the strata, from each of the ten systems, we selected twenty

method definitions, each consisting of more than five lines of code and using at least

one JDK API element. In addition, the method definitions are as widespread in the

system as possible, i.e., if the system is composed of twenty or more packages, we

picked the methods from classes representing twenty different packages. Table 4.2

depicts the distribution of API elements in the sample code. The column Total

1http://www.ohloh.net/
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Table 4.2: Distribution of API elements in the samples

System Total Total Distinct APIs Unique APIs

LoC APIs Count (%) Count (%)

ArgoUML 237 119 99 83.2 61 51.3

FreeMind 241 141 125 88.7 94 66.7

Hadoop 222 147 126 85.6 66 44.9

Hibernate 181 148 92 62.2 41 27.8

JDT 307 104 75 72.1 26 25.0

JEdit 313 157 138 87.9 77 49.0

Joda-Time 323 111 86 77.5 44 39.6

JUnit 201 85 63 74.1 19 22.4

Tomcat 217 111 82 73.9 42 37.8

XStream 245 154 101 65.6 36 23.4

Total 2487 1277 987 77.3 506 40.0
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LoC indicates the total lines of code across the twenty method definitions in each

system, and Total APIs indicates the sum of the occurrence of all the relevant JDK

API elements; we obtained the relevant elements by filtering out pervasive elements,

i.e., those that are equivalent to stopwords in natural language text, for example,

PrintStream, System, etc. This list is in Appendix B. Distinct APIs indicates

the number of API elements in the sampled method definitions in each system with

duplicate occurrences of elements removed. Unique APIs indicates the count of

the API elements that are only present in the sampled method definitions in each

system, i.e., elements in the Unique APIs column for a system are only present in

the sampled method definitions of that system. Hence, on average 40%, i.e., 50.6

elements, are unique to each system in the sample.

We input the method definitions to Krec and measured the recommendations

against the proposed metrics.

Targeted Examples

The limitation with the production code is that we could not measure the Match

metric because we did not have third-party oracle of recommendations to compare

our recommendations against. Hence we looked for code samples that recommended

means to make API usage more efficient. We found such code samples, i.e., code with

one or more inherent flaws or with inefficient API usage, and the recommended fix

or improvement in API usage, in the Effective Java book (EJ) [1].

EJ contains several complete code samples, each containing a defect, the fix for

which is to obey an associated rule. Each of these rules signify a programming rule or

a best practice. Specifically, EJ contains 78 rules intended to make the most effective

use of the Java programming language [5]. We broadly categorized these 78 rules into

two types:

1. those that recommend programming best practices, e.g., “never do anything

time-critical in a finalizer” [5, p. 27].

2. those that recommend means of effective usage of the fundamental Java
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Table 4.3: Evaluation results - production code

Open Source KI Rec. Precision KI Missed Recall Extra

Systems Ind. Val. (%) Ind. Val. (%) (%)

ArgoUML 26 83 87.6 6 26 77.3 85.4

FreeMind 13 48 93.8 5 14 76.3 90.3

Hadoop 29 59 93.2 9 30 69.3 87.5

Hibernate 35 69 87.2 2 24 78.8 87.4

JDT 23 51 83.8 3 19 77.1 86.2

JEdit 14 50 98.1 9 33 60.4 91.4

Joda Time 25 66 90.2 23 53 54.5 82.0

JUnit 21 46 89.1 12 34 59.3 82.9

Tomcat 19 38 87.7 10 32 57.6 88.5

XStream 39 89 90.6 9 34 74.9 82.5

Total 244 599 90.1 88 299 68.6 86.4

SE libraries, e.g., “always override toString()” [5, p. 51]. The fundamental

libraries include java.lang, java.util, java.util.concurrent, and java.io.

We manually separated the 78 rules into these two types; if the rule involved an API

element, i.e., ways of using or not using an API element, we put it in the second

category, and we put all the other rules, including the ambiguous ones, in the first.

For all the rules of the second type, we extracted the associated sample code [1], and

input it to Krec.

4.2 Results

Production Code

Table 4.3 shows the evaluation results on the method definitions selected from the

ten open source systems. The table shows the average precision and recall across
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elements in all the method definitions in the individual systems. For the first three

metrics, we only discuss the results from the evaluation of the open source systems,

because the EJ items, with small code sample, may not be representative of results

for precision, recall, and extraneous information, in general.

Precision. For the ten open source systems, on average, Krec was able to recommend

a KI with 90% precision per system. On average, it identified 1 indispensable KI

for every 5.2 API elements and 10.2 lines of code, and 1 valuable KI for every 2.1

elements and 4.2 lines of code. The precision is consistently above 85% across all the

systems, except JDT, with 83.8%.

The results in Table 4.3 illustrate the average performance of our approach, and

aggregate multiple occurences of the same recommendations. Since the recommen-

dations are context independent, they will always be the same for a given element.

In other words, if the recommendations for a given element, such as Thread, are very

good, the results will (indirectly) be a function of the number of references to Thread

in our sample. Hence, the results in Table 4.3 paint a useful picture of the expected

average performance in practice, but do not allow us to account for the frequency of

individual elements.

To control for this factor, we studied the performance of Krec on individual el-

ements (Table 4.4). Across the twenty method definitions in the ten systems, there

was a total usage of 1 277 API elements. Out of the total elements, 660 were distinct,

i.e., after removing multiple occurrences of elements across methods and systems.

From these 660 elements, 31 were part of the training set, and Krec was able to

automatically generate one or more KIs in 186 of the remaining elements. In these

186 elements, Krec automatically identified 215 KIs, out of which 163 were correct

matches, which gave a micro-averaged precision, i.e., precision after summing up

values from all the elements, of 75.8% per element. The values from the individ-

ual elements were computed by looking into their respective Javadocs, and analyzing

each text segment for the presence of KI. This is lower than the average precision per

system reported in Table 4.3 because Table 4.3 contains manually tagged KIs and

multiple occurrences of some KIs. The macro-averaged precision, i.e., the average of
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4.2. Results

Table 4.4: Auto generated KIs per element
Total Distinct APIs with Auto Gen. KIs Matched KIs New KIs Pmicro Rmicro

APIs APIs auto gen. KIs Ind. Val. Ind. Val. Ind. Val. (%) (%)

1277 660 186 48 167 32 131 36 128 75.8 49.8

the precision of KIs recommended per element, did not apply for our case, because

the number of KIs per element is low; for those with a KI in their Javadocs, the

number of KIs ranges from 1 to a maximum of 8, with more than 50% of the cases

having 1 KI. Since precision (and recall) suffer from high variance (e.g., 0 or 100 on

Javadocs with 1 KI) on such small samples, we report only the micro-averaged value.

Krec did not recommend any KI from Javadocs of elements not in the code,

either because the code samples were not representative of such cases or there was no

matching pattern.

Recall. We evaluated this metric by manually looking into the Javadocs of the API

elements in the input code, and figuring out the missing KIs, i.e., those that are not

present in the KI corpus. Krec achieved a recall of 68.6% of the KIs across the 20

method definitions in the ten systems. On average, it missed 1 indispensable KI for

every 2.7 that it found, and 1 valuable KI for every 2 that it found.

Joda-Time has a lower recall compared to other systems because it uses Date,

Calendar, and Locale APIs that apparently have unique sets of information in their

Javadocs, and were not part of the random training set.

For the 660 distinct elements across all the systems, Krec missed 164 KIs; the

micro-averaged recall on a per element basis is 49.8%. On examination, all KIs

belonged to 280 elements out of the total 660, which provided a coverage of 42.4%.

The main reason for a miss is the lack of a matching instance. The KIs that

are unique to an API element are difficult to extract automatically without a precise

pattern. This is true for cases where the sentences representing a KI do not have

well-defined headwords. For example, the following KI, that indicates a probable

threat,

This function may cause the component’s opaque property to change.

contains a specific piece of information, without distinct headwords or code-like terms,
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4.2. Results

hence the probability of it matching a pattern from other KIs is low. We noticed that

most of such cases are true with short sentences. As a solution to this, it would be

appropriate to create a stratified sample of short sentences in the training sets.

Extraneous Information. To measure this metric, we evaluated the total number

of text segments in the Javadocs of all the relevant API elements in the input code

sample, and noted the ones that are not KIs, i.e., those that we ignored. This is not

necessarily indicative of useless information but of those that have lower significance

to the programmer, who has already selected an element, in terms of the message it

conveys. In Table 4.3, the column Total TS indicates the sum of all the text segments

across the Javadocs of all the relevant JDK API elements in the code. We noticed

that, on average, 13.6% of the documentation contains all the KIs, which implies that

86.4% of the documentation contain low impact information. This finding is in fact

consistent with the Pareto Principle of 80/20, which in software engineering roughly

states that 80% of the engineering deals with 20% of the requirements; in software

testing, it is believed that 80% of bugs are caused by 20% of code.

Targeted Examples

Table 4.5 shows the evaluation results on the sample code associated with the EJ

rules; the Java files are downloaded2 from the EJ web location [1]. For the reason

stated earlier, we used the code associated with the EJ items to evaluate the match

metric only.

Match. We used this metric to measure the match of an expected recommendation

for a code block with a KI generated by Krec. Out of the 78 items in EJ, we found

11 to represent API usage rules. 8 of these 11 have the expected recommendations in

the documentation of one or more API elements in the associated code. Out of these

8, Krec was able to correctly match the recommendations for 6 of them; the 6 cases

represented constraints, best practices, and alternate API recommendation.

The 2 cases where it was not able to identify the expected recommendations are:

2http://java.sun.com/docs/books/effective/effective2.zip
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Table 4.5: Evaluation results - targeted examples

EJ Items KI Rec. KI Missed Expected

Ind. Val. Ind. Val.

5 Sum.java 0 2 0 0 NA

8 CaseInsensitiveString.java 0 3 0 2 Yes

9 PhoneNumber.java 6 15 0 2 Yes

10 PhoneNumber.java 8 18 0 4 Yes

11 Stack.java 1 7 0 2 Yes

12 WordList.java 0 3 1 3 NA

14 Complex.java 3 6 5 4 NA

29 PrintAnnotation.java 1 2 0 3 No

36 Bigram.java 2 1 0 6 No

47 RandomBug.java 2 4 1 4 Yes

49 BrokenComparator.java 3 5 1 2 Yes

1. Item 29, where it talks about the use of the method asSubClass in Class in

order to safely cast an object [5, p. 146]. The equivalent fact in the Javadoc of

asSubClass is present as a purpose, which did not match any of the existing KI

patterns, because the patterns do not represent purposes and properties of API

elements.

2. The sample code in Item 36, which uses an overloaded equals instead of overridding

it [5, p. 177], hence Krec could not identify the constraint associated with the

original equals method.

In conclusion, for the match metric, we claim that Krec can consistently match the

expected recommendation on a code block, that uses APIs inefficiently, with a KI

from the documentation, if the expected recommendations exist in the form of threats,

alternative API recommendation, or best practices.
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4.3. Discussion

4.3 Discussion

Our work is the first of a kind that uses a semi-supervised learning methodology to

automatically recommend fragments of API documentation.

Types of Information in API Documentation

A primary outcome of the work is the reliable classification of the pieces of infor-

mation in API documentation. Since the categories of information contained in a

documentation unit is subjective and could differ with context and perspective, we

ensured, aided by our experience, and an elaborate analysis of varying documentation

units, that we capture all the essential categories. Though at a high level, the indis-

pensable and the valuable categories seem generic, the properties identified in each

of the categories are specific and broad, and ensures that a coder can in fact reliably

identify a text segment satisfying a property, and that we do not miss any property

that is important for consideration.

Our coding guide underwent multiple iterations of refinement until we observed

little or no change in the agreement level between two coders. The agreement analy-

sis (Chapter 2.3.1) showed that an external coder can reliably agree on the properties

and identify the appropriate text segments.

Another outcome of the work is the identification of text segments in a paragraph

or a documentation unit. In our reliability assessment of around 300 Javadocs, we

observed only 4% disagreement between two coders in deciding what constitutes a text

segment. For the automated identification of text segments, we relied on conjunctions

to group sentences together. This, however, in exceptional cases, can still fail to

group sentences that present a single unit of information, and could render some

text segments unintelligible if observed in isolation. A remedy to this would be a

careful display of the recommended text segments to the programmer. For example,

instead of recommending a text segment in isolation, we could highlight the text

segment within the documentation unit, so that if the programmer feels that the

text segment does not convey a concrete meaning, the programmer can refer to the

sentences preceding the text segment to understand the information conveyed. Using

40



4.4. Threats to Validity

additional heuristics to automatically identify text segments remains future work.

Existence of Patterns in API Documentation

The existence of patterns of word usage in reference documentation is dependent on

the API developers obeying certain documentation convention [2]. We showed that

pattern identification is a reliable and inexpensive way to capture different types of

information. We used a semi-automated approach to identify patterns of words in a

text segment. Though the automated chunking technique removed obvious supporting

words in a text segment, thereby reducing the number of words to less than 50% in

majority of the text segments, we relied on a manual intervention to get the final

pattern of words.

It would also be interesting to capture negative patterns, i.e., if we identify a text

segment that says it is mandatory for the programmer to use a certain type of variable,

it would also be interesting to capture a pattern that requires the programmer not to

use certain type of variable.

A limitation with the chunking technique that we used is in automatically iden-

tifying patterns that only make sense when two or more words are put together. For

example, if a text segment contains the phrase “one of the following,” it would usually

imply a mandatory action from the programmer to have to use one of the following

values, but the chunker can not group these words into a single phrase, and we end

up missing an important pattern. Improvement in this chunker property remains an

interesting future work.

4.4 Threats to Validity

The code samples from EJ do not represent code in production settings, hence the

match of the expected recommendation cannot be generalized. In order to measure

the usefulness of the recommendations, the samples needed to have both a defect and

third party solutions. Another approach to evaluate the usefulness of the KIs in real

programming situations would be a user study with sampled programming problems.

41



4.4. Threats to Validity

The process of identifying KIs is semi-automated and involves manual interven-

tion at two critical phases: identifying the indispensable and the valuable KIs in the

training set, and then identifying the essential headwords from the list output by the

automated filter. Though we observed high agreement with an external participant on

identifying the KIs, the agreement could vary when evaluated with more participants

and those with varying background. Also, identifying the essential headwords could

be subjective; a conservative selection might increase false positives, while selecting

more headwords as part of a KI pattern would reduce recall.

The coding guide is based on the assumption that the documentation follows the

style specified in the Javadoc principles [2]. However, if an API developer deviates

from the convention, the properties of the KIs specified in the guide may not yield

the desired results.

Although we evaluated the automated detection of KIs on varying domains, KIs

could still be unique to certain domains, which would minimize the recall from pat-

terns extracted from other domains. For example, Joda-Time uses Date, Calendar,

and Locale APIs, that are specific to the domain, hence it did not have matching

patterns in the training set. Such domains that use unique APIs could threaten the

validity of our approach.
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Chapter 5

Related Work

This thesis builds on studies of API usability, API documentation, and applica-

tions of natural language processing in software engineering.

5.1 API Usability

Researchers have proposed metrics to measure the usability aspects of APIs. One set

of metrics are simplicity, productivity, error-prevention capabilities, and consistency

in the design and the functionality [33]. Proper design is an important aspect of API

usability because APIs are meant for reuse, and a poorly designed API will leave spoils

in all the dependent code [4]. Hence, researchers have proposed a few design choices

to help improve API usability [4], [34], [30]. Stylos and Clark investigated the use of

parameters in object constructors and found that programmers were more efficient

when the constructors did not require parameters [30]. Ellis et al. studied the use of

Factory design pattern in APIs and found that programmers preferred constructors

over static factory methods [13]. Stylos and Myers evaluated the implications of

method placement choices in API design, and found that if a class from which users

generally start to explore an API had methods that referenced other classes in the

API, it significantly enhanced the productivity of the programmer [34]. Stylos et

al. further demonstrated the impact of design choices on API usability in a case
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study of user-centered API redesign in an industrial context [32]. The above studies

focus on improving API usability by recommending better design decisions, but such

decisions are not always feasible for existing APIs, because once an API becomes

public, its developers cannot change them at will, without affecting dependent code.

As opposed to design decisions, our work focuses on making existing APIs more usable

by extracting useful information and suppressing irrelevant ones from their reference

documentation.

Researchers have also developed various plug-ins to improve code completion fea-

tures in popular IDEs (Integrated Development Environments) to improve API us-

ability [7], [12]. Bruch et al. used example code from repositories to rank the elements

accessible to an object in the IDE [7]. Duala-Ekoko and Robillard proposed API Ex-

plorer that uses structural relationship between API elements to recommend relevant

methods on other objects referenced indirectly [12]. Though our work has a similar

objective, that of making APIs more usable, we employ a different approach to it,

that of recommending specific information from the reference documentation. We

can also recommend dependent API elements, like API Explorer does, if such infor-

mation is present in the reference documentation of either the main type [12], the

helper type [12], or other closely related API elements.

5.2 API Documentation

The impact of documentation on the usability of APIs has also been an area of active

research [31], [6], [27], [11], [28]. Researchers have made proposals to make API

documentation easily accessible and understandable to programmers.

Though the reference documentation is an important form of API documenta-

tion, studies have found that programmers use reference documentation only when

they fail to get enough information from other possible sources [25]. This could be

due to the nature of the presentation or the content of the documentation. Among

other findings, Nykaza et al. identified the importance of an overview section in API

documentation [25], and Jeong et al. identified the importance of explaining starting
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points to increase the quality of the documentation [16]. We developed techniques to

distinguish parts in the reference documentation that are irrelevant to programming

situations from the parts that are relevant.

Dekel and Herbsleb worked on highlighting directives present in Javadocs of several

major APIs [11]. Their tool, eMoose, can push directives from documentation into

the foreground to apprise the programmer of their presence. eMoose, however, relies

on tags in the documentation to identify directives. Even though their approach

provides several helpful directives to the API user, it puts an overhead on the API

developers and contributors to have to include such tags in the documentation. Also,

it would be difficult to identify directives in existing documentation that are void of

such tags. In contrast, we automatically identify possible directives as well as other

important forms of information, for example, alternative API recommendation, in the

reference documentation, by training a detector of such information.

Monperrus et. al. performed an extensive empirical study and identified all pos-

sible directives in three large Java projects, viz., JDK, JFace and Commons Collec-

tions [22]. We, however, claim that not all directives are equally important, hence we

identify only those that require the programmer to make a decision. Such directives

provide an immediate API usability improvement to the programmer.

Stylos et al. proposed Jadeite, which studies source code and statistically provides

recommendations to the programmers on the most used classes, constructors, meth-

ods, and objects [31]. These specifications helped detect bugs which were introduced

due to developers using APIs for purposes that were not intended by the API. Kim

et al. proposed eXoaDocs, which uses code snippets, mined from search engines, to

improve documentation, by integrating the code with the text [18]. In contrast to

Jadeite and eXoaDocs, which need external input to improve the documentation, our

work is focused on making the existing information in the reference documentation

more accessible by extracting the relevant and eliminating the irrelevant pieces of

information.
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5.3 NLP in Software Engineering

Some of the research in software engineering have used Natural Language Processing

(NLP) to infer contracts or specifications from documents [37], [3], [35]. Kof used

computational linguistics to identify missing objects and actions in requirements doc-

uments [19]. Likewise, Fantechi et al. used a linguistic approach to analyze functional

requirements expressed by means of textual use cases [14]. While these approaches

focused on requirements documents, another line of research used source code or doc-

umentation to infer important information using linguistic approaches. Shepherd et

al. used NLP techniques to locate and comprehend concerns in source code [29].

Arnout and Meyer proposed a technique to infer invariants, like preconditions and

postconditions, from the documentation [3]. Tan et al. proposed iComment, that

extracts specifications from comments in source files [35]. Zhong et al. proposed

Doc2Spec that infers resource specifications from API documentation [37]. Our ap-

proach uses API reference documentation for linguistic analysis but does not focus

on inferring specifications. We only rely on the inherent structure of API reference

documentation to identify important types of information.

Recent work has also investigated how the natural-language text found in on-line

blogs and forums can be analyzed to support software engineering activities. Exam-

ples include the work of Pagano and Maalej [26] and that of Henß et al. [15]. Pagano

and Maalej used an unsupervised text clustering technique called latent Dirichlet

allocation (LDA) to classify blog posts to infer the nature of their contents. Henß

et al. [15] also used LDA, but to semi-automatically build summaries in the form

of “Frequently Asked Question” (FAQ) documents. Our work explores a different

dimension of language analysis in software engineering by both focusing on a dif-

ferent linguistic register (systematic, official documentation), a different approach

(semi-supervised pattern discovery), and a different application (recommendation as

opposed to summarization).
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Chapter 6

Conclusion and Future Work

To identify important pieces of information in API reference documentation, we

presented an approach to classify the pieces in the documentation based on the type

of knowledge items they contain. We proposed two types of knowledge items: the

indispensable (must know) and the valuable (good to know).

In a training set of Javadocs of around 1 000 API elements from the Java SE 6

libraries, we identified pieces of information that satisfy a property of either of these

two categories of knowledge items, and we extracted word usage patterns. We applied

these patterns to automatically detect similar pieces of information in the Javadocs

of the remaining API elements in the Java SE 6 libraries.

We evaluated the approach using an Eclipse plug-in, Krec, on code blocks of

method definitions extracted from 10 varied open source systems. With the train-

ing set of 1 000 manually-classified Javadocs, we could issue recommendations with

about, on average, 90% precision and 69% recall. Furthermore, the recommended

knowledge represents a small subset — about 14% — of the documentation relevant

to a programming (recommendation) context. We verified that obvious recommenda-

tion from textbook examples could be recommended, with a success rate of 6 out of 8

cases. Our approach involves many steps, which we plan to continue to evaluate and

improve. However, our initial results provided us with the evidence that word usage

pattern is a cost-effective approach for finding indispensable and valuable knowledge

items in reference documentation.
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Other areas for future work are improvements in the display of the knowledge

items to the end user, ideally in a manner that is consistent with the existing IDE

features like the content assist in Eclipse. A user study with sampled programming

problems could be used to evaluate the usefulness of the recommendations in a new

programming task. Though it is a relatively harder problem, identifying and recom-

mending context-sensitive knowledge items is an interesting area to explore.
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Appendix A

Automated Filter of Clauses

The automated filtering described in Chapter 2.2.1 eliminates the following clauses

from the Javadocs of API elements:

• Throws. The purpose of the throws (or equivalently exception) tag in Javadocs

is to indicate which exceptions the programmer must catch or might want to

catch [2]. As a principle of Javadocs, checked exceptions must be included in a

throws clause of the method so that the compiler can know which exceptions to

check. For the programmer though, such exceptions are evident in the method

signature. Even otherwise, exceptions are named such that it is intuitive to

determine the type and the cause, e.g., FileNotFoundException indicates an

error in trying to access a non-existent file. For these reasons, we eliminate the

throws clause from considering that it would contain indispensable or valuable

KIs.

• See Also. The see also clause only lists other API elements without any

explanation, hence it can neither contain indispensable nor valuable KIs.

• Since. Likewise the since clause only mentions the project version.

• Specified by. Likewise the specified by clause only mentions the name of the

interface that originally contains the method.
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• Returns. The first sentence in the returns clause can be eliminated because

it often contains redundant information about the element that is returned [2].

However, subsequent text segments, if any, could contain important information,

hence we take them into consideration.
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Appendix B

Pervasive API Elements

The following is the list of pervasive API elements omitted from consideration

from code blocks in the evaluation:

java.lang.String,

java.lang.System,

java.lang.Object,

java.lang.Package,

java.lang.Void,

java.lang.Error,

java.lang.Deprecated,

java.lang.Override,

java.lang.SuppressWarnings,

java.lang.System.out,

java.io.PrintStream*.
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Appendix C

Coding Guide

You will be given a list of Javadocs of API elements in the Java SE 6 libraries.

An API element could be a type (class, abstract class, interface, enum, or annotation

type), a field, or a method. Your task is to read the given Javadocs, and look for the

presence of two types of knowledge items (KIs), indispensable and valuable, which

are described below. For each of the Javadocs that you think contains either an

indispensable or a valuable KI, you need to identify the sentence or the groups of

sentences that contain them.

In the context of our project, a knowledge item is a piece of information in the doc-

umentation that is of significant value. E.g., for the method RemoteObject.getRef(),

the line in its Javadoc that says “returns the remote reference for the remote object”

contains information that is obvious from the method name, hence it is of little value

and does not represent a KI. The line following it that says “... an instance of

RemoteRef should not be serialized outside of its RemoteObject wrapper instance or

the result may be unportable,” however, contains information of value and we classify

it as representing a KI.

The two categories of KIs that we are interested in are those that contain a piece

of information that the user must know, which we term indispensable, and those that

contain a piece of information that is good to know, which we term valuable. One

commonality between the two categories is that the piece of information should not

be evident from the name and the signature of the API element.
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Indispensable Knowledge Items

This is the type of information that cannot be ignored; users who ignore this cate-

gory of information would either encounter compilation or runtime errors or are most

likely to introduce bugs. Indispensable KIs instruct users to perform mandatory

action(s), explicitly or otherwise, to achieve basic functionality.

Please note that we are looking for KIs that demand actions from a program-

mer as opposed to those that mention the purpose or the functionality of an API

element or an overview of certain concept without requiring an action from the pro-

grammer. Beware that actions may not always be explicit and could be implied

within the KI. E.g., a KI that says ”it is not safe to call method X from method

Y” implicitly instructs the programmer that the programmer should not call method

X from method Y.

We assign the following properties to indispensable KIs in Javadocs:

1. It specifies mandatory API usage directives. E.g.,

• By convention, the returned object should be obtained by calling super.clone.

• This method should only be called by a thread that is the owner of this

object’s monitor.

• The provider must supply an implementation class containing the following

method signatures . . .

2. It imposes hard constraints or specific requirements. E.g.,

• must not be null.

• A valid port value is between 0 and 65535.

• At most one field or property in a class can be annotated with @XmlAny-

Attribute.

• The string must match exactly an identifier used to declare an enum con-

stant in this type.

• The usage is subject to the following constraints . . .

53



• If an application needs to read a password or other secure data, it should

use readPassword() or readPassword (String, Object...)

• The maximum number of arguments is limited by the maximum dimension

of a Java array as defined by the Java Virtual Machine Specification.

• A character may be part of a Java identifier if and only if any of the

following are true . . .

3. It indicates potential threats or warnings if certain protocols are not fol-

lowed, thereby (implicitly) instructing the programmer to follow them. In-

formation regarding thread-safety or synchronization issues usually satisfy this

property. E.g.,

• invoking methods . . . as well as the read, format and write operations on

the objects returned by . . . may block in multithreaded scenarios.

• A CannotProceedException instance is not synchronized against concur-

rent multithreaded access. Multiple threads trying to access and modify

CannotProceedException should lock the object.

• Note that this implementation is not synchronized. If multiple threads ac-

cess an ArrayList instance concurrently, and at least one of the threads

modifies the list structurally, it must be synchronized externally.

• Warning: Serialized objects of this class will not be compatible with future

Swing releases.

• DataInputStream is not necessarily safe for multithreaded access.

Please note that the following types of information do not satisfy the properties

for indispensable KIs:

• Directives that are not necessarily constraints, e.g., “can be null” or “may be

null” for a parameter value, which essentially means that the parameter can

have any possible value.
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• Constraints in the values returned from a function as opposed to constraints

while setting certain parameter values, e.g., the sentence “a valid port value is

between 0 and 65535 ” puts a constraint on the user to have to use one of the

values between 0 and 65535, but the sentence “returns a value between 0 and

65535 ” provides a piece of information without imposing any constraint on the

user, hence the latter is not classified as a KI in our study.

Valuable Knowledge Items

This is the type of KI that conveys good to know information. Users who ignore

this category of information are likely to use the API sub-optimally, or spend an

inordinate amount of time looking for information. Unlike indispensable KIs, ignoring

valuable KIs will not result in immediate bugs, but are nevertheless almost equally

important to be considered in order to use the API optimally and prevent potential

future issues.

Please note that we are looking for KIs that demand actions from a program-

mer as opposed to those that mention the purpose or functionality of an API element

or an overview of certain concept without requiring an action from the programmer.

Beware that actions may not always be explicit and could be implied within the

knowledge. E.g., a KI that says “it is preferable to use method X over method Y,”

implicitly recommends the programmer to use method X over method Y.

We assign the following properties to valuable KIs in Javadocs:

1. It recommends alternate API elements to accomplish the same objective (of-

ten efficiently). This property is also valid for cases where certain API elements

are deprecated and the documentation suggests not using them and recommends

alternate API elements instead. Note that pieces of information that compare

API elements also satisfy this property because comparisons usually give the

programmers options to choose from two or more API elements. E.g.,

• When using a capacity-restricted deque, it is generally preferable to use

offerFirst.
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• In general, String.toLowerCase() should be used to map characters to

lowercase.

• The correct way to write PutField data is by calling the ObjectOutput-

Stream.writeFields() method.

• If a new Character instance is not required, this method should generally

be used in preference to the constructor Character(char), as this method

is likely to yield significantly better space and time performance by caching

frequently requested values.

• The constant factor is low compared to that for the LinkedList implemen-

tation.

2. It suggests API elements or a series of API elements that could be used to

perform a task. Please note that this is only true if the suggested API element(s)

is different from the one the Javadoc belongs to, otherwise it would just be

functionality or purpose of the concerned API element. E.g.,

• To specify the use of a different class loader, either set it via the Thread.-

setContextClassLoader() api or use the newInstance method.

• Use getName to get the logical name of the font. [This information is

present in getFamily, i.e., different from getName, hence it becomes valu-

able.]

• To support all Unicode characters, including supplementary characters, use

the canDisplay(int) method or can- DisplayUpTo methods.

• An instance of Current can be obtained by the application by issuing the

CORBA::ORB::resolve initial references("POACurrent") operation.

• Instances of this class are generally created using a SSLServerSocket-

Factory.

3. It indicates actions that could lead to improvements in non-functional prop-

erties, like performance, scalability, maintainability, etc. E.g.,
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• The implementor may, at his discretion, override one or more of the con-

crete methods if the default implementation is unsatisfactory for any rea-

son, such as performance.

• It may be more efficient to read the Pack200 archive to a file and pass the

File object, using the alternate method described below.

4. It recommends best practices that should be adhered to. Note that this is

different from the hard constraint property of indispensable KI. Hard constraints

are mandatory and will result in immediate programming failure, whereas best

practices are optional, but are always best followed. E.g.,

• This means that you are advised not to use this class and, in fact, it may

not even be available depending on your JAXB provider.

• Validator has been made optional and deprecated in JAXB 2.0. Please refer

to the javadoc for Validator for more detail.

• Thus in general applications are strongly discouraged from accessing meth-

ods defined on SAXSource.

• This method is intended to be used only by event targeting subsystems, such

as client-defined KeyboardFocusManagers. It is not for general client use.

• Clients generally should call isTransformed() first, and only call this

method if isTransformed returns true.

• The class supplied by the provider does not have to be assignable to javax.-

xml.bind.JAXBContext, it simply has to provide a class that implements

the createContext APIs.

An example of a piece of information that describes a concept without requiring

an action from the programmer, hence not a valuable KI in our study, is “different

fields will be set depending on the type of validation that was being performed.”
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Additional Information

The following types of information should be ignored, i.e., they can neither be indis-

pensable nor valuable KIs:

1. Information about functionality or purpose: Please note that the obvious

high-level functionality or purpose of an API element can neither be considered

indispensable nor valuable. This is because we are interested in information that

is surprising and not obvious from the name and the signature of the API el-

ement. In addition, we wish to find pieces of information that are interesting in

the case where the programmers have already chosen the API element that they

need. Hence we assume the programmer already has a basic understanding of

what the API element does, i.e., its high-level functionality or purpose. There-

fore, the first line of documentation in the Javadoc of API elements, which by

design contains a high-level summary of the functionality of the API element,

can be ignored. Any line that mentions just the purpose of an API element

should also be ignored. E.g., “the ObjectOutputStream continues to be recom-

mended for interprocess communication and general purpose serialization” or

“code can use this to serialize or deserialize classes in a purposefully malfeasant

manner.”

2. Non-concrete information in abstract classes and interfaces: The doc-

umentation of abstract classes and interfaces often contain information that is

applicable to only some of their implementations. E.g., a specific property of

List could be applicable to ArrayList and not to TreeList. In such cases,

only include information that is applicable to either all the implementations

of the abstract class or interface or to a specific implementation. E.g., do not

include sentences like “some implementations prohibit null elements, and some

have restrictions on the types of their elements,” which does not say for sure

which such implementations are. In place of “some implementations,” if there

were phrases like “this implementation” or “all implementations,” then include

them.
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3. Redundant information in the same documentation unit: If you find

that the same KI is repeated within the documentation of an API element,

please include only the first occurrence. In Javadocs, this usually occurs when

a piece of information is mentioned in the description of an API element and

repeated afterwards in the Returns clause.

4. Generic external reference: Avoid generic external reference that is com-

mon to multiple API elements. E.g., “As of 1.4, support for long term stor-

age of all JavaBeans has been added to the java.beans package. Please see

XMLEncoder.”

5. If in doubt, leave out: If you are not able to decide whether a piece of

information contains a KI, leave it out.
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