
SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Extracting Development Tasks
to Navigate Software Documentation

Christoph Treude, Martin P. Robillard and Barthélémy Dagenais

Abstract—Knowledge management plays a central role in many software development organizations. While much of the
important technical knowledge can be captured in documentation, there often exists a gap between the information needs of
software developers and the documentation structure. To help developers navigate documentation, we developed a technique
for automatically extracting tasks from software documentation by conceptualizing tasks as specific programming actions that
have been described in the documentation. More than 70% of the tasks we extracted from the documentation of two projects
were judged meaningful by at least one of two developers. We present TaskNavigator, a user interface for search queries that
suggests tasks extracted with our technique in an auto-complete list along with concepts, code elements, and section headers.
We conducted a field study in which six professional developers used TaskNavigator for two weeks as part of their ongoing
work. We found search results identified through extracted tasks to be more helpful to developers than those found through
concepts, code elements, and section headers. The results indicate that task descriptions can be effectively extracted from
software documentation, and that they help bridge the gap between documentation structure and the information needs of
software developers.

Index Terms—Software Documentation, Development Tasks, Navigation, Auto-Complete, Natural Language Processing

F

1 INTRODUCTION AND MOTIVATION

THE knowledge needed by software developers
is captured in many forms of documentation,

typically written by different individuals [53]. Despite
the best efforts of documentation writers [14], there
often remains a mismatch between the needs of docu-
mentation consumers and the knowledge provided in
developer documentation. This mismatch can be ob-
served whenever developers struggle to find the right
information in the right form at the right time [28],
[43].

Many software development organizations and
open-source projects attempt to address this challenge
by creating web pages that collect the most impor-
tant information. For example, the home page of the
Python web framework Django1 links to three dif-
ferent documentation sources: an installation guide,
a tutorial, and a full index. At the time of writing,
the complete index contained a total of 132 links to
documentation resources, including: an FAQ, guide-
lines for designers, and developer documentation for
everything from design philosophies to APIs.

• C. Treude is with the Departamento de Informática e Matemática
Aplicada, Universidade Federal do Rio Grande do Norte, Natal, RN,
Brazil. This work was done while Treude was a postdoctoral researcher
at McGill University. E-mail: ctreude@dimap.ufrn.br

• M. P. Robillard is with the School of Computer Science, McGill
University, Montréal, QC, Canada. E-mail: martin@cs.mcgill.ca

• B. Dagenais is with Resulto, Montréal, QC, Canada. E-mail:
bart@resulto.ca

1. https://www.djangoproject.com/

For most projects, simply collecting the links to all
documentation resources in one web page is not a
particularly usable or scalable solution. For example,
developers at our industry partner Xprima, a web
development company, found it difficult to navigate
their documentation, and mentioned to us that they
often “forgot to look elsewhere [for documentation or]
did not know where to look”. Although documentation
usually follows a hierarchical structure with sections
and subsections, this kind of organization can only
enable effective navigation if the headers are ade-
quate cues for the information needs of developers.
However, these information needs can be impossible
to anticipate. How can we support effective navigation
through rapidly-growing and continually changing free-
form technical documentation?

Automatically discovering emergent navigation
structure using statistical techniques [12], [13] is gen-
erally not possible because the documentation of soft-
ware projects rarely includes a large enough corpus to
extract meaningful patterns. Basic search functionality
is also insufficient because it requires users to know
what they are looking for and have the vocabulary
to express it. Most web search engines use auto-
complete to close this vocabulary gap [33], and auto-
complete has received high satisfaction scores from
users [49]. However, query completion in web search
engines is usually based on query stream mining [6]
or ontologies [33]. For customized search systems in
a corporate environment, query logs are either not
available or the user base and the number of past
queries is too small to learn appropriate models [8].
In those cases, researchers have attempted to populate

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://www.djangoproject.com/


SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

Fig. 1. Satchmo documentation for subscription prod-
ucts

the auto-complete field with concepts extracted from
the corpus using n-grams [8].

To provide improved support for searching doc-
umentation in the context of rapidly-evolving tech-
nological environments, we investigated whether the
concept of task could be an effective means to narrow
the gap between the information needs of developers
and existing documentation resources. We define a
task as a specific programming action that has been
described in the documentation. For example, a task
for a developer creating a web site with Django could
be “display date fields on templates”. We note that our
definition of task is the implementation of a small
and well-defined technology usage scenario, in con-
trast to the complete resolution of a bug or feature
request [27], [36], [54].

Our main idea was to automatically analyze a
documentation corpus and detect every passage that
describes how to accomplish some task. We call this
process task extraction. We developed a task extraction
technique specialized for software documentation.
Our technique integrates natural language processing
(NLP) techniques, statistical methods, and the analy-
sis of syntactical features of the text (Section 3).

To experiment with task-based navigation, we de-
veloped an interactive auto-complete interface called
TASKNAVIGATOR (Section 4). In addition to tasks, this
browser-based interface surfaces common concepts
and code elements extracted from the documentation
using recognized techniques, as well as the original
titles found in the documentation. TASKNAVIGATOR
and the underlying task extraction engine requires no
machine learning and is able to deal with heteroge-
neous and continually changing documentation.

We evaluated the accuracy of the preprocessing
steps and the task extraction algorithm using a bench-
mark of sentences and their corresponding tasks (Sec-
tion 5.1), and we compared the relevance of the task-
based auto-complete suggestions to the relevance of
auto-complete suggestions derived from an n-gram
baseline (Section 5.2). To evaluate whether the ex-
tracted tasks are meaningful to developers, we con-
ducted an evaluation of the tasks extracted from
the documentation of two projects with 10 profes-
sional software developers (Section 6.1). The evalua-
tion showed that more than 70% of the extracted tasks

TABLE 1
Documentation elements extracted from Satchmo’s

documentation for subscription products
¶ type documentation element
1 task manage recurring billing memberships

task add payment terms to non-membership
product

task use product type
conc. product type

2 task use product
task enable in configuration settings
task use url
task activate rebilling
task set setting ALLOW_URL_REBILL to true
task set to true
task add new unique key in CRON_KEY setting
conc. product type
code Subscription
code ALLOW_URL_REBILL
code CRON_KEY

were meaningful to at least one of two developers
rating them.

We then conducted a field study in which six pro-
fessional software developers used TASKNAVIGATOR
for two weeks as part of their ongoing work (Sec-
tion 6.2). Based on 130 queries and 93 selected search
results in the field study, we found search results
identified through development tasks to be signifi-
cantly more helpful to developers than those found
through code elements or section titles (p < .001).
Search results found through concepts were rarely
considered by the participants. The results indicate
that development tasks can be extracted from soft-
ware documentation automatically, and that they help
bridge the gap between the information needs of
software developers, as expressed by their queries,
and the documentation structure proposed by experts.

2 MOTIVATING EXAMPLE

Satchmo2 is an open source eCommerce platform
based on Django, which allows users to configure
various types of products. Currently, a developer in-
terested in learning about a particular type of product,
such as memberships with recurring payments, would
either have to know that Satchmo refers to these prod-
ucts as subscription products (see Figure 1 for the first
two paragraphs of the corresponding documentation),
or rely on full text search. A search for “membership”
on the Satchmo website returns four results: The first
result links to a description of the Satchmo directory
structure, where “membership” is mentioned in the
short description of an optional Satchmo app. In the
second result on pricing, “membership” is mentioned
as part of an example on different pricing tiers. The
third result links to the section shown in Figure 1,
and the fourth result only mentions “membership” in a
source code comment. The number of results requires

2. http://www.satchmoproject.com/docs/dev/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.satchmoproject.com/docs/dev/


SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

TABLE 2
Descriptive corpus statistics

Xprima Satchmo Django
documents 209 22 120
sentences 11,134 2,107 17,448
tokens 71,274 18,266 220,694
tasks 1,053 844 1,209
concepts 131 13 648
code elements 4,256 686 5,161

the user to browse the different search results until
they find the right one.

The approach described in this paper aims to
make it easier for developers to navigate the doc-
umentation by automatically associating tasks with
each paragraph, and by suggesting them in an auto-
complete list. For the example in Figure 1, our ap-
proach associated three tasks with the first para-
graph, and seven tasks with the second paragraph
(see Table 1). In addition, both paragraphs are associ-
ated with the automatically-detected concept “product
type”. The second paragraph also contains three code
elements: Subscription, ALLOW_URL_REBILL, and
CRON_KEY. These are detected through a set of regular
expressions. With TASKNAVIGATOR in operation, as
soon as the user starts typing the word “member-
ship”, two tasks would be suggested in auto-complete:
“manage recurring billing memberships” and “add pay-
ment terms to non-membership product”.

3 EXTRACTING DEVELOPMENT TASKS

For our purposes, we conceptualize references to tasks
in software documentation as verbs associated with
a direct object and/or a prepositional phrase. For
example, all of the following could be tasks: “add
widget” (verb with direct object), “add widget to page”
(verb with direct object and prepositional phrase),
and “add to list” (verb with prepositional phrase). To
extract tasks from software documentation, we make
use of the grammatical dependencies between words,
as detected by the Stanford NLP parser [30] (see
Section 3.2).

To compare the usefulness of development tasks for
navigating software documentation to the usefulness
of other elements, we extract concepts and code ele-
ments using recognized techniques (see Sections 3.3
and 3.4). The idea of extracting concepts is to isolate
and surface recognizable phrases that could help users
search for information. As for code elements, they
play a central role as evidenced by the multitude of
tools to find source code examples, such as Strath-
cona [23] or PARSEWeb [51].

We developed and evaluated the approach using
documentation from three web development projects.
The focus on web development was motivated by
our industry partner’s work with web development
projects. We used two corpora to guide our devel-
opment of the approach: the documentation of the
Django-based eCommerce platform Satchmo and the

documentation of the web development platform of
our industry partner, Xprima. The documentation of
the Python web framework Django was used as eval-
uation corpus. Table 2 shows the size of each corpus in
terms of number of documents, sentences, and tokens
(i.e., words, symbols, or code terms) as well as how
many tasks, concepts, and code elements the approach
extracted.

3.1 Preprocessing

To enable the extraction of development tasks, the
documentation corpus of a project is preprocessed
by transforming HTML files into text files. In this
step, most of the HTML mark-up is removed while
keeping the linebreak information. In the next step,
redundant information that is repeated on each page
of the documentation, such as summaries, headers,
and footers, is removed from the files.

The only meta-information kept during preprocess-
ing is whether a paragraph represents an HTML
header (i.e., is surrounded by either h1, h2, or h3 tags)
and whether text is explicitly marked up as code (i.e.,
surrounded by tt tags). Code blocks as indicated by
pre tags are removed from the files. Which HTML
tags are considered in the different steps is easily
configurable.

We parse the resulting text files and split them
into sentences and tokens using the Stanford NLP
toolkit [30]. Each paragraph is processed separately to
ensure that sentences do not span several paragraphs.

Because software documentation has unique char-
acteristics not found in other texts, such as the pres-
ence of code terms and the systematic use of in-
complete sentences, the input has to be preprocessed
before invoking the NLP parser to ensure the sen-
tence structure is identified correctly. For example,
in the sentence “It is possible to add small tools to a
page by using the <tt>include</tt> template tag”, the
Stanford part-of-speech tagger does not tag the last
few words correctly by default: include is tagged as a
verb, template as an adjective, and only tag is tagged
correctly as a noun. However, by taking advantage
of the information that include is a code term (as
indicated by the tt tags), the part-of-speech tagging
can be improved. Tagging code terms as nouns was
also suggested by Thummalapenta et al. [50].

To generalize this approach, we replace all code el-
ements in the original text with a temporary mask (ce
followed by a serial number), and the part-of-speech
tagger is configured to tag all words that consist of ce
followed by a serial number as nouns. Subsequently,
the original code terms are put back into place. In ad-
dition to code terms explicitly tagged with tt tags in
the original HTML, all words that match one of about
30 regular expressions are masked as code terms. The
regular expressions were handcrafted based on the
Xprima and Satchmo corpora to detect code terms

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

using typographical features such as camel-casing, all-
upper-case words, and annotations.3

In addition, we manually created a list of domain
terms that should always be tagged as nouns. For the
three corpora used in this work (containing a total of
more than 300,000 tokens), this list contained 25 terms,
such as “template”, “slug”,4 and “file”. The complete
list is also in our on-line appendix.

To ensure the correct parsing of incomplete sentence
structures commonly used in software documenta-
tion, such as “Returns the next page number”, we add
further customizations. First, we add periods to the
end of paragraphs that do not end with a period,
because the Stanford part-of-speech tagger is sensi-
tive to punctuation. Parts of a paragraph that are
enclosed in parentheses are removed. This is done
for two reasons: First, in our development corpora,
we rarely found complete sentences in parentheses,
which would make it difficult to process the content
using natural language processing techniques. Sec-
ond, content in parentheses rarely contained verbs
that could indicate development tasks.

In addition, if the sentence starts with a verb in
present tense, third person singular such as returns,
sets, or computes, the sentence is prefixed with the
word this to ensure that partial sentences are tagged
correctly. If the sentence starts with a verb in present
participle or gerund (e.g., “adding”, “removing”), im-
mediately followed by a noun, the sentence is prefixed
with the word for to ensure the correct tagging of
partial sentences, such as “Displaying data from another
source”.

We manually created a benchmark using 376 sen-
tences from the Django documentation to intrinsically
evaluate the accuracy of the preprocessing steps (see
Section 5.1).

For each sentence identified by the NLP toolkit, the
tokens and the grammatical dependencies between
tokens are stored for the following steps. In addition,
files that are unlikely to contain development tasks
or relevant concepts can be explicitly excluded from
the analysis. In our case we excluded automatically-
generated indexes, release notes, and download in-
structions.

3.2 Task Extraction
We define a task in software documentation as a
specific programming action that has been described
in the documentation. Given that the central intuition
underlying our approach is to use grammatical clues
to detect tasks in free-form text, we needed to recover
the relationships between verbs, objects, prepositions,
and prepositional objects. Using part-of-speech tag-
ging would not be sufficient for determining these

3. The list of regular expressions is available in our on-line
appendix at http://cs.mcgill.ca/∼swevo/tasknavigator/.

4. In Django, the term “slug” refers to a short label for something,
generally used in URLs.

links because part-of-speech tags (e.g., verb) do not
indicate how words are related to each other. Using
the order of words as indicator is also insufficient as
the order can be reversed, e.g., both “add widget” and
“widget is added” refer to the same task. To discover
relationships between words, we make use of the
grammatical dependencies that are detected by the
Stanford NLP parser. These dependencies provide
a representation of grammatical relations between
words in a sentence [32].

Much experimentation was required to align gram-
matical dependencies identified through an NLP
parser with software development tasks. This is a
challenging problem because tasks can be described
in software documentation in a multitude of ways.
For example, the simple task of adding a widget to a
page can be described as “add widget”, “adding widget”,
“widget is added”, “widget that is added”, or “widget
added”, to name a few. In addition, context might be
important, e.g., whether the widget is being added
to a page, a sidebar, or whether the documentation
instructs the user to “not add widget”. Furthermore,
the widget might be specified using additional words,
such as “clock widget” or “custom widget”. A task
extraction engine for software documentation must
account for all these subtleties. The rest of this sec-
tion describes the extraction technique, and how it
addresses some of the main text interpretation chal-
lenges we faced.

Dependency Extraction. A grammatical depen-
dency is simply a relation between one word of the
text and another. A trivial example is “add widget”,
where the noun “widget” is related to the verb “add”
because widget is the object being added. After ana-
lyzing our development corpora and conducting some
exploratory experimentation, we identified nine types
of grammatical dependencies that could be useful
for (software development) task extraction. Table 3
explains these dependencies following the definitions
of de Marneffe and Manning [32]. Table 4 shows
examples for these dependencies from the Satchmo
corpus. Most of the dependencies relate a verb to
other tokens, following our assumption that verbs are
critical anchors for detecting the mention of tasks.
The first step of our technique is to extract these
dependencies from the text, in each case recording the
verb and its dependents.

Task Identification. We consider each verb involved
in a dependency with an object or with a prepositional
phrase (or both) as a candidate for a task. In this step,
we also account for tasks that are intertwined. For
example, consider the sentence “This can be used to
generate a receipt or some other confirmation”. In addition
to “generate receipt”, it contains the task “generate other
confirmation” as indicated by the conjunction “or”.
To address this case, we add additional tasks for all
conjunctions (and and or) that exist for verbs, direct
objects, and prepositions.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://cs.mcgill.ca/~swevo/tasknavigator/


SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

TABLE 3
Grammatical dependencies used in this work, descriptions taken from de Marneffe and Manning [32]

dependency description
direct object (dobj) The noun phrase which is the (accusative) object of the verb.
prepositional modifier (prep) Any prepositional phrase that serves to modify the meaning of the verb,

adjective, noun, or even another preposition.
agent (agent) The complement of a passive verb which is introduced by the preposition

“by” and does the action.
passive nominal subject (nsubjpass) A noun phrase which is the syntactic subject of a passive clause.
relative clause modifier (rcmod) A relative clause modifying the noun phrase.
negation modifier (neg) The relation between a negation word and the word it modifies.
phrasal verb particle (prt) Identifies a phrasal verb, and holds between the verb and its particle.
noun compound modifier (nn) Any noun that serves to modify the head noun.
adjectival modifier (amod) Any adjectival phrase that serves to modify the meaning of the noun phrase.

TABLE 4
Examples of grammatical dependencies considered during task extraction

dependency sentence matched words tasks
dobj This can be used to generate a generate, receipt generate receipt

receipt or some other confirmation. generate other confirmation
nsubjpass The thumbnail size is set set, size set thumbnail size in templates

in your templates.
rcmod It allows you to set one rate that multiplied, rate multiply rate

is multiplied by the number of set rate
items in your order.

prep There are a couple of different ways integrate, checkout integrate with Google Checkout
to integrate with Google Checkout.

Context Resolution. To capture specific tasks such
as “add widget to page” instead of “add widget”, we keep
prepositions and prepositional objects that belong to
each verb or direct object. For example, the phrase “set
thumbnail size” in the sentence “The thumbnail size is
set in your templates” is connected to the prepositional
object “templates” via the preposition “in”. If a given
verb or direct object is connected to more than one
prepositional object, we create a separate task for each
prepositional object. Our approach does not account
for tasks that span multiple sentences, but we present
a workaround to this shortcoming, adjacent noun
phrases, in Section 4.2.

Task Refinement. Because grammatical dependen-
cies only exist between individual words, further
dependencies have to be analyzed for each part of
a task to make tasks as specific as possible. For
example, in the sentence “The thumbnail size is set in
your templates”, the passive nominal subject dependency
only connects the words “set” and “size” and thus
results in the arguably unspecific task “set size in
templates”. To make tasks as specific as possible given
the information included in the documentation, all
noun compound modifier and adjectival modifier depen-
dencies are followed for each direct object and for
each prepositional object. In the example, the noun
compound modifier adds the word “thumbnail” to the
direct object “size”. Similarly, in the sentence “This can
be used to generate a receipt or some other confirmation”,
the adjectival modifier adds the word “other” to the di-
rect object “confirmation” (see Table 3 for definitions of
these dependencies). Two dependencies are followed
for each verb: negation modifier and phrasal verb particle.
The former is used to add negation words, such as

“not”, to a verb, the latter adds related particles, such
as the word “in” in “log in”.

Task Filtering. To ensure that general verbs such
as “contain” are not used to define a task, all tasks
for which the verb is not a programming action
are excluded. We have handcrafted a list of about
200 programming actions based on the Xprima and
Satchmo corpora.5 Even though this list has only
been tested on three corpora so far, we believe that
it is generalizable to other projects as it contains
very few domain specific verbs and consists mostly
of generic programming actions, such as “access”,
“acquire”, “activate”, “add”, and “adjust”. This list was
developed based on the two development corpora
used in this work. A similar but much smaller list
is used to exclude tasks for which the direct object is
too generic.5 This filter is intended to remove tasks
such as “add that”, “remove it”, or “modify this”. The
list does not contain any domain-specific terms.

Task Normalization. In the final step, we generate a
normalized representation of the task. This represen-
tation contains the base form of the verb followed by
the direct object (if there is one) and the prepositional
phrase (if there is one). Verbs without direct objects
and prepositional phrases are not considered as tasks.
Note that in some cases, the order of words in the
normalized task description is different from the one
observed in the original source, as shown by the
sentence “The thumbnail size is set in your templates”:
the sequence “thumbnail size is set” is changed into
“set thumbnail size”.

5. See http://cs.mcgill.ca/∼swevo/tasknavigator/.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://cs.mcgill.ca/~swevo/tasknavigator/


SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

3.3 Concepts
As a baseline for assessing the usefulness of devel-
opment tasks for navigating software documentation,
we extract concepts from a documentation corpus by
following the approach for identifying collocations de-
scribed by Manning and Schütze [29, Chapter 5]. We
explain the details in this section for reproducibility,
but we do not claim concept extraction as a contribu-
tion. Collocations are detected by finding sequences
of words that co-occur more often than they would
be expected to by chance. First, all sequences of two
or three words (bigrams or trigrams) are identified,
making sure that they do not cross sentence bound-
aries. To filter out meaningless collocations, such as
“of the”, part-of-speech filters are used, as suggested
by Juesteson and Katz [25]. Using these filters, only
bigrams and trigrams that follow a given part-of-
speech pattern, such as adjective followed by noun, are
considered. Table 5 shows all part-of-speech patterns
we used along with an example from the Satchmo
corpus for each pattern. Because none of the patterns
contain a verb, our implementations ensure that there
is no overlap between tasks and concepts extracted us-
ing our approach. Concepts contain at least one noun
and optionally adjectives and prepositions, whereas
tasks are verbs associated with a direct object and/or
a prepositional phrase.

Collocations are then filtered using Pearson’s chi-
square test. The test compares the observed frequen-
cies to the expected frequencies for the distributions
of each word and its co-occurrences in a bigram or
trigram. For example, for the bigram “custom prod-
uct”, the observed and expected frequencies for the
following four situations are compared: “custom” fol-
lowed by “product”, “custom” followed by something
other than “product”, “product” preceded by some-
thing other than “custom”, and bigrams that start with
a word other than “custom” and end in a word other
than “product”. We only kept as concepts collocations
with χ2 ≥ 10 to ensure that all collocations were
statistically significant at p < .05 for bigrams. In
addition, we discarded collocations where any of the
observed values is below 4 to satisfy the expected
cell count of Pearson’s chi-square test [38].6 Table 5
shows the χ2-value and the p-value for two of the
bigrams from the Satchmo corpus. We did not find
any trigrams that were statistically significant.

3.4 Code Elements
In addition to concepts, we extract code elements from
documentation. Given the preprocessing steps (Sec-
tion 3.1), the extraction of code elements is straightfor-
ward. We consider as code elements all text explicitly
tagged as code in the original HTML documents

6. The expected cell count for Pearson’s chi-square test is usually
set to five, but we found through experimenting with our develop-
ment corpora that a threshold of four gave better results.

TABLE 5
Part-of-speech patterns used for concepts

pattern example
adjective noun custom product

(χ2 = 77.98, p < .0001)
noun noun product type

(χ2 = 95.04, p < .0001)
adjective adjective noun new unique key
adjective noun noun new configuration section
noun adjective noun payment specific display
noun noun noun store mailing address
noun preposition noun number of items

TABLE 6
Example of an index entry

key value
category task
element add payment terms to non-membership

product
sentence A subscription product is a product type

that can be used to manage recurring
billing memberships or to add payment
terms to a non-membership product.

title Subscription Product
link product.html
synonyms –
adjacent non-membership product, product type,

recurring billing memberships,
subscription product

and all content identified through regular expressions.
However, domain terms that were masked as nouns
during the preprocessing phase are not considered
as code elements. As an example, Table 1 shows all
tasks, concepts, and code elements that our approach
extracts from the two paragraphs of text shown in
Figure 1.

4 SEARCH INTERFACE

We built an auto-complete user interface, called
TASKNAVIGATOR, that surfaces the extracted tasks,
concepts, and code elements to help developers nav-
igate documentation. TASKNAVIGATOR suggests the
extracted documentation elements and the section
headers from the original documentation and asso-
ciates them with documents, sections, and paragraphs
of the documentation.

4.1 Index Entries

TASKNAVIGATOR uses as input a set of index entries,
where each index entry is an instance of a documen-
tation element (a task, a concept, a code element, or
a section title). Each index entry contains meta data
to indicate its category (e.g., task), the sentence where
the instance was found, the title of the corresponding
section, and a link to the corresponding document.

In addition, it is possible to define sets of syn-
onyms. For the evaluation of TASKNAVIGATOR, 17
such synonym sets were handcrafted by professional

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

software developers working for Xprima, the com-
pany where part of the evaluation was conducted.
Twelve of the synonyms sets were not domain-specific
and contained groupings such as (“remove”, “delete”),
(“insert”, “add”), and (“parameter”, “param”). We plan
to integrate automatically-constructed synonym sets
specific to software development, such as the work
by Howard et al. [24] and Tian et al. [52], in future
work.

Table 6 shows an example of an index entry based
on the first paragraph of the documentation section
shown in the motivating example (cf. Figure 1).

4.2 Adjacent Noun Phrases
The extraction of documentation elements described
in Section 3 works on a sentence-by-sentence basis,
so the approach can only index information that is
contained in a single sentence. Consider the query
“activate rebilling for subscription product”, intended to
locate the documentation shown in Figure 1. This
query would not match any index entry because the
task “activate rebilling” is not mentioned in the same
sentence as “subscription product”. To mitigate this
problem, we automatically detect all noun phrases
in a paragraph (using the Stanford NLP toolkit), and
associate them as adjacent noun phrases with all index
entries generated from the same paragraph. This fea-
ture supports queries that span sentence boundaries.
The following section shows an example for the use
of adjacent noun phrases.

4.3 Search Process
Figure 2 shows four screenshots outlining the search
process enabled by TASKNAVIGATOR. When the user
starts typing, an auto-complete list opens and shows
documentation elements that contain all words that
have been typed so far. The words do not have to ap-
pear in the order in which they have been typed, and
synonyms are considered. As shown in Figure 2–1, the
suggestions are grouped by tasks, concepts, code el-
ements, and titles.7 Within each category, suggestions
are ordered alphabetically. If the user selects an entry
from the list, all related adjacent noun phrases are
shown to support query refinement (see Figure 2–2).

Once the user runs the search query, results are
displayed on the left side of the screen (Figure 2–3).
For each result, the title of the corresponding section
is displayed as a link, the sentence that matched the
query is displayed underneath the title, and the link
is shown in a smaller font. If there is more than one
result, they are displayed in the same order as they
appear in the original source. In addition, a see-also
section is displayed which contains all section headers
from the documentation corpus for which the words
in the header are a subset of the words in the query.

7. Titles are not shown in the screenshot.

TABLE 7
Causes for tasks missed by the approach

issue freq.
verb at beginning of sentence tagged incorrectly 8
verb tagged as noun: “use” (3), “display” (2) 5
adjective tagged as verb: “ordering” (2) 2
dependencies not resolved correctly 2
noun tagged as numeral: “404” 1
parsing error 1
sum 19

For example, the screenshot in Figure 2–3 shows the
section on “Product” in the see-also section because the
query “add payment terms to non-membership product”
contains the word “product”.

When the user selects a result by clicking on the
link, the corresponding document is opened on the
right side of the screen (see Figure 2–4). The para-
graph that matched the query is highlighted, and the
document is automatically scrolled to that paragraph.

5 ACCURACY OF THE ALGORITHMS

Because real-world documentation is messy and full
of surprises, and because NLP involves a certain
amount of approximation, we conducted a separate
evaluation of the accuracy of the preprocessing steps
and the task extraction algorithm using a benchmark
of sentences and their corresponding tasks. In addi-
tion, we compared the relevance of the task-based
auto-complete suggestions to the relevance of auto-
complete suggestions derived from an n-gram base-
line.

5.1 Accuracy of the Task Extraction
To evaluate the accuracy of the task extraction algo-
rithm, we randomly selected 376 sentences out of a
total of 17,448 sentences from the evaluation corpus,
the documentation of Django. The first author man-
ually annotated each sentence with the tasks that we
expected to be extracted based on our theoretical def-
inition of the task extraction process. The annotation
resulted in a total of 255 tasks for the 376 sentences.
Most sentences (57.4%) did not describe any task,
while some sentences contained as many as five tasks.

For 90.7% of the sentences (95% CI [.878, .936]), the
tasks that the approach extracted matched the tasks
in the benchmark. For the remaining 35 sentences,
some of the tasks were missing (19 tasks) or wrong
(26 tasks). However, even for those 35 sentences, the
majority of tasks that the approach extracted (38 out
of 64, i.e., 59%) were still correct.

Table 7 shows the causes for the 19 tasks that the
approach missed. Despite the preprocessing steps,
in some cases, the NLP toolkit still was not able
to resolve sentences correctly if they started with a
verb. The verbs “use” and “display” were occasion-
ally tagged as nouns, and the adjective “ordering” in

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Fig. 2. Screenshots of the interface. (1) Auto-complete, (2) query refinement, (3) results, (4) one result

TABLE 8
Causes for tasks incorrectly extracted

issue freq.
dependencies not resolved correctly 20
adjective tagged as verb: 4

“ordering” (2), “loading”, “rendering”
verb at beginning of sentence tagged incorrectly 1
parsing error 1
sum 26

“ordering constraints” was tagged as a verb, which
resulted in the incorrect task “order constraints”. In a
few other cases, a complex sentence structure resulted
in an incorrect resolution. In addition, “404” was not
resolved as a noun, and we encountered one parsing
error.

Table 8 lists the causes for the 26 tasks that were
extracted incorrectly. In most cases, grammatical de-
pendencies were resolved incorrectly due to complex
sentence structures. Four times, an adjective was in-
correctly identified as a verb. For example, the phrase
“loading and rendering system” produced the tasks “load
system” and “render system”.

The comparison with the benchmark showed that
the algorithm works correctly for more than 90%
of the sentences in the benchmark. In addition, out
of the 262 automatically extracted tasks, fewer than
10% were wrong and fewer than 7.5% of tasks were
missed.

5.2 Relevance of Auto-Complete Suggestions

To evaluate the relevance of TASKNAVIGATOR’s auto-
complete suggestions, we compared its suggestions
to the suggestions produced by various n-gram based

baselines in terms of precision, recall, and the number
of suggestions generated.

We created a list of 33 software development tasks
relevant to the Xprima corpus by selecting all tasks
documented in a file called “Common Tasks for Inte-
grators”. This file was intended to be the main entry
point to the documentation and linked to many other
files in the documentation. At the time of our study, it
contained 36 sections, each describing a common task
encountered by the company’s HTML integrators.8

We only considered tasks explicitly mentioned in the
section headings, discounting three sections because
their title did not describe a task (e.g., “Common
Variables”). For the remaining 33 tasks, we manually
created a gold set of paragraphs relevant to each
task. Nineteen out of the 33 tasks were associated
with exactly one paragraph, while other tasks were
associated with as many as four paragraphs. In total,
the Xprima corpus contained 1,565 paragraphs.

We entered each of the 33 task descriptions into
TASKNAVIGATOR and inspected the index entries that
TASKNAVIGATOR suggested in auto-complete and the
paragraphs that these index entries pointed to. Given
the gold set of paragraphs for each task, we deter-
mined the average precision and recall of the para-
graphs returned by TASKNAVIGATOR. Figure 3 shows
precision, recall, and F-measure after each typed char-
acter. For example, after typing 10 characters of a task
(such as “generate t” of the task “generate translation
files”), TASKNAVIGATOR returned paragraphs with a
precision of 0.39 and recall of 0.96 on average, which
results in an F-measure of 0.55. We decided to evaluate

8. HTML integrators are programmers who use HTML template
tools and stylesheets to create web sites.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of letters typed

P
re

ci
si

on
, R

ec
al

l, 
an

d 
F

−
m

ea
su

re

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

precision

recall

f−measure

Fig. 3. Precision, recall, and F-measure after each
typed character

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of letters typed

F
−

m
ea

su
re

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

tasks

bigrams

trigrams

4grams

5grams

6grams

7grams

8grams

9grams

Fig. 4. F-measure for task-based index entries and the
various n-gram baselines

precision and recall after each typed character instead
of after each typed word because TASKNAVIGATOR
was designed to give feedback after typing only three
characters instead of an entire initial query, a char-
acteristic which differentiates TASKNAVIGATOR from
related work on query expansion [20], [22], [24], [47],
[58].

To put these results in context, we created a number
of baselines consisting of n-gram based index entries.
For all n between two and nine, we indexed each
paragraph in the corpus using all the n-grams it
contained. For example, for n = 3, all paragraphs
were indexed using all trigrams they contained. N-
grams were not created across sentence boundaries,
and one index entry was created for each sentence that

contained fewer than n words. During the search, we
used the n-grams as potential task descriptions and
searched within them the same way we search in our
task-based index entries.

Figure 4 shows the F-measure for task-based in-
dex entries and the various n-gram baselines. The F-
measure for bigrams never exceeds 0.27, and the F-
measure for trigrams never exceeds 0.69. For 4-grams,
the best value for the F-measure is 0.78 after 13 typed
characters. This is particularly noteworthy because the
average length of a development task description in
TASKNAVIGATOR for the Xprima corpus is shorter
than a 4-gram: 3.71 words. However, as Figure 4
shows, even longer n-grams are not able to achieve
the same F-measure as task-based index entries. For
long n-grams, the values for precision suffer because
longer index entries account for more false positives.
For example, the query “use css classes” will match the
irrelevant 9-gram “css classes as necessary in the HTML
and use” from the sentence “Add as many css classes as
necessary in the HTML and use the classes to style the
page”. For the same sentence, there is no 8-gram that
includes all of the words from the query.

In addition to the better performance of task-based
index entries for complete queries, it is important to
note that task-based index entries outperform n-gram
based index entries after a few typed characters. For
example, after eight typed characters, the F-measure
for task-based entries is 0.31, and the F-measure for
8-grams (the best performing n-grams) is 0.22. This
difference is largely explained by precision: While
task-based index entries result in 52 true positives
and 225 false positives after eight typed characters
(about one relevant suggestion in every five auto-
complete suggestions), 8-gram based index entries
result in 50 true positives and 360 false positives
(about one relevant suggestion in every eight auto-
complete suggestions).

For auto-complete suggestions to be useful, the
number of suggestions presented by a tool is also im-
portant. While longer n-grams outperformed shorter
n-grams in terms of F-measure, longer n-grams make
for much longer lists of auto-complete suggestions, as
shown in Figure 5. After typing three characters, the
task-based index entries produced 96 suggestions on
average, while bigrams lead to 185 suggestions, and
8-grams resulted in 347 suggestions. After five char-
acters, the task-based index produced 32 suggestions,
bigrams lead to 45 suggestions, and 8-grams resulted
in 136 suggestions.9

For n-gram based index entries, we observed a
tradeoff between relevance and number of sugges-
tions: while longer n-grams perform better in terms
of their F-measure, they produce many suggestions
with low readability which might be impossible for

9. In TASKNAVIGATOR, the list of auto-complete suggestions
is truncated to show at most ten suggestions per category, and
suggestions are displayed in alphabetical order (see Figure 2).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

0
50

10
0

15
0

20
0

25
0

30
0

35
0

number of letters typed

E
nt

rie
s 

in
 a

ut
o−

co
m

pl
et

e

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

tasks

bigrams

trigrams

4grams

5grams

6grams

7grams

8grams

9grams

Fig. 5. Number of auto-complete suggestions for task-
based index entries and the various n-gram baselines

a developer to parse (e.g., the 9-gram “contain the
name of the template used to display”). Task-based index
entries outperformed our baselines both in terms of
relevance and number of auto-complete suggestions.

6 EVALUATION

To evaluate whether the extracted tasks are meaning-
ful to software developers, we asked ten professional
software developers from two projects to annotate a
sample of tasks, and we found that more than 70% of
the extracted tasks were meaningful to at least one of
the two developers rating them. We asked the same
developers to also rate a sample of extracted con-
cepts, with similar results. We then conducted a field
study in which six professional software developers
at Xprima used TASKNAVIGATOR for two weeks.

6.1 Extracted Tasks and Concepts
To evaluate the extracted tasks and concepts, we
asked eight Xprima and two Django developers to
annotate a sample of tasks and concepts that we had
automatically extracted from the respective documen-
tation corpora. As discussed in Sections 3.2 and 3.3,
concepts are collocations with at least one noun and
optionally adjectives and prepositions, whereas tasks
are verbs associated with a direct object and/or a
prepositional phrase.

Methodology
For Xprima, eight individuals participated in the eval-
uation: P1–P4 work as HTML integrators for Xprima,
P5–P8 are developers. In terms of seniority, P1, P5,
P7, and P8 are considered senior by Xprima (more
than four months at the company) and the remaining
participants are considered junior. The documentation

in the Xprima corpus was developed by five indi-
viduals, including P5 and P8, but none of the other
participants. We created a random sample of 196 tasks
out of a total of 1,053 tasks that were extracted by the
approach. The tasks in the sample were divided up
among eight developers, and just over half of the tasks
given to one participant (17 out of 33) overlapped with
the tasks given to one other participant, allowing us
to determine inter-rater agreement while maximizing
representativeness. We asked each developer to an-
swer the following question for the sampled tasks:
“Does this represent a task (or a subtask) for HTML
integrators or developers working on [project]?”

In addition, we created a random sample of 100
concepts out of a total of 131 concepts extracted by
the approach. We asked the same eight developers to
also answer the following question for the sampled
concepts: “Does this represent a meaningful concept for
HTML integrators or developers working on [project]?”
Again, just over half of the concepts given to each
participant (9 out of 17) overlapped with the concepts
given to one other participant to determine inter-rater
agreement.

Similarly, for Django, we randomly sampled 36
tasks out of a total of 1,209 extracted tasks and 36
concepts out of a total of 648 extracted concepts. We
recruited two Django users through an advertisement
on the django-users mailing list,10 and we asked
each one to answer the following question for 25 of
the sampled tasks: “Does this represent a task (or a
subtask) for someone working with Django?” For 13 of
the sampled tasks, both participants were asked to
annotate them. Each participant was also given the
following question for 25 concepts, 13 of which over-
lapped between both participants: “Does this represent
a meaningful concept for someone working with Django?”

The sample sizes were chosen so that each partici-
pant would have to evaluate 50 items in total (tasks
and concepts), that at least half the items evaluated by
each participant would overlap with the items of one
other participant, and that the 95% confidence interval
for conclusions about tasks and concepts would be
identical. We indicate all confidence intervals in the
next section as part of the results.

Results
Table 9 presents the results of the evaluation of ex-
tracted tasks and concepts for the Xprima corpus. For
each of the eight participants, the table shows how
often they answered “yes” or “no” to the question
given for each of the 33 tasks and 17 concepts. Out of
a total of 264 ratings for tasks, 133 (50%) were positive
and 131 (50%) were negative. However, out of the
68 tasks that were rated by two participants, 48 or
71% (95% CI [.60, .81]) received at least one positive
response. For those tasks, the proportion of agreement

10. http://groups.google.com/group/django-users/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://groups.google.com/group/django-users/


SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

TABLE 9
Evaluation of Xprima tasks and concepts

task concept
“yes” “no” “yes” “no”

P1 15 18 8 9
P2 29 4 11 6
P3 10 23 9 8
P4 19 14 10 7
P5 16 17 15 2
P6 17 16 13 4
P7 9 24 12 5
P8 18 15 12 5
sum 133 131 90 46
(in %) (50%) (50%) (66%) (34%)

TABLE 10
Evaluation of Django tasks and concepts

task concept
“yes” “no” “yes” “no”

D1 4 21 13 12
D2 18 7 18 7
sum 22 28 31 19
(in %) (44%) (56%) (62%) (38%)

between both raters was 47–71% (depending on which
pair of raters is considered, median 59%).11

Out of a total of 136 ratings for concepts, 90 (66%)
were positive and 46 (34%) were negative. Out of the
36 concepts that were rated by two participants, 28 or
78% (95% CI [.66, .89]) received at least one positive
response. The proportion of agreement between raters
was 56–100% (median 67%). The difference in ratings
between tasks and concepts is statistically significant
(Pearson’s chi-square test, p-value < .05).

The results for Django were similar and are shown
in Table 10. While 56% of the ratings for tasks were
negative, out of the 13 tasks that were annotated
by two participants, 11 (85%) received at least one
positive vote (proportion of agreement: 23%). For
concepts, 62% of the ratings were positive, and out
of the 13 concepts annotated by both participants, 10
(77%) received at least one positive rating (proportion
of agreement: 54%). The difference in ratings between
tasks and concepts is not statistically significant (Pear-
son’s chi-square test, p-value > .05).

These results show that the agreement between
developers about what is a relevant task or a relevant
concept for a software project is low. We conducted
a more thorough investigation of the agreements and
disagreements that our participants had about tasks
and concepts. Table 11 shows the number of agree-
ments and disagreements for each participant pair for
tasks, and Table 12 for concepts.

Our first assumption was that the number of dis-
agreements could be related to the role of the par-
ticipant since some participants at Xprima work as
HTML integrators while other work as developers.

11. We do not report Cohen’s kappa as kappa calculations are
limited by the size of the data set. Here, the p-value for the kappa
calculation is > .05 for all but one pair of raters.

TABLE 11
Number of agreements and disagreements regarding

the meaningfulness of tasks
participants 2 yes yes/no 2 no
P1, P2 8 6 3
P3, P4 4 8 5
P5, P7 3 9 5
P6, P8 5 5 7
D1, D2 1 10 2
sum 21 38 22
(in %) (26%) (47%) (27%)

TABLE 12
Number of agreements and disagreements regarding

the meaningfulness of concepts
participants 2 yes yes/no 2 no
P1, P2 2 3 4
P3, P4 4 3 2
P5, P7 7 0 2
P6, P8 5 4 0
D1, D2 4 6 3
sum 22 16 11
(in %) (45%) (33%) (22%)

However, as Table 11 shows, there are as many dis-
agreements (14) between HTML integrators (P1–P4) as
there are between developers (P5–P8). The numbers
for concepts—six disagreements between HTML inte-
grators and four disagreements between developers—
also do not suggest a strong influence of participants’
roles. Similarly, seniority does not appear to have an
effect. In fact, the pairs with slightly more agreement
regarding tasks were mixed pairs with one junior
participant and one senior participant (P1 and P2, P6
and P8). The data on concepts suggests that seniority
could possibly have a positive influence on agreement
as the only pair of participants with perfect agreement
was a pair of senior developers (P5 and P7).

Next, we investigated specifically for tasks whether
the length and nature of the task had an influence
on the number of agreements and disagreements be-
tween participants. For Xprima, tasks with agreement
between participants contained 3.70 words on average
(2.67 words for Django), and tasks without agree-
ment contained 4.04 words on average (3.80 words
for Django). While this might suggest that shorter
tasks are easier to agree on, the differences are not
statistically significant (Wilcoxon-Mann-Whitney test,
p-value > .05).

To explore this further, we analyzed the gram-
matical structure of the tasks with agreement and
disagreement, respectively. Table 13 shows the results
partitioned by tasks with verbs and direct objects (e.g.,
“add widget”), tasks with verbs, direct objects, and
prepositional objects (e.g., “add widget to page”), and
tasks with verbs and prepositional objects (e.g., “add to
page”). At least the data for Xprima seems to suggest
that tasks without prepositions, i.e., tasks that are less
specific, are harder to agree on.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

TABLE 13
Agreements (=) and disagreements (6=) about

meaningfulness of tasks by grammatical structure
grammatical structure Xprima Django

= 6= = 6=
verb, direct obj. 11 13 3 3
verb, direct obj., prep. obj. 17 11 0 5
verb, prep. obj. 12 4 0 2
sum 40 28 3 10
(in %) (59%) (41%) (23%) (77%)

Finally, we conducted a qualitative inspection of
all 38 tasks and 16 concepts with disagreements in
our data, grouping the data by possible reasons for
disagreement. For tasks, we found missing context to
be the most likely reason for disagreement (14 tasks).
For example, the task “convert data to string” received
a positive and a negative response from our partic-
ipants. In this case, a developer who knows what
specific data the task is referring to might consider
it meaningful, while a developer who does not know
the context of the task might deem it not meaningful.
Nine tasks that our participants disagreed on con-
tained code elements. In those cases, the meaning-
fulness of a task to a developer might depend on
their familiarity with the referred code element. For
example, the task “call mark_safe()” led to a dis-
agreement. Developers familiar with mark_safe()
might consider the task meaningful while others do
not. For six tasks, the wording of the task might have
confused developers. For example, the task “customize
behavior by customizing” was extracted by our ap-
proach and led to a disagreement. For the remaining
nine tasks, there appears to be no obvious reason why
developers would disagree on their meaningfulness.
For example, the task “display logo in usedcar listing”
is clearly relevant to the developers’ work. A possible
explanation for the disagreement here is that some
developers do not work with the usedcar listing and
therefore consider it not meaningful to them.

Similarly, we conducted a qualitative investigation
for the 16 concepts with disagreement. Three of them
contained code elements (e.g., “ModelAdmin class”)
and their disagreement might be explained by the
familiarity of developers with the particular code
element. For four concepts, the wording was possibly
unclear or missing context (e.g., “related model”). Five
concepts could be considered too general to be useful
for the work of the developers (e.g., “Python API”).
For the remaining four concepts, there was no obvious
reason for disagreement other than that they might
not be relevant to the work of all developers on a
project (e.g., “normalized string”).

These results show that it is impossible to make sure
that all tasks are relevant to all developers. Thus, we
consider elements that received at least one positive
rating to be the ones that should be suggested in auto-
complete. For tasks and concepts that were rated by

two participants, more than 70% received at least one
positive vote both for Xprima and Django.

6.2 TaskNavigator
We evaluated TASKNAVIGATOR through a field study
in which we deployed the tool at Xprima and
recorded the interactions of six developers with
TASKNAVIGATOR for two weeks. This is an end-to-
end evaluation of the approach as it evaluates the
extracted tasks, concepts, and code elements as well
as the interface that surfaces them.

Methodology
We recruited six developers (P1–P6) to use TASKNAV-
IGATOR for two weeks, one of which (P5) also par-
ticipated in a week-long pilot study. All participants
were asked to use TASKNAVIGATOR as part of their
normal ongoing work at Xprima. We instrumented
TASKNAVIGATOR to collect usage data by creating a
log message every time an auto-complete suggestion
was selected (either through a mouse click, or by
pressing the Enter key after navigating to the sugges-
tion using the arrow keys), every time a query was
submitted, and every time a search result was opened
by clicking on the corresponding link. In addition, on
every other click on a link for a search result, we asked
“Was this what you were looking for?” through a pop-up
window, giving “yes” and “no” as answer options. The
objective of the week-long pilot study was to ensure
the usability of TASKNAVIGATOR before giving the
tool to all participants. The setup for the pilot study
was identical to the setup for the field study, with
two exceptions: In the pilot study, the pop-up window
only appeared on one in every four clicks, and section
titles were not yet available as auto-complete sugges-
tions. We had initially chosen to only show the pop-up
window on one in every four clicks to not overwhelm
developers, but the pilot study participant informed
us that the pop-up window was less intrusive than
we thought and that displaying it on every other click
would not interfere with TASKNAVIGATOR’s usability,
in his opinion. Thus, we showed the pop-up window
more frequently after the pilot study. In addition,
the pilot study participant remarked that it would
be useful to also have section titles appear as auto-
complete suggestions. We added this feature for the
field study.

Results
Table 14 shows the results of the field study. For
each participant P1–P6 and the pilot study, the second
column shows the time elapsed between a partici-
pant’s first and last interaction with TASKNAVIGATOR
during the field study. The values range from 2.3
days to 13.1 days with a median of 9.1 days. The
third column shows the number of queries that each
participant entered. All participants contributed at

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

TABLE 14
For each participant (part.), the table shows the time elapsed between their first and last interaction with

TASKNAVIGATOR (hrs), the number of queries entered (q), and the number of queries for which the query terms
were derived from an auto-complete suggestion, either explicitly or implicitly, partitioned by documentation

elements. Each † represents a query containing an adjacent noun phrase. The last part of the table shows the
number of clicks on search results and how often participants deemed a result relevant.

part. hrs q explicit (implicit) from auto-complete clicks (relevant / not relevant)
total tasks conc. code titles total tasks conc. code titles

P1 193 20 12 (0) †5 (0) 0 (0) ††2 (0) 5 (0) 9 (1/2) 3 (1/0) 0 (0/0) 2 (0/1) 4 (0/1)
P2 243 19 12 (3) †8 (2) 0 (1) 4 (3) 0 (1) 17 (4/3) 6 (1/1) 0 (0/0) 8 (1/2) 3 (2/0)
P3 55 11 1 (4) 1 (3) 0 (0) 0 (2) 0 (2) 16 (4/3) 5 (2/0) 0 (0/0) 8 (2/1) 3 (0/2)
P4 307 40 9 (13) †††5 (8) 0 (3) †1 (11) 3 (6) 32 (3/11) 9 (3/1) 0 (0/0) 11 (0/6) 12 (0/4)
P5 170 12 3 (5) 0 (4) 1 (2) 2 (3) 0 (4) 5 (2/0) 1 (1/0) 1 (1/0) 3 (0/0) 0 (0/0)
P6 143 4 4 (0) 1 (0) 0 (0) 3 (0) 0 (0) 4 (1/0) 1 (0/0) 0 (0/0) 3 (1/0) 0 (0/0)
Pilot 145 24 13 (0) †††9 (0) 0 (0) †4 (0) 0 (0) 10 (2/1) 6 (2/0) 0 (0/0) 3 (0/1) 1 (0/0)
sum 130 54 (25) 29 (17) 1 (6) 16 (19) 8 (13) 93 (17/20) 31 (10/2) 1 (1/0) 38 (4/11) 23 (2/7)

least 4 queries, with 130 queries in total. The next
set of columns shows the number of queries for
which the query terms were derived from an auto-
complete suggestion, either explicitly or implicitly. We
count as explicit selections those in which the partic-
ipant either selected the auto-complete suggestion by
clicking on it or by navigating to it and selecting it
using keyboard input. Implicit selections are those for
which the participant typed a query where the exact
query terms (or a superset) were shown as an auto-
complete suggestion while the participant was typing.
The number of auto-complete suggestions shown in
the table is partitioned by documentation element:
tasks, concepts, code elements, and section titles. The
total of implicit selections from auto-complete is not
necessarily the sum of the implicit selections from the
different documentation elements because an entry in
auto-complete might appear more than once, e.g., as
code element and as section title. Each † represents
a query containing an adjacent noun phrase (see
Section 4.2).

For about half the queries (42% explicitly plus an
additional 19% implicitly), the participants selected an
entry from auto-complete for their query. The results
also show that tasks were selected from auto-complete
almost twice as often as any other documentation
element, however, this may be influenced by the fact
that tasks are always shown first in auto-complete.
We did not observe a learning effect for the developer
who also participated in the pilot study (P5).

The last part of the table shows the number of clicks
on search results along with how often the answer
to “Was this what you were looking for?” was “yes” or
“no”, respectively. A total of 93 search results were
selected during the field study, and the participants
answered whether the result was what they were
looking for in 37 cases.12 17 of the answers were
positive and 20 were negative. The results divided

12. Note that the number of answers is not necessarily half of the
total clicks as participants were able to close the browser window
before answering.

up by the different documentation elements clearly
indicate the usefulness of tasks: out of 12 answers
about clicks on task-related search results, 10 were
positive, while most answers about search results
related to code elements and section titles were nega-
tive. This difference is statistically significant (Fisher’s
exact test, p < .001). The difference between results
derived from development tasks and section titles
is particularly noteworthy: section titles are meant
to help developers navigate the documentation, yet
the corresponding results received overwhelmingly
negative feedback, while development tasks stood out
as the most useful way to navigate software documen-
tation. The results also indicate that concepts—often
used in other domains for populating auto-complete
fields [8]—were hardly considered by the participants
in the field study.

To investigate whether the clicks belonged just to
a few of the queries, we investigated the distribution
of clicks to queries. Across all participants, 60 queries
resulted in no click, 58 queries resulted in 1 click, 8
queries resulted in 2 clicks, 1 query resulted in 3 clicks,
2 queries resulted in 4 clicks, and 1 query resulted
in 8 clicks. In total, about 54% of all queries led to
at least one click, suggesting that developers found a
link worth exploring for a majority of their queries.

We also analyzed the data obtained during the field
study for common patterns among all participants.
The following three patterns suggest that TASKNAVI-
GATOR—in particular its auto-complete component—
can help developers find the information that they are
looking for.

Unsuccessful query followed by success with
auto-complete. For three participants (P1, P3, and
P5), we found instances where an unsuccessful query
without the use of an auto-complete suggestion and
without clicking on any of the search results was
followed by a successful query with an auto-complete
suggestion. P3 reworded “numéro de téléphone” into
the concept “phone number”, and the reworded query
resulted in 4 clicks on task-related search results con-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

taining the words “phone number”, for two of which
we asked whether this was what P3 was looking for.
In both cases, the answer was positive.13 P5 reworded
“promos make” into “promotion” following a suggestion
from auto-complete, and the reworded query resulted
in one click on a search result and a positive rating.
For P1, the pattern occurred 4 times (e.g., “how to
translate” was reworded into “translate menu entry”).
In all four cases, the reworded query resulted in one
click on a search result. TASKNAVIGATOR did not
ask for feedback in two of those cases, and received
one positive and one negative response in the other
two cases. This pattern helps confirm that our im-
plementation of auto-complete suggestions can help
developers close the vocabulary gap [33] between
their information needs and the information available
in the documentation.

Repeated query with auto-complete suggestion.
Three participants (P2, P4, and P5) used the auto-
complete function for cognitive support by repeating
a query selected from auto-complete on different days.
Re-finding is common in web search engines [55], and
in the case of TASKNAVIGATOR, it can help developers
remember what to search for without the use of
bookmarks or other explicit records.

Irrelevant links found when not using auto-
complete. The 20 negative votes belonged to 15 differ-
ent queries. One of these queries resulted in two neg-
ative responses, and in two cases, one query resulted
in three negative votes for different search results. In
the case of P3, after selecting three different search
results for the query “widget params” and answering
“no”, the last click for the same query resulted in
a positive answer.14 In those cases, TASKNAVIGATOR
could possibly be improved by providing more meta
data or explanations about each search result. In the
case of P4, the topic of the unsuccessful query with
three negative votes—“ie8 forms”—was simply not
discussed in the documentation. For eight of the 15
search queries that ultimately resulted in negative
votes, the query terms did not originate from an auto-
complete suggestion. In seven of these eight cases,
the query terms do not appear in the documentation
corpus and the links that the participants selected
originated from TASKNAVIGATOR’s see-also section
(see Section 4.3). In cases where the query terms
were selected from an auto-complete suggestion, the
majority of suggestions selected (four out of seven)
were based on code elements. Task-based queries only
led to negative responses twice. Another interesting

13. Note that the entire documentation corpus was written in
English, but French was the first language of all study participants.
This might explain why P3 attempted a search query in French.

14. There was the only one more instance in our data in which a
participant indicated both positive and negative feedback for links
originating from the same query: P4’s query for “create as many
variables possible” with the adjacent noun phrase “!important declara-
tion” resulted in one positive answer and one negative answer for
different links.

observation is that in the majority of cases (nine out of
15), the participants kept exploring other result links
for the same query even after giving a negative vote.
We conclude that the negative votes do not necessarily
invalidate a specific instance of task-based navigation.
Most negative votes were not related to tasks, but
merely point at areas where the tooling could be
improved further when search terms do not match
any index entries. In future work, we also plan to
improve our treatment of code search based on work
by Bajracharya et al. [5].

6.3 Threats to Validity

The ordering of items in the auto-complete sugges-
tions (tasks, concepts, code elements, titles) may have
influenced what suggestions were selected. We did
not attempt to randomize the order because this
would have impacted the usability of TASKNAVIGA-
TOR too much. We mitigated this threat by limiting the
number of suggestions to be displayed per category
to 10. While our results indicate that code elements
and titles (both ranked lower than tasks) were selected
from auto-complete several times (16 code elements,
8 titles), they were not selected as often as tasks (29).
However, we do not draw any conclusions about
how often different items were selected from auto-
complete. Our main source of evidence, judgement
about the usefulness of a result, is independent from
the ranking of suggestions.

We define concepts as collocations, following the
work of Manning and Schütze [29]. It is possible that
another definition of concepts would have yielded
better results for concepts in TASKNAVIGATOR. How-
ever, n-grams—the basis for collocations—are widely
used for the detection of concepts, in particular in
related work on auto-complete interfaces for web
search engines [8], and we only used concepts as a
baseline to assess the usefulness of development tasks.

The number of professional software developers
who participated in the evaluation of tasks and con-
cepts extracted from the Django documentation was
low. However, the results were similar to the ones
we received for Xprima, and they confirmed that the
agreement between developers as to what is a mean-
ingful task or concept is low. For an auto-complete
interface such as TASKNAVIGATOR, recall is more
important than finding tasks and concepts that all
developers agree on. It is also natural for developers
with different roles and levels of seniority to disagree
on what tasks and concepts are meaningful to them.

7 RELATED WORK

TASKNAVIGATOR contributes to the large body of
work on information extraction from software arti-
facts and feature location, but also to the area of task
extraction from natural language documents in other

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

domains. In addition, our work has benefited from
related work on adapting NLP to other domains.

Information Extraction from Software Artifacts.
Several researchers have succeeded in extracting in-
formation from software artifacts using NLP. Zhong et
al. proposed an approach for inferring specifications
from API documentation by detecting actions and
resources through machine learning. Their evaluation
showed relatively high precision, recall, and F-scores
for five software libraries, and indicated potential uses
in bug detection [59]. Abebe and Tonella presented
an NLP-based approach for the extraction of concepts
and their relations from source code. Their approach
automatically constructs an ontology, which can be
used to improve concept location tasks [1]. Following
a similar objective, Falleri et al. proposed an ap-
proach to automatically extract and organize concepts
from software identifiers in a WordNet-like structure
through tokenization, part-of-speech tagging, depen-
dency sorting, and lexical expansion [16]. Panichella
et al. developed an approach for automatically linking
paragraphs from bug tracking systems and mailing
lists to source code methods using a number of heuris-
tics, such as the presence of the words “call”, “exe-
cute”, or “invoke”, and their evaluation showed that
they were able to extract method descriptions with a
precision of about 80% [37]. Movshovitz-Attias and
Cohen used n-grams extracted from source files and
topic modeling to predict source code comments [35].

More closely related to our goal of bridging the gap
between documentation writers and users is the work
by Henß et al. [21]. They presented an approach for
automatically extracting FAQs from software mailing
lists and forums through a combination of text mining
and NLP. After applying several preprocessing heuris-
tics, they used latent Dirichlet allocation (LDA) [10]
to automatically extract topic models from the data
which are used for the creation of topic-specific FAQs.
The authors applied the approach to various projects
and conducted a survey with the most active commit-
ters of these projects. The results showed that most of
the reviewers were able to find at least 15 relevant
questions in the generated FAQ.

As software documentation is largely unstructured
data, work on extracting information from unstruc-
tured data is also related to our work. Bettenburg
et al. [7] presented a lightweight approach based on
spell checking tools to untangle natural language text
and technical artifacts, such as project-specific jar-
gon, abbreviations, source code patches, stack traces,
and identifiers. The main target of their work was
developer communication through email, chat, and
issue report comments. Bacchelli et al. [3] presented a
similar approach based on island parsing. They later
extended their work to classify email lines into five
categories: text, junk, code, patch, and stack trace [4].
In TASKNAVIGATOR, we distinguish between natural
language text and technical artifacts using a list of

handcrafted regular expressions that identify code
elements.

Feature location. Finding tasks in software doc-
umentation is also related to locating features in
source code, a challenge that has been investigated by
many researchers. In their survey on feature location,
Dit et al. divided related work into dynamic feature
location, static feature location, and textual feature
location [15]. Dynamic feature location relies on col-
lecting information from a system during runtime.
For example, software reconnaissance is an approach
where two sets of scenarios are defined such that
some scenarios activate a feature and others do not,
and execution traces are collected for all scenarios.
Features are then located by analyzing the two sets
of traces and identifying program elements that only
appear in one set [57].

An example of static feature location was given by
the topology analysis of software dependencies pro-
posed by Robillard. Given a set of program elements
of interest to a developer, his technique analyzes
structural dependencies and automatically produces a
fuzzy set with other elements of potential interest [42].
Work on feature location has also combined dynamic
and static techniques. For example, the approach in-
troduced by Antoniol and Guéhéneuc collects static
and dynamic data and uses model transformations to
compare and visualize features [2]. Other approaches
for feature location include Hipikat [56], a tool that
recommends artifacts from a project’s archive, and
PROMESIR [41], which performs feature location by
combining expert opinions from existing techniques.

Our work is most closely related to textual feature
location, the class of approaches aimed at establishing
a mapping between the textual description of a feature
and the parts of the source code where the feature is
implemented. For example, Petrenko et al.’s technique
is based on grep and ontology fragments where the
ontology fragments can be refined and expanded as
users gain more knowledge of the system [39].

Several other approaches utilized information re-
trieval techniques for textual feature location. Marcus
et al. used Latent Semantic Indexing to map concepts
expressed in natural language to the relevant parts
of the source code [31]. That approach was later
refined by Poshyvanyk and Marcus, who added For-
mal Concept Analysis to cluster the results obtained
through Latent Semantic Indexing [40]. The cogni-
tive assignment approach by Cleary and Exton also
used information retrieval for feature location, but
their solution incorporates non-source code artifacts,
such as bug reports, and can retrieve relevant source
code even if does not contain query terms by using
indirect links between source code and non-source
code artifacts [11]. Gay et al. improved information
retrieval approaches to textual feature location by
adding relevance feedback through the incorporation
of user input after each query [17].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

In addition to approaches based on information
retrieval, natural language processing has been em-
ployed for textual feature location. Similar to our
work, the approach by Shepherd et al. is based on
the notion that actions in software development can
be represented by verbs and nouns correspond to
objects. Their tool, Find-Concept, allows developers
to create queries consisting of a verb and a direct
object. Find-Concept then expands the queries us-
ing natural language processing and knowledge of
the terms used within the source code to recom-
mend new queries [46]. Our work differs from Find-
Concept in several ways: In Find-Concept, the initial
query needs to consist of a verb and a direct ob-
ject. TASKNAVIGATOR only needs three characters to
trigger auto-complete suggestions. For example, after
typing “pag”, tasks such as “add page” will already be
suggested, thus allowing developers to use the system
even if they do not know how to phrase the complete
query yet. Our task descriptions are also more pre-
cise by incorporating prepositions and prepositional
objects in addition to verbs and direct objects. Find-
Concept suggests adding different forms of a verb
(e.g., “add”, “added”) to a query, which is not necessary
in TASKNAVIGATOR since all verbs in the index entries
are normalized to their base form. Finally, the domain
is different: Find-Concept facilitates searching source
code and TASKNAVIGATOR searches documentation.
Shepherd et al. later integrated ideas from Find-
Concept, such as information retrieval based search,
natural language based search, and program analysis
based search, into Sando, an extensible code search
framework [45].

A similar tool for query expansion was described by
Hill et al. They extracted noun phrases, verb phrases,
and prepositional phrases from method and field
declarations. Based on an initial query, their approach
returns a hierarchy of phrases and associated method
signatures [22]. Query expansion was also the focus of
work by Haiduc et al. Their Refoqus tool recommends
a reformulation strategy for a given query, based on
machine learning trained with queries and relevant re-
sults [20]. Similarly, Sisman and Kak proposed a query
reformulation framework which enriches the initial
query with terms drawn from the highest-ranked
artifacts retrieved in response to the initial query [47].
Yang et al. used the context in which query words are
found to extract synonyms, antonyms, abbreviations,
and related words for inclusion in the reformulated
query [58]. Finding software based, semantically simi-
lar words was also the focus of the work by Howard et
al. Their technique mines semantically similar words
by leveraging comments and programmer conven-
tions [24]. Again, the main difference to our work
is that TASKNAVIGATOR’s auto-complete suggestions
appear after just three typed characters and help the
user complete the query rather than reformulate it.
For further work on query expansion, particularly

based on ontologies, we refer to the work by Bhogal
et al. [9].

Task Extraction. While information extraction in
other domains is often limited to detecting concepts,
our focus on tasks was motivated by previous work
on the importance of tasks in software development.
Murphy et al. studied how the structure of many
tasks crosscuts system artifacts [36] which laid the
foundation for Kersten and Murphy’s work on Mylyn,
the task-focused interface for the Eclipse IDE [27].
Mylyn is built on a mechanism that captures and
persists the elements and relations relevant to a task.

Task extraction from natural language documents
has been the object of research outside of software en-
gineering. Mizoguchi et al. presented a task ontology
which has some similarity to the way we model tasks.
Their ontology included nouns, adjectives, constraint-
related vocabulary, goals, verbs, and “constraint verbs”
which are verbs that take constraints as objects [34].
Scerri et al. presented a technology for the auto-
matic classification of email action items based on
a model that considers five linguistic, grammatical
and syntactical features. Their model is rich enough
to capture action-object tuples, such as “request data”,
“request activity”, “suggest activity”, “assign activity”, or
“deliver data” [44]. Compared to our approach, their
model does not allow for more complex tasks such as
“add widget to page”, but it is richer in terms of who
does an action and whether this action is requested,
suggested, or demanded—which is less relevant in
software documentation.

Kalia et al. went a step further to present an
approach for automatically identifying task creation,
delegation, completion, and cancellation in email and
chat conversations, based on NLP techniques and
machine learning. Similar to our work, they made
use of grammatical dependencies, and they defined
action verbs as “verbs that express an action or do-
ing something”, which is similar to our concept of
programming actions. Unfortunately, the authors did
not present how they determine what an action verb
is. They distinguished between four types of tasks:
create, delegate, discharge, and cancel [26]. Similar to
the work by Scerri et al., their task model is based on
subject, object, and action, which is not as rich as the
model we use in our approach.

NLP Domain Adaptation. An important challenge
when applying NLP techniques to software artifacts
is that these artifacts have unique characteristics not
found in other natural language text. Sridhara et
al. performed a comparative study of six state-of-the-
art, English-based semantic similarity techniques to
evaluate their effectiveness on words from software
comments and identifiers. They found the application
of similarity detection techniques to software artifacts
without any customization to be detrimental to the
performance of the techniques [48]. Gupta et al. pre-
sented a part-of-speech tagger and syntactic chun-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

ker for source code names taking into account pro-
grammers’ naming conventions, and they identified
grammatical constructions that characterize a large
number of program identifiers. Their approach led to
a significant improvement of part-of-speech tagging of
program identifiers [19]. NLP domain adaptation has
also received attention in areas other than software en-
gineering. Gimpel et al. added features that leverage
domain-specific properties of data from the popular
micro-blogging service Twitter, such as orthography,
frequently-capitalized words, and phonetic normal-
ization. Their approach achieved almost 90% accuracy
in tagging Twitter data [18]. In our work, we follow
the suggestion by Thummalapenta et al. [50] to ensure
that code terms and other domain terms are always
tagged as nouns.

8 CONCLUSION

To help bridge the gap between the information
needs of software developers and the structure of
existing documentation, we propose the idea of task-
based navigation. We investigated this idea by devis-
ing a technique to automatically extract development
tasks from software documentation, supplemented
by TASKNAVIGATOR—a tool that presents extracted
tasks in an auto-complete list that also includes
automatically-detected concepts, code elements, and
section titles found in the documentation.

Our evaluation showed that more than 70% of the
extracted tasks were meaningful to at least one of two
developers rating them. We also evaluated task-based
navigation with a field study in a corporate environ-
ment, in which six professional software developers
used the tool for two weeks as part of their ongoing
work. We found search results identified through de-
velopment tasks to be more helpful to developers than
those found through concepts, code elements, and
section titles. These results indicate that development
tasks can be extracted from software documentation
automatically, and that they can help bridge the gap
between software documentation and the information
needs of software developers.

TASKNAVIGATOR is now deployed and in oper-
ation at McGill University. Next, we plan to offer
TASKNAVIGATOR to open source projects, and we aim
to improve the precision of the task extraction. As
the approach is not dependent on a particular pro-
gramming language and requires little project-specific
customization (synonyms, some HTML parsing pa-
rameters), we expect our work to generalize beyond
web development projects.

ACKNOWLEDGMENTS

The authors would like to thank the study partici-
pants and Martin Paquette, formerly at Technologies
Xprima.com and now at Resulto, for his valuable
support. This project was supported by NSERC.

REFERENCES

[1] S. L. Abebe and P. Tonella. Natural language parsing of pro-
gram element names for concept extraction. In Proceedings of
the 18th IEEE International Conference on Program Comprehension,
pages 156–159, 2010.

[2] G. Antoniol and Y.-G. Guéhéneuc. Feature identification: A
novel approach and a case study. In Proceedings of the 21st IEEE
International Conference on Software Maintenance, pages 357–366,
2005.

[3] A. Bacchelli, A. Cleve, M. Lanza, and A. Mocci. Extracting
structured data from natural language documents with island
parsing. In Proceedings of the 26th International Conference on
Automated Software Engineering, pages 476–479, 2011.

[4] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza.
Content classification of development emails. In Proceedings of
the 34th International Conference on Software Engineering, pages
375–385, 2012.

[5] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi,
and C. Lopes. Sourcerer: A search engine for open source code
supporting structure-based search. In Companion to the 21st
Symposium on Object-oriented Programming Systems, Languages,
and Applications, pages 681–682, 2006.

[6] M. Barouni-Ebrahimi and A. A. Ghorbani. On query com-
pletion in web search engines based on query stream mining.
In Proceedings of the IEEE/WIC/ACM International Conference on
Web Intelligence, pages 317–320, 2007.

[7] N. Bettenburg, B. Adams, A. E. Hassan, and M. Smidt. A
lightweight approach to uncover technical artifacts in unstruc-
tured data. In Proceedings of the 19th International Conference on
Program Comprehension, pages 185–188, 2011.

[8] S. Bhatia, D. Majumdar, and P. Mitra. Query suggestions in
the absence of query logs. In Proceedings of the 34th ACM
SIGIR International Conference on Research and Development in
Information Retrieval, pages 795–804, 2011.

[9] J. Bhogal, A. Macfarlane, and P. Smith. A review of ontology
based query expansion. Information Processing and Management,
43(4):866–886, 2007.

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research, 3:993–1022,
2003.

[11] B. Cleary, C. Exton, J. Buckley, and M. English. An empir-
ical analysis of information retrieval based concept location
techniques in software comprehension. Empirical Software
Engineering, 14(1):93–130, 2009.

[12] A. Csomai and R. Mihalcea. Investigations in unsupervised
back-of-the-book indexing. In Proceedings of the Florida Artificial
Intelligence Research Society Conference, pages 211–216, 2007.

[13] A. Csomai and R. Mihalcea. Linguistically motivated features
for enhanced back-of-the-book indexing. In Proceedings of
the 46th Annual Meeting of the Association for Computational
Linguistics, pages 932–940, 2008.

[14] B. Dagenais and M. P. Robillard. Creating and evolving
developer documentation: Understanding the decisions of
open source contributors. In Proceedings of the 18th ACM
SIGSOFT International Symposium on the Foundations of Software
Engineering, pages 127–136, 2010.

[15] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature
location in source code: A taxonomy and survey. Journal
of Software Maintenance and Evolution: Research and Practice,
25(1):53–95, 2013.

[16] J.-R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Prince,
and M. Dao. Automatic extraction of a WordNet-like iden-
tifier network from software. In Proceedings of the 18th IEEE
International Conference on Program Comprehension, pages 4–13,
2010.

[17] G. Gay, S. Haiduc, A. Marcus, and T. Menzies. On the use of
relevance feedback in IR-based concept location. In Proceedings
of the 25th IEEE International Conference on Software Maintenance,
pages 351–360, 2009.

[18] K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills,
J. Eisenstein, M. Heilman, D. Yogatama, J. Flanigan, and
N. A. Smith. Part-of-speech tagging for Twitter: Annotation,
features, and experiments. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human
Language Technologies: short papers - Volume 2, pages 42–47,
2011.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

[19] S. Gupta, S. Malik, L. Pollock, and K. Vijay-Shanker. Part-
of-speech tagging of program identifiers for improved text-
based software engineering tools. In Proceedings of the 21st
IEEE International Conference on Program Comprehension, pages
3–12, 2013.

[20] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and
T. Menzies. Automatic query reformulations for text retrieval
in software engineering. In Proceedings of the 35th International
Conference on Software Engineering, pages 842–851, 2013.

[21] S. Henß, M. Monperrus, and M. Mezini. Semi-automatically
extracting FAQs to improve accessibility of software devel-
opment knowledge. In Proceedings of the 34th International
Conference on Software Engineering, pages 793–803, 2012.

[22] E. Hill, L. Pollock, and K. Vijay-Shanker. Automatically
capturing source code context of NL-queries for software
maintenance and reuse. In Proceedings of the 31st International
Conference on Software Engineering, pages 232–242, 2009.

[23] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In Proceedings of the 27th
International Conference on Software Engineering, pages 117–125,
2005.

[24] M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker.
Automatically mining software-based, semantically-similar
words from comment-code mappings. In Proceedings of the
10th Working Conference on Mining Software Repositories, pages
377–386, 2013.

[25] J. S. Justeson and S. M. Katz. Technical terminology: Some
linguistic properties and an algorithm for identification in text.
Natural Language Engineering, 1:9–27, 1995.

[26] A. Kalia, H. R. M. Nezhad, C. Bartolini, and M. Singh. Iden-
tifying business tasks and commitments from email and chat
conversations. Technical Report HPL-2013-4, HP Laboratories,
2013.

[27] M. Kersten and G. C. Murphy. Using task context to improve
programmer productivity. In Proceedings of the 14th ACM
SIGSOFT International Symposium on the Foundations of Software
Engineering, pages 1–11, 2006.

[28] T. C. Lethbridge, J. Singer, and A. Forward. How software
engineers use documentation: The state of the practice. IEEE
Software, 20(6):35–39, 2003.

[29] C. D. Manning and H. Schütze. Foundations of statistical natural
language processing. MIT Press, 1999.

[30] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard,
and D. McClosky. The Stanford CoreNLP natural language
processing toolkit. In Proceedings of 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstrations,
pages 55–60, 2014.

[31] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An
information retrieval approach to concept location in source
code. In Proceedings of the 11th Working Conference on Reverse
Engineering, pages 214–223, 2004.

[32] M.-C. D. Marneffe and C. Manning. Stanford typed depen-
dencies manual, 2008.

[33] P. Mika, E. Meij, and H. Zaragoza. Investigating the semantic
gap through query log analysis. In Proceedings of the 8th
International Semantic Web Conference, pages 441–455, 2009.

[34] R. Mizoguchi, J. Vanwelkenhuysen, and M. Ikeda. Task
ontology for reuse of problem solving knowledge. In Towards
Very Large Knowledge Bases: Knowledge Building & Knowledge
Sharing, pages 46–59. IOS Press, 1995.

[35] D. Movshovitz-Attias and W. W. Cohen. Natural language
models for predicting programming comments. In Proceedings
of the annual meeting of the Association for Computational Linguis-
tics, pages 35–40, 2013.

[36] G. C. Murphy, M. Kersten, M. P. Robillard, and D. Čubranić.
The emergent structure of development tasks. In Proceedings
of the 19th European Conference on Object-Oriented Programming,
pages 33–48, 2005.

[37] S. Panichella, J. Aponte, M. D. Penta, A. Marcus, and G. Can-
fora. Mining source code descriptions from developer commu-
nications. In Proceedings of the 20th IEEE International Conference
on Program Comprehension, pages 63–72, 2012.

[38] K. Pearson. On a criterion that a given system of deviations
from the probable in the case of correlated system of variables
is such that it can be reasonably supposed to have arisen from
random sampling. Philosophical Magazine, 50(5):157–175, 1900.

[39] M. Petrenko, V. Rajlich, and R. Vanciu. Partial domain
comprehension in software evolution and maintenance. In
Proceedings of the 16th IEEE International Conference on Program
Comprehension, pages 13–22, 2008.

[40] D. Poshyvanyk and A. Marcus. Combining formal concept
analysis with information retrieval for concept location in
source code. In Proceedings of the 15th IEEE International
Conference on Program Comprehension, pages 37–48, 2007.

[41] D. Poshyvanyk, A. Marcus, V. Rajlich, Y.-G. Guéhéneuc, and
G. Antoniol. Combining probabilistic ranking and latent
semantic indexing for feature identification. In Proceedings of
the 14th IEEE International Conference on Program Comprehension,
pages 137–148, 2006.

[42] M. P. Robillard. Topology analysis of software dependencies.
ACM Transactions on Software Engineering and Methodology,
17(4):18:1–18:36, 2008.

[43] M. P. Robillard and R. DeLine. A field study of API learning
obstacles. Empirical Software Engineering, 16(6):703–732, 2011.

[44] S. Scerri, G. Gossen, B. Davis, and S. Handschuh. Classifying
action items for semantic email. In Proceedings of the 7th
International Conference of Language Resources and Evaluation,
pages 3324–3330, 2010.

[45] D. Shepherd, K. Damevski, B. Ropski, and T. Fritz. Sando:
An extensible local code search framework. In Proceedings of
the 20th International Symposium on the Foundations of Software
Engineering, pages 15:1–15:2, 2012.

[46] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker.
Using natural language program analysis to locate and un-
derstand action-oriented concerns. In Proceedings of the 6th
International Conference on Aspect-oriented Software Development,
pages 212–224, 2007.

[47] B. Sisman and A. C. Kak. Assisting code search with automatic
query reformulation for bug localization. In Proceedings of the
10th Working Conference on Mining Software Repositories, pages
309–318, 2013.

[48] G. Sridhara, E. Hill, L. Pollock, and K. Vijay-Shanker. Iden-
tifying word relations in software: A comparative study of
semantic similarity tools. In Proceedings of the 16th IEEE
International Conference on Program Comprehension, pages 123–
132, 2008.

[49] T. Thimthong, T. Chintakovid, and S. Krootjohn. An empirical
study of search box and autocomplete design patterns in on-
line bookstore. In Proceedings of the Symposium on Humanities,
Science and Engineering Research, pages 1165–1170, 2012.

[50] S. Thummalapenta, S. Sinha, D. Mukherjee, and S. Chandra.
Automating test automation. Technical Report RI11014, IBM
Research Division, 2011.

[51] S. Thummalapenta and T. Xie. PARSEWeb: A programmer
assistant for reusing open source code on the web. In Proceed-
ings of the 22nd IEEE/ACM International Conference on Automated
Software Engineering, pages 204–213, 2007.

[52] Y. Tian, D. Lo, and J. Lawall. Automated construction of a
software-specific word similarity database. In Proceedings of the
Conference on Software Maintenance, Reengineering and Reverse
Engineering, pages 44–53, 2014.

[53] C. Treude and M.-A. Storey. Effective communication of soft-
ware development knowledge through community portals.
In Proceedings of the 8th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 91–101, 2011.

[54] C. Treude and M.-A. Storey. Work item tagging: Communi-
cating concerns in collaborative software development. IEEE
Transactions on Software Engineering, 38(1):19–34, 2012.

[55] S. K. Tyler and J. Teevan. Large scale query log analysis of re-
finding. In Proceedings of the 3rd ACM International Conference
on Web Search and Data Mining, pages 191–200, 2010.

[56] D. Čubranić and G. C. Murphy. Hipikat: Recommending
pertinent software development artifacts. In Proceedings of the
25th International Conference on Software Engineering, pages 408–
418, 2003.

[57] N. Wilde and M. C. Scully. Software reconnaissance: Mapping
program features to code. Journal of Software Maintenance,
7(1):49–62, 1995.

[58] J. Yang and L. Tan. Inferring semantically related words from
software context. In Proceedings of the 9th Working Conference
on Mining Software Repositories, pages 161–170, 2012.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



19

[59] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource
specifications from natural language API documentation. In
Proceedings of the 24th IEEE/ACM International Conference on
Automated Software Engineering, pages 307–318, 2009.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2387172

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


