
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Properties and Styles
of Software Technology Tutorials

Deeksha M. Arya, Jin L.C. Guo, Martin P. Robillard

Abstract—A large number of tutorials for popular software
development technologies are available online, and those about
the same technology vary widely in their presentation. We
studied the design of tutorials in the software documentation
landscape for five popular programming languages: Java, C#,
Python, Javascript, and Typescript. We investigated the extent to
which tutorial pages, i.e. resources, differ and report statistics of
variations in resource properties. We developed a framework for
characterizing resources based on their distinguishing attributes,
i.e. properties that vary widely for the resource, relative to
other resources. Additionally, we propose that a resource can
be represented by its resource style, i.e. the combination of
its distinguishing attributes. We discuss three techniques for
characterizing resources based on our framework, to capture
notable and relevant content and presentation properties of
tutorial pages. We apply these techniques on a data set of
2551 resources to validate that our framework identifies valid
and interpretable styles. We contribute this framework for
reasoning about the design of resources in the online software
documentation landscape.

Index Terms—Software documentation, software tutorials, doc-
umentation design, tutorial properties, documentation search

I. INTRODUCTION

SOFTWARE development technologies are usually accom-
panied by tutorials that provide information about the

technology, including how to install, run, debug, navigate, and
use it. These online tutorials may be released by technology
creators or third-parties. Websites such as W3schools(a) are
dedicated to providing resources for different technologies.
In addition, any user may create and release resources, for
example, in the form of a blog post [1], or as part of
a community repository.(b) Although standards [2]–[4] and
guidelines [5], [6] exist for software documentation, they are
not enforced and seldom used in practice.

Thus, tutorial creators are faced with a number of design
decisions at different points during the software development
process, including the format by which to present relevant
information [7]. Additionally, they must consider the con-
sequences of these design choices [8]. Knowledge of how
existing documentation is designed can support the systematic
creation of new resources.

DM. Arya, JLC. Guo, and MP. Robillard are with McGill University.

E-mail: deeksha.arya@mail.mcgill.ca, jguo@cs.mcgill.ca, robil-
lard@acm.org

Manuscript received April 2023

(a)https://www.w3schools.com
(b)E.g. http://www.cplusplus.com

With so many variations in the style and content of available
tutorials [9], programmers seeking information face a number
of choices, and use cues to make decisions about resources to
access [10]–[13]. Common search engines incorporate cues
related to information content to alleviate the amount of
time and effort that programmers take in finding pertinent
information. To assist programmers in their manual search
process, prior work has explored faceted searching [14], [15],
i.e. searching with content-related categories, and providing
estimated time cost of search results [16]. Still, there remains
ambiguity about the available design space in terms of the
content and presentation of technology tutorials.

We investigated the design of programming tutorials in the
current documentation landscape. We seek to answer to what
extent do software technology tutorials vary in their proper-
ties? Based on observations of our investigation into these
properties, we explore the question how can we systematically
reason about the design of software technology tutorials? The
study follows a data mining research method to extract and
analyse design properties of technology tutorials. We focus
on tutorials for Java, C#, Python, Javascript, and Typescript,
and treat each tutorial page as a separate information resource.
We extracted properties for 2551 popular resources, such as the
number of code fragments present and depth of sectioning of
the content. We contribute a detailed analysis of the properties
of software documentation resources organized by program-
ming language. Based on our observations, we propose a
framework to characterize a resource’s resource style as its
combination of distinguishing attributes, i.e. properties that
vary from the norm. Our conceptual framework supports three
techniques for identifying resource styles, namely prominent
styles, recurring styles, and user-defined styles. We motivate
these techniques, and discuss our observations of applying
these techniques on our data set.

Our framework for characterizing resources provides insight
to resource creators about the design of resources for software
development technologies. Creators can use this information
to make decisions about whether to adhere to existing styles,
or innovate with new resource styles to fulfil a particular need.
Our observations also provide a means to help resource seekers
systematically identify pertinent properties when comparing
resources for the same technology.

Replication Package: The details of our resource collection
process, the extracted property data, and the results of the
analysis are available in our online appendix.(c)

(c)https://doi.org/10.5281/zenodo.10048532

0000–0000/00$00.00 © 2023 IEEE

https://www.w3schools.com
http://www.cplusplus.com
https://doi.org/10.5281/zenodo.10048532

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

II. DATA COLLECTION

We focus on tutorials of the top five most popular tech-
nologies according to Github for 2021: Java, C#, Python,
Javascript, and Typescript.(d) We extracted the properties of
web pages of tutorials for these technologies.

A. Resource Collection

We identified popular tutorials for each software technol-
ogy through a manual online web search using the search
engine DuckDuckGo.(e) For each programming language, we
collected the common non-advertisement search results on the
first three pages for the three queries “<language> tutorial”,
“<language> programming tutorial”, and “<language> de-
velopment tutorial”. We used the common search results as a
proxy for popular tutorials because they are consistently top-
ranked by the search engine.(f) To create a data set of compara-
ble tutorials, we filtered out tutorials that did not fit the scope
of our work, i.e. multi-page comprehensive tutorials.(g) The
websites on which the tutorials are hosted include technology
websites (e.g. Oracle, Mozilla), those dedicated to tutorials
for a single language (e.g. PythonTutorial, TypescriptTutorial)
and those dedicated to tutorials for multiple technologies
(e.g. BeginnersBook, Programiz). We retrieved traffic-related
metrics for each website from similarweb.com to investigate
the popularity of each website hosting tutorials.

We analyzed each resource, i.e. an individual web page
referenced by a given URL in a tutorial, because each page is
indexed separately by a search engine. Thus, a tutorial contains
multiple resources, and a website can host multiple tutorials.
We discarded resources that had obfuscated HTML,(h)12 did
not provide technical information about the target program-
ming language, or followed a recognizable non-tutorial format
(e.g. Q&A, exercises). We collected a total of 2551 resources
hosted on 23 websites for five programming languages, as
shown in Table I.

B. Property Extraction

For each resource, we automatically extracted each top level
HTML element within the manually identified main content
element, and refer to these as blocks (see Figure 1).(i) Table II
describes the properties we extracted for each block in every
resource, and the rationale behind identifying these properties.
When calculating the length of a table in number of cells,
we did not count cells that contain three or fewer characters,
identifying them as index cells. For example, for the table in
JavaTPoint’s “Module vs. Namespace” resource,3 we disregarded
the first column, and identified the total size of the table as

(d)https://octoverse.github.com/#top-languages-over-the-years
(e)Despite video-based learners reported to have higher success rates than

text-based learners [17], the majority of results from a standard search engine
are textual documents [18]. Thus, we focused our study on text tutorials.

(f)Although some websites host tutorials for languages within the scope of
this study, e.g. TechBeamers offers a Java tutorial, we did not include it in
our data set as it was not consistently top-ranked among our queries.

(g)The exact steps of the resource identification and filtering process are
available in the replication package.

(h)Links to resources are present in the section Resource References.
(i)We used Python v3.9 and the library beautifulsoup4 to parse HTML.

Fig. 1: Example of identified blocks for the BeginnersBook
resource “Constructors in Java”.4 We manually identified that
the article tag inside the main tag with class “content”,
contains the main content of the page. We treated each of these
elements, such as the <p> and <pre> elements boxed in red,
as an individual block.

22 cells (including headers).
To identify topics mentioned in resources, we used the JSI

Wikifier,(j) which identifies topics covered by Wikipedia arti-
cles in target text. Nassif and Robillard proposed a whitelisting
technique for computing topics, with which the JSI Wikifier
achieved up to a precision of 0.95 at the expense of lower
recall, on a set of 500 Stack Overflow posts [23]. Since we
focus on identifying only relevant topics in a block, this trade-
off is acceptable for the present study. The JSI wikifier is also
easily accessible via its API and does not impose resource
restrictions.

We used the TaskNavigator tool to extract task phrases [24],
i.e. actionable instructions in software documents, e.g. “down-
load package”. Treude et al. reported that their tool worked
accurately to extract task phrases for 90% of 376 randomly
selected sentences (from 17,448 sentences) in Django doc-
umentation. The identification of task phrases helps provide
insight into whether a text may be procedural [22] in nature.
We disregarded text blocks with fewer than 40 characters if
they did not contain any task phrases or topics to reduce the
effect of non-information phrases [25] such as “Output:”.5

We extracted block-level properties for a total of 98,915
blocks. We then aggregated the block-level properties to
obtain resource-level properties. We normalized the aggregated
block-level properties to account for dependencies of the
properties on the length of the resource. The fifteen numeric
resource-level properties (henceforth referred to as properties)
that we computed are shown in Table III.

III. RESOURCE PROPERTIES

To answer our first research question to what extent do
software technology tutorials vary in their properties?, we
investigated the variations in resource properties and the asso-
ciations between them, for each programming language. We
contribute a detailed view of properties of software document-
ation resources for five popular development technologies.

(j)https://jsi-eubusinessgraph.github.io/jsi-wikifier-api/

similarweb.com
https://octoverse.github.com/#top-languages-over-the-years
https://jsi-eubusinessgraph.github.io/jsi-wikifier-api/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

TABLE I: Details about the programming language and host website of the resources studied. The last three columns are
estimations of the website traffic from pro.similarweb.com for the period Apr.-Jun. 2023.

Monthly Visit
visits duration

Domain Java C# Python Javascript Typescript (millions) Pages/visit (mins)

BeginnersBook beginnersbook.com 100 - 24 - - 0.212 2.33 2.73
DotNetTutorials dotnettutorials.com - 105 - - - 0.847 2.37 3.13
Educba educba.com - 184 - - - 2.697 1.54 1.20
GeeksForGeeks geeksforgeeks.org - 30 - - - 0.028 2.21 0.36
Guru99 guru99.com 71 25 71 - - 6.551 1.56 1.55
Info javascript.info - - - 92 - 1.841 2.52 3.05
JavaTPoint javatpoint.com 79 121 73 196 45 16.840 2.08 3.97
LearnPython learnpython.org - - 27 - - 0.630 2.51 3.37
Mozilla developer.mozilla.org - - - 18 - 25.180 2.07 3.43
NetInformations c-sharp.net-informations.com - 96 - - - 0.057 1.80 1.52
Oracle docs.oracle.com 328 - - - - 9.899 3.31 3.35
Programiz programiz.com 117 - 52 - - 11.730 2.04 3.65
PythonDocs docs.python.org - - 16 - - 7.235 1.95 2.63
PythonTutorial pythontutorial.net - - 180 - - 0.596 1.88 3.80
SPGuides spguides.com - - - - 6 0.248 1.34 1.48
TechBeamers techbeamers.com - - 50 - - 0.098 2.03 1.73
TutorialKart tutorialkart.com - - - - 19 0.528 1.79 1.37
TutorialsPoint tutorialspoint.com 39 - 28 36 21 20.620 1.78 2.68
TutorialsTeacher tutorialsteacher.com - 59 - - - 1.483 2.89 2.37
TypescriptTutorial typescripttutorial.net - - - - 50 0.107 3.61 4.23
W3Schools w3schools.com 54 35 44 - - 57.620 3.71 6.31
W3SchoolsBlog w3schools.blog - - - - 31 0.683 2.45 1.48
WebTrainingRoom webtrainingroom.com - 31 - - - 0.020 1.27 0.62

Total 788 686 563 342 172

TABLE II: Properties extracted at the block level for each resource.

Applicable to
Property Description Block Type Rationale
type Whether the block is primarily a

header, text, code, table, or image.
all Identifying the type of content in a resource provides insight on the

extent to which resources cater to the preferred visual stimuli as
opposed to only text, in information resources [12].

contains image Boolean of whether the block con-
tains an image within it.

text Depending on the structure of the HTML, a text paragraph may contain
an embedded image. We include such images, in addition to image-
only blocks when calculating resource properties (see Table III).

header depth Depth of the header. For example,
the depth of an h3 block is three.*

header Documentation writers must consider that readers interacting with
technology may have a number of branching use cases for which
they may consult particular parts of documentation [19]. The level
of fragmentation, given by the depth of sections, provides insight into
the extent of breadth versus depth of the content in the resource.

size Size of the block in terms of num-
ber of sentences, lines of code, or
number of table cells, as applica-
ble.

text, code, table The length of sentences [20] and length of code snippets [21] are
fundamental aspects that are used to measure the readability of text
and code respectively.

wiki topics Topics covered that correspond
to computing-related articles on
Wikipedia.

text The amount of topics to cover in a tutorial is a deliberate design
decision that creators must consider [8].

task phrases List of instructional-styled task
phrases contained in the block.

text Task phrases can help determine the information style of a resource
as either procedural or declarative in nature [22].

links The set of hyperlinks within a
block, including internal links, i.e.
referring to pages within the same
tutorial, or external links, i.e. refer-
ring to pages outside the tutorial

text Whether to delegate some information in a resource to other resources
by provide references to other web pages has been discussed as a
consideration for designing resources [8], [19].

* We account for relative header depths when computing the resource-level property Maximum header depth (see Table III)

pro.similarweb.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

TABLE III: Computation of resource-level properties.

Property Computation

Number of blocks Total # of blocks

Proportion of text blocks
of text blocks

of blocks

Proportion of code blocks
of code blocks

of blocks

Proportion of header blocks
of header blocks

of blocks

Proportion of table blocks
of table blocks

of blocks

Proportion of images
of images
of blocks

Maximum header depth the lowest relative depth of the headers.
E.g. if a resource has h1 and h3 tags,
then the maximum depth is two.

Average text size
total size of text in sentences

of text blocks

Average code size
total size of code in lines

of code blocks

Average table size
of cells in table
of table blocks

Average number of topics
of distinct wiki topics

of text blocks

Average number of task phrases
of task phrases
of text blocks

Average number of links
of links

of text blocks

Proportion of internal links
of links to within the tutorial

total number of links

Proportion of external links
of links to outside the tutorial

total number of links

A. Variations in Property Values

Figure 2 shows the distribution of resource property values
by programming language. We use violin plots, which rep-
resent the frequency of resources (width) at different values
(y-axis), with the median of the distribution indicated by a
red line. For a given language, the leftmost violin plot shows
the distribution of the number of blocks per resource. We see
that for all resources except Java, the number of blocks in a
resource varies to an upper limit of 500 blocks. For Java, the
majority of resources also exist in this range, however one
abnormally long resource exists with over 1500 blocks.

The next group of five plots represents properties that
are proportions of different types of content per resource.
Although programmers may seek code examples in software
documentation, skipping corresponding explanatory text [26],
only 7% (172) of the resources focus on code, i.e., contain
more code than text blocks. Such resources demonstrate the
usage of a particular component6 or describe how to write
code to achieve a task.7 A total of 44% (1120) of the
resources contain images, the type of element preferred by
computer science students and professionals in information

resources [12]. Resources use images to describe installation
information,8 architecture and modelling,9 or to annotate the
code with descriptions.10

The following marker plot in the figure shows the number of
resources with a given maximum header depth. Each marker
shows the proportion of resources with the corresponding
maximum header depth value. We observe, for example, that
C# and Python resources provide an overall more fine-grained
organization than Java resources, most of which have at most
two levels of headers.

The next six plots show the distribution of the correspond-
ing properties from Table III, providing an overview of the
resource landscape. The median average code size (3-15 lines)
is higher than the median average text size (1-2 sentences) for
all languages. Despite the risk of large code snippets being
difficult to understand [27], the resources have longer, but
fewer code snippets compared to text blocks. Alternatively,
although tables provide a large amount of information in a
concise format, only 17% (421) of resources contain tables,
with the largest table having a size of 213 cells.11

For all languages except C#, the distribution of the average
number of task phrases is just slightly above zero. C# has a
larger distribution (53 resources) with no task phrases. Consid-
ering task phrases as a proxy of procedural information [22],
C# resources might not have instruction-like content.12

The last group of two violin plots in Figure 2 shows the
proportion of the internal and external links in the resources.
The distribution of the proportion of links shows greater
density towards the top and/or bottom in the plots for all the
languages. This indicates that, overall for a language, resources
tend to contain either internal links to other tutorial resources
or links to external resources, but rarely both.

To investigate whether there is a statistical difference be-
tween properties across programming languages, we per-
formed Bonferroni-corrected [28] one-way ANOVA tests [29]
(α = 0.05/15 = 0.003 for each test). For the thirteen
non-table related properties, we reject the null hypothesis,
indicating that the grouping of resources by programming
language accounts for a significant amount of the variation.
However, we failed to reject the null hypothesis for the two
table-related properties (p = 0.149 for the proportion of table
blocks, and p = 0.015 for the average table size). The low
variation of these properties may be attributed to the rare use
of tables in resources (see Figure 2).

We also ran ANOVA tests to understand whether there is
a statistically significant difference between properties across
websites. We reject the null hypothesis for all properties
(p < (α = 0.003)), an indication that grouping resources
by their host website can explain a significant amount of
the variation observed. Prior work has studied the styling of
code comments in Java and Python [30]; our findings suggest
that further investigation into website-specific and language-
specific tutorial design is worthwhile.

B. Correlations Between Properties
We performed Pearson’s correlation tests to understand

to what extent the variations in different properties are re-
lated. We performed 525 tests (105 tests for each of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

0

500

1000

1500

0.00

0.25

0.50

0.75

1.00

1

2

3

4

0

10

20

0

20

40

60

80

0

50

100

150

200

0

2

4

6

0

2

4

0

5

10

15

0.00

0.25

0.50

0.75

1.00

(a) Java

0

100

200

300

0.00

0.25

0.50

0.75

1.00

1

2

3

4

5

5

10

0

50

100

0

20

40

60

80

0

1

2

3

0

2

4

0

5

10

15

0.00

0.25

0.50

0.75

1.00

(b) C#

0

100

200

0.00

0.25

0.50

0.75

1.00

1

2

3

4

5

2

4

6

0

10

20

30

0

20

40

60

0.0

0.5

1.0

0

2

4

0

2

4

0.00

0.25

0.50

0.75

1.00

(c) Python

0

100

200

0.00

0.25

0.50

0.75

1.00

1

2

3

4

2

4

6

8

0

50

100

150

200

0

50

100

150

200

0.0

0.5

1.0

1.5

2.0

0

2

4

6

0

5

10

15

20

0.00

0.25

0.50

0.75

1.00

(d) Javascript

bl

oc
ks

0

100

200

300

Pr
op

. o
f t

ex
t b

lo
ck

s

Pr
op

. o
f c

od
e

bl
oc

ks

Pr
op

. o
f h

ea
de

r b
lo

ck
s

Pr
op

. o
f t

ab
le

 b
lo

ck
s

Pr
op

. o
f i

m
ag

es

0.00

0.25

0.50

0.75

1.00

M
ax

. H
ea

de
r d

ep
th

1

2

3

4

Av
g.

 te
xt

 si
ze

2

4

6

Av
g.

 c
od

e
siz

e

0

5

10

15

20

Av
g.

 ta
bl

e
siz

e

0

20

40

60

Av
g.

 #
 to

pi
cs

0

2

4

Av
g.

 #
 ta

sk
 p

hr
as

es

0

5

10

Av
g.

 #
 li

nk
s

0

1

2

3

4

Pr
op

. i
nt

er
na

l l
in

ks

Pr
op

. e
xt

er
na

l l
in

ks

0.00

0.25

0.50

0.75

1.00

(e) Typescript

Fig. 2: Variation of resource properties by programming language. The red line indicates the median of the distribution.

programming languages), which introduces Type-I errors. To
mitigate the errors, we applied Bonferroni correction [28]:
α = 0.05/525 = 9.5× 10−5. Figure 3 shows the significant
correlations between properties using the Pearson’s R metric.
Each cell in the figure corresponds to a test. Blue markers
indicate a positive correlation, whereas a red marker indicates
a negative correlation.

For all languages except Typescript, there is a negative
correlation between the proportion of text blocks and the
proportion of code blocks. This is because the properties are
calculated as a proportion of the total number of blocks, thus
forming part of a complementary set. In C# and Typescript,

there is a strong positive correlation between average table
size and the proportion of tables in the resource. This may be
because resources that contain more than one table typically
summarize language keywords and their functionalities.13

There is a positive correlation between the average size of
text and the average number of links in all languages except
Typescript. For example, when introducing terms related to
the main topic, Java Oracle documentation delegates the
explanations to other resources.14 There is also a positive
correlation between the average size of text and the average
number of topics for all languages. Resources that introduce
broad computing concepts such as data structures, link to other

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

P
ro

p.
 o

f t
ex

t b
lo

ck
s

P
ro

p.
 o

f c
od

e
bl

oc
ks

P
ro

p.
 o

f h
ea

de
r

bl
oc

ks

P
ro

p.
 o

f t
ab

le
 b

lo
ck

s

P
ro

p.
 o

f i
m

ag
es

M
ax

. H
ea

de
r

de
pt

h

A
vg

. t
ex

t s
iz

e

A
vg

. c
od

e
si

ze

A
vg

. t
ab

le
 s

iz
e

A
vg

. #
 to

pi
cs

A
vg

. #
 ta

sk
 p

hr
as

es

A
vg

. #
 li

nk
s

P
ro

p.
 in

te
rn

al
 li

nk
s

P
ro

p.
 e

xt
er

na
l l

in
ks

blocks

Prop. of text blocks

Prop. of code blocks

Prop. of header blocks

Prop. of table blocks

Prop. of images

Max. Header depth

Avg. text size

Avg. code size

Avg. table size

Avg. # topics

Avg. # task phrases

Avg. # links

Prop. internal links

(a) Java

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

P
ro

p.
 o

f t
ex

t b
lo

ck
s

P
ro

p.
 o

f c
od

e
bl

oc
ks

P
ro

p.
 o

f h
ea

de
r

bl
oc

ks

P
ro

p.
 o

f t
ab

le
 b

lo
ck

s

P
ro

p.
 o

f i
m

ag
es

M
ax

. H
ea

de
r

de
pt

h

A
vg

. t
ex

t s
iz

e

A
vg

. c
od

e
si

ze

A
vg

. t
ab

le
 s

iz
e

A
vg

. #
 to

pi
cs

A
vg

. #
 ta

sk
 p

hr
as

es

A
vg

. #
 li

nk
s

P
ro

p.
 in

te
rn

al
 li

nk
s

P
ro

p.
 e

xt
er

na
l l

in
ks

blocks

Prop. of text blocks

Prop. of code blocks

Prop. of header blocks

Prop. of table blocks

Prop. of images

Max. Header depth

Avg. text size

Avg. code size

Avg. table size

Avg. # topics

Avg. # task phrases

Avg. # links

Prop. internal links

(b) C#

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

P
ro

p.
 o

f t
ex

t b
lo

ck
s

P
ro

p.
 o

f c
od

e
bl

oc
ks

P
ro

p.
 o

f h
ea

de
r

bl
oc

ks

P
ro

p.
 o

f t
ab

le
 b

lo
ck

s

P
ro

p.
 o

f i
m

ag
es

M
ax

. H
ea

de
r

de
pt

h

A
vg

. t
ex

t s
iz

e

A
vg

. c
od

e
si

ze

A
vg

. t
ab

le
 s

iz
e

A
vg

. #
 to

pi
cs

A
vg

. #
 ta

sk
 p

hr
as

es

A
vg

. #
 li

nk
s

P
ro

p.
 in

te
rn

al
 li

nk
s

P
ro

p.
 e

xt
er

na
l l

in
ks

blocks

Prop. of text blocks

Prop. of code blocks

Prop. of header blocks

Prop. of table blocks

Prop. of images

Max. Header depth

Avg. text size

Avg. code size

Avg. table size

Avg. # topics

Avg. # task phrases

Avg. # links

Prop. internal links

(c) Python

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

P
ro

p.
 o

f t
ex

t b
lo

ck
s

P
ro

p.
 o

f c
od

e
bl

oc
ks

P
ro

p.
 o

f h
ea

de
r

bl
oc

ks

P
ro

p.
 o

f t
ab

le
 b

lo
ck

s

P
ro

p.
 o

f i
m

ag
es

M
ax

. H
ea

de
r

de
pt

h

A
vg

. t
ex

t s
iz

e

A
vg

. c
od

e
si

ze

A
vg

. t
ab

le
 s

iz
e

A
vg

. #
 to

pi
cs

A
vg

. #
 ta

sk
 p

hr
as

es

A
vg

. #
 li

nk
s

P
ro

p.
 in

te
rn

al
 li

nk
s

P
ro

p.
 e

xt
er

na
l l

in
ks

blocks

Prop. of text blocks

Prop. of code blocks

Prop. of header blocks

Prop. of table blocks

Prop. of images

Max. Header depth

Avg. text size

Avg. code size

Avg. table size

Avg. # topics

Avg. # task phrases

Avg. # links

Prop. internal links

(d) Javascript

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

P
ro

p.
 o

f t
ex

t b
lo

ck
s

P
ro

p.
 o

f c
od

e
bl

oc
ks

P
ro

p.
 o

f h
ea

de
r

bl
oc

ks

P
ro

p.
 o

f t
ab

le
 b

lo
ck

s

P
ro

p.
 o

f i
m

ag
es

M
ax

. H
ea

de
r

de
pt

h

A
vg

. t
ex

t s
iz

e

A
vg

. c
od

e
si

ze

A
vg

. t
ab

le
 s

iz
e

A
vg

. #
 to

pi
cs

A
vg

. #
 ta

sk
 p

hr
as

es

A
vg

. #
 li

nk
s

P
ro

p.
 in

te
rn

al
 li

nk
s

P
ro

p.
 e

xt
er

na
l l

in
ks

blocks

Prop. of text blocks

Prop. of code blocks

Prop. of header blocks

Prop. of table blocks

Prop. of images

Max. Header depth

Avg. text size

Avg. code size

Avg. table size

Avg. # topics

Avg. # task phrases

Avg. # links

Prop. internal links

(e) Typescript

Fig. 3: Correlation between properties for significant relations in each programming language. Only the significant results
(α = 9.5× 10−5; p < α) are shown. The colors correspond to Pearson’s correlation coefficient values.

resources for detailed discussions of subtopics.15

C. Correspondence of Properties to Website Traffic

Software developers rate the inclusion of code examples and
explanations as very important in API documentation [31],
[32]. To determine whether the properties of a resource relate
to user traffic, we analyzed the correspondence between each
resource property we extracted and each website traffic metric
(last three columns in Table I). Figure 4 shows a scatter plot:
each resource (a point on the plot) is mapped to the proportion
of code in the resource (x-axis) and the average visit duration
for the corresponding website (y-axis). The remaining pair-
wise plots are available in our replication package.

Analysing the density and range of the distribution of points
across the x-axis provides insight into whether certain property
values may correspond to a particular level of traffic. We
observe no clear trend that a certain proportion of code (or
any other property) corresponds to a particular amount of time
that a user spends on the website’s page (or any other traffic
metric). This may be attributed to the fact that users have
different, even contrasting, preferences about the design of

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Prop. of code blocks

1

2

3

4

5

6

Vi
sit

 D
ur

at
io

n
(m

in
s)

csharp java javascript python typescript

Fig. 4: Distribution of the proportion of code blocks (from
Table III), against the average number of minutes per visit for
the corresponding website.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

documentation, which may be backed by some beliefs based
on their prior resource seeking experience [13].

D. From Properties to Styles

We observe the open ended-nature and flexibility of tutorial
content and organization. For example, resources have, on
average, more text paragraphs than code fragments, and fewer
tables and images. Furthermore, for the majority of property
distributions, the density of resources is larger around the
median. This indicates the existence of implicit normative
values for resources for a particular programming language.
Still, no property emerges as uniform across resources.

Resource creators can use the property distributions and
correlations to identify gaps in existing tutorial offerings,
e.g. visual elements that programmers prefer [12]. Resource
seekers can leverage the properties to target resources whose
content and layout is familiar or convenient to them. However,
to do so, there is a need to characterize a particular resource
relative to other resources, thus identifying it among the pool
of varied designs. Furthermore, our observations of correlated
properties suggest that dimensions for organizing a software
tutorial [8] should not be considered independently. Rather,
designing a resource requires deliberation about how different
aspects of the resource complement one another.

IV. CHARACTERIZING RESOURCES

We answer our second research question how can we
systematically reason about the design of software technology
tutorials? by developing a framework for characterizing re-
sources based on how they deviate from the norm for each
of their properties. For example, TutorialKart’s “TypeScript
switch - Examples” resource16 is comparatively short, has longer
code snippets, and covers fewer topics than other Typescript
tutorials in our data set.

To identify these deviations, we use quartiles of the prop-
erty distribution across resources for the same programming
language. We normalize each property against the maximum
value of that property across resources such that all property
values lay in the unit interval. We use the middle two quartiles
of the property distributions across resources for the same
programming language to define the norm of a property for
a given programming language. For each property of each
resource, Pr, we create two binary attributes: less Pr and
more Pr. We assign less Pr as True if its value lies in the
first quartile of the distribution and more Pr as True if its
value lies in the fourth quartile. We refer to the properties
along with their polarity as attributes and provide a mapping
between the 15 properties and the corresponding 30 possible
attributes in Table IV.

For every attribute, we determine its deviation, i.e. the
absolute distance of the property value for the resource from
the closest quartile. The deviation is given by d(Pr) =
|x(Pr) − qi(P)| where x is the value of the property Pr

for the target rth resource, and qi is the value of either the
second or fourth quartile, as applicable, of property P . For
each resource, we define the attributes that have any deviation
for that resource, as distinguishing attributes.

TABLE IV: Mapping of Less or More of a property (from
Table III) to an attribute of a resource.

Property Inference of Less Inference of More

blocks Short Long
Prop. of text blocks Text-light Text-heavy
Prop. of code blocks Code-light Code-heavy
Prop. of header Contiguous Fragmented

blocks
Prop. of table blocks Table-light Table-heavy
Prop. of images Image-light Image-heavy
Max. header depth Flat Hierarchical
Avg. text size With-short-paragraphs With-long-paragraphs
Avg. code size With-short-snippets With-long-snippets
Avg. table size With-short-tables With-long-tables
Avg. # topics Topic-light Topic-heavy
Avg. # task Non-task-oriented Task-oriented

phrases
Avg. # of links Link-light Link-heavy
Prop. internal links Not-cross-linked Cross-linked
Prop. external links Without-external-links With-external-links

Our observations from Section III suggest that treating each
property of a resource in an isolated manner will result in
neglecting the significant associations between them. Instead,
understanding the design of resources requires investigation
into how different properties co-occur in resources. We extend
this observation to attributes. We propose the formalization of
a resource style as a combination of distinguishing attributes
of a resource. For example, TutorialKart’s “TypeScript switch -
Examples” resource mentioned earlier has three distinguishing
attributes, which together form the characterizing resource
style: Short With-long-snippets Topic-light. Since distinguish-
ing attributes represent how a resource is different from others
in its presentation, the style characterizes a resource’s design.

A resource style may be a combination of up to 15 attributes
due to the mutual exclusiveness of attributes of opposed
polarity (e.g., Short vs. Long). However, as the number
of distinguishing attributes increases, the interpretability and
practical significance of the style can decrease. We introduce
three techniques to identify context-relevant resource styles.
The prominent style act as a resource’s identifier, providing
resource seekers with a simple summarized interpretation of
the design of the resource. Recurring styles provide insights on
the current landscape of tutorials that can inform resource cre-
ators’ design process. User-defined styles allow both resource
creators and seekers to systematically reason about the design
of resources related to their own preferences. We motivate
each with their practical use and discuss observations from
applying each technique.

A. Prominent Style

The prominent style is the set of distinguishing attributes of
a resource which most differentiate it from other resources.

Motivation: Although search engines reduce the search
space, resource seekers are still required to make decisions
between resources to determine which are more pertinent to
their needs. Searchers use scents [10], [33] or cues [13] from
meta information to find the information they need, however
this may be implicit. Instead, a concise and explicit elicitation

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

TABLE V: Distinguishing attributes (d.a.) in the prominent styles (n=3) for all resources. The number in parentheses refers to
the proportion of resources in that language that contains the corresponding attribute(s) in its prominent style.

Nth d.a 1 2 3 4 Most freq. prominent style
Java Cross-linked (0.22) Flat (0.21) Code-light (0.18) Code-heavy (0.18) Flat Text-heavy Code-light

(0.036)
C# Cross-linked (0.21) With-external-links (0.20) Code-heavy (0.20) Contiguous (0.18) Contiguous Flat Code-heavy

(0.020)
Python With-external-links (0.20) Code-heavy (0.20) Topic-heavy (0.17) Code-light (0.17) Long Hierarchical With-external-links

(0.024)
Javascript Cross-linked (0.23) Image-heavy (0.21) With-external-links (0.20) Code-heavy (0.19) Long Contiguous With-external-links

(0.029)
Typescript Cross-linked (0.24) Image-heavy (0.20) Table-heavy (0.17) Fragmented (0.17) Contiguous Text-heavy Cross-linked

(0.034)

of the unique aspects of a resource can support the cue-
following process, and comparison of resources.

Identification: The prominent style is the set of n distin-
guishing attributes with the largest deviation values. For ex-
ample, the Python TutorialsPoint resource on sending emails17

has five distinguishing attributes. However, with n=3, its
prominent style is identified as Code-light, With-long-snippets,
Task-oriented because these attributes have the largest devia-
tion for the resource.

Observations: Table V shows the most frequent distin-
guishing attributes in the prominent styles for each program-
ming language.(k) For all the languages, the most frequent
attribute is related to the links present in the resource. The
deviations in the proportion of internal and external links is
evident in the bulges shown in Figure 2 that lie on the end of
the range, further away from the median. As another example,
Code-heavy appears as a frequent distinguishing attribute in
all languages except Typescript, because the distribution of
the proportion of code blocks in Typescript is symmetric as
opposed to the other languages (see Figure 2e).

B. Recurring Style

A recurring style is the set of distinguishing attributes that
occurs among multiple resources for a programming language.

Motivation: Resource creators are faced with a number of
design choices when creating resources [8]. To make informed
choices about the content and organization of a resource, it is
useful to assess existing resources [34]. The recurring styles
provide an opportunity for resource creators to formally eval-
uate whether existing designs overcome organization-related
issues that users have expressed regarding documentation [35],
[36]. Subsequently, creators can choose to follow existing
recurring styles or identify and fill relevant design gaps.

Identification: We use Formal Concept Analysis
(FCA) [37] to uncover recurring styles across resources
for a programming language. FCA is a framework for data
analysis and knowledge discovery that is directly interpretable,
and thus transparent and reproducible for a given data set.

FCA leverages an incidence matrix between objects (in

(k)Based on the scaling of resource properties to binary attributes using
quartiles, an attribute can occur in a maximum of 25% of resources. Thus,
attributes can co-occur in a maximum of 25% of resources, since these
resources are the set intersection of resources that contain each of the co-
occurring attributes. In Table V, the frequencies of the attributes are less
than 0.25 because the prominent style for each resource is a subset of its
distinguishing attributes.

our case, resources) and their attributes (from Table IV)(l)

known as the formal context,(m) to explore latent relations.
This exploration is supported by a hierarchy of concepts
which are groups of objects, each called the extent, that
share some attributes, i.e. the intent. The hierarchy allows for
the subconcept-superconcept relation wherein the subconcept’s
intent and extent are the superset and subset, respectively,
of the superconcept’s intent and extent. The concepts are
complete, i.e. all possible combinations of attributes occurring
in the objects are identified. Our technique to identify recurring
styles involves attribute selection, formal concept selection,
and identifying relevant concepts.

a) Attribute selection: To mitigate the loss of inter-
pretability as the number of attributes increases, we use vari-
ance thresholding [39] to select attributes(n) with a non-zero
variance. This method is based on the notion that features with
the same value for all data provide no additional information
to a data modeling algorithm.

b) Formal concept selection: The total number of for-
mal concepts is a function of the number of objects and
the number of attributes in the formal context. We perform
context-specific(o) concept selection [45] to identify important
co-occurring attributes for resources. Our results from the
correlation analysis (see Section III-B) indicate that there exist
significant correlations between properties, which can cause
the constant co-occurrence of two attributes. For example,
we observed that Text-heavy frequently co-occurs with Code-
light. The formal context provides an opportunity to investigate
more complex co-occurrences of multiple attributes, and thus
we retain concepts with at least four attributes. Additionally,
we retain concepts with at least five resources in the extent
because the practical significance of a concept in our study
decreases with fewer resources.

c) Identifying relevant concepts: We use support and
stability metrics to investigate relevant concepts for each
language. The support, given by the proportion of all objects
that are in the concept’s extent, is a measure of frequency [46].

(l)The procedure we used to convert the resource properties to binary
polarized attributes is an FCA technique known as conceptual scaling [38].

(m)We used Python’s concepts API to build the formal context.
(n)Prior attribute selection techniques are text-based [40], [41] and thus not

applicable to our data. Others leveraging the distribution of objects [42] or
distribution of attributes [43], rely on the size of the data set which would be
biased by our attribute scaling technique. We also explored Correspondence
Analysis [44], but found no clear representative dimensions.

(o)Note: context of our research, not formal context.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

TABLE VI: Recurring Resource Styles in our data set for Java and Python resources.

Recurring Style Stability Support NR Websites LNRW NRWM

Java Oracle
Short Flat Text-heavy Code-light With-short-snippets 1.0 0.075 59 57 (Oracle) 57
Short Contiguous Flat Text-heavy 1.0 0.057 45 44 (Oracle) 44
Text-heavy With-long-paragraphs Code-light With-short-snippets 1.0 0.071 56 46 (Oracle) 46
With-long-paragraphs Code-light With-short-snippets Topic-heavy 1.0 0.06 47 35 (Oracle) 35
Text-heavy Code-light With-short-snippets Topic-heavy 1.0 0.053 42 35 (Oracle) 35
Short Flat With-long-paragraphs Code-light With-short-snippets 0.99 0.06 47 46 (Oracle) 46

Python
Python Tutorial
Text-light Table-heavy With-long-tables Link-light 1.0 0.039 22 13 (JavaTPoint) 0
Fragmented Code-light Table-heavy With-long-tables 0.999 0.046 26 6 (W3Schools) 2
Short Fragmented Text-light Non-task-oriented 0.997 0.036 20 8 (BeginnersBook) 1
Text-heavy With-long-paragraphs Code-light Image-heavy 0.997 0.041 23 13 (Guru99) 0
Text-heavy With-long-paragraphs Code-light Topic-heavy 0.994 0.039 22 7 (Guru99) 0
With-long-paragraphs Code-light Image-heavy Topic-heavy 0.994 0.039 22 11 (Guru99) 0
Short Fragmented Text-light Link-light 0.991 0.03 17 6 (W3Schools) 0
Fragmented With-long-paragraphs Code-light With-short-snippets 0.99 0.039 22 8 (Guru99) 0
Text-heavy With-long-paragraphs Code-light With-short-snippets 0.989 0.037 21 8 (Guru99) 1
Fragmented With-long-paragraphs Code-light Topic-heavy 0.985 0.037 21 7 (Guru99) 0
With-long-paragraphs Code-light Image-heavy Link-heavy 0.985 0.036 20 17 (Guru99) 0
Short Fragmented Code-light With-short-snippets 0.983 0.03 17 6 (W3Schools) 1
Short Text-heavy Code-light With-short-snippets 0.981 0.03 17 4 (BeginnersBook) 2

NR — Number of Resources of the style,
Websites — The distribution of resources from different websites that correspond to the style,
LNRW — Largest Number of Resources of the style from a single Website,
NRWM — Name and Number of Resources of the style from the Website containing the Maximum resources for the programming language (see Table I)

Stability is a measure of cohesion [47]: “A concept is stable if
its intent does not depend much on each particular object of
the extent.” [48] To calculate stability of each concept, we use
the algorithm presented by Roth et al. [49] such that a value
close to one indicates high stability. We use a threshold of
20 to identify concepts with the highest support and stability
values,(p) as frequent, stable concepts [46]. Because formal
concepts are hierarchical in nature, the set of concepts obtained
may contain subconcepts. Since our focus is on specific design
differences between resources, we retrieve only the maximal
concepts, i.e. those concepts which have no subconcepts within
the selected set of concepts.

The intent of a maximal frequent, stable concept is the set of
the co-occurring attributes that cohesively occur for multiple
resources. We refer to the intents of the maximal frequent,
stable concepts as recurring resource styles.

Observations: We identified between six and 14 recurring
styles for each programming language. Table VI shows the
styles identified for Java and Python.(q) Every row provides
information about one recurring style. The first column of the
table indicates the combinations of attributes (from Table IV)
that form the style, e.g. Short Contiguous Flat Text-heavy is a
recurring style for Java.

The identification of recurring styles provides insight into
how the set of available resources are designed in the doc-
umentation landscape. For example, of the total 53 recurring
styles, only three occur for more than one language:

(p)Jay et al. [46] used percentage thresholds to filter relevant concepts. We
use an absolute threshold value of 20 concepts to avoid the dependency on
the total number of concepts.

(q)Our results of the intermediary steps and the recurring styles for other
programming languages are available in our replication package.

• Text-heavy With-long-paragraphs Code-light With-short-
snippets (Java and Python) focuses on textual expla-
nations, as opposed to code snippets, e.g. where code
snippets only serve to demonstrate a topic.18

• Short Fragmented Code-light With-short-snippets (Python
and Javascript) creates small sections to address focused
information, e.g. installation related pages.19

• Fragmented Text-light Table-heavy With-long-tables (C#
and Javascript) delegates some information to a table.20

Although all the styles have a stability between 0.69 and
1, they occur in at maximum 7.5% of the resources for each
language. This uniqueness among styles indicates that there
is no natural progression towards a small set of common and
distinct recurring styles, a possible consequence of the many
design decisions taken during resource creation [8].

Whereas Python recurring styles are distributed across web-
sites (column labelled ‘Websites’ in Table VI), we observe
that many styles for the other languages are dominated by
a particular website. This is the result of two compounding
reasons, which we elaborate using the dominance of Ora-
cle tutorials for Java recurring styles as an example. First,
resources from the same website, in comparison to other
resources, have similar distinguishing attributes. Figures 5a
and 5b show the distributions of properties for Java Oracle
and non-Oracle resources.(r) Although the density of Java
resources varies over a larger range (e.g. proportion of text
blocks, average code size), the bulges tend towards one end
of the range, corresponding to the first and fourth quartiles of
the distribution. This abnormal behaviour is captured during

(r)We removed the abnormally long resource TutorialsPoint Java Quick
Guide21 to make a comparison.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

0

50

100

0.00

0.25

0.50

0.75

1.00

1

2

3

4

2

4

6

8

0

20

40

60

80

0

50

100

150

200

0

2

4

6

0

2

4

0

1

2

3

0.00

0.25

0.50

0.75

1.00

(a) Java Oracle Resources

0

50

100

0.00

0.25

0.50

0.75

1.00

1

2

3

4

0

10

20

0

20

40

60

0

25

50

75

100

0

2

4

6

0

1

2

3

4

0

5

10

15

0.00

0.25

0.50

0.75

1.00

(b) Java Non-Oracle Resources

bl

oc
ks

20

30

40

50

Pr
op

. o
f t

ex
t b

lo
ck

s

Pr
op

. o
f c

od
e

bl
oc

ks

Pr
op

. o
f h

ea
de

r b
lo

ck
s

Pr
op

. o
f t

ab
le

 b
lo

ck
s

Pr
op

. o
f i

m
ag

es

0.00

0.25

0.50

0.75

1.00
M

ax
. H

ea
de

r d
ep

th

2

3

4

Av
g.

 te
xt

 si
ze

1.0

1.5

2.0

2.5

Av
g.

 c
od

e
siz

e

0

5

10

15

20

Av
g.

 ta
bl

e
siz

e

0

2

4

6

8

Av
g.

 #
 to

pi
cs

0.0

0.5

1.0

Av
g.

 #
 ta

sk
 p

hr
as

es

0.5

1.0

1.5

2.0

2.5

Av
g.

 #
 li

nk
s

0.0

0.2

0.4

Pr
op

. i
nt

er
na

l l
in

ks

Pr
op

. e
xt

er
na

l l
in

ks

0.00

0.25

0.50

0.75

1.00

(c) Typescript Tutorialkart Resources

Fig. 5: Variations of extracted properties in Java Oracle, Java not-Oracle, and Typescript TutorialKart resources. The red line
indicates the median of the distribution.

concept scaling. Second, resources from the same website
have frequently co-occurring distinguishing attributes. The
most frequent recurring style, when identified for only Java
Oracle resources, occurs in 57 resources. For non-Oracle
resources, the most frequent style occurs in only 21 resources,
indicating that more Java Oracle resources have co-occurring
distinguishing attributes than non-Oracle resources do.

Recurring styles can also provide insight into website-
specific design. We observe that TutorialKart is the only
website for which no resources correspond to a resource style.
This is because most properties of TutorialKart resources lie in
the middle two quartiles of the distributions of all Typescript
properties (compare Figure 5c and Figure 2e), and thus do not
have co-occurring distinguishing attributes that are captured
by the resource styles.

C. User-defined Style

A user-defined style is a combination of attributes explicitly
selected by a user, e.g. a resource creator or seeker.

Motivation: The identification of prominent and recurring
styles are helpful for reasoning about the design of resources,
individually and in the context of other resources within the
software documentation landscape. However, creators may
want to refer to existing resources that are designed similarly
for inspiration. Resource seekers may already be aware about
their resource design preferences [13], [50] during search. For

both cases, the user-defined style enables the elicitation of
attributes that are important to the user, to subsequently find
corresponding, pertinent resources to the user’s needs.

Identification: A user states m attributes that are pertinent
to their needs, e.g. a1, a2, a3. Then, we retrieve all resources
for which these m attributes are distinguishing attributes.

Observations: The user-defined style allows users to re-
trieve resources that are most pertinent to their needs. For
example, a resource seeker looking to solve specific problems
with TypeScript can specify the style: Short Text-light Task-
oriented. The resource seeker is presented with twelve appro-
priately designed resources, e.g. how to implement classes.22

To explore further, they indicate Code-heavy Topic-heavy. Our
technique retrieves eight resources that correspond to this
style, and the resource seeker easily identifies one that provides
more code snippets and covers a wider range of topics related
to creating classes.23 Thus, the user-defined style reduces
the load on the user to manually identify which of the 172
Typescript resources correspond to their design preferences.

Similarly, a resource creator could intend to create a re-
source with a hands-on approach by providing more code
snippets and visual elements like images. They specify Code-
heavy Image-heavy to get an idea about existing resources.
They find only four resources designed in this manner; this
motivates the creator that their new resource can help fill the
documentation gap for visual learning.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

D. Discussion

The proposed framework for characterizing resources based
on combinations of distinguishing attributes supports a sys-
tematic way to reason about resource design. As a result,
the framework supports the comparison of multiple resources
based on their design. For example, both the C# Geeks-
ForGeeks resource on the switch statement24 and the C#
TutorialsTeacher resource on the same topic25 are Contiguous.
However, whereas the latter is characteristically Code-heavy,
the former is Text-heavy, With long snippets and Cross-linked.

The low frequency of prominent styles and lack of notable
recurring styles indicates that there is no universal resource
style: a challenge for automating tutorial creation. Instead,
selecting what and how to present relevant information in auto-
matically generated documentation depends on the information
needs of a potential user given their task [51]. Our framework
to characterize resources by their context-specific styles can
be leveraged to inform the creation of flexible tutorials.

V. LIMITATIONS

Our property extraction technique depends on the source
HTML of the resources, causing it to be prone to error in
the case of noisy, or inconsistent structure. For example, the
PythonDocs Appendix resource26 does not follow the same
HTML structure as other resources on the same website.
Our automated property extraction retrieved zero text blocks,
causing all text-related properties, i.e. task phrases, topics,
and links to also be zero. We also leveraged external tools
such as the JSI Wikifier and TaskNav to assist in the ex-
traction of properties, despite them having imperfect accuracy
and precision. We made deliberate decisions based on our
investigation of the resources. For example, we did not count
cells with three or fewer characters while computing the
size of a table, to avoid double-digit indices followed by
a delimiting character. However, this technique disregards,
for example, cells with regular expression characters.27 An
alternative would be to build heuristics to match indexes in
the resource set. Similarly, we chose not to consider tables
when extracting task phrases and wiki topics. This avoids
identifying briefly mentioned topics such as Path(s) in the
table in the Java Official resource “Object Ordering”.28 Any
relevant topics should also be presented in the main text,
and thus captured in our analysis. However, there exist some
resources which format all information into tables.29 Pursuing
perfect property extraction is time-intensive. In line with our
goal to determine how properties can be used to characterize
resources, we focus our research effort towards investigating
how the properties co-occur. We leave the improved and
optimized extraction of properties to future work.

We applied Bonferroni correction when verifying the corre-
lations between resource properties. However, this technique
is conservative and may have resulted in missed significant
correlations [52]. We supplement the analysis with the char-
acterization of resources based on property co-occurrences.

We retrieved traffic-related metrics (see Table I) per website.
Our preliminary investigation to retrieve and use resource

(s)http://en.wikipedia.org/wiki/Path (computing)

mentions on Stack Overflow as a proxy for popularity of
each resource revealed that only 981 resources (out of 2551)
were referenced.(t) Instead, a true representation of a resource’s
popularity would involve accounting for proxy URLs, link
redirections, parameters, and fragments of the resource’s URL.
Due to practical limitations of computing this traffic accu-
rately, we leave further investigation of the relation between
design properties and resource popularity to future work.

The resource set in this study is a convenience sample
based on popularity of technologies, and ranking by the search
engine DuckDuckGo. With the variation of properties for a
website, we concluded that using stratification techniques to
balance the data set with a proportional number for resources
from different websites would result in a misrepresentation
of resources available online. We observe that styles are
influenced by similar co-occurring attributes, irrespective of
the website. For example, despite JavaTPoint resources making
up 57% of Javascript resources, not all recurring styles occur in
JavaTPoint resources. As a result, we deliberately disregarded
the website during data analysis, and report our observations
treating each resource equally as an independent web page.

Our observations of resource styles in 2551 resources
demonstrate that our framework can provide interpretable
and useful insights about resources. We focus on the design
of resources, and thus disregard the technical topics the
resources cover when applying our framework. We propose
the framework as a way to characterize resources about similar
technology topics, and assume that topic pertinence is handled
separately and parallely to the identification of the resource’s
design. Our design analysis framework may be expanded to
include properties identified in other tutorials, or even other
documentation types. Furthermore, the framework may also
be applied in other use-cases with new, more appropriate
techniques to identify other combinations of co-occurring
attributes as resource styles. We also provide the necessary
data to investigate variations of properties and styles within
websites and across programming languages.

VI. RELATED WORK

Our work is related to prior literature on the design of soft-
ware documentation and patterns in documentation. We also
discuss previous work that applies Formal Concept Analysis,
the technique which we rely on to identify recurring styles.

A. Design of Software Documentation

Much prior research has concentrated on the information
content of software documents [25], [53] and the style of
the information presented [22], [54]. Angelini studied the
API reference documentation of eight web applications and
reported variations in the way information was presented, e.g.
in some cases, a separate section was dedicated to the syntax
or description of an API, and in others, the information was
not clearly labeled [55].

Tiarks and Maalej performed an exploratory study of 1274
tutorials on Android, Apple iOS, and Windows Phone OS

(t)We identified the number of mentions of the resource URLS in Stack
Overflow answers present in the Stack Exchange Data Dump of June 2023.

http://en.wikipedia.org/wiki/Path_(computing)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

to understand the nuances in mobile app development tu-
torials [9]. In prior work, we studied the design of three
Android tutorials from different sources [8]. In both studies,
the researchers reported how tutorials varied in structure and
content, with the latter study providing a set of guidelines for
thinking about the consequences of different design decisions.
Head et al. analysed the structure of code snippets in 200
online tutorials to inform the creation of Torii, a tool to
generate tutorials from linked source code [56].

Tang and Nadi developed and evaluated a tool to summarize
nine metrics related to the quality of documentation including
readability and ease of use [57]. Despite methods to evaluate
the quality of documentation [58], there is no consensus
about how documentation should be designed. The Diátaxis
documentation framework consists of four structural modes,
tutorials, How-Tos, reference, and explanation and provides
guidelines for the overall content and styling of each mode [6].
Other research focuses on specific low-level aspects such as
manually identifying what kind of information about code
snippets can be extracted from software documents [53].
Although prior work elicits design implications based on
difficulties with learning software [26] and guidelines to design
documentation [59], these studies focus on documentation for
Application Programming Interfaces (APIs). In this work, we
use a semi-automated, data-driven approach to characterize
tutorials based on their design.

B. Patterns in Documentation

Dagenais and Robillard defined documentation patterns
as coherent sets of code elements that are documented to-
gether [60]. They proposed AdDoc, an automated method to
capture these patterns in the documentation of frameworks. In
a previous study, we observed that between 11% and 56% of
API information providing sentences in a sample of tutorials
for Java and Python could be replaced by their API reference
documentation counterparts [61]. We proposed an information
reuse pattern to support such systematic reuse of information
between the two documentation types.

Researchers have proposed methods to document frame-
works [62], [63]. Butler et al. proposed a reuse case which
documents the reuse of a framework [64]. A reuse case cate-
gorizes the type of documentation that is used in a particular
category of framework reuse, e.g. while selecting a framework,
and the aspects of reuse, e.g. the granularity in terms of
class methods. In contrast, we propose the characterization
of resources based on their styles and support the grouping of
resources based on recurring styles.

C. Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical
technique to identify concepts as a set of objects and
their common attributes (see Section IV) [65]. In the
context of software, FCA has been used to model common
and uncommon features of different software product
variants [66]–[69]. Prior work has investigated the ability to
characterize code by the relations between classes, to support
code analysis [70] and to identify design patterns [71]. As

a result of literature surveys conducted by Tilley et al. [72]
and Ferré et al. [73], and an investigation into FCA for data
mining by Valtchev et al. [74], the authors emphasise the
potential of FCA for knowledge discovery in a variety of
domains, including software engineering. We leverage FCA
to elicit commonly co-occurring combinations of resource
properties as recurring resource styles.

Fourney and Terry emphasised that tutorial content must
be formalized, because varying communication techniques
pose a challenge to machine understanding and generation
of tutorials [75]. Mehlenbacher elicited that documentation
development involves establishing design goals to ensure
usability of documentation [34]. In prior work, we found that
resource seekers have preferences about the style of resources
they would like to access [13], and use cues to find such
resources. To support resource creation and resource seeking,
we propose a framework for systematically reasoning about
the design of software tutorial resources.

VII. CONCLUSION

We examined the extent to which properties of online
technology resources vary in the five programming languages:
Java, C#, Python, Javascript, and Typescript. Our observations
of property distributions and correlations reveal that resources
cannot be characterized by their properties in isolation, and in
a mutually exclusive manner. We propose the representation
of resources by their properties that deviate from the norm
as distinguishing attributes. We formalize the concept of a
resource style as a combination of co-occurring distinguishing
attributes, as part of a framework to characterize resources
based on their design. We leverage our framework to imple-
ment three techniques to identify relevant resource styles. We
apply these techniques on our data set of 2551 resources. We
discovered that no resource style in any particular program-
ming language is more notable than the rest. The variety of
styles observed indicate that there is a wide range of design
choices for resource creators and seekers.

This works contributes an understanding of the current state
of software technology tutorials, a framework for character-
izing resources and the resource landscape based on design
properties, and practical applications of this framework. Re-
source creators can use our framework to make decisions about
whether to align with or deviate from the styles of existing
resources. Resource seekers can use the resource styles to elicit
their requirements for a learning resource. Our findings can
also inform an augmented search system wherein prominent
resource styles can be displayed on a search results page
as informative potential cues for programmers to use during
their search. Our framework can be modified to investigate
different aspects of the software tutorial landscape in a context-
specific manner. For example, we can leverage the recurring
styles to determine whether certain styles are frequent among
resources that cover particular technology topics. Additionally,
our framework for reasoning about the design of resources can
be applied to other types of resources for other technologies.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

ACKNOWLEDGEMENTS

We thank Mathieu Nassif, Jessie Galasso-Carbonnel, and the
anonymous reviewers for their valuable insights and feedback.
This work is funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

RESOURCE REFERENCES

1. https://learnpython.org/en/Numpy Arrays
2. https://learnpython.org/en/Pandas Basics
3. https://www.javatpoint.com/difference-between-namespaces-and-modules
4. https://beginnersbook.com/2013/03/constructors-in-java/
5. https://www.javatpoint.com/convert-object-to-array-in-javascript
6. https://www.w3schools.blog/union-type-typescript
7. https://www.javatpoint.com/instance-initializer-block
8. https://www.javatpoint.com/how-to-enable-javascript-in-my-browser
9. https://www.javatpoint.com/design-patterns-c-sharp
10. https://www.guru99.com/date-time-and-datetime-classes-in-python.html
11. https://www.tutorialspoint.com/javascript/javascript events.htm
12. http://csharp.net-informations.com/gui/cs-scrollbars.htm
13. https://www.educba.com/logical-operators-in-c-sharp/
14. https://docs.oracle.com/javase/tutorial/collections/interfaces/order.html
15. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data structures
16. https://www.tutorialkart.com/typescript/typescript-switch-
17. https://www.tutorialspoint.com/python/python sending email.htm
18. https://www.guru99.com/java-platform.html
19. https://www.javatpoint.com/how-to-install-python
20. http://csharp.net-informations.com/statements/enum.htm
21. https://www.tutorialspoint.com/java/java quick guide.htm
22. https://www.w3schools.blog/class-in-typescript
23. https://www.typescripttutorial.net/typescript-tutorial/typescript-class-
24. https://www.geeksforgeeks.org/switch-statement-in-c-sharp-
25. https://www.tutorialsteacher.com/csharp/csharp-switch
26. https://docs.python.org/3/tutorial/appendix.html
27. https://docs.oracle.com/javase/tutorial/essential/regex/quant.html
28. https://docs.oracle.com/javase/tutorial/collections/interfaces/order.html
29. https://www.tutorialspoint.com/javascript/javascript operators.htm

REFERENCES

[1] C. Parnin and C. Treude, “Measuring API documentation on the web,”
in Proceedings of the International Workshop on Web 2.0 for Software
Engineering, 2011.

[2] V. Phoha, “A standard for software documentation,” in Computer, 1997.
[3] R. Ries, “IEEE standard for software user documentation,” in Proceed-

ings of the International Conference on Professional Communication,
Communication Across the Sea: North American and European Prac-
tices, 1990.

[4] “Ieee standard for information technology–systems design–software
design descriptions,” IEEE STD 1016-2009, 2009.

[5] H. Van Der Meij and M. Gellevij, “The four components of a procedure,”
IEEE Transactions on Professional Communication, 2004.

[6] D. Procida, “Diátaxis documentation framework.” [Online]. Available:
https://diataxis.fr/

[7] B. Dagenais and M. P. Robillard, “Creating and evolving developer doc-
umentation: Understanding the decisions of open source contributors,” in
Proceedings of the International Symposium on Foundations of Software
Engineering, 2010.

[8] D. M. Arya, M. Nassif, and M. P. Robillard, “A data-centric study of
software tutorial design,” IEEE Software, 2021.

[9] R. Tiarks and W. Maalej, “How does a typical tutorial for mobile
development look like?” in Proceedings of the Working Conference on
Mining Software Repositories, 2014.

[10] P. Pirolli and S. Card, “Information foraging,” Psychological Review,
1999.

[11] H. Li, Z. Xing, X. Peng, and W. Zhao, “What help do developers seek,
when and how?” in Proceedings of the Working Conference on Reverse
Engineering, 2013.

[12] J. Escobar-Avila, D. Venuti, M. Di Penta, and S. Haiduc, “A survey
on online learning preferences for computer science and programming,”
in Proceedings of International Conference on Software Engineering:
Software Engineering Education and Training, 2019.

[13] D. M. Arya, J. L. C. Guo, and M. P. Robillard, “How programmers find
online learning resources,” Empirical Software Engineering, 2022.

[14] M. Käki, “Findex: Search result categories help users when document
ranking fails,” Technology, Safety, Community: Conference on Human
Factors in Computing Systems, 2005.

[15] M. Käki and A. Aula, “Findex: Improving search result use through
automatic filtering categories,” Interacting with Computers, 2005.

[16] X. Jin, N. Niu, and M. Wagner, “Facilitating end-user developers by
estimating time cost of foraging a webpage,” in IEEE Symposium on
Visual Languages and Human-Centric Computing, 2017.

[17] H. van der Meij and J. van der Meij, “A comparison of paper-based and
video tutorials for software learning,” Computers & Education, 2014.

[18] A. Hora, “Googling for software development: What developers search
for and what they find,” in Proceedings of the International Conference
on Mining Software Repositories, 2021.

[19] R. Ward, “The content and organisation of user documentation for
information systems,” in Colloquium on Issues in Computer Support
for Documentation and Manuals, 1993.

[20] J. P. Kincaid, R. P. Fishburne, R. L. Rogers, and B. S. Chissom,
“Derivation of new readability formulas (automated readability index,
fog count and flesch reading ease formula) for navy enlisted personnel,”
1975.

[21] R. P. Buse and W. R. Weimer, “Learning a metric for code readability,”
IEEE Transactions on Software Engineering, 2010.

[22] J. Karreman, N. Ummelen, and M. Steehouder, “Procedural and declar-
ative information in user instructions: what we do and don’t know
about these information types,” in Proceedings of the International
Professional Communication Conference, 2005.

[23] M. Nassif and M. P. Robillard, “Wikifying software artifacts,” Empirical
Software Engineering, 2021.

[24] C. Treude, M. P. Robillard, and B. Dagenais, “Extracting development
tasks to navigate software documentation,” IEEE Transactions on Soft-
ware Engineering, 2015.

[25] W. Maalej and M. P. Robillard, “Patterns of knowledge in API reference
documentation,” IEEE Transactions on Software Engineering, 2013.

[26] M. P. Robillard and R. Deline, “A field study of API learning obstacles,”
Empirical Software Engineering, 2011.

[27] A. T. Ying and M. P. Robillard, “Selection and presentation practices
for code example summarization,” in Proceedings of the Foundations of
Software Engineering, 2014.

[28] H. Abdi, “Bonferroni and Šidák corrections for multiple comparisons,”
Encyclopedia of measurement and statistics, 2007.

[29] E. R. Girden, ANOVA: Repeated measures. Sage, 1992.
[30] P. Rani, S. Abukar, N. Stulova, A. Bergel, and O. Nierstrasz, “Do

comments follow commenting conventions? a case study in Java and
Python,” in Proceedings of the International Working Conference on
Source Code Analysis and Manipulation, 2021.

[31] S. Inzunza, R. Juárez-Ramı́rez, and S. Jiménez, “API documentation: A
conceptual evaluation model,” in Advances in Intelligent Systems and
Computing, 2018.

[32] M. Meng, S. Steinhardt, and A. Schubert, “Application programming
interface documentation: What do software developers want?” Journal
of Technical Writing and Communication.

[33] P. Pirolli and W.-t. Fu, “SNIF-ACT: A model of information foraging
on the world wide web,” in Proceedings of the International Conference
on User Modeling, 2003.

[34] B. Mehlenbacher, “Documentation: not yet implemented, but coming
soon,” in The HCI Handbook: Fundamentals, Evolving Technologies,
and Emerging Applications, 2003.

[35] M. P. Robillard, “What makes APIs hard to learn? the answers of
developers,” Software, IEEE, 2009.

[36] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza, “Software documentation issues
unveiled,” in Proceedings of the International Conference on Software
Engineering, 2019.

[37] U. Priss, “Formal concept analysis in information science,” Annual
Review of Information Science and Technology, 2006.

[38] D. I. Ignatov, Introduction to formal concept analysis and its applica-
tions in information retrieval and related fields, ser. Communications in
Computer and Information Science, Cham, 2015.

[39] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang,
and H. Liu, “Feature selection: A data perspective,” ACM Computing
Surveys, 2017.

[40] J. M. Cigarrán, J. Gonzalo, A. Peñas, and F. Verdejo, “Browsing search
results via formal concept analysis: Automatic selection of attributes,”
in Concept Lattices, 2004.

[41] J. Cigarran, A. Castellanos, and A. Garcia-Serrano, “A step forward for

https://learnpython.org/en/Numpy_Arrays
https://learnpython.org/en/Pandas_Basics
https://www.javatpoint.com/difference-between-namespaces-and-modules
https://beginnersbook.com/2013/03/constructors-in-java/
https://www.javatpoint.com/convert-object-to-array-in-javascript
https://www.w3schools.blog/union-type-typescript
https://www.javatpoint.com/instance-initializer-block
https://www.javatpoint.com/how-to-enable-javascript-in-my-browser
https://www.javatpoint.com/design-patterns-c-sharp
https://www.guru99.com/date-time-and-datetime-classes-in-python.html
https://www.tutorialspoint.com/javascript/javascript_events.htm
http://csharp.net-informations.com/gui/cs-scrollbars.htm
https://www.educba.com/logical-operators-in-c-sharp/
https://docs.oracle.com/javase/tutorial/collections/interfaces/order.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://www.tutorialkart.com/typescript/typescript-switch-
https://www.tutorialspoint.com/python/python_sending_email.htm
https://www.guru99.com/java-platform.html
https://www.javatpoint.com/how-to-install-python
http://csharp.net-informations.com/statements/enum.htm
https://www.tutorialspoint.com/java/java_quick_guide.htm
https://www.w3schools.blog/class-in-typescript
https://www.typescripttutorial.net/typescript-tutorial/typescript-class-
https://www.geeksforgeeks.org/switch-statement-in-c-sharp-
https://www.tutorialsteacher.com/csharp/csharp-switch
https://docs.python.org/3/tutorial/appendix.html
https://docs.oracle.com/javase/tutorial/essential/regex/quant.html
https://docs.oracle.com/javase/tutorial/collections/interfaces/order.html
https://www.tutorialspoint.com/javascript/javascript_operators.htm
https://diataxis.fr/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

topic detection in twitter: An fca-based approach,” Expert Systems with
Applications, 2016.

[42] T. Hanika, M. Koyda, and G. Stumme, “Relevant attributes in formal
contexts,” Dec 2018. [Online]. Available: https://arxiv.org/abs/1812.
08868v1

[43] A. Castellanos, J. Cigarrán, and A. Garcı́a-Serrano, “Formal concept
analysis for topic detection: A clustering quality experimental analysis,”
Information Systems, 2017.

[44] O. Nenadic and M. Greenacre, “Correspondence analysis in r, with two-
and three-dimensional graphics: The ca package.” 2007.

[45] S. M. Dias and N. J. Vieira, “Concept lattices reduction: Definition,
analysis and classification,” Expert Systems with Applications, 2015.

[46] N. Jay, F. Kohler, and A. Napoli, “Analysis of social communities
with iceberg and stability-based concept lattices,” in Formal Concept
Analysis, ser. Lecture Notes in Computer Science, 2008.

[47] S. Kuznetsov, “On stability of a formal concept,” Annals of Mathematics
and Artificial Intelligence, 2007.

[48] S. Kuznetsov, S. Obiedkov, and C. Roth, “Reducing the representation
complexity of lattice-based taxonomies,” in Conceptual Structures:
Knowledge Architectures for Smart Applications, 2007.

[49] C. Roth, S. Obiedkov, and D. Kourie, “Towards concise representation
for taxonomies of epistemic communities,” in Concept Lattices and
Their Applications, 2008.

[50] R. H. Earle, M. A. Rosso, and K. E. Alexander, “User preferences
of software documentation genres,” in Proceedings of the International
Conference on the Design of Communication, 2015.

[51] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst,
M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vásquez, G. C.
Murphy, L. Moreno, D. Shepherd, and E. Wong, “On-demand developer
documentation,” in International Conference on Software Maintenance
and Evolution, 2017.

[52] S. Chen, Z. Feng, and X. Yi, “A general introduction to adjustment for
multiple comparisons,” Journal of Thoracic Disease, 2017.

[53] P. Chatterjee, M. A. Nishi, K. Damevski, V. Augustine, L. Pollock, and
N. A. Kraft, “What information about code snippets is available in differ-
ent software-related documents? an exploratory study,” in Proceedings
of the International Conference on Software Analysis, Evolution and
Reengineering, 2017.

[54] N. Ummelen, “The selection and use of procedural declarative in-
formation in software manuals,” Journal of Technical Writing and
Communication, 1996.

[55] G. Angelini, “Current practices in web API documentation,” in European
Academic Colloquium on Technical Communication, 2018.

[56] A. Head, J. Jiang, J. Smith, M. A. Hearst, and B. Hartmann, “Composing
flexibly-organized step-by-step tutorials from linked source code, snip-
pets, and outputs,” in Proceedings of the Conference on Human Factors
in Computing Systems, 2020.

[57] H. Tang and S. Nadi, “Evaluating software documentation quality,”
in Proceedings of the International Conference on Mining Software
Repositories, 2023.

[58] G. Ajam, C. Rodriguez, and B. Benatallah, “Scout-bot: Leveraging API
community knowledge for exploration and discovery of API learning
resources,” CLEI electronic journal, 2021.

[59] M. Meng, S. M. Steinhardt, and A. Schubert, “Optimizing API doc-
umentation: Some guidelines and effects,” in Proceedings of the Inter-
national Conference on Design of Communication, 2020.

[60] B. Dagenais and M. P. Robillard, “Using traceability links to recommend
adaptive changes for documentation evolution,” IEEE Transactions on
Software Engineering, 2014.

[61] D. M. Arya, J. L. C. Guo, and M. P. Robillard, “Information correspon-
dence between types of documentation for APIs,” Empirical Software
Engineering, 2020.

[62] R. E. Johnson, “Documenting frameworks using patterns,” in Pro-
ceedings of the Conference on Object-oriented Programming Systems,
Languages, and Applications, 1992.

[63] G. Butler, R. K. Keller, and H. Mili, “A framework for framework
documentation,” ACM Computing Surveys, 2000.

[64] G. Butler, P. Grogono, and F. Khendek, “A reuse case perspective on
documenting frameworks,” in Proceedings of the Asia Pacific Software
Engineering Conference, 1998.

[65] B. Ganter, R. Wille, and C. Franzke, Formal Concept Analysis: Mathe-
matical Foundations. Springer-Verlag, 1997.

[66] R. Al-Msie’Deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, and
H. Eyal-Salman, “Mining features from the object-oriented source code
of a collection of software variants using formal concept analysis
and latent semantic indexing,” in Proceedings of the International
Conference on Software Engineering and Knowledge Engineering, 2013.

[67] R. AL-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, and
H. E. Salman, “Feature location in a collection of software product
variants using formal concept analysis,” in Safe and Secure Software
Reuse, 2013.

[68] J. Galasso-Carbonnel, M. Huchard, A. Miralles, and C. Nebut, “Feature
model composition assisted by formal concept analysis,” in Proceedings
of the International Conference on Evaluation of Novel Approaches to
Software Engineering, 2017.

[69] J. Galasso-Carbonnel, M. Huchard, and C. Nebut, “Analyzing variability
in product families through canonical feature diagrams,” in Proceedings
of the International Conference on Software Engineering and Knowledge
Engineering, 2017.

[70] R. Godin and H. Mili, “Building and maintaining analysis-level class
hierarchies using galois lattices,” in Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications,
1993.

[71] F. Buchli, “Detecting software patterns using formal concept analysis,”
Master’s thesis, 2003.

[72] T. Tilley, R. Cole, P. Becker, and P. Eklund, “A survey of formal concept
analysis support for software engineering activities,” in Formal Concept
Analysis: Foundations and Applications, 2005.

[73] S. Ferré, M. Huchard, M. Kaytoue, S. O. Kuznetsov, and A. Napoli,
“Formal concept analysis: From knowledge discovery to knowledge
processing,” in A Guided Tour of Artificial Intelligence Research: Volume
II: AI Algorithms, 2020.

[74] P. Valtchev, R. Missaoui, and R. Godin, “Formal concept analysis for
knowledge discovery and data mining: The new challenges,” in Concept
Lattices, 2004.

[75] A. Fourney and M. Terry, “Mining online software tutorials: Challenges
and open problems,” in Proceedings of the Conference on Human
Factors in Computing Systems, 2014.

Deeksha M. Arya is a Ph.D. student in Computer
Science at McGill University. She works on investi-
gating how the search process of programmers can
be supported as they navigate the complex software
documentation landscape to find resources pertinent
to their needs.

Jin L.C. Guo is an Assistant Professor of Computer
Science at McGill University. She is interested in the
intersection between Software Engineering, Human-
Computer Interaction, and Artificial Intelligence.
Her recent projects in particular focus on software
traceability, OSS usability, and software document-
ation.

Martin P. Robillard is a Professor in the School of
Computer Science at McGill University. He received
his Ph.D. in Computer Science from the University
of British Columbia. His research is in the area
of software engineering, with an emphasis on the
human-centric aspects of software development.

https://arxiv.org/abs/1812.08868v1
https://arxiv.org/abs/1812.08868v1

	Introduction
	Data Collection
	Resource Collection
	Property Extraction

	Resource Properties
	Variations in Property Values
	Correlations Between Properties
	Correspondence of Properties to Website Traffic
	From Properties to Styles

	Characterizing Resources
	Prominent Style
	Recurring Style
	User-defined Style
	Discussion

	Limitations
	Related Work
	Design of Software Documentation
	Patterns in Documentation
	Formal Concept Analysis

	Conclusion
	References
	Biographies
	Deeksha M. Arya
	Jin L.C. Guo
	Martin P. Robillard

