
Usability of Static Application Security Testing
Workflows

Bhagya Chembakottu
School of Computer Science

McGill University
Montreal, Canada

bhagya.chembakottu@mail.mcgill.ca

Martin P. Robillard
School of Computer Science

McGill University
Montreal, Canada
robillard@acm.org

Abstract—The usability of static application security testing
tools (SASTs) can facilitate the development of secure code within
GitHub workflows. We report on our experience applying these
tools with Spring and Django web development frameworks, ana-
lyzing aspects such as setup complexity, build integration, and the
utility of the generated vulnerability reports. A key observation
is that Django projects require less effort to integrate, whereas
Spring projects involve significant setup challenges, particularly
with SonarCloud, due to build environment dependencies. Fur-
thermore, we observed usability issues such as ambiguous error
messages and inconsistent warnings. By examining setup time
and error incidence, we provide insights for improving SAST
usability and recommendations for easier installation and clearer
notifications.

Index Terms—Software Security, Static Analysis, Web App

I. INTRODUCTION

Static analysis tools have proven invaluable in identifying
vulnerabilities in web applications. According to established
software engineering practices, incorporating security aware-
ness during the initial stages of development has become a
critical priority [1]. Static analysis tools are employed as a
proactive approach to security testing by detecting potential
vulnerabilities without requiring the software to be executed,
which can speed up the vulnerability identification process [2].
Traditional static analysis tools rely on predefined rules and
advanced techniques such as query languages to analyze
source code and identify potential security risks [3]. However,
developers often encounter obstacles when setting up the tools,
interpreting notifications, and making decisions informed by
the analysis output, especially when integrating the tools into
development pipelines [4], [5].

Integrating static analysis into software engineering pro-
cesses can be challenging due to the need for configuration,
setup, and maintenance [6]. Additionally, the effort required
to understand notifications, prioritize them, and determine
appropriate remediation can distract developers and impact
their productivity and willingness to adopt these tools [7].
Recognizing these limitations, there have been initiatives to
incorporate security practices into the software development
life cycle so as to minimize developer burden and encourage
usage [8].

One such initiative is the integration of static analysis as
part of continuous integration and continuous delivery (CI/CD)

workflows, such as those offered through GitHub Actions [9].
GitHub workflows allow developers to automate processes,
including running tests, deploying code, and performing static
analysis within their repositories without manual intervention.
In recent developments, GitHub introduced code scanning
as a supported feature, thus further simplifying the process
of incorporating static analysis tools directly into the CI/CD
pipeline [10]. By using templates for code scanning workflows,
GitHub aims to reduce the efforts of developers to set up
security scans configuration.

Despite these advancements, questions remain about
whether these workflows improve the usability of static
analysis tools, particularly in web application projects with
varying languages, frameworks, and build environments. We
are currently analyzing how static application security testing
tools (SASTs) can be used along with GitHub repositories
to improve security. We deployed SASTs to identify security
vulnerabilities in two web application frameworks and docu-
mented our experience. Our analysis focused on two aspects:

a) Impact of Development Environments on Workflow
Setup: We analyzed how software dependencies impacted the
ease or difficulty of using static analysis workflows.

b) Quality of the Notifications: We evaluated how under-
standable and actionable the notifications were to determine
whether these messages help users efficiently address issues
or add unnecessary complexity.

II. BACKGROUND AND RELATED WORK

Previous work includes studies on the usability of static
analysis tools and investigations of the factors influencing
secure development practices.

Usability of Static Analysis Tools: Static code analysis tools
aim to assist users in detecting defects, enforcing standards,
and improving security. However, poor usability limits their
adoption in workflows [5], [7], [11]. Common challenges
include inadequate feedback, unclear warning messages, and
insufficient integration with developer workflows [4]. Smith et
al. identified usability gaps in popular tools, such as limited
support for managing vulnerabilities and resolving issues
effectively [7]. Nachtigall et al. highlighted issues with insuf-
ficient warning messages and lack of actionable suggestions
across 46 SASTs [11]. Piskachev et al. demonstrated that



TABLE I
SETUP TIME AND CONFIGURATION STEPS FOR CODEQL AND SONARCLOUD ACROSS FRAMEWORKS

Language/Framework CodeQL Setup Time (min) SonarCloud Setup Time (min) Average Configuration Steps

Python (Django) 15 20 5
Java (Spring) 25 35 8

Github
Repositories

Setup
Workflow

Security Vulnerability Analysis

Perform
Build

Vulnerability
Report

SAST Tools Selection

Analyze the workflow Usability

Fig. 1. Overview of wokflow setup and analysis

customizable configurations enhance vulnerability resolution,
emphasizing the need for adaptable tool settings [4]. Tahaei
et al. noted the importance of meaningful notifications in
aiding developers, although challenges persist in implementing
suggested resolutions accurately [5]. Collectively, these studies
underscore the need to prioritize usability to leverage the full
potential of static analysis tools.

Secure Software Development Practices: Nurgalieva et al.
proposed a model for privacy and security practices in software
development, identifying five influencing factors: environ-
mental, organizational, product-related, process-related, and
individual [12], [13]. Regulatory frameworks and industry
standards shape environmental factors, while organizational
culture and resources drive internal prioritization. Product-
related factors balance security as a competitive differentiator
against business needs. Process-related challenges, such as
lack of automation and evaluation metrics, hinder integration,
while individual factors highlight developers’ expertise and
attitudes. Assal et al. categorized developers into security
adopters, who integrate security across the software develop-
ment lifecycle (SDLC), and security inattentive, who delegate
these responsibilities [6]. These findings highlight gaps be-
tween best practices and real-world applications, suggesting
the need for a multi-level approach to promote pragmatic and
adaptable security practices.

III. CONTEXT

We evaluated the integration and usability of SASTs in
GitHub workflows by analyzing the setup process, build ex-
ecution, and effectiveness of generated vulnerability reports.
The objective was to identify practical challenges and usability
concerns when integrating and using SASTs.

We followed the process, illustrated in Figure 1. The
first step involved selecting SASTs based on criteria such
as popularity, GitHub compatibility, multi-language support,
and the ability to produce detailed vulnerability reports. We
chose CodeQL and SonarCloud due to their compatibility with
GitHub workflows and comprehensive programming language
support. We focused on five web applications developed using
Spring and five using Django, as these are two popular
web application frameworks leveraging different development
technologies.

In a second step, we integrated CodeQL and SonarCloud
in GitHub workflows using a consistent setup process for
the selected repositories. We standardized the configurations
for both tools, minimizing variability caused by differences
in repository structures, build environments, or dependency
configurations. This involved defining uniform workflows,
such as consistent trigger events (e.g., pull requests or pushes)
and dependency management strategies. This controlled test-
ing ensured that differences in setup or configuration across
repositories would not impact the tools’ performance or the
accuracy of the vulnerability detection. During the setup
phase, we documented the time required, steps taken, and
any issues encountered, such as compatibility or configuration
challenges. During the build phase, we applied the tools to
identify vulnerabilities, generating logs and vulnerability data
for analysis. In the reporting phase, we evaluated the usability
of vulnerability reports based on clarity, comprehensiveness,
and actionability.

In a final step we analyzed usability by evaluating the
quality of notifications provided by CodeQL and SonarCloud
during various stages of the workflow. This included assessing
the clarity, specificity, and actionability of the messages, as
well as their impact on resolving configuration errors, setup
issues, and identifying bugs in the target repositories.

IV. RESULTS

We organized our observations along two dimensions: the
impact of development environments on workflow setup and
the quality of the notifications.

A. Impact of Development Environments on Workflow Setup

Setup Time and Configuration Complexity: Table I
outlines the setup times and the number of configuration steps
required for CodeQL and SonarCloud when applied to Spring
and Django. A step refers to a configuration task that a user
needs to complete to make the tool operational. Examples of
these steps include setting up dependency resolution, adjusting
custom property files, and integrating the tool into the project
build pipeline.



For compiled languages like Java in the Spring Frame-
work, additional setup challenges arise because the tools
must analyze not only source code but also the compiled
artifacts. CodeQL requires modifications to the GitHub work-
flow, by specifying the build commands (mvn compile

or gradle build for Spring projects) to ensure CodeQL
can generate a database for analysis. Moreover, depen-
dency resolution must be configured to include all third-
party libraries. SonarCloud also requires configuring the
sonar-project.properties file with build instructions,
paths to compiled artifacts, and by setting up the appropriate
language analyzers for Java.

For Django projects, configurations are generally more
straightforward. For CodeQL, workflow changes involve en-
suring that Python dependencies are properly installed (e.g.,
pip install -r requirements.txt) and that the envi-
ronment is prepared for the application’s structure, such as
setting up paths to source files and any custom configura-
tions for the analysis. Similarly, for SonarCloud, enabling
the Python plugin is essential. Additionally, the configuration
must specify the exact paths to the source code directories
(sonar.sources) and test directories (sonar.tests). Since
Python is an interpreted language, there are no compiled arti-
facts to manage, and dependency resolution is less complex.

Impact of Build Environments: Workflows for Spring
projects required additional adjustments to handle custom
dependencies and configurations, particularly for SonarCloud.
These steps introduced variations in setup processes due to
differences in build tools and frameworks.

Dependency Management: In Spring, dependency man-
agement relies on build tools such as Maven1 and
Gradle.2 Maven requires explicitly adding plugins like
sonar-maven-plugin to pom.xml and configuring param-
eters such as sonar.projectKey, sonar.organization,
and authentication tokens. These settings can be stored in
external files like settings.xml or passed as command-
line arguments. Gradle simplifies this process by embed-
ding configurations inline within build.gradle, using the
org.sonarqube plugin. In contrast, Django uses a straight-
forward approach with requirements.txt or Pipfile for
dependencies and relies on environment variables for config-
urations, avoiding the need for build descriptors.

Build Tools and Mechanisms: Spring projects depend on
build tools for defining the build lifecycle, from depen-
dency resolution to generating artifacts. Maven’s XML-based
pom.xml files are verbose and can be complex, while Gradle’s
Groovy and Kotlin DSL in build.gradle offer flexibility
but require familiarity with their syntax. These build tools
introduce variability and complexity depending on the tool
chosen. Django, in contrast, does not require specialized
build tools. Dependency resolution is managed through a
pip install process, making the workflows simpler and
avoiding the configuration complexity.

1https://maven.apache.org/
2https://gradle.org/

Code Analysis Preparation: For Spring projects, bytecode
generation is a prerequisite for CodeQL. This involves running
specific build commands such as mvn clean install for
Maven or gradle build for Gradle to ensure that compiled
Java classes are available for analysis. This step can be time-
consuming and error-prone if the environment is not config-
ured correctly. For Django, however, bytecode generation is
optional. CodeQL and SonarCloud can directly analyze Python
source files, removing the need for intermediate steps.

Configuration Complexity: Spring projects involved more
configuration efforts. Maven requires defining dependencies
and plugins in pom.xml and sometimes settings.xml for
external settings such as authentication tokens. Gradle adds
configurations within build.gradle, but inline settings are
also complex to manage. Workflow execution in Spring typi-
cally involved configuring dependencies, generating bytecode,
and then running analysis. Django, by contrast, involved mini-
mal configuration. Most setups relied on environment variables
and single command-line invocations.

Lesson: Programming languages and frameworks influ-
enced the setup process, with Spring projects requiring more
steps and complexity than Django projects. Spring workflows
for SonarCloud involved higher configuration effort due to de-
pendency resolution and build tool variability, while Django’s
simpler dependency management and direct analysis capabili-
ties resulted in a simpler process with fewer opportunities for
introducing errors.

B. Quality of Notifications

Table II provides an overview of both the total number of
notifications and the number of unclear notifications detected
by CodeQL and SonarCloud. We define unclear notifications
through personal assessment as those that lack sufficient detail
or context to be easily understood and actionable. These
notifications often use vague or generic language, such as
“Configuration error detected,” without specifying the exact
issue, its location, or the steps to resolve it.

Notifications During Workflow Setup and Error Resolution:
When setting up workflows for Spring projects using CodeQL,
the notifications related to configuration errors were specific
and actionable. For example, when an environment variable
like DATABASE_URL was missing, CodeQL provided a clear
error message such as: “Environment variable DATABASE_URL
is missing or improperly set in settings.json. Ensure a
valid URL format is used.” This allowed to identify the issue
and resolve it.

For SonarCloud in Spring projects, the notifications
during setup were less descriptive. For instance, if the
sonar.projectKey parameter was missing in the pom.xml
file, the warning only stated: “Configuration error detected
in pom.xml. Review the configuration settings.” This generic
message did not specify which key or parameter was causing
the issue, leading to longer troubleshooting times.

In Django projects, CodeQL also provided detailed
guidance during setup. For instance, if dependencies in



TABLE II
NUMBER OF NOTIFICATIONS AND UNCLEAR NOTIFICATIONS IN DJANGO AND SPRING REPOSITORIES WITH LOC

Repository Framework LOC CodeQL Notifications SonarCloud Notifications

Setup/
Errors

Bugs/
Analysis

Unclear
Setup

Unclear
Bugs

Setup/
Errors

Bugs/
Analysis

Unclear
Setup

Unclear
Bugs

django-beginners-guide Django 1240 4 6 1 2 6 9 3 3
Django-Projects-for-beginners Django 13059 6 21 2 3 9 37 3 4
DJANGO COURSE Django 5165 6 8 2 3 8 12 7 1
DJANGO-TUTORIAL Django 1143 1 4 0 0 5 11 2 4
django-intro-tutorial Django 193 1 2 0 1 2 2 0 0
gs-serving-web-content Spring 84 0 0 0 0 3 1 1 0
gs-rest-service Spring 85 - - - - 0 0 0 0
gs-spring-boot Spring 102 - - - - 3 4 1 2
tutorials Spring 1164 10 99 3 6 - - - -
gs-consuming-rest Spring 88 1 1 0 0 0 1 0 0

- Indicates that the workflow did not run successfully for the project.

requirements.txt were not properly installed, the notifi-
cation stated: “Dependency django-extensions missing. Run
pip install -r requirements.txt to resolve.

Notifications on Bugs and Analysis Results: For actual bug
detection and analysis, CodeQL produced precise and action-
able insights for both Spring and Django projects. In a Spring
project, CodeQL flagged a SQL injection vulnerability with
the message: “Potential SQL injection detected in function
validate_user_input() on line 45. Validate input using
parameterized queries.” This notification contains the line
number and function, along with remediation steps. Similarly,
for Django, a message like: “Cross-site scripting vulnerability
detected in views.py, line 102. Sanitize user inputs before
rendering in templates,” provided both the location and the
nature of the issue.

SonarCloud’s notifications on bugs were comparatively less
detailed. For example, in a Spring project, a warning about
input handling was phrased as: “Enable server hostname ver-
ification on this SSL/TLS connection.” This generic message
did not specify the specific line number, function. In Django
projects, a similar pattern emerged, with warnings such as:
“Revoke and change this password, as it is compromised.” that
offered no contextual details about where the issue occurred.

Lesson: CodeQL provided detailed and precise notifications
across both Python and Java projects. In contrast, SonarCloud
notifications were overall less specific.

V. CONCLUSION

This experience report highlights the usability challenges
and integration complexities of CodeQL and SonarCloud
within GitHub workflows, for Spring and Django projects.

While Django projects could be integrated with reason-
able effort, Spring projects involved challenges due to their
more complex build environments. Unclear error messages
and inconsistent notifications in both tools often hindered
implementation efficiency, underscoring the need for better-
designed feedback mechanisms. Future work could explore
automating configuration detection, improving error message
clarity. Additionally, conducting studies across diverse pro-
gramming languages and frameworks would provide deeper

insights into optimizing static application security testing tools
for continuous integration workflows and proactive vulnerabil-
ity mitigation.

ACKNOWLEDGMENT

This work is funded by NSERC

REFERENCES

[1] M. Souppaya, K. Scarfone, and D. Dodson, “Secure software devel-
opment framework (ssdf) version 1.1: Recommendations for mitigating
the risk of software vulnerabilities,” Tech. Rep. SP 800-218, National
Institute of Standards and Technology (NIST), 2022. Supersedes: CSWP
13 (04/23/2020).

[2] M. Esposito, V. Falaschi, and D. Falessi, “An extensive comparison of
static application security testing tools,” in Proceedings of the 28th
International Conference on Evaluation and Assessment in Software
Engineering, EASE ’24, pp. 69–78, 2024.

[3] K. Li, S. Chen, L. Fan, R. Feng, H. Liu, C. Liu, Y. Liu, and Y. Chen,
“Comparison and evaluation on static application security testing (sast)
tools for java,” in Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2023, pp. 921–933, 2023.

[4] G. Piskachev, M. Becker, and E. Bodden, “Can the configuration of
static analyses make resolving security vulnerabilities more effective? -
a user study,” Empirical Softw. Engg., vol. 28, sep 2023.

[5] M. Tahaei, K. Vaniea, K. K. Beznosov, and M. K. Wolters, “Security no-
tifications in static analysis tools: Developers’ attitudes, comprehension,
and ability to act on them,” in Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, CHI ’21, 2021.

[6] H. Assal and S. Chiasson, “Security in the software development
lifecycle,” in Fourteenth symposium on usable privacy and security
(SOUPS 2018), pp. 281–296, 2018.

[7] J. Smith, L. N. Q. Do, and E. R. Murphy-Hill, “Why can’t johnny
fix vulnerabilities: A usability evaluation of static analysis tools for
security,” in SOUPS @ USENIX Security Symposium, 2020.

[8] OWASP, “Owasp application security verification standard (asvs),” 2024.
Accessed: 2024-08-07.

[9] GitHub, Workflow syntax for GitHub Actions, 2023. Accessed: 2024-
11-07.

[10] GitHub, “About code scanning,” 2024. Accessed: 2024-11-07.
[11] M. Nachtigall, M. Schlichtig, and E. Bodden, “A large-scale study of

usability criteria addressed by static analysis tools,” in Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2022, pp. 532–543, 2022.

[12] L. Nurgalieva, A. Frik, and G. Doherty, “A narrative review of factors af-
fecting the implementation of privacy and security practices in software
development,” ACM Comput. Surv., vol. 55, jul 2023.

[13] R. Walker, M. Cooke, A. Henderson, and D. K. Creedy, “Characteristics
of leadership that influence clinical learning: a narrative review,” Nurse
education today, vol. 31, no. 8, pp. 743–756, 2011.

https://github.com/sibtc/django-beginners-guide
https://github.com/ianshulx/Django-Projects-for-beginners
https://github.com/boxabhi/DJANGO_COURSE
https://github.com/TirendazAcademy/DJANGO-TUTORIAL
https://github.com/hackersandslackers/django-intro-tutorial
https://github.com/spring-guides/gs-serving-web-content
https://github.com/spring-guides/gs-rest-service
https://github.com/spring-guides/gs-spring-boot
https://github.com/eugenp/tutorials
https://github.com/spring-guides/gs-consuming-rest

	Introduction
	Background and Related Work
	Context
	Results
	Impact of Development Environments on Workflow Setup
	Quality of Notifications

	Conclusion
	References

