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Unit tests must be readable to help developers understand and evolve production code. Most existing test quality metrics assess

test code’s ability to detect bugs. Few metrics focus on test code’s readability. One standard approach to improve readability is the

consistent application of conventions. We investigated test convention consistency as a dimension of test quality. We formalized test

suite consistency as the extent to which alternatives are used within a code base and introduce two complementary metrics to capture

this extent. We elaborated a catalog of over 30 test conventions for the Java language organized in 10 convention classes that group

mutual alternatives. We developed tool support to detect occurrences of conventions, compute consistency metrics over a test suite,

and view occurrences of conventions in the corresponding code. We applied our tools to study the consistency of the test suites of

20 large open-source Java projects. The study validates the design of the test convention classes, provides descriptive statistics on

the range of consistency values for ten different convention classes, and enables us to link observed changes in consistency values

to specific events in the change history of our target systems, thus providing evidence of the construct validity of the metrics. We

conclude that analyzing test suite consistency via static analysis shows promise as a practical approach to help improve test suite

quality.
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1 INTRODUCTION

Unit tests serve many purposes: they help detect faults, act as documentation, and facilitate debugging activities [16, 36].

The multi-purpose nature of unit tests makes it difficult to define what constitutes a high-quality test. Intuitively, a unit

test should measurably fulfill each of its purposes. Devising a metric that captures a test’s effectiveness at achieving all

three of its purposes is challenging because the factors influencing each purpose do not necessarily align. For example,

using a descriptive name makes a test more effective as documentation and facilitates debugging, but does not affect

the test’s ability to detect faults.

Researchers have proposed various metrics to estimate test quality. Most of these metrics evaluate the tests’ ability

to detect faults. Of all such metrics, code coverage—the ratio of production code executed by test code—is the most

widely researched in prior work and adopted by practitioners. Nevertheless, a recent study revealed that practitioners

find code coverage insufficient as a test quality metric [16]. They believe code coverage paints an incomplete picture of
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test quality as it fails to assess the test code’s ability to perform two of its three purposes: help developers understand

and debug production code.

Measuring whether test code is effective as documentation or facilitates debugging is a more elusive problem. In

both cases, fulfillment is impacted not only by the test’s design but also by the perception of the developer using

that test. Still, for tests to support documentation and maintenance, developers must be able to effectively read and

understand them. Past studies confirm this intuition by showing that practitioners deem readability crucial to achieving

high-quality tests [6, 16, 27]. This finding also aligns with various unit testing doctrines that include readability in their

guiding principles [28, 35].

Despite the perceived importance of readability, test code is significantly less readable than production code in

practice [17]. For example, Li et al. [30] found that more than half of the 212 developers surveyed experience “moderate”

to “very hard” difficulty understanding unit tests. Likewise, by surveying 225 developers, Daka and Fraser [8] identified

difficulty understanding tests as a main obstacle to fixing failing tests.

One widely accepted means of improving code readability is the consistent application of code conventions. As

evidence, Oracle’s main argument for adopting its Coding Conventions for the Java Programming Language is “[c]ode

conventions improve the readability of the software, allowing engineers to understand new code more quickly and

thoroughly” [40]. It is not necessarily the chosen conventions themselves that improve readability but rather the

uniformity they yield that reduces the cognitive load required to understand the code (see Section 6.1).

We investigate test convention consistency as one dimension of test quality. Any test suite may follow test conventions

that are alternative of each other. For example, one convention for naming test classes is to prefix the class name with

the string "Test", whereas an alternative convention is to use "Test" as a suffix instead. Alternative conventions naturally

form test convention classes (i.e., all alternative conventions for naming test classes). We formalize test suite consistency

as the extent to which the same alternative is used within a test convention class and introduce two complementary

metrics we designed to capture this extent. One metric, termed accuracy-based, relies on identifying a preferred, or

dominant, convention as a target. A second metric, termed entropy-based, leverages the concept of entropy to measure

the amount of uncertainty about which alternative of a convention class is used.

We designed a catalog of convention classes for Java projects. These convention classes cover different aspects

of the design and implementation of unit testing, including naming test classes and methods, naming variables that

store oracles and results in test implementations, test and assertion documentation, different aspects of testing for

exceptional behavior, and more. Each convention class in our catalog lists a number of alternative conventions, in most

cases mentioned in the grey literature on unit testing. We designed each convention class to provide an exhaustive set

of mutually-exclusive alternative conventions. For each convention class, we included background that explains why

we selected this convention and how it is relevant, design information that clarifies what the convention alternatives

map to in practice, and additional discussion and insights on the design choices we made.

Numerous important design decisions come into play when attempting to detect and interpret occurrences of test

conventions. We investigated the feasibility of supporting test convention consistency in practice by developing a

suite of tools that consists of a static analyzer for computing consistency data (TestComet) and a web application for

allowing users to obtain and view this data (Teslo). Developers can leverage a tool such as Teslo to understand which

conventions their team inherently prefers and to what degree. They can then make data-driven decisions about which

conventions to adopt team-wide and detect deviations. Moreover, we designed the tools to facilitate customizations and

understandability, mitigating two commonly cited barriers to adopting automated static analysis tools [3, 23, 63].
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Fig. 1. Test convention consistency concepts and their relationships.

Finally, we demonstrate how our consistency metrics enable methodical reasoning about the evolution of test suites.

Specifically, we report on a multi-case study of JUnit test suites for 20 notable open-source Java projects to explore the

potential of consistency analysis for quality assessment of evolving test suites. As part of this exploration, we performed

a detailed comparative analysis of the relation between the two metrics, analyzed global trends in the evolution of

test suite consistency, and analyzed specific consistency change events in the evolution of the projects. We report on

the consistency values we observed in practice for our catalog of convention classes, as well as more specific insights

about the relation between observed changes in metric values and specific events in the development history of the

systems under study. Ultimately, the case studies show how consistency metrics allow to reason more precisely and

quantitatively about one important aspect of test quality, thereby promoting awareness of its importance and providing

technical means for improving it.

This article makes four main contributions, each presented in a separate section. Section 2 provides the details

of our first contribution, namely a conceptual framework and corresponding metrics for measuring test convention

consistency. Section 3 provides our catalog of test convention classes. Section 4 contributes the design of TestComet

and Teslo, the tool infrastructure we developed to explore test convention consistency in practice. In Section 5, we

report on the empirical study of the consistency of 20 large Java projects. Finally, Section 6 discusses related work and

Section 7 concludes.

2 DEFINING TEST CONVENTION CONSISTENCY

We define the testing and related concepts we rely on and introduce two metrics to capture test convention consistency

in practice.

2.1 Problem Formulation

We cast the problem of measuring test convention consistency in the context of a software project that includes a

collection of unit tests we refer to as a test suite. The test suite may follow test conventions, some of which may be

alternatives of each other.

We define a test convention as a rule for implementing a specific aspect of a unit test or related code element. We

limit the scope of our work to conventions that can be automatically and unambiguously detected. For example, a rule

prescribing that the name of a class declaring unit tests should be composed of the name of the class being tested

followed by the word Test is an applicable test convention. In contrast, the principle that unit tests should execute

fast [35] does not qualify as a convention applicable to consistency checking. We distinguish between a test convention

(the rule) and a test convention occurrence (an instance of application of the rule). For example, a test class named

CalculatorTest is an occurrence of the test convention described above, which we refer to as Test Suffix.

Conventions can be alternatives of each other. We consider two or more test conventions to be alternatives if they

have the same focus, namely to achieve a specific code organization goal usually targeting the same code element (e.g.,

two conventions to name the class declaring the unit tests). We group alternative conventions into test convention
Manuscript submitted to ACM
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classes. An example of test convention class is Test Class Name, which groups alternatives for naming the test class. As

we have seen, one possible convention is Test Suffix, and another convention is Test Prefix. Figure 1 summarizes these

concepts and how they relate to each other.

When occurrences of two alternative test conventions (i.e., from the same convention class) co-exist in a test suite,

an inconsistency occurs. Our goal is to measure a test suite’s degree of test convention consistency as one dimension of

test quality.

2.2 Consistency Metrics

We introduce two complementary metrics to measure test convention consistency. Our primary goal was to design

test suite consistency metrics that do not require developers to have a priori knowledge of their team’s preferred

conventions.

Accuracy-based Test Suite Consistency (Consistency𝐴). To define an accuracy-based metric, we must identify one target

convention per convention class. We define the target convention to be the most frequent. The occurrence of any other

convention within the convention class constitutes an inconsistency. For example, if a test convention class 𝑇𝐶𝐶 has

three conventions 𝑡𝑐1, 𝑡𝑐2, 𝑡𝑐3 with, respectively, 50, 25, and 25 occurrences, then 𝑡𝑐1 is the target convention.
1
Given

fdist(𝑇𝐶𝐶) as the distribution of occurrence frequencies for a convention class 𝑇𝐶𝐶 , we define our accuracy-based

metric as:

Consistency𝐴 (𝑇𝐶𝐶) =
max(fdist(𝑇𝐶𝐶))
sum(fdist(𝑇𝐶𝐶))

In our example, we thus have Consistency𝐴 (𝑇𝐶𝐶) = 50/(50+25+25) = 0.5. The accuracy-based metric is prescriptive

and useful in cases where a team wants to enforce a single convention per convention class. However, the metric

is only sensitive to the number of occurrences of the target convention. As such, it is not sensitive to different

occurrence distributions. For example, the accuracy-based metric fails to differentiate between the following two test

convention classes, each of which has four conventions but different occurrence distributions: 𝑇𝐶𝐶1 = {50, 20, 15, 15}
and 𝑇𝐶𝐶2 = {50, 49, 1, 0}. In both cases, the metric yields a value of 0.5. Yet, the inconsistency exhibited by 𝑇𝐶𝐶2 is

arguably less detrimental to readability. Our other metric mitigates this shortcoming.

Entropy-based Test Suite Consistency (Consistency𝐸 ). The second metric leverages the concept of entropy. Shannon’s

entropy [51] is a nonnegative value that captures the amount of informational value (or “surprise”, or “uncertainty”)

communicated by a random variable. In our context, increasing the amount of information is undesirable as it requires

developers to spend more effort when reading the test suite. Because the additional informational value does not affect

the purpose or execution of the test, it constitutes noise. Thus, it is desirable to minimize entropy.

We illustrate this relation intuitively using a hypothetical test convention class𝑇𝐶𝐶 that comprises four conventions.

𝑇𝐶𝐶 has maximal entropy (and thus minimum consistency) when all four conventions occur with equal probability

(i.e., 25% of the time). In this case, developers can be maximally uncertain of which convention to expect when reading

an arbitrary test.

1
The calculation of the metric is not affected by cases where two or more conventions share a maximum frequency value, since the value of the metric is

only impacted by the maximum frequency value, independently of which convention class exhibits this frequency. In any case, a team wishing to improve

the consistency of their tests suite will always have to decide which convention to enforce among alternatives, whether they are equally frequent or not.
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Conversely, 𝑇𝐶𝐶 has minimum entropy (and thus maximum consistency) when one of the four conventions occurs

100% of the time. The developer is never surprised as they always encounter the same convention. Hence, the lower the

entropy of a test convention class, the more consistent it is.

In the context of convention classes, Shannon’s entropy is defined as

Entropy(𝑇𝐶𝐶) = −
∑︁
𝑡𝑐

𝑝 (𝑡𝑐)𝑙𝑜𝑔(𝑝 (𝑡𝑐))

where 𝑡𝑐 denotes a test convention in 𝑇𝐶𝐶 , 𝑝 (𝑡𝑐) is the probability of observing 𝑡𝑐 , and 𝑙𝑜𝑔 is the base 2 logarithm.
2
In

other words, the entropy is the arithmetic mean (i.e., average) of −𝑙𝑜𝑔(𝑝 (𝑡𝑐)), weighted by the probabilities themselves.

One way to interpret entropy is to consider its exponential. A test convention class with an entropy 𝐸 is as inconsistent

as a hypothetical class for which developers alternate randomly between 2
𝐸
conventions with uniform probability.

Thus, an entropy of 1 is equivalent to developers using 2
1 = 2 conventions, each for half of the tests, whereas an entropy

of 3 is as inconsistent as developers alternating between 2
3 = 8 conventions.

3

We derive a metric of consistency by taking the inverse of the previous exponential:

Consistency𝐸 (𝑇𝐶𝐶) =
1

2
Entropy(𝑇𝐶𝐶 ) = 2

−Entropy(𝑇𝐶𝐶 ) =
∏
𝑡𝑐

𝑝 (𝑡𝑐)𝑝 (𝑡𝑐 )

where

∏
denotes the product operator. Similarly to Consistency𝐴 , this metric takes values between 0 (exclusive) and 1

(inclusive), with higher values denoting more consistent test suites.

The product form in the formula above shows another interpretation of this metric: it is the geometric mean of the

probabilities, weighted by the probabilities. Thus, it represents the entire distribution of a test convention class, with an

emphasis on more frequent conventions. It follows from this observation that Consistency𝐸 cannot be higher than

Consistency𝐴 . Both consistency metrics return the same value only in situations where 𝑁 conventions are each used as

often as each other (the value in such situation is 1/𝑁 ). We provide a detailed examination of the relation between the

two metrics in Section 5.3.

If we revisit the examples above, we get Consistency𝐸 (𝑇𝐶𝐶1 = {50, 20, 15, 15}) = 0.30 and Consistency𝐸 (𝑇𝐶𝐶2 =

{50, 49, 1, 0}) = 0.48, which follows our intuition that 𝑇𝐶𝐶2 is more consistent than 𝑇𝐶𝐶1.

2.3 Target Elements for Convention Classes

A crucial concept for the calculation of test suite consistency is that of a convention target element. For uniformity, each

convention class must be designed to apply to an explicitly-defined collection of code elements. For example, the target

element for the convention class Naming Test Classes is the set of all classes that contain at least one unit test. The

frequency distribution fdist(𝑇𝐶𝐶) for a convention class 𝑇𝐶𝐶 should be expressed in terms of target elements and

include all applicable elements. While the target element for Naming Test Classes is obvious, other test convention

classes can require a more careful determination. For example, we can consider a convention to name unit tests. A

common convention is to incorporate the name of the method under test (or focal method) in the name of the test, e.g.,

testFocalMethod(). However, how should unit tests that do not focus on a particular production method be treated? Are

they applicable targets that somehow violate the convention, or are they not applicable units for the convention? The

definition of convention target is thus tied to the definition of the corresponding convention class and must therefore

be explicitly specified on a per-convention-class basis.

2
Following common practice, in cases where 𝑝 (𝑡𝑐 ) = 0 we consider that the entire term 𝑝 (𝑡𝑐 )𝑙𝑜𝑔 (𝑝 (𝑡𝑐 ) ) = 0.

3
These comparisons are only useful for reference. Different non-uniform distributions can have the same entropy.
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2.4 Limitations

In designing metrics to capture the consistency of test suites, we face the fundamental problem that conventions are, by

definition, arbitrary. For any convention class, different ways to interpret a convention can lead to different partitions

between alternatives. For example, there exist two common practices for handling unexpected exceptions that occur

during the execution of a unit under test: the unit test can either catch the exception and explicitly fail the test, or

declare the exception in the test method’s declaration and propagate the exception to the test runner, which will fail

the test. However, some complex unit tests may exhibit characteristics of both. How should such a test be classified?

A practical option is to incorporate a catch-all Other alternative in the test convention class. However, interpreting

the meaning of the Other alternative is ambiguous. A unit test could fall into the Other category because of a design

or implementation error in the test, because the test implements a specialized convention of the project, or because

the code of the test is too complex to be reliably interpreted via static analysis. For more open-ended conventions, the

problem of test convention class partition is even greater. As an example, we take the convention for naming test classes.

A reasonable set of alternatives could include 𝑡𝑐1: using Test as a prefix (e.g., TestCalculator), 𝑡𝑐2: using Test as a suffix

(e.g., CalculatorTest), and 𝑡𝑐3: Other. However, what about occurrences such as CalculatorTests (𝑡𝑐3.1), or CalculatorTestCases

(𝑡𝑐3.2), or even TestingCalculator (𝑡𝑐3.3). Which variants to consider as distinct alternatives has an impact on the value of

the metrics.

For Consistency𝐴 , there is only an impact if the Other category is the most frequent. For fdist(𝑇𝐶𝐶) = {tc1 = 50, tc2 =

25, tc3 = 25}, Consistency𝐴 = 0.5 independently of whether Other conceptually groups multiple partitions. However,

for another test suite with fdist(𝑇𝐶𝐶) = {tc1 = 25, tc2 = 25, tc3 = 50}, the value of Consistency𝐴 would drop from 0.5

to 0.25 if Other is reorganized as two sub-partitions which happen to have the same frequency. As Consistency𝐸 is

influenced by the frequency of all conventions in a class, reorganizing the conventions in that class will always affect

the consistency value. However, the change will only be meaningful if a frequent convention is modified.

3 A CATALOG OF TEST CONVENTION CLASSES

Experimenting with the concept of test suite consistency requires a precise definition of test convention classes. We

contribute an initial catalog of ten test convention class definitions applicable to Java projects. To be of practical use in

generating consistency reports, a convention class must be robust. In particular, the conventions within a class should

be exhaustive and mutually exclusive. That is, all target elements of a convention class must be occurrences of exactly

one convention within the class.

We define the test convention classes based on insights from the research and grey literature on test conventions. We

introduce each convention class in its own section (see Table 1). Each section provides the background and motivation

for the convention class, a technical description of the conventions in the class, and a discussion of the rationale for its

design.

This catalog provides an initial framework for exploring test suite consistency based on a reproducible set of commonly

recognized conventions. It is not possible for such a catalog to be final, universal, or complete: test conventions are

applied differently in different contexts, and they keep evolving. However, this initial catalog is intended to serve as a

fixed baseline for research, and can be easily adapted and extended for application in different contexts.

3.1 Naming Test Methods

This test convention class groups alternatives for naming the method that implements a unit test.
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Table 1. Overview of Our Conventions Catalog

Convention Class Details Focus

Naming Test Methods Sec. 3.1 Structure of the test method’s name

Naming Test Classes Sec. 3.2 Structure of the name of test classes (i.e., containers)

Naming Oracles Sec. 3.3 Keywords in variables’ names for the expected value for assertions

Naming Results Sec. 3.4 Keywords in variables’ names for the computed value for assertions

Specifying Oracles Sec. 3.5 Ways to provide the expected value of an assertion

Supplying Failure Messages Sec. 3.6 Use of the optional message argument in assertion methods

Assertion Density Sec. 3.7 Number of assertions per test method

Testing Exceptions Sec. 3.8 Ways to test that an expected exception is actually thrown

Handling Exceptions Sec. 3.9 Ways to handle unexpected exceptions thrown in test methods

Documenting Test Methods Sec. 3.10 Use of Javadoc comments to document test methods

Background. Numerous experts and commentators have proposed or illustrated various conventions for naming test

methods [11, 12, 19, 24, 26, 29, 38, 45, 46, 53, 56, 59, 60, 62]. These conventions encode information about the test that

varies from elementary to elaborate. Possibly the most elementary convention is to prefix the name of the method under

test with the keyword test, e.g., testAdd() [38]. In contrast, an example of elaborate convention based on behavior-driven

development (BDD) is given[Input]_when[Method]_then[ExpectedOutput], which encodes both the test input and the

expected result of the test in addition to the method under test [29]. Conventions also vary in the exactness and

checkability of the information that is encoded in the test name. For example, it is relatively straightforward and

unambiguous to verify that a production method referenced in a unit test both exists and is called within the code of

the unit test. Other conventions, such as test[Feature being tested] [29], likely rely on subjective abstractions (the feature)

relevant to the author of the test but without a corresponding code element. Finally, there even exist conventions about

how to phrase descriptions of features under test in terms of grammatical patterns [44].

Design. The target element for this convention class is any method in the test suite annotated as a test using the

annotations: @Test, @ParameterizedTest and @RepeatedTest. Because it is not possible to reliably detect project feature

names and similar concepts without expert project knowledge, this convention class only supports naming conventions

for tests that explicitly refer to the focal method. The placeholder [MethodName] refers to a case-insensitive match

between the name of the test and any method called within the test. We use a case-insensitive match despite the fact

that Java names are case-sensitive because of the common practice of altering the case of focal methods for consistency

with the test name (e.g., a test for method add named testAdd). The placeholder [AdditionalInfo] refers to any sequences

of characters legal in a Java method name.
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Convention Description

Test Method Name The name of the test method is test[MethodName]

Test Method Name

Underscore

The name of the test method is test_[MethodName]

Test Method Name

Extra

The name of the test method is test[MethodName][AdditionalInfo]

Test Method Name

Extra Underscore

The name of the test method is test_[MethodName]_[AdditionalInfo]

Test Method Name Mix The name of the test method is test[MethodName]_[AdditionalInfo]

Method Name Extra The name of the test method is [MethodName][AdditionalInfo]

Method Name Extra

Underscore

The name of the test method is [MethodName]_[AdditionalInfo]

Other Method Name The name of the test method contains [MethodName], but does not follow any previously

identified pattern.

No Focal Method There is no case-insensitive match between the names of methods called in the test body

and the test name.

Discussion. The design of this convention class hinges on the name of the focal method, but also makes provisions for

the integration of additional information in a structured way. This design decision allows us to eliminate any subjectivity

in the application of the convention, which is a necessary condition for automated checking. However, aggregating

all additional information under one banner means we lose some fidelity in capturing fine-grained information. For

example, the BDD convention mentioned above (given_...), and all similar variants, will be classified as Other Method

Name. While not technically incorrect, this outcome is of limited practical usefulness. This convention class will

therefore be mostly relevant to projects that employ basic conventions centered around traceability to the focal method.

3.2 Naming Test Classes

This test convention class groups practices for naming classes that define unit tests.

Background. In JUnit, test classes explicitly represent a unit of organization for unit tests. Test classes do not typically

group arbitrary tests, but instead map to specified aspects of the code’s organization. A common practice is to define a

directory structure for tests that parallels the structure of production code [11, 12]. Test classes typically group either

tests “which tests the methods of a single class”, or “which ensure that a single feature is working properly” [24]. In both

cases, a naming convention for the test class helps emphasize what the tests located in the test class have in common.

Design. The target element for this convention class is any class in the test suite (defined as a class containing at

least one unit test). This convention class addresses exclusively the lexical aspect of the naming of test classes, and in

particular the placement and morphology of the keyword Test within the name.
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Convention Description

Test Prefix The name of the class starts with Test

Test Postfix The name of the class ends with the singular Test

Tests Postfix The name of the class ends with the plural Tests

Contains Test The name of the class contains the string Test, but not at the beginning or end

No Test The name of the class does not contain the string Test

Discussion. The design of this convention class does not incorporate any evaluation of the target of the class because

of the ambiguity involved. For example, a class named CalculatorTest [38] could be intended to contain tests for the

methods of a class Calculator, a calculator feature, or the combination of both (i.e., a calculator feature implemented via a

Calculator class and additional classes). Including a validation of the unit under test as part of this convention would, in

the limited cases where it is possible, also complicate the interpretation of violations by mixing rules about test names

with rules about test design. The purpose of this convention class is thus exclusively to identify inconsistencies in the

use of the keyword Test in the class’s name.

3.3 Naming Oracles

This test convention class groups practices for naming the variable storing the oracle, i.e., the expected value of an

assertion.

Background. Some experts advocate to store the expected outcome of a test in a local variable whose name involves the

keyword expected. Two prominent alternatives include prefixing the variable name with expected [20, 53] or using the

keyword without additional text [62].

Design. The target element for this convention class is any assertion that involves an oracle–result pair whose oracle is

stored in a variable. We define an assertion to be any call to a JUnit assertion method.4

Convention Description

Expected The name of the oracle is a case-insensitive match for expected

Expected Prefix A proper prefix of the name of the oracle is a case-insensitive match for expected

Other All other naming schemes for the oracle variable

Discussion. Our sample implementation is limited to JUnit assertions. Support for other testing frameworks is outside the

scope of this project. It is also not possible to anticipate all possible user-defined assertion methods, but for the practical

deployment of the approach it would be straightforward to add matching rules to include project-specific assertions.

Our implementation also considers only the two naming conventions we could trace to public recommendations. The

implication is that any convention that does not involve the keyword expected will effectively not be checked, and for

applicable projects the consistency of this convention class is likely to be close to 1.0 (100%). For experimental purposes

this outcome can be manually flagged as an inapplicable convention. For field use, it would be necessary to encode the

specialized convention used by the project for this convention class to be useful.

4
Examples of assertion methods that involve an oracle–result pair are assertEquals and assertSame. Examples of assertion methods that do not involve an

oracle–result pair are assertTrue and assertFalse.
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3.4 Naming Results

This test convention class groups practices for naming the variable storing the result of executing the unit under test.

Its intent and design parallels that of the Naming Oracles convention class.

Background. Some experts advocate to store the actual outcome of a test in a local variable whose name involves the

keyword actual. Two prominent alternatives include prefixing the variable name with actual [53] or using the keyword

without additional text [62].

Design and Discussion. See the corresponding paragraphs of Section 3.3.

Convention Description

Actual The name of the result is a case-insensitive match for actual

Actual Prefix A proper prefix of the name of the result is a case-insensitive match for actual

Other All other naming schemes for the result variable

3.5 Specifying Oracles

This class groups conventions on how to provide the value of the oracle provided to assertion methods.

Background. As introduced in Section 3.3, one recognized practice is to store the oracle in a local variable before passing

it as an argument to an assertion method. By extension we can define alternatives for other common code elements

that can hold a value, such as literals, fields, and method calls.

Design. The target element for this convention class is any assertion that involves an oracle–result pair. We include one

alternative per syntactic category, plus a fall-through Other category to ensure the class is exhaustive. Each alternative

can be detected by parsing the expression for the first argument in an assertion method.

Convention Description

Variable The first argument to the assertion method is parsed as a name expression

Literal The first argument to the assertion method is parsed as a literal expression

Method Call The first argument to the assertion method is parsed as a method call expression

Field Access The first argument to the assertion method is parsed as a field access expression

Other Another expression type is used as the oracle

Discussion. While some alternatives may appear exotic (e.g., Field Access), they are nevertheless justifiable in limited

scopes (e.g., certain testing packages). Detecting this alternative may help developers identify little-known but desirable

conventions in some parts of their test suite.

3.6 Supplying Failure Messages

This test convention class groups conventions regarding the use of the optional message argument in assertion methods.

Background. In JUnit, all assertion methods are overloaded to include both a basic version that verifies a predicate, as

well as a version that takes in an additional message argument to output if the predicate is false (i.e., the test fails).

Similarly, the JUnit API includes a method, fail, which immediately fails a test. This method is also available in two
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versions that take in a message or not. This design of the JUnit API naturally induces two alternatives: whether or not

to supply a test failure message. Some JUnit tutorials point out this feature [38, 53].

Design. The target element for this convention class is any assertion. We define an assertion to be any call to a JUnit

assertion method, including calls to method fail.

Convention Description

Has Failure Message A call to a JUnit assertion method includes a message

No Failure Message A call to a JUnit assertion method does not include a message

Discussion. The design of this convention class is dictated by an alternative offered by the JUnit API.

3.7 Assertion Density

This test convention class groups conventions regarding the number of assertions per test method.

Background. Expert advice usually calls for test that are focused [35] and test a single concern [41] (and e.g., [11, 12, 19,

62]). In practice this advice can be reflected by the number of assertions present in each test. The concept of one assert

per test (OAPT), in particular, generates much debate [55].

Design. The target element for this convention class is any test method.We designed this convention class by partitioning

the possible range of number of assertions in a test into meaningful categories. The No Assertion alternative captures

tests that do not use assertions due to an error, reliance on helper methods, or other reasons. The One Assertion

alternative captures cases where the OAPT guideline is followed systematically. The Few Assertions alternative captures

focused tests that do not strictly follow OAPT. The definition of this alternative as mapping to two or three assertions

is arbitrary: in practice, it could be trivially modified to fit project practices. Finally, the Many Assertions alternative

captures practices that deviate from common advice with tests that have more than a token number of assertions.

Convention Description

No Assertion The test method has no standard assertions

One Assertion The test method has exactly one assertion

Few Assertions The test method has two or three assertions

Many Assertions The test method has more than three assertions

Discussion. The design of this convention class is more akin to a basic method classifier than a set of rules to check

specific practices. For field use, we expect that the alternatives No Assertion andMany Assertions will be mostly useful to

detect flaws and unorthodox implementations rather than verify a convention. The distinction between One Assertion

and Few Assertions will also not be meaningful for projects that do not aim to strictly respect OAPT. For such projects

the two alternatives would need to be merged. Despite these limitations, we include this convention class as a means to

study the pervasiveness of strict OAPT practices in open-source projects. In an experimental context, occurrences of

the One Assertion alternative can trivially be folded into the Few Assertions alternative post hoc.

3.8 Testing Exceptions

This test convention class groups conventions on how to test that an exception is thrown as expected.
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Background. When a method is expected to throw an exception under certain conditions, tests can be written to

ascertain this expectation. Over its different versions, JUnit has provided different mechanisms for asserting whether a

method throws an exception of a given type. The try/catch idiom was used as early as JUnit3. With this idiom, a call to

the focal method is placed in a try block whose catch clause defines a parameter of the type of the expected exception,

and a call to fail is placed immediately after the call to the focal method.
5
JUnit4 introduced a different mechanism by

adding an attribute expected to the @Test annotation used to mark a method as a unit test. The value of this attribute is

a class literal referencing the class representing the type of the expected exception. Finally, JUnit5 homogenized the

testing of exceptional behavior by introducing an assertion method for exceptions, assertThrows.

Design. The target element for this convention class is any test method that implements an exception testing mechanism.

We define one alternative per mechanism, plus one alternative to represent mixed or ambiguous use of exception

assertion mechanisms. Each mechanism can be detected by identifying its defining feature in the source code of the test.

Convention Description

Expected Attribute The method uses JUnit’s expected attribute in the @Test annotation

AssertThrows The test method calls JUnit’s assertThrows method

Try Catch Idiom The test method uses the try-catch idiom with a call to JUnit’s fail method in the try block

Mixed Testing The test method uses a mix of the other conventions in order to test exceptions

Discussion. The design of this convention class is dictated by alternatives offered by the JUnit API, so the definition of

the alternatives fall naturally along those lines. The last category, Mixed Testing, is an artificial alternative to capture

flawed or unorthodox exception testing. Although useful for detecting opportunities for improvement, we do not

consider it a convention that one would aim to follow. Finally, our prototype implementation is limited to exception

assertion mechanisms provided by JUnit. Test methods relying exclusively on third-party libraries for testing exceptions

will not be considered as target elements for this convention.

3.9 Handling Exceptions

This class groups conventions guiding how to handle unexpected exceptional behavior (i.e., run-time errors) in the tests

themselves.

Background. As any other piece of running code, executing tests can encounter unexpected problems: a null pointer

dereference due to a bug, missing input data, etc. Different different strategies exist to handle such problems. First,

the test code can be placed in a try block whose catch clause explicitly fails the test with a call to fail(). Second, the

test method can have its definition extended to explicitly declare to throw some exceptions (which will propagate and

fail the test). A third option, applicable only to unchecked exception types, is to do nothing, and let the exceptions

propagate unannounced, which will also fail the test.

Design. The target element for this convention class is any test method that implements an exception handling

mechanism. We define one alternative per detectable mechanism, plus one alternative to represent mixed or ambiguous

use of exception assertion mechanisms. Each mechanism can be detected by identifying its defining feature in the

source code of the test. It is not possible to detect the “do nothing” strategy because, by definition, it leaves no trace in

5
If the call does not raise an exception, the test fails via the call to fail(); If the call raises an exception of a type not assignable to the type in the catch

clause, the test fails via exception propagation.
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the unit test and may be realized involuntarily. For this reason, the scope of this convention class is limited to explicit

exception handling in tests.

Convention Description

Fail in Catch Clause A test method contains catch clauses with a call to a method named fail

Throws Exception A test method declares to throw one or more exception types

Mixed Handling A test method declares to throw one or more exception types and also contains catch

clauses with a call to a method named fail

Discussion. Besides the issue with the “do nothing” strategy described in Design, above, another source of ambiguity for

this convention class is Java’s dual checked vs. unchecked exception handling mechanism. While explicitly handling an

exception is mandatory for checked exceptions
6
, the handling is optional, and usually omitted, for unchecked exceptions.

The design of our convention class does not make this distinction mainly for conceptual reasons: the convention is

about the choice of which exception handling strategy to employ, and not whether to employ one or not. Determining

which exceptions can flow out of a block of code (and should therefore be handled or declared) is a challenging problem

with imprecise solutions [48], and is outside the scope of this research.

3.10 Documenting Test Methods

This class groups conventions related to the documentation of test methods using Javadoc comments.

Background. JUnit tests are methods and, as such, can be documented with block comments, and in particular with

block comments that follow the Javadoc conventions. It is also possible to explicitly link a test to its focal method using

a @link or @see Javadoc tag.

Design. The target element for this convention class is any test method. We define as alternatives the different degrees

of use of the Javadoc syntax.

Convention Description

Has Linked Javadoc

Comment

The test method has a Javadoc comment associated with the focal method using a @link

or @see Javadoc tag

Has Javadoc Comment The test method has an associated Javadoc comment not linked to the focal method

No Javadoc Comment The test method does not have an associated Javadoc comment

Discussion. We limit the scope of this convention class to Javadoc comments, thus ignoring line comments and non-

Javadoc block comments. The rationale for this decision is that Javadoc defines a universally-recognized format for

systematically documenting code elements in Java, and thus we expect that projects that aim to systematically follow a

documentation convention would use it. In addition, Javadoc comments explicitly target specific code elements and

their use does not introduce any ambiguity about their target. In contrast, basic block comments and line comments

may or may not be relevant to their nearby code element.

6
Defined as a subtype of Exception that is not also a subtype of RuntimeException.
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Fig. 2. Computing and viewing consistency information about Java test suites with Teslo and TestComet. The two data processing

stages on the left correspond to Teslo and the two stages on the right correspond to TestComet.

4 SUPPORTING TEST CONVENTION CONSISTENCY ASSESSMENT IN PRACTICE

The metrics we introduced in Section 2.2 provide a technical means of reasoning about test convention consistency

in the abstract. Providing an assessment of this consistency in practice requires supporting tools, and many design

alternatives exists to realize such tools. We investigated the feasibility of supporting test convention consistency in

practice by developing a prototype tool to:

(1) Compute test suite consistency for any Java project;

(2) Represent test convention classes and test conventions in a way that facilitates customizability;

(3) Display consistency scores in an understandable and actionable manner.

We designed and developed a suite of tools that consists of a static analyzer for computing consistency data

(TestComet) and a web application for allowing users to obtain and view this data (Teslo).
7
Developing this tooling

allows us to validate the practical viability of the idea and to identify the important design decisions necessary to realize

it. We contribute these design decisions as a complement to the definition of the metrics and convention classes.

4.1 General Workflow

While TestComet can analyze any Java project, Teslo facilitates integration with GitHub. The usage scenario begins

with a user entering the fully qualified name of a repository (i.e., owner/repo) in an input field of the web interface and

clicking a button to launch the analysis (① in Figure 2). Teslo then clones the repository and provides its path as input

to TestComet (②). TestComet then parses the repository to generate an intermediate representation (IR) of the test suite

and provides this IR to an analysis module (③), which tallies the number of occurrences of each test convention in

each test convention class in the form of a Consistency Report. This report is then made available to Teslo (④), which

generates the interactive Consistency View and makes it available to users (⑤).

4.2 Analyzing Test Suite Consistency with TestComet

As illustrated in Figure 2, TestComet realizes two main functions: 1) to convert (or parse) a Java project into an

intermediate representation (IR). Our test suite IR is a simplified version of an abstract syntax tree (AST) focused on code

elements relevant to testing. Specifically, the IR can represent an instance of a test suite as a hierarchy of subtypes of

TestElement that include TestSuite, TestPackage, TestClass, TestMethod, and Assertion (each element type aggregating one or

more instances of the next).

7
TestComet stands for Test Consistency metrics and Teslo for Test love. At the time of submission, TestComet and Teslo are not open-source for

intellectual property protection reasons.
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The first task of TestComet is to identify the set of files that belong to the repository’s test suite. This classification

can easily be parameterized. In our version, we considered a file to be part of a test suite if it 1) has the .java extension, 2)

is located within manually-validated test directories (e.g., src/test/java), and 3) includes the JUnit import pattern [64].
8
.

For each test file in the test suite, TestComet uses the JavaParser [22] library to generate an AST from its source

code. We traverse the AST to identify all of the test methods in each test class, as determined by the JUnit’s annotations.

For each test method, the tool then identifies the assertions it contains. Determining precisely what constitutes an

assertion is a problem that has no precise solution in the general case since developers could technically implement

their own idiosyncratic assertion methods and idioms. We solved the problem pragmatically by considering any call to

a method that begins with the string "assert" to be a potential assertion. While there is a small risk of false positive, the

major advantage of this strategy is that it allows us to detect most assertions from third-party matcher frameworks

as well as sensibly-named user-defined assertion methods. A study of over 4,500 open-source Java projects revealed

that developers often use matcher frameworks alongside JUnit [65]. The JUnit team recommends using Hamcrest,
9

AssertJ,
10

or Truth,
11

each of which rely on a base method called assertThat.

Once an instance of TestSuite has been constructed by the parser, TestComet can determine how often and where

each test convention occurs. This analysis relies on a configurable list of test convention classes, such as those detailed in

the catalog in Section 3. In our implementation, each test convention class is supported by one (Java) class with a single

responsibility: to determine whether an input TestElement constitutes an occurrence of a convention in the convention

class. For this purpose, test convention classes aggregate a convention detector. Convention detectors visit the test suite

IR, identifying the test elements that could be an occurrence of a convention in the convention class. For example,

the convention detector for Naming Test Classes extracts all the SimpleName nodes corresponding to test class names.

For each candidate element, the convention detector calls an isOccurrence method for each convention alternative in

the class. This delegation reduces coupling by separating concerns, facilitating customizations. Developers can reuse

convention detectors for convention classes with the same candidate element types. Creating new test convention

classes is straightforward, as developers can mix and match test conventions and convention detectors.

TestComet uses the output of the convention detectors to build a Consistency Report. The Consistency Report is a

hierarchical data structure that stores the list of convention occurrences at varying levels of granularity (e.g., test suite

level, test package level, etc.). Using this data structure, we can compute the consistency metrics.

4.3 Exploring Test Suite Consistency with Teslo

Developers can use the Teslo web application to analyze the consistency of any JUnit test suite that is part of a GitHub

repository they have access to. To do so, they enter the fully qualified name of a repository (i.e., owner/repo) in the

input field and click Analyze, as depicted in Figure 3, Frame A. The application then takes the input repository name

and clones the corresponding repository locally. The application then provides the path of the cloned repository to

TestComet, which produces a Consistency Report (see Section 4.2).

Once available, Teslo uses the consistency report to generate a Consistency View. We sought to display the consistency

scores in an understandable and actionable manner. To that end, and inspired by test coverage views,
12

we made the

consistency view hierarchical and interactive. The consistency view initially shows a high-level summary of the test

8
The file must include lines that start with import org.junit.jupiter.

9
http://hamcrest.org/

10
https://assertj.github.io/doc/

11
https://truth.dev/

12
Such as EclEmma’s, https://www.eclemma.org/userdoc/coverageview.html
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Fig. 3. Teslo UI. Frame A (left) illustrates the initial, test-suite-level view of the consistency scores. Frame B (top right) shows how

users can drill down to view the consistency scores at the test package, class, or method level. Frame C (bottom right) presents the

most detailed view—the annotated code dialog that appears when clicking a test class. It allows users to jump through the consistent

and inconsistent occurrences in the test class.

suite’s consistency using the accuracy-based metric (see Section 2.2).
13

It consists of an accordion component that has

one panel per convention class. Each panel includes a description of the convention class and a badge that reveals

the class’s dominant convention, i.e., the one that occurs most frequently. The badges also indicate the consistency

score of the convention class at the test suite level. The color of the badge varies with the consistency level: green

(Consistency𝐴 > 75%), orange (Consistency𝐴 > 50% and ≤ 75% ), and red (Consistency𝐴 ≤ 50%).

Depending on their information needs, users can drill down to inspect the consistency scores at the test package,

class, and method level. To do so, they expand the accordion panel associated with the desired test convention class

(see Figure 3, Frame B). This feature allows users to understand how different parts of the test suite contribute to the

overall consistency. Developers can then prioritize fixing test packages and classes with the lowest consistency.

For a more detailed view, users can click on any test class to open a dialog that displays its source code. As

demonstrated in Figure 3, Frame C, the test class’ source code is annotated: the consistent and inconsistent convention

occurrences are highlighted in green and red, respectively. Teslo provides buttons to iterate through the consistent

and inconsistent occurrences. This dialog helps users understand the contexts in which they and their team apply

alternative conventions. Users can then decide which alternative(s) to adopt. They can also assess whether deviations

from the target convention are justified or unnecessary.

4.4 Related Tools

The closest alternatives to TestComet are automated static analysis tools (ASATs) such as FindBugs,
14

PMD,
15

and

Checkstyle.
16

ASATs detect common programming errors and convention violations using a configurable rule set.

Although ASATs can detect issues faster than human inspection, past work has identified several factors hindering their

adoption, including poor understandability of tool output [23] and poor customizability [3, 63]. We sought a solution

that would address, to the extent possible, these design challenges.

13
There is no fundamental limitation that would prevent displaying the entropy-based metric as well. Because our development time is bounded, and we

experimented with the entropy-based metric extensively through case studies (see Section 5), we focused our efforts on presenting the results of the

accuracy-based metric in Teslo.

14
http://findbugs.sourceforge.net

15
https://pmd.github.io

16
https://checkstyle.sourceforge.io
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The main distinction between TestComet/Teslo and traditional ASATs is that ASATs are prescriptive and flag any

deviation from a single convention, whereas our analysis framework not only detects a range of alternative conventions,

but also leverages this information to offer a synthesis of a test suite’s consistency as a component of its quality. Code

conventions can emerge naturally over time as the result of various local decisions made by different developers [1].

Without tool support, it can be difficult for developers to synthesize these local decisions into an agreed-upon convention.

As such, we aimed to design consistency metrics that developers can use without a priori knowledge of their team’s

preferred test conventions.

ASATs support customizations in terms of enabling and disabling rules and adding custom rules. However, developers

find existing tools challenging to configure [23]. They rarely alter the default configurations, adopting ASATs as-is

instead [3, 63]. This phenomenon is not due to a lack of demand, as developers deem customizability an essential feature

of ASATs [23]. As such, we sought to represent convention classes and conventions so as to facilitate customizability.

ASAT reports typically comprise lengthy lists of warnings. Previous work suggests that this output is difficult to

understand. For instance, Johnson et al. [23] identified poor understandability of tool output as a significant barrier

to use. Fourteen out of 20 developers interviewed mentioned negative impacts due to poorly presented tool output.

Software engineers building static analysis tools at Google also found that long lists of warnings seldom motivate

developers to resolve all of them [50]. As a result, various studies found that developers only fix a small portion of

ASAT warnings [32, 34]. With these findings in mind, we sought to design a user interface that displays consistency

scores in a way that facilitates comprehension and action-taking.

5 EXPLORING TEST CONVENTION CONSISTENCY EVOLUTION

Test suites continuously evolve to reflect the changes in the code base they validate. As test suites evolve, so might their

consistency. Each change to a test suite enhances, degrades, or maintains its consistency. Understanding which factors

impact test suite consistency over time can help developers adopt more proactive approaches to test quality assurance.

A comprehensive study of such factors is outside the scope of this article. However, as a first step, we provide evidence

of the suitability of our proposed consistency metrics and tool infrastructure to reason about test suite evolution. Our

goal was to explore the potential of test-suite consistency analysis for macroscopic quality assessment of evolving test

suites. We sought to answer the following research questions:

RQ1 How do the metrics compare across convention classes?

RQ2 What is the consistency of different high-profile projects?

RQ3 Which contextual factors can affect the consistency metrics and how?

RQ4 What types of actionable insights are supported by an analysis of test suite consistency?

We conducted a multi-case study of open-source JUnit test suites hosted on GitHub. In our study design, we define a

case as the test suite for a Java project, pragmatically equated to a repository on GitHub. We elected to study 20 distinct

projects to strike a balance between breadth (gaining insights from different contexts) and depth (the extent to which

we can account for the individual characteristics of each case).

Data Artifact. This article is complemented by an on-line archive that includes the datasets underlying the analyses

and visualizations described in this section [49].
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5.1 Projects Studied

Our target population is active and collaborative Java test suites hosted on GitHub that use the JUnit5 framework. We

limit the scope of our study to JUnit5 to focus on well-maintained test suites (JUnit5 is more than six years old) and to

avoid the imprecision and ambiguity of analyzing multiple overlapping frameworks and versions.

We queried the GitHub API
17

to retrieve an initial candidate list. Although we are interested in test suites, the

GitHub API does not support querying for such a construct. Instead, we used the API to identify a set of candidate

Java repositories from which we could extract test suites. GitHub hosts over 12 000 000 public Java repositories (as of

2023-12-03), most of which are not relevant to our study as they are personal projects or inactive [25]. To ensure that

the candidate repositories are appropriate, we implemented Kalliamvakou et al.’s [25] selection strategies in the form of

the following inclusion criteria:

• Active: the repository must have at least one commit on the default branch in the past six months (since

2023-05-12) as we are interested in how consistency evolves in contemporary test suites.

• Mature: the repository must be mature to provide a sufficient amount of test-related commits to analyze. We

adopt Jarczyk et al.’s [21] definition of a mature repository: the repository is at least two years old (created before

2021-11-12) and has 100 or more commits on the default branch.

• Collaborative: the repository must have at least three unique human contributors given that we cast the problem

of test convention consistency in the context of a team-based software project.

• Popular: the repository has more than 100 stars. We used this threshold to filter out repositories without a

minimum of community recognition.

We applied these inclusion criteria through query parameters in the GitHub API and by further analyzing the

response data. We performed the query on November 12th, 2023, and it produced 4960 candidate repositories.

Next, we constructed a sampling frame by filtering the candidate list to only include repositories with a test suite.

We used the same three criteria as TestComet to determine whether a file is part of a test suite (see Section 4.2). We

retrieved each repository’s tar archive from GitHub and extracted all files with the .java extension. We then identified

within the directory structure the location of the test suite. Most projects used a conventional structure, e.g., placing

tests within a src/test/java directory.
18

We extracted files having JUnit5 import patterns.
19

We only included candidate

repositories whose test suite had at least 100 test classes to ensure they had sufficient test-related commits to analyze.

The final sampling frame comprised 444 projects. We used this sampling frame as the basis for selecting our target

projects. To focus on high-visibility and high-impact projects, we drew from our sampling frame in decreasing order of

GitHub stars, excluding any project that was not a software system, whose documentation was not in English, which

relied heavily on a testing framework other than JUnit, which was conceptually too similar to an already-selected

system, or whose organization caused a threat to validity. With this process we rejected ten projects, resulting in 20

projects.
20

Table 2 provides the list of selected projects. The first two columns describes the full project name and the first six

digits of the commit hash of the last version we analyzed. From this information it is possible to retrieve the exact state

of the projects from GitHub.
21

Henceforth, we refer to projects by repository name only, e.g., Spring-boot. The other

17
https://docs.github.com/en/rest

18
We initially included each file with “test” in the file path for the automated extraction scripts, then manually validated and refined the directory filters.

19
Lines starting with import org.junit.jupiter

20
We rejected three projects that were tutorial or demonstration code, one project with non-English documentation, one project with a large number of

duplicated files, two projects using other testing frameworks, and two projects that were variants of, or add-ons to, already selected projects.

21
Using the url https://github.com/<owner/repo>/tree/<commit>
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Table 2. Projects Studied. Hash represents the first six digits of the commit hash of the last version we analyzed. Classes and Methods
indicate the number of test classes and methods we detected. Age (days) indicates the number of days between the first and last

modifications of the test suite and Commits indicate the number of commits that modified the test suite during that period. Contr.
indicates the number of unique contributors to the test suite. Conv. indicates whether a systematic search revealed the presence

of a guide prescribing test conventions for the project: #None found; G#Guide with no relevant convention;  Guide with relevant

conventions.

Test Suite Properties (JUnit5 only)
Project (owner/repo) Hash Classes Methods Age (days) Commits Contr. Conv.

deeplearning4j/deeplearning4j 61c8cc 657 4686 950 196 3 #

apache/dolphinscheduler 65a7c7 451 1970 744 662 135 G#

apache/dubbo 2ca55a 799 3710 1761 1006 180 #

apache/flink 3dd984 1571 9334 822 3487 304 #

apache/hadoop a32097 181 1015 1667 889 93  

skylot/jadx e6d896 534 756 1674 401 19 #

apache/kafka 7c562a 744 7155 1156 1914 273  

mybatis/mybatis-3 311575 329 1656 1768 186 6 G#

neo4j/neo4j 60f235 1828 13 149 1981 7512 104 G#

netty/netty 285ba7 530 4877 1068 435 96  

pinpoint-apm/pinpoint 9b9dff 1056 3189 496 302 16 #

quarkusio/quarkus 2f2ce0 4182 10 546 1752 5346 48 #

SeleniumHQ/selenium 4d1b00 300 2777 510 266 30 #

apache/shardingsphere f8a420 1377 6054 258 1309 70  

apache/skywalking 019c6f 202 532 1334 342 75 #

spring-projects/spring-boot e4a0e9 2127 14 149 2299 5617 26 #

spring-projects/spring-framework 7f615f 2139 19 763 2685 5320 197  

thingsboard/thingsboard afa54e 123 726 970 452 12 #

zaproxy/zaproxy 8f3932 184 2265 1393 146 4 G#

apache/zookeeper 75d0a0 325 1626 1220 132 54  

columns describe properties relative to the projects’ test suite: the number of test classes (Classes), of test methods

(Methods), of days between the first and last modifications of the test suite (Age (days)), of commits that modified the

test suite (Commits), and of unique contributors to the test suite (Contr.).22 The last column, Conv., indicates whether

our systematic search revealed the presence of a guide prescribing test conventions for the project (see Section 5.2).

In each project, for each test-related commit (i.e., that modified files included in the test suite), we computed the

accuracy-based and entropy-based consistency of all convention classes. When a test suite did not contain an instance

of any convention in a convention class, we considered the consistency undefined (as opposed to, e.g., 0 or 1), to avoid

generating spurious extreme values. As a result, we obtained 400 data series about the evolution of consistency (two

metrics × twenty projects × ten convention classes). We analyzed these data series to assess how the consistency

metrics can help monitor the quality of test suites.

One potential factor that can affect the consistency metrics (RQ3) is the impact of the involvement of different

types of contributors to a project, such as core vs. peripheral developers. Analyzing contributor involvement requires

associating test-related commits to specific developers as reliably as possible. However, developers can use different

email addresses and variations of their names when authoring commits. We thus performed name and email address

22
The properties exclude contributions to the test suite before the adoption of JUnit5. The number of test classes and methods reflect the state of the test

suite at the latest commit.
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unification to link commits to developers more accurately. We considered two {name, email address} combinations to

belong to the same author if they had the same email address or name. However, we only matched on the author’s name

if the name (1) was not “no author” and (2) consisted of two or more words (e.g., “Jane Smith”). We applied this heuristic

to reduce false positives since git allows developers to use anything as their name (“bob <bob@gmail.com>”) [25]. The

Contr. column of Table 2 accounts for this unification process.

5.2 Test Convention Guides

An important contextual attribute for each case is whether the project prescribes test conventions or not. This distinction

is important when interpreting to what extent different conventions are respected and thus the level of consistency we

observe. We investigated whether each project prescribes test conventions for contributors. As the organization of

developer documentation is not standardized, this investigation inevitably followed a heuristic process. We designed

a systematic search process for a test convention guide for a given GitHub repository, and applied it to all our target

projects. We conducted the search as follows:

(1) Inspect the README and CONTRIBUTING files at the root of the repository.
23

While the README is nominally

intended for users of the project (as opposed to contributors) [14], it can also provide an overview of the

repository, including links to documents for contributors. The CONTRIBUTING file is explicitly designated by

GitHub as a resource for describing “guidelines for contributors” [15], and thus the logical place to look for

testing guidelines. From those two pages, we transitively followed any link to resources for developers, searching

for the individual keywords: test, convention, style, guide, and format. We followed all potentially-relevant links,

including to resources external to GitHub (e.g., project website or wiki).

(2) We conducted a repository-wide search for any documentation page with the string "test" in its path.
24

This step

ensures that we had not missed a link-path to a relevant resource during Step 1. We consulted each result file

and searched for the same keywords as for Step 1.

(3) We inspected the GitHub wiki’s table of contents for relevant pages.

We scoped our search to human-targeted documents. For this reason, we did not target our query to directly

include tool configurations files (e.g., style.xml, the configuration file for Checkstyle). We reasoned that to be effective

as prescriptive conventions, any style configuration file targeting unit tests would need to at least be mentioned in

developer documentation. If a configuration file was referred to in developer documentation, we considered it for

inclusion in the search.

As the search process is heuristic, we acknowledge that other strategies are possible to refine it. Nevertheless, if

a project intends to require contributors to follow conventions, a natural imperative is that these conventions be

conspicuous. The fact that the search process surfaced test conventions guides for some projects with very different

organization of their documentation testifies to its suitability. Although it is possible that we missed a convention guide

for a project, this guide would be hard enough to find to put its effectiveness in question.

Once we identified a guide for a project, we reviewed its conventions and determined if it included a convention

from our catalog (see Section 3). If the convention is supported by TestComet, we considered it relevant to the research.

Table 2 summarizes to what extent each of our target project’s test conventions were documented, and Table 3 provides

the details of the conventions.

23
Considering any extension. We found files with extensions .txt, .adoc, and .md.

24
For a given REPO, we used the search query repo:REPO path:/^.*test.*.(adoc|md)$/.
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Table 3. Documented Relevant Conventions

Project Convention Class Requirement

Hadoop Naming Test Methods “Define methods within your class whose names begin with test”

Supplying Failure Message “add meaningful messages to the assert statement”

Kafka Naming Test Methods “test method name begins with “check””

Naming Test Classes “class name begins with “Check””

Netty Naming Test Classes A tool verifies that the names of test classes match the regular

expression [A-Z][A-Za-z\d]*(Test|Benchmark|Microbenchmark)[0-9]*

Shardingsphere Naming Oracles Expected Prefix

Naming Results Actual Prefix

Documenting Test Methods No Javadoc Comment

Spring-framework Naming Test Classes Test Suffix

Zookeeper Naming Test Methods “Define methods within your class whose names begin with test”

However, we can readily draw two important conclusions from these results. First, we observe little to no consistency

between projects within an organization. As a clear example, Spring-framework has a Code Style page with test

naming conventions on its wiki, but Spring-boot simply has a Code Conventions and Housekeeping section in its

CONTRIBUTING.md, with nothing about testing. Likewise, although eight of the projects in our list are Apache projects,

they do not overtly share a common approach to test conventions. Second, for the projects that do have a test convention

guide, we observed a considerable variety of ways in which these guides are organized and disseminated. Examples

include:

• A special document unit-test.md deep within the docs directory tree (dolphinscheduler);

• A page on an external wiki (hadoop);

• A separate README file in the tests folder (kafka);

• A page on the GitHub wiki (mybatis-3);

• A page on an external project website (neo4j);

Hence, we conclude that the projects in our list exhibit largely independent approaches to documenting test

conventions.

5.3 Analysis of Consistency Metrics

The two metrics we introduced in Section 2.2, accuracy-based and entropy-based, provide two complementary but

consistent ways to synthesize the state of a test suite. Before leveraging the consistency metrics to reason about test

suite evolution, we provide a technical analysis of the relation between the two metrics, followed by an illustration of

their range on our target projects.

Technical Analysis. From the definition of the two consistency metrics, we can derive theoretical relations between the

values that they can take for the same test suite. Because the entropy-based metric can be interpreted as a weighted

mean of the probabilities in a distribution, whereas the accuracy-based metric is equal to the highest probability, it

follows that, for any test convention class 𝑇𝐶𝐶 , Consistency𝐸 (𝑇𝐶𝐶) ≤ Consistency𝐴 (𝑇𝐶𝐶).
If we fix the number of conventions in a class, it is possible to bound the possible values of entropy-based consistency

for any value of accuracy-based consistency. Figure 4 shows the possible values that both metrics can simultaneously
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Fig. 4. Simultaneous range of both metrics given the number of conventions. The range for a number of conventions overlaps with

the range for lower numbers of conventions.

take for the same test suite, based on the minimum number of conventions in a class. The topmost and largest colored

region corresponds to three conventions. If there are only two conventions, the entropy-based and accuracy-based

metrics are related by a deterministic function, which corresponds to the line forming the top edge of the area, from

0.5 to 1.0. As an example of interpretation of the figure for a convention class with three conventions (the darkest

region), if we observe the value of the accuracy-based metric at 0.50, we see that we can expect the value of the entropy

based metric to be between 0.35 and 0.50. The region for a higher number of conventions include all regions for lower

numbers of conventions. For example, the possible values for a convention class with eight conventions include all

areas, not just the slim dark red area.

Figure 4 shows only the area for a number of conventions up to eight. As the number of conventions continues to

grow, the range of possible values would fill the entire lower part of the plot. That is, for any value of accuracy-based

consistency, the entropy-based consistency can be arbitrarily close to zero if the number of conventions is sufficiently

large.

This theoretical comparison of the two metrics demonstrates that the entropy-based consistency penalizes more

strongly small deviations from the most common convention: Entropy-based values are more discriminating than

accuracy-based values when there is a clearly dominating convention (i.e., consistency close to 1.0). In contrast, entropy

is less discriminating than accuracy when all conventions are used almost as often as each other (i.e., consistency close

to 1/𝑁 when 𝑁 conventions are used).

Ranges in Practice. We used the consistency values of all convention classes for the latest commit of all projects to

compare the two metrics in practice, shown in Figure 5. Each line represents the consistency of a project’s test suite
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Fig. 5. Consistency of test suites at the latest commit. For each convention class (x axis), the line segment goes from the accuracy-based

consistency (left) to the entropy-based consistency (right). The horizontal distance of each line is constant. Dashed lines indicate that

the most common convention was the “catch-all” convention.

(color) for a convention class (x axis). The left end of the line shows the accuracy-based value and the right end shows

the entropy-based value. Thus, the vertical distance represents differences between the two values. The horizontal

distance between the metrics carries no information and is constant for all pairs of values. Dashed lines indicate cases

where the most common (i.e., dominant) convention is the catch-all one (e.g., Other, Mixed).

The figure conforms to the property highlighted in our technical analysis in that all lines are constant or decreasing

from left to right, indicating that entropy-based consistency is never higher than accuracy-based consistency. The lines

also show the lower discriminating power of accuracy-based consistency compared to entropy-based consistency for

consistent convention classes, and vice versa for inconsistent convention classes.

The lines in the figure seldom cross each other, which suggests a strong monotonic (although not linear) correlation

between both metrics within each convention class. Spearman’s rank correlation confirms this observation: 𝜌 > 0.986

for all convention classes, except for Assertion Density (𝜌 = 0.929), Specifying Oracles (𝜌 = 0.818), and Naming Test

Methods (𝜌 = 0.803). Nevertheless, the presence of crossings indicates that entropy-based consistency can reveal

information about non-dominant conventions that the accuracy-based consistency hides. The most striking example

is the consistency of Spring-boot for the Specifying Oracles convention class. Its accuracy-based value is the lowest

among all projects, but its entropy-based value ranks eleventh out of the 20 projects. This is due to Spring-boot showing

no dominant convention, but alternating between only three of the five conventions in this class.
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Fig. 6. Entropy-based consistency of each project at the latest commit. Projects and convention classes are ordered by average

consistency. One value is missing for Spring-boot as it did not include any instance of a convention in the Testing Exceptions class.

RQ1: How do the metrics compare across convention classes? The entropy-based and accuracy-based metrics

are consistent, but complementary. Entropy-based scores emphasize the negative impact of occasional deviations from

a dominant convention. In contrast, accuracy-based scores emphasize the most popular convention in convention

classes that are less consistent. In practice, both metrics are strongly positively correlated.

Figure 5 also provides an overview of the typical consistency values for different classes. Some classes (e.g., Handling

Exceptions) are consistent for all projects, whereas others (e.g., Assertion Density) are mostly inconsistent. In particular,

although formats for naming test methods are often discussed by experts (see Section 3.1), this convention class is

largely inconsistent across projects. Furthermore, for 17 of the 20 projects, the dominant convention is the catch-all No

Focal Method.25 This failure to follow a consistent convention indicates a potential divergence between testing style

guides and development concerns.

Figure 6 compares the entropy-based consistency of all projects at the latest commit. To improve readability, projects

are ordered by average consistency across all convention classes, and convention classes are ordered by average

consistency across all projects. Despite general trends across convention classes, each project struggles with different

convention classes. For example, the most consistent projects overall, Shardingshpere and Zaproxy, are inconsistent in

Naming Results and Specifying Oracles, respectively, relative to other top projects. Conversely, the generally inconsistent

projects Flink and Zookeeper are among the most consistent in the convention classes Supplying Failure Message and

Naming Test Classes, respectively. These differences show the value of studying consistency within different convention

classes, rather than aggregating values into a single score per test suite.

25
The dominance of No Focal Method cannot be attributed solely to the high number of conventions in the class. For most projects, this convention is

used more often than all other conventions combined, as shown by the accuracy-based consistency values above 0.5.
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RQ2: What is the consistency of different high-profile projects? Consistency varies across the 20 open source

projects and across convention classes. Some convention classes, such as Assertion Density, are inconsistent for most

projects, whereas others are more consistent, such as Supplying Failure Message. Even the most consistent projects

fail to maintain a high consistency across all convention classes.

5.4 Analysis of Global Trends in Test Suite Consistency

We investigated trends in the evolution of all projects across all convention classes. For this analysis, we focused on the

entropy-based metric, as it is sensitive to variations in non-dominant conventions. First, we evaluated the impact of

including a catch-all convention in the design of a convention class, as it can pose a threat to the construct validity if this

convention dominates others. Second, we investigated the impact on consistency of different contributors’ involvement

in a project. We hypothesized that peripheral contributors introduce inconsistencies more often than core contributors.

The objective of this investigation is to understand how consistency metrics can support an analysis of test suite quality.

Impact of the Catch-All Convention. The design of a convention class can affect the consistency values for the targeted

aspect of the test suite (see Section 2.4). Grouping many specific variations into a single broad convention can artificially

increase consistency. When a convention class is open-ended, e.g., Naming Test Methods, a practical decision is to create

a catch-all convention that, in effect, groups all possible conventions not explicitly covered by the other conventions

in the class. The impact of this decision is limited if the frequency of the catch-all convention is low. However, if it

becomes the dominant convention in a class, the test suite may have a deceptively high consistency value despite not

following any fixed convention.

We sought to assess the magnitude of this phenomenon in practice for our experimental catalog of conventions. Two

convention classes, Naming Oracles and Naming Results, are problematic in this regard. For both convention classes, in

all but one project (Spring-boot) the Other convention dominates and consistency values are high (median of 0.778).

These high values for the Other convention suggest that the convention class should be refined to properly capture

consistency. The catch-all convention of Naming Test Methods, i.e., No Focal Method, is also the dominant one for all

but three projects (Dolphinscheduler, Shardingsphere, and Thingsboard), but because the consistency values are lower

(median of 0.353), the threat of inducing an inaccurate assessment of consistency is not as important.

In addition to providing a false sense of consistency, convention classes where the catch-all convention is dominant

can inverse the meaning of consistency changes. For example, a commit that adds instances of the second most frequent

convention (i.e., the most frequent regular convention) would decrease the consistency value. Thus, changes in the

consistency of a convention class dominated by the catch-all convention should be interpreted with care.

Impact of Contributor Involvement. Developers that only occasionally contribute code to a repository (i.e., peripheral

developers) may not be as acutely aware of testing conventions as the core developers of the project, especially when

those conventions are not well documented (as is the case for most of the studied projects, see Section 5.2). Thus, we

can expect peripheral developers to degrade the consistency of a test suite more often than core developers. We applied

our consistency metrics to test this hypothesis.

For each commit and each convention class, we considered a binary variable indicating whether the commit degraded

consistency. We did not consider the magnitude of the change in consistency, as the magnitude is largely influenced

by the number of instances of the convention class prior to the commit. When there are already many occurrences

of conventions in a convention class, adding or modifying a fixed number of occurrences will have a proportionately
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Fig. 7. Comparison of the number of tests prior to a commit with the absolute change in entropy-based consistency for Naming

Test Methods caused by the commit. The consistency is only evaluated for Naming Test Methods. All commits from all projects are

represented. The x axis is on a log scale.

smaller impact than when the number of occurrences is small. Figure 7 illustrates this relation by comparing, for

Naming Test Methods, the absolute change in consistency with the prior number of tests (for Naming Test Methods,

each test corresponds to exactly one instance of the convention class).

We also operationalized contributor involvement as a binary variable, core vs. peripheral, based on code ownership.

A contributor owns a line of code if they made the last modification of that line of code. Based on Mockus et al.’s

observations [39], we classified the top contributors who collectively own at least 80% of all lines of code as the core

contributors, and others as peripheral.

Table 4 shows the p-values of one-tailed Fisher’s exact tests comparing the proportion of consistency-degrading

commits from core vs. peripheral contributors for all projects and all convention classes. Some tests could not be

performed because our criterion identified no peripheral contributor (e.g., Deeplearning4j) or because there were no or

only consistency-degrading commits. Asterisks (*) mark p-values below the 0.05 significance level. These should be

considered carefully, however, as the high number of tests increases the probability of rejecting the null hypothesis

(that there is no differences between the two groups). After applying the Bonferroni correction to the 𝛼 level, only two

test outcomes remain statistically significant.

Across all tests, few produce a p-value lower than our 𝛼 level, even without the Bonferroni correction. Furthermore,

there is no clear trend among convention classes or projects, except for Spring-boot for which all but one of the test

outcome are below the uncorrected 𝛼 level of 0.05.
26

Thus, we can hypothesize that peripheral contributors may

26
We experimented with variations of the criterion for distinguishing core contributors, and observed similar conclusions. For example, increasing the

cumulative ownership threshold to 90% made the test outcomes significant, after Bonferroni correction, for Assertion Density for Shardingsphere and

Spring-boot, but not for Documenting Test Methods. Decreasing the threshold to 70% resulted in seven of the test outcomes becoming significant

after correction. Changing the criterion entirely, to consider any contributor with at least three (resp. ten) commits as core, generated three (resp. two)

significant tests after correction. Excluding commits that did not modify the distributions of conventions to remove a possible confounding factor

identified the same two conditions as significant under the corrected 𝛼 level as in Table 4. In all variations, all significant tests after correction were at

least significant before correction with the original parameters (i.e., marked with an asterisk in Table 4).
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Table 4. P-values of one-tailed Fisher’s exact tests comparing the proportion of consistency-degrading commits by core vs. peripheral

contributors. Asterisks (*) indicate significant results at the uncorrected 0.05 𝛼 level, and bold font indicates significant results after
applying the Bonferroni correction. “N/A” values indicate that the test could not be performed due to one dimension having no

instance.

Project Naming
Test
Methods

Naming
Test
Classes

Naming
Oracles

Naming
Results

Supplying
Failure
Message

Assertion
Density

Testing
Excep-
tions

Handling
Excep-
tions

Documen-
ting Test
Methods

Speci-
fying
Oracles

Deeplea. N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Dolphins. 0.9999 1.0000 0.9978 0.9971 0.9996 0.9991 1.0000 0.9994 1.0000 0.7617

Dubbo 0.0234 * 0.9988 0.9797 0.9641 0.9991 0.9440 0.9984 0.8611 0.9998 0.3688

Flink 0.9983 0.7003 0.0956 0.0229 * 0.6686 0.9991 0.1384 0.5806 0.9995 0.0004 *

Hadoop 0.3213 0.5490 0.7353 1.0000 0.7160 0.4932 0.5612 0.2303 0.5803 0.7014

Jadx 0.0931 0.0100 * N/A N/A 0.4253 0.0016 * N/A 0.6992 9.1e-5 * 0.1133

Kafka 0.0373 * 0.8309 0.9300 0.5457 0.2580 0.3025 0.0190 * 0.4408 0.9866 0.4038

Mybati. 1.0000 N/A 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Neo4j 0.3773 0.9731 0.7718 0.3314 0.9972 0.4690 0.6070 0.9735 0.9066 0.5631

Netty 0.1877 0.9558 0.9874 0.9929 0.7256 0.0003 * 0.9993 0.9888 0.3151 0.0018 *

Pinpoint 0.5173 0.3919 0.4089 0.5510 0.2609 0.2985 0.4129 0.1511 0.4954 0.6954

Quarkus 0.4001 0.2148 0.0518 0.2128 0.0350 * 0.7498 0.9792 0.2739 9.0e-6 * 0.1946

Selenium 0.6692 0.3991 0.4107 N/A 0.0012 * 0.9842 0.4054 0.5589 0.0100 * 0.4107

Sharding. 0.0605 0.9890 0.1190 1.0000 0.9996 0.0018 * 1.0000 0.9788 0.9912 0.4529

Skywalk. 0.5571 0.9489 1.0000 1.0000 1.0000 0.9558 1.0000 1.0000 1.0000 0.0731

S.-boot 0.0266 * 0.0266 * N/A N/A 0.0006 * 0.0006 * N/A 0.0419 * 0.0302 * 0.3514

S.-fram. 0.0009 * 0.8004 1.0000 N/A 0.6599 0.0024 * 0.1367 0.9935 0.8756 0.3170

Thingsb. 0.9191 1.0000 1.0000 1.0000 1.0000 0.6748 1.0000 N/A 1.0000 1.0000

Zaproxy 0.9959 0.9929 N/A N/A N/A 0.5213 N/A N/A 0.9004 0.3918

Zookeep. 0.3116 1.0000 0.9630 1.0000 0.8986 0.7518 0.9391 0.9993 0.8066 0.1883

introduce inconsistencies in specific cases, possibly more often in Spring-boot, but we cannot conclude that there is a

systematic bias, even within any one of the convention classes.

One factor that could explain these negative results is the inaccuracies in the commit authorship information. Practices

such as squashing commits from pull requests or merging pull requests without retaining the original author’s credit

can eliminate information about the contribution of peripheral contributors. Pull request reviews can also introduce

inaccuracies in the data set: a change suggested by a core contributor to increase consistency, but implemented by the

peripheral contributor, would misrepresent the role of contributors in managing the test suite’s consistency.

5.5 Analysis of Test Suite Consistency Change Events

We complemented our investigation of global trends by manually investigating the probable cause of consistency-

changing events during the evolution of the projects. This investigation provided deeper insights into the factors that

can affect consistency and how well our metrics capture this construct.

To select the events to investigate, we started by plotting the evolution of the entropy-based consistency of all

convention classes for each project. Figure 8 shows two examples of such graphs.
27

Each line tracks the consistency

of one convention class. The x axis shows the index of the commits as they are ordered on the default branch of the

projects. Indices are shifted so that the latest commit has index 0. Henceforth, we refer to commits by their index to

help locate the events on Figures 8 and 9. The shaded area shows the number of tests in the test suite to contextualize

the evolution of consistency. The scale for the shaded area is shown on the alternative y axis on the right.

For some projects, such as Netty, the consistency remains almost constant after the initial fluctuations caused by a

bulk addition of tests (Figure 8a). For other projects, such as Neo4j, there is more variation in consistency throughout

27
Figures 8 and 9 show the evolution of only ten of the twenty studied projects. We include full-size graphs of all twenty projects in the online data

artifact.
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Fig. 8. Evolution of entropy-based consistency. The shaded area shows the number of tests in the test suite, measured on the alternate

y axis on the right.

the history of the project (Figure 8b). We sought interesting consistency-changing events in our target projects. For

each selected event, we looked at the relevant commits, related pull requests and issue discussions, and distributions of

convention instances, to assess whether the event was a consequence of deliberate actions from contributors. In the

remainder of this section, we present each event and the results of our investigation.

Short-term Fluctuation. We noticed some cases where the consistency dropped or increased considerably during a

commit, then reset to its initial value a few commits later. For example, Flink shows such a spike at commit -721 for

Testing Exceptions (Figure 9a), Shardingsphere has a spike at commit -482 for Specifying Oracles (Figure 9b), and

Spring-framework has three spikes, at commit -2694 for Testing Exceptions and at commits -1707 and -276 for both

Testing Exceptions and Specifying Oracles (Figure 9c).

In all cases, the initial change was contributed by a peripheral developer in a pull request, then corrected by a core

developer.
28

In the case of Flink, the core developer suggested the correction in the pull requests, and the peripheral

developer authored the changes themselves. In the case of Shardingsphere, the peripheral developer’s pull request was

merged with the inconsistencies, and the core developer opened a new pull request to “Revise #26845” (the original pull

request), which was merged within ten minutes. In the case of Spring-framework, all three events were due to one

of the core developers committing style revisions directly to the main branch. We observed that this core developer

regularly contributes commits titled “Polishing”.

These events show that core contributors spend effort monitoring and correcting the use of consistent conventions,

even when those conventions are not documented. Our consistency scores could help reduce this effort by identifying

sudden changes, both to allow core developers to target specific areas of the code that need correction and for peripheral

developers to correct their contribution before submitting a pull request.

We also observed the practical limitations of the contributor classification approach during this investigation. For

example, the original, peripheral developers were not systematically credited in the merged commits’ authorship

information. Conversely, reviews contributed by core developers are not retained in the commits’ metadata. Thus,

28
In this section, we use the terms core and peripheral developers to reflect the observable relationships between contributors. They may not align exactly

with the criterion and its variations described in Section 5.4.
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Fig. 9. Evolution of entropy-based consistency for selected projects. Full-sized graphs are available in the online appendix.
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accurately distinguishing contributions of core developers from peripheral ones requires a thorough analysis of multiple

artifacts. We also noted that the use of testing libraries other than JUnit reduces the reliability of our consistency metrics.

For example, many projects use the AssertJ library, which provides alternative assertion methods. These methods were

not correctly identified as assertions during the data analysis, which led to the consistency scores ignoring legitimate

instances of a convention class. This limitation stresses the importance of designing the conventions in a class to match

the current and desired practices in a project.

Large Increase. The consistency of Testing Exceptions suddenly increases at commit -155 of Pinpoint (Figure 9d). This

sudden and large increase contrasts with the otherwise relatively stable evolution of consistency and it does not coincide

with the bulk insertion of tests seen at commit -83.

The commit message revealed that the intent of the contribution was precisely to refactor how exceptions are tested:

“Cleanup Assertions.assertThrows”. The commit replaced multiple instances of Try Catch Idiom with AssertThrows. For

this event, our metric accurately reflects that the refactoring effort was successful in improving the global consistency

of the test suite.

Large Decrease. In several projects, there are notable decreases of consistency that do not correlate with important

variations in the number of tests. We selected three such decreases from Flink to investigate: in Testing Exceptions at

commit -2123, in Naming Results at commit -1759, and in Handling Exceptions at commit -1347 (Figure 9a).

The decreases in Testing Exceptions and Handling Exceptions are attributable to the migration of test classes from

version 4 to version 5 of JUnit. As we excluded JUnit 4 tests from our analysis, the migration had the effect to add

new tests to our data set, which revealed inconsistencies that existed in the code but were not captured by the metrics.

Nevertheless, the change in consistency reveals that that the developers did not adapt the code to the prevalent JUnit5

style during the migration, leading to an imbalance in conventions. In this case, the change in metric value indicates a

missed opportunity to refactor testing strategies as part of a JUnit update. In contrast, the decrease of Naming Results

consistency was caused by a developer introducing a new convention, Actual Prefix, whereas the test suite previously

showed no evidence of a recognized convention. This event could indicate an effort to standardize the name of the

result variable in code. A consistency metric can thus help notify other developers about an attempt to introduce a new

convention.

Slow Constant Increase. Although it is not a punctual event, we observed a slow but constant increase in the consistency

of Supplying Failure Message, Documenting Test Methods, and Testing Exceptions for Kafka, as well as a decrease

in the (dominant) use of the catch-all Other convention of Naming Oracles (Figure 9e). We investigated whether this

constant improvement was the result of a concerted effort to improve the quality of the test suite.

We could not find evidence of periodic refactorings to improve code style, such as those performed by the core

developer of Spring-framework. However, we noticed that commit -1716, in which approximately half of the current

test suite was added, was a large-scale migration from JUnit 4 to 5 in early 2021. Similarly to the previous event (Large

Decrease), developers did not review the consistency of the imported tests during the migration, which generated initial

inconsistencies. Since this migration, developers are more careful in applying a consistent style to new tests, which

explains the increase in consistency. However, the initial inconsistencies were never resolved.

Increase with Periodic Drops. We noticed two cases where the consistency of a convention class would increase over

time, but with multiple drops: for Documenting Test Methods in Quarkus (commits -3407 and -2092, Figure 9f) and for

Naming Test Classes in Jadx (commits -275, -228, -178, -140, and -97, Figure 9g).
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In the case of Quarkus, the drops happened during large pull requests authored and discussed between core developers

(746 and 309 files changed, respectively). In both cases, the discussions of the pull requests suggest that the size of the

pull requests and a desire to expedite merging them prevented a thorough review of code style. For example, the second

pull request includes comments such as “This can be improved upon a lot, however it is sufficient for an initial attempt.”

and “Merging this as we need it in ASAP as to not conflict with other work”. Together with the previous event (Slow

Constant Increase), this event shows that even rare compromises in terms of consistency to prioritize other development

concerns can have lasting consequences that counteract long-term effort to improve test suite quality.

In the case of Jadx, the periodic drops in consistency are due to two competing conventions being dominant in

different folders of the project. With jadx-core/src/test/java/jadx/tests/, test classes in the integration/ subfolder mainly use

the Test Prefix convention, whereas Test Postfix is more common in other subfolders. The two competing conventions

decrease the global consistency score of the test suite.

Change of Dominant Convention. The dominant convention for Naming Test Methods in Thingsboard alternates several

times between the catch-all Other and a regular convention, at commits -344, -340, -321, -175, -151, and -88 (Figure 9h).

We investigated whether these changes were conscious, e.g., due to conflicting ideas from different contributors.

However, we found that they were mainly caused by a lack of control of the code style when developers contributed

new tests. The low frequency of any convention, as well as the inconsistent use of helper methods which hid the method

under test from our convention detection algorithm, explains the instability of the dominant convention.

RQ3: Which contextual factors can affect the consistency metrics and how? We found that our detection

algorithm is limited by the use of helper methods and testing libraries, which can hide relevant instances of conventions

in a class. A prevalent use of the catch-all convention in a class can artificially increase consistency scores, despite the

code not following any fixed convention. However, these issues can be mitigated in practice through the design and

implementation of convention detectors tailored to a project’s technologies and cultural practices.

RQ4: What types of actionable insights are supported by an analysis of test suite consistency? The entropy-
based consistency metric allowed us to successfully detect and quantify the impact of several developer actions, such

as recurrent refactorings to improve the quality of tests suites. It also helped us identify events with a negative impact

on test quality, such as compromises in test quality made to expedite the acceptance of large pull requests, which can

introduce inconsistencies that remain several years in the project. Tracking the consistency of convention classes can

thus help core developers monitor the quality of test suites, identify the location of inconsistencies, and externalize

the knowledge about conventions used in a project.

5.6 Experimental Trade-offs and Threats to Validity

The design of our study required to accept trade-offs to present reliable and meaningful conclusions, at the cost of

limitations and threats to validity related to some aspects of the investigation [47]. These trade-offs were the most

desirable alternatives given our study goals and constraints.

Our study is limited by the precision of the detection algorithm to identify instances of a convention class. Accurately

identifying all possible implementations of a concern, such as how to test an exception, is a complex challenge beyond

the scope of this work. As a result, our observations may inaccurately represent the consistency aspect of test suite

quality for the studied project, especially when they rely on testing libraries such as AssertJ. The decision to design

generic convention classes, which are not tied to specific libraries, allowed us to apply the same systematic procedure
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to study multiple open source projects. This decision suited our objective to assess the potential of consistency metrics

to derive actionable insights to improve test quality.

Another limitation is due to our decision to implement the convention detection algorithm only for version 5 of JUnit.

Many of the projects predate this version. Thus, instead of studying the natural growth of a test suite, our results are

influenced by the adoption of the newer version: in some cases, this was done all at once, whereas the migration was

gradual in other cases. As we did not measure the number of JUnit 3 or 4 tests, our analysis is oblivious to a potentially

important part of the test suite. This decision was a trade-off between the accuracy of the detection algorithm and

its coverage: the breaking changes in the assertion methods introduced in JUnit5, such as the position of the failure

message argument, posed a threat to the reliability of the results. Given that JUnit5 was released over six years ago, we

chose to prioritize the accuracy of the consistency metrics.

The decision to study twenty open source projects poses a threat to external validity. Although we sought to include

large, collaborative software projects, we did not strive to gather a variety of projects along specific dimensions, such as

the testing frameworks used, organizational management styles, or software domains. We also do not claim statistical

representativeness to a larger population. Rather, we chose the number of projects under study, twenty, as a desirable

compromise to generate a variety of consistency profiles while allowing a detailed manual investigation of each project.

Finally, inaccuracies in the author identity resolution pose a threat to the internal validity of the analysis of core

and peripheral contributors’ impact on consistency. Developers may use various {name, email address} combinations

when authoring commits. Linking the various {name, email address} combinations a developer uses is necessary to

classify their participation level correctly. Furthermore, we observed that commits added to the default branch of the

projects did not always retain accurate authorship information. Author identity resolution, however, is a complex

research problem in itself [13]. We attempted to mitigate this threat by performing email address and name unification

using heuristics and acknowledge that our approach may inaccurately classify some developers’ participation levels. As

the objective of this analysis was not to derive definitive conclusions about the impact of peripheral contributors, we

believe this threat is acceptable in the context of our study.

6 RELATEDWORK

This research assumes a relation between code consistency and quality. This relation has been previously investigated

outside the context of testing (Section 6.1). In the area of testing, prior work has surveyed developers to identify

characteristics of high-quality tests (Section 6.2) and assess the state of existing unit tests (Section 6.3). Past work has

also devised metrics to evaluate test quality (Section 6.4).

6.1 Code Consistency andQuality

Boogerd and Moonen contributed an early assessment of the correlation between violation of coding standard rules

and detected faults for two industrial systems written in C [4, 5]. They investigated both the temporal and spatial

co-occurrences of violations and faults, and discover a number of rules whose violations density correlates with fault

density. Similarly, Smit et al. conducted a case study of the adherence to code conventions in four Java systems and

provide descriptive statistics about the number of violations discovered, thereby documenting the extent to which

many common conventions are not adhered to [52]. Takai et al., proposed 13 metrics based on code standard violations

to assist in detecting latent faults in software system [57]. The different metrics capture aspects of the number and

location of violations, but also the change in number of violations, and the software development effort associated with

detected violations. This early work builds on the same assumption as we do, namely that adherence to conventions is
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a marker of code quality. However, in addition to not targeting testing code, this early work considers only deviations

between source code and a single, prescriptive coding standard. The main innovation of our work is that we consider

consistency independently of any given standard, and target test code specifically.

Based on a survey of 55 computer science students and seven professional developers, Magalhães dos Santos et al.

provided evidence that certain coding practices, such as avoiding multiple statements on the same line, are related to a

higher perceived code readability [33]. This work helps strengthens the motivation for using coding conventions in

general, but also leaves out the questions of general consistency we examine in this work. Closer to our work, Zu et al.

study the difference in style between the code in pull requests on GitHub and the style in the code base, showing that

“a [pull requests] that violates the current code style is likely to take more time to get closed” [66].

6.2 Characteristics of High-quality Tests

Multiple empirical studies surveyed developers to understand practitioners’ perspectives on what constitutes high-

quality unit tests. Kochhar et al. [27] conducted open-ended interviews with 21 industry and open-source practitioners,

identifying 29 hypotheses that describe characteristics of good test cases. They surveyed 261 practitioners from various

small to large companies and open-source projects across 27 countries to validate these hypotheses. The key finding

in relation to our research is that most practitioners believe test code should be well-written and follow a consistent

coding style. More than 96% of respondents believe that test cases should be readable and understandable, yet some

voiced difficulties in keeping unit tests clean.

Similarly, Bowes et al. [6] conducted a two-day semi-structured workshop with industry partners to elicit testing

principles that produce high-quality tests. Based on the workshop, the authors’ experience teaching software testing

courses, and content from relevant practitioner books, the authors constructed a list of 15 testing principles. The second

principle in the list is “Readability and Comprehension”. Grano et al. [16] also found that test readability is crucial to

facilitate debugging and maintenance tasks when surveying 70 practitioners. These findings align with multiple unit

testing doctrines that include readability in their guiding principles [28, 35].

Tan et al. [58] proposed a tentative list of 15 criteria for “good” test cases, along with a ranking of their relative

importance. They constructed the list of criteria by combining past research and insights from employees at three

partner companies. The criteria were then evaluated and ranked by 13 experts in the Swedish software testing industry.

The results revealed that developers deem “Maintainable” and “Consistent” to be significant criteria for good tests, with

average rankings of 7.4 and 6.8 out of 10, respectively, where ten indicates “extremely relevant”.

These studies motivate this research by highlighting that practitioners perceive readability and consistency as

essential signals for test quality. In terms of methodology, our research is similar in that it emphasizes the importance

of the practitioner’s perspective. Rather than surveying developers to identify testing principles, we survey relevant

grey literature to identify test conventions.

6.3 State of Existing Unit Tests

Despite practitioners’ agreement that tests should be readable, various empirical studies found that existing tests are

far from it. Grano et al. [17] performed an exploratory study comparing the readability of manually written tests to

the classes they test for three popular Apache projects. They used a state-of-the-art readability model to compute the

readability of the tests and production classes. They found that source code is significantly more readable than test

code, suggesting developers tend to neglect the readability of tests.
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As such, it is no surprise that Li et al. [30] found that more than half of the 212 developers surveyed experience

“moderate” to “very hard” difficulty understanding unit tests. Likewise, by surveying 225 developers, Daka and Fraser [8]

identified difficulty understanding tests as a top obstacle to fixing failing tests.

These studies suggest that developers neglect or struggle to write readable unit tests. They highlight the need for

more research aiming to improve test quality. With this article, we strive to advance towards this goal by exploring test

convention consistency as a proxy for readability.

6.4 TestQuality Metrics

Past work has proposed different metrics to measure test quality. Most of the proposed metrics focus on assessing test

code’s ability to perform one of its three purposes: detect faults. Of all such metrics, code coverage [37] was one of the

first invented and is the most widely researched and embraced by practitioners. Code coverage—the ratio of production

code executed by test code—is easy to compute and interpret. Its main limitation is that it verifies that different code

paths are executed, not that the correct behavior is tested. Another well-researched metric is mutation score [9], which

measures the percent of artificially injected defects a test suite can detect. Although mutation score has been observed

to be more effective than code coverage [31], it is computationally expensive and, therefore, more seldom adopted in

the industry.

In addition to their limitations, these two metrics suffer from a limited scope. Specifically, they fail to capture test

code’s ability to perform two of its three intended purposes: act as documentation and drive debugging. For this reason,

Grano et al. [16] discovered that practitioners consider code coverage insufficient as a test quality metric.

One work that attempts to address this gap is that of Daka et al. [7]. They designed a domain-specific model to

measure unit test readability. The model is based on human judgements and uses various features such as unused

identifiers, assertions, and method diversity. They use the model to generate test suites with improved readability

automatically. Human annotators preferred their enhanced tests to those generated by EvoSuite and could answer

maintenance questions quicker with the same accuracy.

Another line of research that addresses this gap is that of test smells. In 2001 Deursen et al. [10] proposed a set of

11 test code smells along with refactorings to mitigate them. For example, the test smell “Assertion Roulette” is when

a test method has many assertions without explanation, making it challenging to debug failing tests. The suggested

refactoring uses JUnit’s optional String argument to provide an explanatory message to the user when the assertion fails.

Since their proposition, different works have sought to build tools to detect test smells [18, 42, 43, 61] and investigate

their relationship with various factors, such as error-proneness of source code [54]. One particular work by Bavota et

al. [2] investigated whether the presence of test smells impacts program comprehension during maintenance tasks.

They asked participants with varying levels of experience—from bachelor’s students to industry professionals—to

perform program comprehension tasks on tests with and without test smells. They found that test smells have a strong

negative impact on program comprehension and maintenance. Hence, the number of test smells in a test suite could be

used as a signal for its readability.

This article complements the above works by proposing a metric to capture another facet of test quality, namely

consistency. Domain-specific test readability metrics, and other ensemble metrics, can leverage our proposed test

convention consistency metrics as a feature within their models.
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7 CONCLUSIONS

We investigated test convention consistency as one dimension of test quality and make four related contributions to

support developers and other project stakeholders in improving and maintaining the quality of their tests.

Developing our initial contribution, the design of metrics for summarizing the consistency of a test suite, already

surfaced some of the challenges that lay ahead. Not surprisingly, different metrics are sensitive to different macroscopic

changes in test suite quality, and for this purpose we opted to propose a pair of metrics instead of a single one.

Our technical analysis coupled with a systematic application of the metrics in practice showed how entropy-based

consistency scores emphasize the negative impact of occasional deviations from a dominant convention whereas

accuracy-based scores emphasize the most popular convention in convention classes that are less consistent. A second

important challenge we faced early on is that consistency metric values are a function of the number and definition of

conventions. Careful engineering effort must therefore be invested in the definition of conventions and their organization

in convention classes, an endeavor we investigated with the development of a catalog of ten sample convention classes.

Designing the convention catalog allowed to collect, for the first time in one place, a wealth of knowledge on the

various alternative of the test conventions classes. Previously, knowledge of test conventions was heavily fragmented,

as style guides and articles in the grey literature typically only provide the one (or few) alternative preferred by the

author. Our catalog can thus serve as a convenient menu of options to help project stakeholders consider convention

alternatives. More importantly, however, creating the convention catalog forced us to consider numerous important

design decisions related to the specification of individual conventions. For example, one central question when designing

a convention class pertains to the target of the class, as different conventions can apply to different parts of the code (e.g.,

classes, methods, assertions). In the convention catalog, the Design and Discussion sections for each convention class

provide insights on a large number of such design decisions that should benefit anyone undertaking the deployment of

the approach in practice.

In a similar way, our development of the tool infrastructure to detect occurrences of conventions in production

code surfaced numerous issues and concerns that can have a major practical impact. These includes what to define

as a unit test, how to deal with multiple versions of JUnit, reliance on third-party matching libraries, and the impact

of user-defined helper methods on the results. Hence, in addition to providing a blueprint for a tool to analyze test

suite consistency, our experience developing TestComet and Teslo allows us to contribute numerous insights to inform

project-specific adaptations and further improvements.

This research culminated in the use of TestComet to analyze over 80 000 test-related commits from the development

history of 20 notable open-source Java projects. This empirical study provided several outcomes. First, it validated the

design of the test convention classes and the implementation of TestComet by producing a data set of test convention

occurrences we could manually check against the corresponding source code. Second, it provided descriptive statistics

on the range of consistency values for ten different convention classes with our default conventions. Third, it enabled

us to link observed changes in consistency values to specific events in the change history of our target systems, thus

providing evidence of the construct validity of the metrics. Finally, the study allowed us to successfully detect and

quantify the impact of several developer actions, such as recurrent refactorings to improve the quality of test suites or

the deliberate acceptance of technical debt to integrate a pull request. We conclude that analyzing test suite consistency

via static analysis shows promise as a practical approach to help improve test suite quality.
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