
How Programmers Interact with Multimodal
Software Documentation

Deeksha M. Arya
McGill University

Montreal, Canada
deeksha.arya@mail.mcgill.ca

Jin L.C. Guo∗
McGill University

Montreal, Canada
jguo@cs.mcgill.ca

Martin P. Robillard∗
McGill University

Montreal, Canada
robillard@acm.org

Abstract—There is a wide variety of online documentation to
learn about a given software technology, and prior research has
reported that programmers must invest time and effort to identify
one that best suits their need. We evaluated five modalities to
present information that enable a software document to cater to
the different presentation needs of programmers. We developed
a prototype tutorial with these modalities on three topics in Java,
namely, regular expressions, inheritance, and exception handling.
We investigated how people interact with the modalities in the
tutorial given a programming topic and a type of task. We
conducted a survey study with 56 respondents and confirm that
although text content is most useful for solving conceptual tasks,
code examples support deeper comprehension of the underlying
concepts. Furthermore, we report that respondents’ contradicting
preferences for the modalities suggest the need to have multiple
alternatives in a software tutorial.

Index Terms—software documentation, information needs,
documentation preferences, information seeking, multimodality

I. INTRODUCTION

Programmers rely on documentation to understand and use a
software technology. Available software documentation varies
in its structure, organization, and content. For example, a
document can have multiple elements such as overview infor-
mation, code snippets, and advanced pages [54] in addition to
sections, links, and images [53]. Online programming tutorials
do not have a standard for their presentation, and thus come
in a variety of styles [7]. However, users find it difficult to
navigate such resources and determine where the information
they are looking for would be located [38].

Additionally, information seekers have different pre-existing
preferences about the content or style of resources [13],
[6]. For example, some developers refer to code in order to
duplicate it [28], and thus may prefer complete code examples
that can be executed [8]. Other developers find small code
examples focused on patterns of usage useful [49]. Finding a
balance between both factors is difficult, as being too concise
may lead to the issue of incompleteness, and being detailed
may lead to difficulties with readability due to the verbose
content [4]. Thus, creating documentation must account for
the audience and their varied preferences.

Priestley suggested the idea of a dynamically assembled
document [43]. Such a document would allow users to re-

*Both authors contributed equally to this research.

structure the information present into multiple views based
on their needs and preferences. Robillard et al. proposed on-
demand developer documentation, an automatically generated
document built based on knowledge of task context and users’
needs [50]. In both visions of documentation, a critical aspect
is that the presentation and organization of the documentation
must cater to users’ preferences. But what users need or
prefer from documentation can depend on their roles and
responsibilities [13]. Whereas it may seem intuitive that these
preferences can also vary based on the specific types of
tasks they perform, we find little evidence in the literature
to support this hypothesis. In this work, we investigated how
documentation can cater to the varied presentation needs and
preferences of users for different types of programming tasks.

We studied documentation modalities, inspired by diverse
presentation formats including variations in the conciseness
of information. We designed a prototype tutorial containing
five modalities, i.e., text, tables, and code examples in three
different modalities (regular, summarized, and annotated). We
refer to such a document as a multimodal software tutorial.
A multimodal tutorial presents information through various
modalities that allow users to select information according to
their presentation preferences. We investigated the research
question: How do programmers make decisions about their
presentation needs and preferences in a programming tutorial?
Henceforth, we use the term documentation to refer to software
documentation in the context of our study, namely, tutorials.

We created three multimodal tutorials using HTML,
Javascript, and CSS. The three tutorials are about three basic
programming concepts in the Java language: regular expres-
sions, inheritance, and exception handling. We conducted
a survey with users that have at least one year of prior
programming experience. In the survey, we asked respondents
to complete three different programming tasks related to one
of three task types, i.e., conceptual, how-to, or debugging.
After completing each task, we asked respondents to indicate
which modalities they used for the task and to explain their
choices. We analyzed their responses to determine how they
made decisions about information presentation.

We report on how respondents used the different modalities
for the different task types. We support our findings with
statistical analysis of the responses and insights from open text
responses. We observed that, irrespective of the topic, for con-



C

T

R S A

T

C

C

C

The five modalities:
text Content,
Regular code examples,
Summarized code examples,
Annotated code examples,
and Tables

Additional features:
Table of contents, and 
Collapse/expand 
functionality

Legend

Fig. 1: Illustration (with excerpts) of a multimodal tutorial for regular expressions in Java. The tutorial prototypes we created
for each of the three topics, i.e. regular expressions, inheritance, and exception handling, provide more information through
each of the modalities.

ceptual tasks, respondents found textual content “very useful”
to complete the tasks, while code examples provided additional
context to support comprehension. Similarly, more respondents
found regular code examples “very useful” for how-to tasks,
and used other modalities for in-depth understanding. Despite
these associations, we found that respondents preferred to
have access to more than one modality. Respondents also had
contradicting preferences. Our findings suggest the need for
flexible documentation design that allows users to manipulate
the presentation and organization of information content to
their needs and preferences, appropriately for different pro-
gramming contexts.

II. STUDY DESIGN

We created a prototype multimodal tutorial for each of
three Java programming topics. Although a number of doc-
umentation types exist [44], we focused on tutorials, as they
are a commonly used source of software technology infor-
mation [21]. We conducted a survey to understand whether
programmers found the modalities useful and how they used
them to complete three types of programming tasks.

A. Multimodal Tutorial Prototype

We developed a multimodal prototype tutorial as a static
HTML file supported by Javascript and CSS. We provide some
of the information in five different modalities of information

presentation, namely text content, regular code examples,
summarized code examples, annotated code examples, and
tables. We provided two additional features, i.e. a table of
contents, and the ability to collapse and expand sections
and modalities. Figure 1 shows an illustration of part of a
multimodal tutorial. The five modalities (represented by )
and the additional features (represented by ) are as follows:

Text content: Text-based tutorials are the most com-
mon source of programming information [16]. We provided
information in textual format, in the form of short paragraphs
or bullet points. We followed the twelve filtered guidelines
elicited by Miniukovich et al., for designing a readable web
page, including using short, simple sentences in a direct style
and avoiding complex language and jargon [39].

Regular code examples: Code examples can contribute
to a document’s effectiveness [17]. Developers may search
for code snippets for reuse in their own use cases [56]. We
provided information in regular code examples, i.e. complete
code snippets with no additional comments or annotations.

Summarized code examples: Small code examples
that show patterns of method usage are reported to be more
useful than an example of a single call to the method [49].
We provided summarized code examples, by following the
selection and presentation practices for summarizing code
examples reported by Ying and Robillard [58].



TABLE I: Examples of the three programming task types in our survey.

Task type Example task (from survey on regular expressions in Java)

Conceptual You are debating whether to use the matches() method in the Pattern class or the matches() method in the Matcher class.
What is the difference between both these methods?

How-to The user is asked to input their email address in the expected format: username@domain.com. Use regular expressions and write
the code to verify that their email address matches the expected format, and then retrieve just the username from their email address.

Debugging The user is asked to enter their ten-digit phone number which may or may not be separated by hyphens into three parts of 3, 3, and 4
digits (no spaces are allowed). So, valid number formats include: 123-456-7890 and 123-4567890 and 1234567890. You develop this
simple regular expression as the pattern in the matches() method:

\d{3}-?\d{3}-?\d{4}

However, when you try to compile your code, the compiler throws an error on this regular expression. What is the issue and how can
you fix this regular expression to fit the given criteria?

Annotated code examples: Code examples can benefit
from explanations, such as about how the code works or
the rationale behind code lines. We provided code examples
annotated with additional information that can be revealed on-
demand by hovering over selected code elements [40]. We
refer to them as annotated code examples. We provided the
three types of code examples through navigation tabs as shown
in Figure 1, with regular code examples in focus by default to
imitate a current, common tutorial.

Tables: Tables provide a concise way to present
information that captures different types of relations [22]. We
presented information in table format to provide an overview
of common terms and syntax, and their simplified descriptions.

Additionally, we provided two features to support navigating
the contents of the tutorial.

Table of contents: We divided each prototype tutorial
page into two containers: the table of contents placed to
the left of the page [41], [54], and the main tutorial body
occupying the remainder of the page. The table of contents
provides an overview of the tutorial, particularly the sections
and subsections. A user can navigate to a corresponding
section or subsection directly by clicking on the header in
the table of contents. This feature allows users to navigate
the tutorial’s content in a modular manner, in addition to
sequentially navigating through the main tutorial body [8].

Collapse/expand: Prior work has suggested that
users can benefit from having information revealed to them
gradually [41]. We provided a way for users to collapse and
expand the five modalities. We designed the three types of
code examples, namely regular, summarized, and annotated
as alternative navigable tabs, such that one tab could be
focused at a time. Additionally, we provided a small clickable
black arrow next to a section header, code example title, or
table title that allowed users to show or hide the associated
content. We also provided the ability to collapse and expand
sections via the table of contents.

We leveraged the existing HTML structure of Java tutorials
from tutorialspoint.com. We incorporated information from
tutorials on other programming knowledge websites such as

Fig. 2: The follow-up questions to a task that ask respondents
for their ratings for the different modalities. Note that the
question refers to modalities as “features” (see Section II-B).

beginnersbook.com and oracle.com to build a comprehensive
tutorial. We built multimodal tutorials about three topics that
are basic concepts in the Java programming language: regular
expressions, inheritance, and exception handling.

B. Survey Design

We created three survey forms, corresponding to each of
the three programming topics. Each respondent completed
one of these forms, and thus accessed only one of the three
multimodal tutorials.

We organized the survey in four parts. The first part col-
lected demographic information from the respondents. In the
second part, we required respondents to watch a three-minute
video about the associated tutorial, and its modalities and
features. We then asked the respondents three control questions
to ensure that they had watched the video.

In the third part of the survey, we provided a link to the
corresponding multimodal tutorial page, and asked participants



TABLE II: Demographics of survey respondents.

Age Gender Region Prog. Exp. (years)

#Res. 18-24 25-34 35-45 45-54 55-64 Man Woman N.S. N.A. Asia Europe 1-5 5-10 >10

Regular Expressions 13 11 1 1 0 0 8 5 0 10 1 2 9 3 1
Inheritance 22 16 4 0 1 1 11 9 2 17 2 3 19 2 1
Exception Handling 21 13 7 1 0 0 14 7 0 20 0 1 12 8 1
Total 56 40 12 2 1 1 33 21 2 47 3 6 40 13 3

#Res. — Total number of respondents for that topic
Prog. Exp. (years) — Programming Experience in years,

N.S. — Prefer not to say
N.A. — North America

Q: Did you use the table of contents? If yes, please explain how
you used it. If no, please explain why you did not use it.
Q: Did you collapse and expand sections, tables, or code examples?
If yes, please explain how these additional tutorial features were
useful. If no, please explain why you did not use them.
Q: Were there any other tutorial features you wish the tutorial had?
Q: Please share any additional comments that you have about your
experience using the tutorial.

Fig. 3: Optional open-ended questions in the survey.

to complete three programming tasks. The three programming
tasks are based on search intent categories proposed by Rao et
al [47]. Rao et al. identified seven search intents, i.e. reasons
for searching for technical information, based on a manual
analysis of 400 queries logged by the Bing search engine that
are related to Software Engineering. We selected the three
intents that are most relevant to basic programming concepts,
and thus our context: Learn, How-to, and Debug. From these
intents, we defined three programming task types, namely
conceptual (corresponding to the Learn intent),1 how-to, and
debugging. Table I provides an an example of each task type.
We created one programming task corresponding to each of
these task types, for each of the three topics in our user study.
Thus, each respondent completed a total of three tasks, one
of each task type, and all associated with one of the three
programming topics. After each task, we asked respondents
two follow-up questions: a choice-based question about what
modalities of the tutorial they used to complete each task, and
an open-ended question to explain their choices (see Figure 2).
In the survey, we referred to the modalities also as “features”
to have a relatable terminology for respondents.

In the final part of the survey, we asked four open-ended
questions about the usefulness of the table of contents and the
collapse/expand functionality, any other modalities or features
respondents would have liked, and any additional comments
they had (see Figure 3).

1Although the underlying definition is the same, we chose to rename Learn
to Conceptual in our study, because in the context of using software tutorials,
all task types may involve some learning. Instead, conceptual specifically
refers to learning about a topic, such as comparing two concepts.

We conducted six pilot studies, twice for each tutorial. No
content-related changes were made to the programming tasks
or the tutorials after these pilots; we only fixed typos pointed
out during the pilots and refined the demographic questions.
The study protocol was approved by the ethics review board
of McGill University.

C. Respondent Recruitment

We recruited candidates from student mailing lists
within universities, relevant public email groups, software-
engineering related Slack channels, and social media channels.
We required that interested candidates send an email from
their institutional email ID to the first author, who would
then respond with a survey link corresponding to one of the
three prototypes. The three survey forms were rotated in a
round-robin among candidates who contacted us. We received
a total of 108 requests to participate in the survey. A total
of 70 of these candidates completed the survey, of which
four had less than one year of programming experience (the
minimum criteria to participate in the survey), seven answered
a control question incorrectly, and another responded to all
mandatory open-ended answers with “Test”. Additionally, two
respondents did not respond to our follow-up to clarify their
survey responses. The remaining 56 respondents were entered
into a draw for a gift card worth CAD $100, with at least a
10% chance of winning.

D. Analysis

Table II shows the demographics of the valid respondents of
our survey. We performed tests to determine whether there is
a statistically significant association between modalities, their
rating, the type of programming task, and the programming
topics. We refer to these four as dimensions when discussing
the statistical analysis. We conducted a total of 16 Fisher’s
exact tests. We used 200,000 Monte Carlo simulations [37] to
account for the multiple categories of each dimension. We also
applied a Bonferroni correction by multiplying the p-value2

obtained from each test by 16, to mitigate Type-I error when
making multiple comparisons [1]. We performed 16 Fisher’s
exact tests between modality rating and each of the other
dimensions, using one of the dimensions as a filter, as shown
in Table III.

2We multiplied each p-value to report the “adjusted p-values”, as opposed
to dividing the alpha value by the number of tests, to support interpretability
of the Bonferroni correction and reporting of results [10], [23], [55].



TABLE III: Description of the 16 Fisher’s exact tests we performed. We conducted the tests between Dimension A and
Dimension B, for each Filter.

Dimension A Dimension B Filter # of tests Description

Modality rating Topic Modality 5 (one for each modality) These tests indicate whether, for a particular modality, its rating is associated
with a programming topic.

Modality rating Task type Modality 5 (one for each modality) These tests indicate whether, for a particular modality, its rating is associated
with the type of task.

Modality rating Modality Topic 3 (one for each topic) These tests indicate whether, for a particular topic, there is an association
between each modality and the ratings they receive.

Modality rating Modality Task type 3 (one for each task type) These tests indicate whether, for a particular task type, there is an association
between each modality and the ratings they receive.

We also calculated the adjusted standardized residuals for
each statistically significant association between two dimen-
sions, to determine which pairs of categories across the two
participating dimensions have an effect on the association [51].
Residual values greater than +2 indicate a meaningful number
of observations more than expected, whereas residual values
lesser than -2 indicate that the observations of the pairs of
categories are lesser than expected.

For additional insight into the use of tutorial modalities,
we analyzed the open-ended text responses of the survey.
We open-coded the responses to identify the rationale for
using particular modalities. Furthermore, we report on the text
responses for the optional questions, including respondents’
use of additional features provided in the tutorials.

We report the significant results from our analysis and use
the text responses to provide explanations for our observations
in Section III. We provide the questions in the survey and the
complete statistical analysis results in our online appendix.3

E. Study Design Trade-offs

In designing both the multimodal tutorial prototype as well
as the survey, we made a number of deliberate decisions that
may have impacted the number of respondents and modality
rating responses. We discuss the trade-offs of these decisions
to communicate our design considerations. [48]. In all three
prototypes, we implemented navigation tabs for the code
examples in the order regular, summarized, annotated, with
the regular tab in focus every time the page is loaded. Thus,
participants would have to perform additional keystrokes in
order to see the summarized and annotated code examples.
As an alternative, we considered allowing respondents to select
which of the code examples they would like to see by default,
prior to loading the HTML. However, this would have required
them to be familiar with all three types of code examples
before using the tutorial, which was uncertain. To ensure that
survey respondents were aware of the other tabs with other
modalities, we prepared and provided a three minute tutorial
video about all the tutorials modalities in the survey. We
used control questions, e.g. Please select the statement that
best describes “annotated code examples” in the video, to
ensure that respondents were aware of all available modalities
before using the tutorial for the survey. We did observe that

3https://doi.org/10.5281/zenodo.14623560

more respondents found regular code examples useful than
other types of code examples for all programming tasks and
topic. However, respondents acknowledged the usefulness of
summarized and annotated code examples based on their own
preferences and in different contexts (see Section III-D).

Once deployed, the survey was potentially subject to invalid
and false responses. To mitigate the possibility of spam, we
required all interested candidates to email the first author
from their institutional email address. Furthermore, the first
author provided each candidate with a unique alphanumeric
verification code which the respondent was required to input
when completing the survey. Although this decision may have
impacted the quantity and demographics of respondents, we
favored this procedure over adding a link to the survey in our
recruitment advertisements, to ensure to the best of our ability
that responses were genuine.

We asked respondents to complete three programming tasks.
Analyzing the task answers would provide insight on whether
respondents were able to successfully leverage the information
presented in the tutorial to complete the tasks correctly. How-
ever, we chose not to report on the correctness of task answers,
and use only the control questions and participation criteria to
filter invalid responses. We made this decision because our
goal was to understand how useful programmers found the
different modalities, based on their needs and preferences.
Thus, in our study, the tasks only acted as an instrument
to provide a common context to all respondents while they
navigated the multimodal tutorial.

We created three prototypes for three different programming
topics. Although we could have created a single prototype and
reported on its results, we chose to deploy multiple prototypes
to account for potential bias of the programming topic to
survey responses. A consequence of this decision was that
there could be slight variations in difficulty between tasks in
the three surveys, that may have been further compounded
by respondents’ prior programming experience. However, the
results of the statistical tests between modality rating and
topics, for each modality, indicate that there is no statistically
significant association between these two dimensions except
for tables. Still, we found that some respondents struggled
with the inheritance debugging question (described in Sec-
tion III-C). This may be because the question required some
inference from the tutorial content, which could have been
easy to miss.



III. INTERACTING WITH THE MULTIMODAL TUTORIAL

We describe our observations of the modality ratings for the
different task types and topics, with insights from respondents’
text responses. We refer to respondents as R#, I#, or E# ac-
cording to the survey topic: Regular expressions, Inheritance,
or Exception handling, respectively.

A. Modality Ratings for Conceptual Tasks

For all three topics, more respondents found text content
useful compared to other modalities for the conceptual tasks
(see Figure 4). The residuals reflect this observation: text
content being very useful is observed more than expected
(see Figure 5a). Respondents rationalized that text content was
relevant specifically for a conceptual problem: “Because this was
a more theoretical question about the usage of the “final” keyword, I was
looking for information provided as an explanation” [I11].

For the conceptual tasks, respondents found regular code
examples the next most useful, after text content, for regular
expressions and exception handling (see Figure 4): “Text content
was useful at explaining in greater detail the definition and usage of
exceptions. The regular code example was very useful to get the general
setup of an exception.” [E10] Regular code examples being moder-
ately useful are also observed more than expected, and thus
have an effect on the statistical significance between modalities
and their rating for the conceptual tasks (see Figure 5a).

For inheritance, the tables were the second-most useful
modality (see Figure 4). The table acted as a concise source
of information: “I read through the tutorial and got most of the content
from the text itself. I took a look at the tables to get a summarised view
of the text I just read. This was particularly useful to gather my thoughts
and solidify my understanding of the material.” [I10] Additionally, for
some respondents: “The table had all the information I needed to
answer the question, so I did not have to read on.” [I17].

Observation 1: Text content was more useful than other
modalities for conceptual tasks, irrespective of the topic.

B. Modality Ratings for How-to Tasks

More respondents indicated that regular code examples were
useful for how-to tasks than any other modality (see Figure 4).
The residual for regular code examples being very useful for
how-to tasks indicate a larger frequency than expected by
chance (see Figure 5b). Respondents explained that the how-to
tasks involved programming, which made it was necessary to
get an idea of a working example, which the code examples
could provide: “For implementation [...] It was far more useful and
relevant to see code in context [...]” [R4]

We note that many respondents indicated that they already
knew the answer for the how-to tasks for inheritance and
exception handling. Six respondents for inheritance and eight
for exception handling relied on their prior knowledge in how-
to tasks. For comparison, no respondents indicated relying on
their prior knowledge for regular expressions. When recalling
their knowledge, respondents only needed a reminder of the
underlying concept or syntax, which the regular code example
could provide: “I went straight to a code example to get a refresher on

the proper syntax to be used when extending a class. The regular code
example provided enough information for me, and so I didn’t check the
other more detailed examples.” [I10]

Observation 2: Regular code examples were more useful
than other modalities for how-to tasks.

C. Modality Ratings for Debugging Tasks

For debugging tasks, there is no particular modality which
was most useful across all three programming topics (see
Figure 4), nor are there statistically significant associations
between modalities and their ratings. For regular expressions,
more respondents found tables useful: “The table was definitely
the most useful for this question since most of the information for
the difference [between] quantifiers and metacharacters were found
in the tables.” [R8] However, both Figures 4 and 5c show that
tables were largely ignored by respondents for inheritance and
exception handling.

For inheritance, respondents used a combination of modal-
ities: “It was a complex question, and initially, it wasn’t clear to me
why this [the issue in the task] was happening. I re-read the text to
figure out what I was missing, then reviewed the code to understand
how the method was being overridden, and finally, examined the table
to identify the relationships between them” [I15], which explains the
more balanced rating amongst the different modalities. Nine
of the 22 respondents for inheritance described some difficulty
with this task, either indicating they could not understand what
the issue was or find the answer in the tutorial. This also
explains why more respondents found the modalities not useful
for the inheritance debugging task compared to any of the
other tasks. Still, we do not observe a statistically significant
association between programming topic and modality rating
for all modalities except tables.

More respondents found text content useful for the ex-
ception handling debugging task, complemented by code ex-
amples. We also observed that, as for how-to tasks, more
respondents already knew the answers to debugging questions
than for conceptual questions (see Figure 4). Furthemore, some
respondents were able to leverage their prior knowledge, and
the text content provided sufficient information for them to
recall and answer the question: “I was already familiar with the
concept of multiple catches. I quickly checked my understanding in
the textual description.” [E4] Further developments on multimodal
tutorials could involve incorporating additional modalities, to
study whether they may be preferred for debugging tasks.

Observation 3: No modality dominated as a preference
for debugging tasks, across programming topics.

D. Usefulness of Individual Modalities

Our results from Sections III-A to III-C indicate that some
modalities may be favored for some task types, for some
programming topics. However, we observed that at least some
respondents found each modality useful. We describe the
contexts in which each modality can be useful, based on how
respondents explained their varying usage of the modalities in
their text responses.



10 8 6 4 2 0 2 4 6 8 10 12 14

Table

Annotated code example

Summarized code example

Regular code example

Text content

Conceptual

10 8 6 4 2 0 2 4 6 8 10 12 14

How-to

Because I already knew the answer, I didn't look at the tutorial
I used the tutorial, but not this feature
I used this feature, but it was not useful

I used this feature, it was moderately useful
I used this feature, it was very useful

10 8 6 4 2 0 2 4 6 8 10 12 14

Debugging

(a) Regular expressions

22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16

Table

Annotated code example

Summarized code example

Regular code example

Text content

Conceptual

22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16

How-to

Because I already knew the answer, I didn't look at the tutorial
I used the tutorial, but not this feature
I used this feature, but it was not useful

I used this feature, it was moderately useful
I used this feature, it was very useful

22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8

Debugging

(b) Inheritance

16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20

Table

Annotated code example

Summarized code example

Regular code example

Text content

Conceptual

20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18

How-to

Because I already knew the answer, I didn't look at the tutorial
I used the tutorial, but not this feature
I used this feature, but it was not useful

I used this feature, it was moderately useful
I used this feature, it was very useful

20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18

Debugging

(c) Exception handling

  

-8 -6 -4 -2 0 2 4 6 8 10 12

Table

Annotated code example

Summarized code example

Regular code example

Text content

Conceptual

-8 -6 -4 -2 0 2 4 6 8 10 12

HowTo

Because I already knew the answer, I didn't look at the tutorial
I used the tutorial, but not this feature
I used this feature, but it was not useful

I used this feature, it was moderately useful
I used this feature, it was very useful

-10 -8 -6 -4 -2 0 2 4 6 8 10

Debug

Fig. 4: Rating of usefulness for the five modalities, per task type and topic, for the three multimodal tutorials. Note that the
legend refers to modalities as “features” (see Section II-B).

Text content was useful for understanding the underlying
working and background of a technical concept: “The text helped
me figure out what was going on behind the scenes of the code and to
learn about the theory behind overriding methods.” [I10] Furthermore,
text content complemented other modalities: “reading the small
description in the table seems quicker and easier than reading the whole
text. I thought if I can’t find the info in the table then I’ll read the text.” [I8]

However, as the content is descriptive in nature, it does not
provide the implementation know-how needed to code: “The
text content provided a good theoretical background and context for the
task and helped in understanding the concepts but was not as directly
applicable as the code examples.” [R7]

Regular code examples provided a departure point for
completing coding tasks: “The code examples were useful to base
my answer off of, I was able to know the syntax and number of
parameters of the methods I wanted to use quickly.” [R2] Although
the same code is available through annotated code examples,
someone with a background in programming could find that
the regular code examples were sufficient: “Annotated code was
not useful for me since I understood the regular code directly [...]” [I8]

Summarized code examples “provided a concise and clear
illustration of the key points and made it easier to grasp the differences
without getting bogged down in too much detail.” [R7] This focus helped
when programmers needed to recall information quickly: “I

used the summarized code to refresh my memory on the try/catch
syntax in Java. It was more concise than the regular and annotated
code samples, which made it easier to find the information I was looking
for.” [E11] However, others found that: “the summarized code example
was missing essential code found in the regular code section.” [E5]

Annotated code examples “included comments and explana-
tions for each part of the code and made it easier to understand the logic
and purpose behind each step, enhancing the learning experience.” [R7]

Although the combination of text content and regular code
examples may provide sufficient information, the annotated
code examples provided example-specific descriptions, which
can be especially useful for beginners: “I used the annotated code
example because I think it’s more readable and well explained. This
feature, especially for a beginner or for someone not used to writing
code in a certain language, allows the user to understand better.” [I19]

Tables were useful to have a concise overview of infor-
mation present in the text content: “I first read the text, and it
gave me an overview. Then I read the table, and the information was
presented in a clear, concise, and more visually pleasing way.” [I6] Tables
also provided a quick reference: “The table was useful for quickly
understanding what each relevant method achieves.” [R4]

Although the modalities were useful for different purposes,
respondents used a combination of the modalities to com-
plete the programming tasks: “[The modalities] were all equally



5 22 3 11 15

5 24 7 9 11

5 28 6 6 11

4 16 7 16 13

3 4 4 10 35

Because I
already knew
the answer, I
didn't look at
the tutorial

I used the
tutorial,

but not this
feature

I used this
feature, but
it was not

useful

I used this
feature, it

was moderately
useful

I used this
feature,

it was very
useful

Table

Annotated
code

example

Summarized
code

example

Regular
code

example

Text
content

Rating

M
od

al
ity

(a) Conceptual (adjusted p-value = 2.4e-4)

12 26 3 5 10

12 24 6 4 10

11 19 6 9 11

5 5 2 10 34

10 16 8 10 12

Because I
already knew
the answer, I
didn't look at
the tutorial

I used the
tutorial,

but not this
feature

I used this
feature, but
it was not

useful

I used this
feature, it

was moderately
useful

I used this
feature,

it was very
useful

Table

Annotated
code

example

Summarized
code

example

Regular
code

example

Text
content

Rating

M
od

al
ity

(b) How-to (adjusted p-value = 8e-5)

12 33 4 5 9

18 29 6 5 8

1 7 1 11 19

Because I
already knew
the answer, I
didn't look at
the tutorial

I used the
tutorial,

but not this
feature

I used this
feature, but
it was not

useful

I used this
feature, it

was moderately
useful

I used this
feature,

it was very
useful

Exceptions

Inheritance

Regex

Rating

To
pi

c

(c) Table (adjusted p-value = 8e-5)

Residuals
-Inf Inf2-2 0

Fig. 5: Adjusted Standardized Residuals and contingency tables between Modality and Rating for Conceptual and HowTo
programming tasks, as well as between Topic and Rating for Tables. Note that the labels refer to modalities as “features” (see
Section II-B).

useful as they all provided an explanation about [the task solution]
or an example which made it clear.” [R10] Although containing the
same information, the variations in presentation allowed the
modalities to complement one another: “The text content and table
allowed me to know where to look for the information I needed and the
code gave a useful example.” [I13] However the combinations of
which modalities to use varied depending on the respondent:
“I relied on text for the main of the information and then looked for
practical applications of what was described in the text in summarized
code blocks.” [E18]; “The text content was giving useful explanations. The
annotated code example gave more explanation on the example.” [E16]

Observation 4: Different modalities complement one
another to support comprehension from multiple perspec-
tives, i.e. concept understanding, quick referencing, and
code implementation and rationale.

E. Usefulness of Additional Tutorial Features

We report on the two optional questions about how respon-
dents used the table of contents and the collapse and expand
features, for which 55 of the 56 respondents provided an
answer.

Table of contents: A total of 39 respondents found the
table of contents useful to get an idea of which sections of the
tutorial were relevant to the programming task, and navigate to
them directly. However, this required some intuition based on
where they could expect the content to be. For two respondents

who were not familiar with the topic or with Java, the table
of contents was not as helpful: “I skimmed everything in the
tutorial because even the headings were unfamiliar to me so [the table
of contents] didn’t help me search because I didn’t know what [the
sections] were yet.” [R13] Four respondents who did not use the
table of contents, described that the tutorial was short and
concise enough to navigate directly: “No [I did not use the table of
contents], though I definitely could have if the tutorial was longer. It was
short enough that I could scroll through and just read the topics that I
needed.” [E9] If ever needed, respondents could simply use the
default webpage search functionality: “I find it easier to directly
search for what I want using ctrl+F, since all info is on one page.” [I16]

Collapse/expand: The feature to collapse and expand tu-
torial modalities “made the website slightly less overwhelming by
collapsing things, and the expanding helped when I needed something
explained.” [E15] This was useful when relevant information was
present across sections that were not placed next to each other:
“[it] made it easier to navigate and have relevant information on the
screen, independent of if it was the first and last section or the second
and third section, for example.” [R6] However, 39 respondents did not
use the functionality because the table of contents provided
sufficient navigation to allow skipping irrelevant sections: “I
did not need to collapse and expand sections, tables, or code examples
since the table of contents allowed me to jump directly to the sections
I needed.” [R7] Additionally, the tutorial was concise enough to
skim through manually: “I’m sure [the collapse/expand features] are



helpful for longer tutorials. This is pretty short so I did not need to do
so.” [E9] Seven respondents preferred not to collapse sections:
“I like having everything displayed so I can be sure I am not missing
anything.” [I4] E14 and E18 suggested that everything be collapsed
first and then a user could expand as they went: “I don’t think the
collapse were useful, primarily because they are already all expanded. If
they started by being collapsed by default, it might have been useful, but
the call to action currently is to collapse information, which is not very
relevant for the user trying to access information.” [E18]

Observation 5: Respondents appreciated the ability to
manipulate the tutorial to gain an overview of the content
or to focus on particular parts of the tutorial.

F. Recommendations from Respondents

Respondents had suggestions for how the tutorial could
be improved, such as including other modalities: “More charts
and diagrams/pictures would be useful. I find a combination of different
“materials” helps me absorb information better [...] more images could
always help” [I10]; “I like when tutorials suggest a little project/example
for you to try out.” [I17], and an in-page integrated code editor
and runner (R10, R13, I14, I24, E9, E13). These suggestions
motivate the need for multiple modalities in tutorials: “I liked the
different ways that the information was conveyed! I like having options
to best fit my specific needs.” [I6]

Contradictions in preferences between participants surface
the need for adaptable tutorials whose design can be cus-
tomized by users. For example, some respondents appreciated
the annotated code examples (I10, I16, I23, E13, E16), even
wondering: “Not sure why keep Regular [code example] as default
when Annotated is superior.” [E13] However, one respondent would
do away with them entirely: “I wish [the tutorial] was just headers
(to navigate), text (to understand theoretical concept) and summarized
code blocks (to understand practically in code).” [E18] Another respon-
dent wanted the ability to collapse all the code at once: “I think
a button to collapse all the code at once would make navigation easier
since they take up a lot of space.” [R12] Respondents also wanted
variations in other user experience aspects: “I would maybe just
change the colours since I don’t like websites that are beige (maybe like
a dark and light mode) but that’s only a personal preference.” [I8]

Observation 6: Respondents had contradictions in their
preferences, motivating the need for customizable docu-
mentation.

IV. RELATED WORK

We discuss our results in the context of prior work on
information needs and preferences and tools to support user
control of navigating documentation.

A. Information Needs and Preferences

Users’ search for information begins with an information
need that must be fulfilled. There are multiple types of
questions that developers need answered during everyday
development and maintenance activities, largely related to
code behaviour [11], [15], [52]. In the context of every-day

information search, prior work has explored the information
needs of developers based on their web searches [18], [27].

In addition to information needs, programmers may have
preferences about the resources they refer to. Escobar-Avila et
al. surveyed 205 Computer Science (CS) students and profes-
sionals to determine their habits in learning programming and
its related concepts [16]. More than 55% in both populations
said they preferred visual and auditory formats for learning,
and only about 3% indicated they preferred text-only mediums.
Particularly, when learning a programming-specific or CS-
related concept, most respondents used tutorials and code ex-
amples, irrespective of the target programming language. Our
study corroborates the results of Escobar et al.: for conceptual
tasks, respondents favored using text content, and used code
examples to strengthen their understanding of the concepts.
Our findings also indicate that a preference for code examples
exists for how-to tasks, whereas for debugging tasks, there is
no preferred information modality. Additionally, respondents
leveraged modalities that can complement their own prior
knowledge. For example, if they had an understanding of a
concept, then they referred to only code examples to refresh
their knowledge of programming syntax.

From a survey of 74 individuals at an IBM enterprise
customers event, Earle et al. reported that 59 of the 64
responses to the survey question “How important to you
is the format of the information?” indicated 3 and above
on a five-point increasing scale of importance [13]. They
found that tech notes and videos were the most preferred
formats among these respondents. Furthermore, respondents’
preferences for formats in software product documentation
differed based on their role and responsibilities. For example,
administrators who maintain multi-user systems refer to a
wider range of documentation elements, such as product help
systems, tech notes, and forums, in comparison to architects
who focus on design, and refer primarily to articles. The
diversity of tasks [32] that the role of “software engineer”
involves [35], and the variations of modality use based on the
programming task types (see Section III), indicates the need to
have documentation that can be organized in a flexible manner.

To cater to varying needs, documentation creators are forced
to manage multiple formats of software documentation [12] to
avoid information inconsistency [4], [5]. With feedback from
users on their needs and preferences, they may even rewrite
user manuals and reorganizing the content, which are time and
resource-intensive activities [42]. Thus, software documenta-
tion creation can be a tiresome process [3]. Our results indicate
that programmers’ preferences may be contradictory, making
it a further challenge to create documentation that can cater to
all audience needs. Instead, our findings point towards the need
for multimodal tutorials that contain all relevant information
in different presentation formats, allowing users to gather the
information they need, in the way that they prefer, without
additional strain on documentation creators.



B. User Controls for Navigating Documentation

To find relevant information, developers use different strate-
gies, leveraging their knowledge about where to look for
information [31]. Software developers may also use cues such
as creation time, when searching among multiple similar code
snippets [46], or judge the potential value of text based on its
style [34]. Prior work has studied how to support information
seeking with explicit cues, such as indicating the time cost
of reading a resource [24], providing an overview of blog
comments [20] or of all pages in a document [19].

Allowing users to use categories to filter the information that
they need through buttons is known as faceted browsing. This
browsing technique has been proposed as a means to support
users in finding the information they need effectively [9], [14],
[29], [36], [57]. Käki and Aula [25], and Käki [26] performed
user studies in a laboratory and natural setting to evaluate their
tool Findex, which categorized search results that users could
use to filter their searches.

Liu and Holmes investigated two information representa-
tions in integrated development environments (IDEs): (1) in-
line views where information is presented anchored to the
source code, and (2) isolated views where information is
presented in a separate area, such as a notification panel [33].
The authors conducted a survey with four tasks to determine
developers’ preferences for either view. Whereas some partic-
ipants appreciated the minimalistic nature of the inline view,
others preferred having access to additional information via a
separate panel because they could choose to look at it when
they needed to. In our study, too, we report contradictory
modality preferences between respondents, that can prove
challenging for documentation design.

Adenuga et al. proposed a “Living document” system that
generates text summaries from existing online articles based
on an input topic prompt, and allows user to manipulate
these summaries, for example by inserting and removing sen-
tences [2]. The authors evaluated the system via a user study
wherein 25 participants were asked to create summaries about
a pre-defined topic related to either science or sports, using
the Living Document summarizer, and share their insights on
using the system. Nine participants indicated that the system
responded to their interactions adequately, thus giving them
a sense of control. However, other participants described that
changes in the text were subtle, giving the impression that their
interactions did not make a difference on the text. The work by
Adenuga et al. shows promise for user-controlled documents,
but highlights the challenge of providing user control, i.e.
making a document clearly manipulatable at the smallest units
of change possible. Personalization of a document would need
to involve the construction of a user profile, which could pose
a threat to user privacy [50].

Our observations, supported by the findings from prior liter-
ature, indicate the need to shift the control of content visibility
in documentation customization towards the user. Such control
can allow a multimodal documentation to reproduce typical
documentation styles as they are known today. For example,

for quick referencing, a programmer can collapse all other
modalities except tables to emulate the typical presentation
style of application programming interface documentation.
This can be applied immediately, such as changes to settings
of color shown immediately to users [30]. Alternatively, con-
figuration options can be selected and accumulated, and then
applied all together allowing a programmer to directly see a
new documentation build, at once [45].

V. CONCLUSION

Given that users may have different information needs
and that there are multiple ways to present information,
we studied how programmers make decisions about their
presentation needs and preferences when accessing software
documentation. We developed three multimodal tutorials on
three programming concepts in Java, namely regular expres-
sions, inheritance, and exception handling. In each tutorial, we
provided five modalities, i.e., text content, regular code exam-
ples, summarized code examples, annotated code examples,
and tables. Through a survey study, we asked programmers
to use one of the multimodal tutorials and complete three
programming tasks, one of each type: conceptual, how-to,
and debugging. We observed that respondents preferred text
content for conceptual tasks and regular code examples for
how-to tasks, with no clear modality preference for debugging
tasks. Still, the variations in responses indicate that there are no
universal modality preferences for all software programming
contexts. Our results corroborate our hypothesis that having
multiple modalities within a single document can serve diverse
information needs for programming tasks. Further research
could help assess the potential of multimodal documentation
for other programming languages and software technologies.

Our proposed multimodal tutorial is an initial step towards
the user interface of multimodal, multifeatured software doc-
umentation. A multimodal design allows resource creators to
create a single, complete, consistent, and thorough document.
Then, information seekers, aware of their needs and prefer-
ences specific to the task at hand, can configure the documen-
tation to present the information in pertinent modalities and
with the relevant visibility. Future work could investigate the
ability to save multimodal preferences for further use, such
that documentation can be conveniently personalized. Further
research could also explore the ability to apply multimodal
documentation in other developer workflows, such as in in-
tegrated development environments (IDEs) and in developer
tools such as documentation generators.

VI. ACKNOWLEDGEMENTS

We thank Vivian Li for their assistance in building the
foundation for the multifaceted tutorial prototypes, and Shushi
Huang for the further development of the prototypes and input
in creating the programming tasks for the survey. We also
thank the reviewers for their insightful feedback. This work
is funded by the Natural Sciences and Engineering Research
Council of Canada (NSERC).



REFERENCES

[1] Hervé Abdi. Bonferroni and Šidák corrections for multiple comparisons.
Encyclopedia of measurement and statistics, 3:103–107, 2007.

[2] Iyadunni J. Adenuga, Benjamin V. Hanrahan, Chen Wu, and Prasenjit
Mitra. Living documents: Designing for user agency over automated
text summarization. In Proceedings of the Extended Abstracts of the
Conference on Human Factors in Computing Systems, pages 1–6, 2022.

[3] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno,
Gabriele Bavota, Michele Lanza, and David C. Shepherd. Software
documentation: The practitioners’ perspective. In Proceedings of the
International Conference on Software Engineering, pages 590–601,
2020.

[4] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario
Linares-Vásquez, Laura Moreno, Gabriele Bavota, and Michele Lanza.
Software Documentation Issues Unveiled. In Proceedings of the Inter-
national Conference on Software Engineering, pages 1199–1210, 2019.

[5] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. Information
correspondence between types of documentation for APIs. Empirical
Software Engineering, 25:4069–4096, 2020.

[6] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. How program-
mers find online learning resources. Empirical Software Engineering,
28(3), 2022.

[7] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. Properties and
styles of software technology tutorials. IEEE Transactions on Software
Engineering, 50(2), 2024.

[8] Deeksha M. Arya, Mathieu Nassif, and Martin P. Robillard. A data-
centric study of software tutorial design. IEEE Software, 39(3), 2022.

[9] Sven Buschbeck, Anthony Jameson, Adrian Spirescu, Tanja Schnee-
berger, Raphaël Troncy, Houda Khrouf, Osma Suominen, and Eero
Hyvönen. Parallel faceted browsing. In Proceedings of the Extended
Abstracts on Human Factors in Computing Systems, pages 3023–3026,
2013.

[10] Shi-Yi Chen, Zhe Feng, and Xiaolian Yi. A general introduction to
adjustment for multiple comparisons. Journal of Thoracic Disease, 9(6),
2017.

[11] Ekwa Duala-Ekoko and Martin P. Robillard. Asking and answering
questions about unfamiliar APIs: An exploratory study. In Proceedings
of the International Conference on Software Engineering, pages 266–
276, 2012.

[12] Koznov D.V., Luciv D.V., and Chernishev G.A. Duplicate manage-
ment in software documentation maintenance. In Proceedings of the
International Conference on Actual Problems of System and Software
Engineering, pages 195–201, 2017.

[13] Ralph H. Earle, Mark A. Rosso, and Kathryn E. Alexander. User
preferences of software documentation genres. In Proceedings of the
Annual International Conference on the Design of Communication,
pages 1–10, 2015.

[14] Jennifer English, Marti Hearst, Rashmi Sinha, Kirsten Swearingen, and
Ka-Ping Yee. Hierarchical faceted metadata in site search interfaces. In
Proceedings of the Extended Abstracts on Human Factors in Computing
Systems, pages 628–639, 2002.

[15] K. Erdos and H. M. Sneed. Partial comprehension of complex programs
(enough to perform maintenance). In Proceedings of the International
Workshop on Program Comprehension, pages 98–105, 1998.

[16] Javier Escobar-Avila, Deborah Venuti, Massimiliano Di Penta, and Sonia
Haiduc. A survey on online learning preferences for computer science
and programming. In Proceedings of the International Conference on
Software Engineering: Software Engineering Education and Training,
pages 170–181, 2019.

[17] Andrew Forward and Timothy C Lethbridge. The relevance of software
documentation, tools and technologies. In Proceedings of the ACM
Symposium on Document Engineering, pages 26–33, 2002.

[18] Rosalva E. Gallardo-Valencia and Susan Elliott Sim. What kinds of
development problems can be solved by searching the web?: A field
study. In Proceedings of the International Conference on Software
Engineering, pages 41–44, 2011.

[19] Carl Gutwin, Andy Cockburn, and Nickolas Gough. A field experiment
of spatially-stable overviews for document navigation. In Proceedings of
the Conference on Human Factors in Computing Systems, pages 5905–
5916, 2017.

[20] E. Hoque and G. Carenini. Convis: A visual text analytic system for
exploring blog conversations. Computer Graphics Forum, 33(3):221–
230, 2014.

[21] Andre Hora. Googling for software development: What developers
search for and what they find. In Proceedings of the IEEE/ACM
International Conference on Mining Software Repositories, pages 317–
328, 2021.

[22] Matthew Hurst. Towards a theory of tables. International Journal of
Document Analysis and Recognition, 8:123–131, 2006.

[23] Mohieddin Jafari and Naser Ansari-Pour. Why, when and how to adjust
your p values? Cell Journal (Yakhteh), 20(4), 2018.

[24] Xiaoyu Jin, Nan Niu, and Michael Wagner. Facilitating end-user
developers by estimating time cost of foraging a webpage. In Proceed-
ings of the IEEE Symposium on Visual Languages and Human-Centric
Computing, pages 31–35, 2017.

[25] Mika Käki. Findex: Search result categories help users when document
ranking fails. Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 131–140, 2005.

[26] Mika Käki and Anne Aula. Findex: Improving search result use through
automatic filtering categories. Interacting with Computers, 17(2):187–
206, 2005.

[27] Amy J. Ko, Robert DeLine, and Gina Venolia. Information needs
in collocated software development teams. In Proceedings of the
International Conference on Software Engineering, pages 344–353,
2007.

[28] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung.
An exploratory study of how developers seek, relate, and collect relevant
information during software maintenance tasks. IEEE Transactions on
Software Engineering, 32(12):971–987, 2006.

[29] Bill Kules and Ben Shneiderman. Users can change their web search
tactics: Design guidelines for categorized overviews. Information
Processing and Management, 44(2):463–484, 2008.

[30] Gerhard Leitner, Alexander Felfernig, Paul Blazek, Florian Reinfrank,
and Gerald Ninaus. Chapter 8 - User Interfaces for Configuration
Environments, page 89–106. Morgan Kaufmann, Boston, 2014.

[31] Hongwei Li, Zhenchang Xing, Xin Peng, and Wenyun Zhao. What help
do developers seek, when and how? In Proceedings of the Working
Conference on Reverse Engineering, pages 142–151, 2013.

[32] Sherlock A. Licorish and Stephen G. MacDonell. Exploring software
developers’ work practices: Task differences, participation, engage-
ment, and speed of task resolution. Information & Management,
54(3):364–382, 2017.

[33] Xinhong Liu and Reid Holmes. Exploring developer preferences
for visualizing external information within source code editors. In
Proceedings of the Working Conference on Software Visualization, pages
27–37, 2020.

[34] Arthur Marques, Nick C. Bradley, and Gail C. Murphy. Characterizing
task-relevant information in natural language software artifacts. In Pro-
ceedings of the IEEE International Conference on Software Maintenance
and Evolution, pages 476–487, 2020.

[35] Edward Meade, Emma O’Keeffe, Niall Lyons, Dean Lynch, Murat
Yilmaz, Ulas Gulec, Rory V. O’Connor, and Paul M. Clarke. The
changing role of the software engineer. In Systems, Software and
Services Process Improvement, pages 682–694, 2019.

[36] Yevgeniy Medynskiy, Mira Dontcheva, and Steven M. Drucker. Explor-
ing websites through contextual facets. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 2013–2022,
2009.

[37] Cyrus R Mehta and Nitin R Patel. IBM SPSS Exact Tests. Armonk,
NY: IBM Corporation, 2011.

[38] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. How de-
velopers use API documentation: An observation study. Communication
Design Quarterly, 7(2):40–49, 2018.

[39] Aliaksei Miniukovich, Antonella De Angeli, Simone Sulpizio, and Paola
Venuti. Design guidelines for web readability. In Proceedings of the
Conference on Designing Interactive Systems, pages 285–296, 2017.

[40] Mathieu Nassif, Zara Horlacher, and Martin P. Robillard. Casdoc:
unobtrusive explanations in code examples. In Proceedings of the
International Conference on Program Comprehension, pages 631–635,
2022.

[41] Mathieu Nassif and Martin P. Robillard. A field study of developer
documentation format. In Proceedings of the Extended Abstracts of the
Conference on Human Factors in Computing Systems, pages 1–7, 2023.

[42] Aleksandra Pawlik, Judith Segal, and Marian Petre. Documentation
practices in scientific software development. In Proceedings of the
International Workshop on Co-operative and Human Aspects of Software
Engineering, pages 113–119, 2012.



[43] Michael Priestley. Dynamically assembled documentation. In Proceed-
ings of the Annual International Conference on Computer Documenta-
tion, pages 53–57, 1999.

[44] Daniele Procida. Diátaxis documentation framework, 2023.
[45] Rick Rabiser, Michael Vierhauser, Martin Lehofer, Paul Grünbacher,

and Tomi Männistö. Configuring and Generating Technical Documents,
pages 241–250. 2014.

[46] Sruti Srinivasa Ragavan, Sandeep Kaur Kuttal, Charles Hill, Anita
Sarma, David Piorkowski, and Margaret Burnett. Foraging among an
overabundance of similar variants. In Proceedings of the Conference on
Human Factors in Computing Systems, pages 3509–3521, 2016.

[47] Nikitha Rao, Chetan Bansal, Thomas Zimmermann, Ahmed Hassan
Awadallah, and Nachiappan Nagappan. Analyzing web search behavior
for software engineering tasks. In Proceedings of the IEEE International
Conference on Big Data, pages 768–777, 2020.

[48] Martin P. Robillard, Deeksha M. Arya, Neil A. Ernst, Jin L.C. Guo,
Maxime Lamothe, Mathieu Nassif, Nicole Novielli, Alexander Sere-
brenik, Igor Steinmacher, and Klaas-Jan Stol. Communicating study
design trade-offs in software engineering. Transactions on Software
Engineering and Methodology, 33(5), 2024.

[49] Martin P Robillard and Robert Deline. A field study of API learning
obstacles. Empirical Software Engineering, 16(6):703–732, 2011.

[50] Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele
Bavota, Oscar Chaparro, Neil Ernst, Marco Aurélio Gerosall, Michael
Godfrey, Michele Lanza, Mario Linares-Vásquez, Gail C. Murphy, Laura
Moreno, David Shepherd, and Edmund Wong. On-demand developer
documentation. Proceedings of the International Conference on Software
Maintenance and Evolution, pages 479–483, 2017.

[51] Donald Sharpe. Chi-square test is statistically significant: Now what?
Practical Assessment, Research, and Evaluation, 20(1):8, 2015.

[52] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Questions
programmers ask during software evolution tasks. In Proceedings of
the SIGSOFT International Symposium on Foundations of Software
Engineering, pages 23–34, 2006.

[53] Rebecca Tiarks and Walid Maalej. How does a typical tutorial for mobile
development look like? In Proceedings of the 11th Working Conference
on Mining Software Repositories, pages 272–281, 2014.

[54] Robert B. Watson. Development and application of a heuristic to assess
trends in API documentation. In Proceedings of the ACM International
Conference on Design of Communication, pages 295–302, 2012.

[55] S. Paul Wright. Adjusted p-values for simultaneous inference. Biomet-
rics, 48(4):1005–1013, 1992.

[56] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E.
Hassan, and Zhenchang Xing. What do developers search for on the
web? Empirical Software Engineering, 22(6):3149–3185, 2017.

[57] Ka Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst. Faceted
metadata for image search and browsing. In Proceedings of the
Conference on Human Factors in Computing Systems, pages 401–408,
2003.

[58] Annie T. T. Ying and Martin P. Robillard. Selection and presentation
practices for code example summarization. In Proceedings of the
International Symposium on Foundations of Software Engineering, pages
460–471, 2014.


