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Identifying Concepts in Software Projects
Mathieu Nassif and Martin P. Robillard

AbstractÐWhen working on a project, software developers must be familiar with computing concepts, standards, and technologies

related to the project. We present a novel approach, called Scode, to automatically identify those concepts using the project’s

documentation. Scode combines entity linking and network analysis techniques specialized for the software development domain. In

addition to concepts explicitly mentioned in the documentation, Scode can retrieve implicit concepts related to the project’s domain.

Concepts identified by Scode have a recognized meaning that is consistent across projects. We compared Scode to different baselines

and found that it is more effective at mapping projects to a consistent concept space.

Index TermsÐConcepts identification, Software documentation, Wikipedia mining, Semantic analysis.

✦

1 INTRODUCTION

G IVEN the breadth of programming concepts, software
developers must constantly learn about various techni-

cal concepts related to a project [1], [2]. For example, devel-
opers working on an e-commerce application may have to
learn concepts related to database management systems and
secure transactions, even if the application relies on third-
party libraries to implement these requirements. However,
precisely identifying the concepts relevant to a software
project, beyond the most prominent ones, is challenging. A
precise mapping of concepts to the software project and its
components can help developers perform activities such as
identifying the source of a feature [3], [4], [5], the cause of a
bug [6], [7], or a third-party library for a specific task [8].

We propose a novel solution, named Scode, to auto-
matically identify concepts related to a software project.
We sought to retrieve concepts whose meaning is recog-
nized beyond a specific project. We refer to such concepts
as recognized concepts. We argue that for a concept to be
recognized beyond a project makes it easier to interpret
by developers. We also sought to identify not only explicit
concepts mentioned in a project, but also implicit concepts
related to the project’s domain. For example, a mention
of the SHA-256 algorithm likely implies that the project is
related to the more general concept CRYPTOGRAPHY.

To realize these aims, Scode relies on Wikipedia articles
as proxies for concepts. It first leverages a computational
linguistic technique called wikification [9] to identify explicit
concepts from the project’s documentation. Then, it uses
community search algorithms [10], from the network science
domain, to identify additional, implicit concepts. Hence,
Scode constitutes an alternative to prior work that synthe-
sizes concepts from recurrent terms (e.g., [11], [12]) to build
glossaries (e.g., [13], [14]) and ontologies (e.g., [15], [16]).

To better understand the merits and limitations of a
concept identification strategy based on wikification and
community search techniques, we performed an extensive
evaluation of Scode. In addition to its end-to-end perfor-
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mance, we assessed its underlying mechanisms individu-
ally. We also assessed the impact of using documentation
instead of code identifiers as input to identify concepts.
We found that the precision of practical configurations of
Scode ranges from 25% to 66%. Scode also identifies the
same recurring concepts more consistently than comparable
approaches. The contributions of this article are:

1) a novel approach to identify project-related concepts
with a recognized meaning;

2) the results of an extensive empirical evaluation of our
concept identification strategy;

3) a curated list of over 6700 computing-related Wikipedia
articles, used to improve the performance of wikifica-
tion tools for software documents.

In the remainder of this article, we motivate our work
and provide a brief introduction to the wikification and
community search problems (Section 2), describe the design
of Scode (Section 3), then report the methodology and re-
sults of our evaluation (Section 4). We finally discuss related
work in Section 5 and conclude in Section 6.

Data Artifact

This article is complemented by an on-line appendix that
contains replication data used in our evaluation and the list
of 6746 computing-related Wikipedia articles. This appendix
is available at https://doi.org/10.5281/zenodo.6459607.

2 MOTIVATION AND BACKGROUND

We motivate the need for novel concept identification tech-
niques by considering the design of a sample application.
This application inserts badges in a README file to rep-
resent concepts relevant to a project, grouped by topic.
Figure 1 shows an example of the badges generated by
this application for the K-9 Mail Android app. A summary
badge that indicates the number of topics identified for the
project is placed alongside other usual badges at the top of
the README file (Figure 1a). The application also inserts
one badge per topic in a dedicated section of the README
file (Figure 1b). In a separate file, the application generates
a section for each topic, listing the project-related concepts
that belong to this topic (Figure 1c).
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(a) README File with Summary Badge (b) Dedicated Section with All Topics (c) Topic Information

Fig. 1: Scode can be used to create badges that indicate the relevant topics for an open source project such as K-9 Mail.

The badges fulfill a purpose similar to GitHub Topics.1

However, whereas GitHub topics typically focus on project-
wide concerns (e.g., application type, development and
building dependencies), scode badges also capture concerns
related to smaller portions of a project, for example that it
includes a user interface controlled by a layout manager.
These badges can ease the introduction of new contributors
to a project by showing the background they need. The topic
information file contains relevant concepts from that topic,
each linked to a Wikipedia article, so that developers can
learn about or recall unfamiliar topics [1], [2].

This scenario surfaces the limitations of techniques that
extract concepts by analyzing recurrent terms in source code
and documentation. First, using concept names recognized
by Wikipedia, rather than the project-specific terms, ensures
that they have a consistent meaning across projects. Thus,
developers will know whether they need to learn more
about a topic before having to read the project-specific de-
scription. Second, associating each concept with a Wikipedia
article provides a natural way to learn about the concept
when necessary. Finally, grouping concepts by topic, rather
than presenting them as a flat list, helps developers navigate
efficiently through the required knowledge even if a large
number of concepts are presented.

With over six million articles, the extensive coverage and
popularity of Wikipedia makes it a valuable knowledge base
of recognized concepts. Although there are software-specific
knowledge bases and glossaries (e.g., ISO/IEC/IEEE’s vo-
cabulary of systems and software engineering [17]), the
subset of Wikipedia relevant to computing offers a more
extensive and up-to-date coverage, thanks to its vast com-
munity of contributors.

The development of efficient wikification techniques
in the last decade enables the use of Wikipedia articles
as proxies for concepts. Wikification refers to the task of
linking mentions of concepts in free-form text to relevant
Wikipedia articles [18], [19], [20]. It is a variant of the
named entity recognition and disambiguation task, expanded
to include unnamed entities, i.e., concepts [21]. Several tools
are now available to perform this task on arbitrary texts.
These tools are designed to retrieve the correct sense of a
word in a text (e.g., associate ªmapº with the data structure
or the visual representation depending on the context) and
link synonyms to the same concept (e.g., associate ªmapº,
ªdictionaryº, and ªassociative arrayº to the same concept).

Wikification tools, however, cannot identify concepts
that are only implied by a document. For example, a text
mentioning SHA-256 is also related to the implicit con-

1. https://github.com/topics/

cept of CRYPTOGRAPHIC HASH FUNCTION. Implicit concepts are
important to reduce the impact of variations in the way
software documentation is written when identifying related
concepts. Community search algorithms can help identify
such implicit concepts. The community search task consists
of identifying, within a graph, a densely connected sub-
graph that surrounds a query node [10], [22]. Thus, using
Wikipedia articles as nodes and hyperlinks between them as
edges, we can apply community search algorithms to find
further articles related to those mentioned in the project’s
documentation. The communities found by these algorithms
can also form the basis for aggregating concepts by topic.

3 CONCEPT IDENTIFICATION

Our approach to identify relevant Wikipedia-based concepts
works in two on-line phases, summarized in Figure 2. The
first phase identifies concepts that are explicitly mentioned in
the documentation using a wikification service (Section 3.2).
The second phase uses explicit concepts as seeds to identify
additional implicit concepts related to the same domain.
For this phase, we implemented a set of community search
algorithms (Section 3.3). The outcome of the community
search algorithms is also used to group concepts into topics,
each characterized by a single representative concept.

These two phases rely on data processed once during a
third, off-line phase. This phase consists of preparing the
Wikipedia data archive to extract a graph of computing-
specific articles (Section 3.1). We also precompute properties
of this graph to support the community search algorithms.

3.1 Off-Line Preparation

Both on-line phases of Scode rely on a graph of concepts
derived from wikilinks, i.e., hyperlinks between Wikipedia
articles. The edges between concepts in this graph provide
the basis to identify related implicit concepts with the
community search algorithms. The concepts included in the
graph also act as a whitelist to filter the explicit concepts
identified by the wikification service. Thus, the accuracy
with which the graph models the computing domain plays
an important role in improving the accuracy of Scode.

Although it would be possible to use the entire wik-
ilink graph, this graph is extremely large and highly con-
nected. We used a semi-automated approach to extract this
software-specific subgraph from the April 2020 archive of
the English-language Wikipedia. We only retained articles in
the main namespace of Wikipedia, i.e., excluding pages such
as categories and article discussions. We also retained only
wikilinks that are inserted directly in the code of an article,



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

Online – Phase 2

Wikipedia
archive

Software-specific
Wikipedia subgraph

Wikification 
service

Software
project

Wikipedia 
articles

Preprocessed
plain text

Truss Index

Community
search

Related
articles

Concepts

Concepts

Topic

Topic

Offline

Online – Phase 1

Documentation
extraction

Aggregation

Fig. 2: Overview of our approach. It takes as input a software project and returns a set of associated concepts, grouped by
topic. It builds on state-of-the-art wikification and community search techniques, and includes an off-line phase to process
data from a Wikipedia archive.

i.e., not via a template. This filter discriminates wikilinks
that are intentionally chosen by Wikipedia editors to relate
two specific subjects from those added automatically by,
e.g., navboxes and sidebars.2

Wikipedia contains redirect pages, which automatically
redirect the reader to another target article when accessed.
These pages are often used to add alternative titles to an
article. We removed those pages from the set of nodes,
but resolved and retained wikilinks passing through these
redirect pages. That is, if an article A links to a redirect page
R, whose target is B, we add an edge from A to B in the
graph. Finally, we discarded disambiguation pages3 and set
index articles,4 which are only used to list the different senses
of polysemous terms.

After applying these filters, we obtained a pruned graph
with 5.65 million nodes and 129 million edges (average
node degree of 45.7). We considered all edges as undirected
and unweighted, which is consistent with the interpretation
that a wikilink indicates an unquantifiable and reciprocal
relatedness relation between the source and target concepts.

We further filtered the set of articles using a systematic
manual procedure to retain only those related to computer
science and software technologies (Figure 3). The man-
ual procedure requires as input the automatically pruned
Wikipedia link graph W and a seed set C of candidate
articles potentially related to computing. To produce the
initial candidates, we gathered all articles listed in four
Wikipedia navigation pages containing notable computing-
related articles,5 as well as the 1098 articles identified as
computing-specific in a prior study [23]. The resulting candi-
date set C contained 2045 distinct articles covering different
areas of computing.

For each candidate, an annotator scanned the content
of the article to determine whether it was related to com-
puting (line 5), in which case the candidate was added
to a related set R (line 6). When adding an article to R,
each of its neighbors not yet considered (line 7) and that

2. https://en.wikipedia.org/wiki/WP:NAVBOX
3. https://en.wikipedia.org/wiki/WP:DAB
4. https://en.wikipedia.org/wiki/WP:SIA
5. The articles are Glossary of computer science, Index of object-oriented

programming articles, Index of computing articles, and Index of software
engineering articles.

Input: W : Wikipedia link graph
Input: C : Seed candidate set
Output: R: Subset of computing-related Wikipedia articles

1: D ← ∅ // unrelated articles to discard
2: while C ̸= ∅ do
3: c← arbitrary element from C
4: C ← C \ {c}
5: if c is related to computing then
6: R← {c} ∪R
7: for all n ∈ neighbors(c) \ (C ∪R ∪D) do
8: N ← neighbors(n)
9: if |N ∩R| ≥ |N \R| then

10: C ← {n} ∪ C
11: end if
12: end for
13: else
14: D ← {c} ∪D
15: end if
16: end while

Fig. 3: Identification of Computing-related Articles

have more neighbors inside than outside R (line 9) became
a candidate (line 10).6 Rejected articles were added to a
discard set D to avoid considering them again as candidates
(line 14). As the set of candidates is updated every time a
candidate is accepted, we could not divide the annotation
task into parallel subsets annotated independently by each
author. Thus, the first author performed the entire task,
accepting 6746 articles and rejecting 2811 others. To measure
the subjectivity of the annotation task, the second author
independently annotated a sample of 800 articles taken
at random with equal probability from the final content
of R and D. As this exercise only served to assess the
subjectivity of the reliability of the first annotator’s results,
we did not resolve conflicts. We observed a substantial [24]
inter-rater agreement (Cohen’s κ = 0.71 [25]), suggesting
that the selected articles are a reliable representation of the

6. The condition on line 9 prevents the set of candidates from growing
too quickly and rendering the manual validation impractical. We chose
this criterion as it generates the same sets of related articles regardless
on the order in which the set of candidates is processed.
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computing domain on Wikipedia.
The resulting graph of 6746 computing articles contains

102 854 edges (average node degree of 30.5). This graph
excludes general-domain concepts, such as LANGUAGE and
MIND. It also excludes specific end-user applications (e.g.,
names of video games), learning resources on computing
(e.g., textbooks), and low-level hardware technologies (e.g.,
models of microprocessors). It includes general computing
concepts and domains (e.g., DATA PARALLELISM, ARTIFICIAL

INTELLIGENCE), programming languages (e.g., C++), and de-
velopment technologies (e.g., INTELLIJ IDEA, SPRING FRAME-

WORK). We make this graph, as well as the annotation guide
and annotations, publicly available in our on-line appendix.

In addition to extracting a relevant subgraph of concepts
from the Wikipedia link graph, the off-line phase involves
preparing a truss index to support one of the community
search algorithms. We reimplemented the procedure to
compute this index as described by Akbas and Zhao as
part of their community search technique [26]. We define
trusses and describe the use of the truss index in Section 3.3,
together with the other algorithms we used to expand
concepts into topics.

3.2 Explicit Concept Identification

Scode uses a wikification service to identify explicit concepts
in documentation. To design this phase, we relied on the re-
sults of a prior study in which we compared six state-of-the-
art wikification tools [23]. We found that the performance of
all tools decreased when applied to software documents,
typically due to technical terms being confused with their
domain-general sense (e.g., TREE resolved as the type of
plant). Using a whitelist of computing-specific concepts is
an effective strategy to counter this limitation [23].

We chose the Babelfy tool [27] for Scode. Babelfy is an
on-line wikification service that achieved good precision
for reasonable recall levels, relatively to the other tools. To
produce its natural language input, Scode aggregates all
Javadoc comments in a source file, keeping them in their
original order within the file. Each comment consists of an
initial description of the type or method being documented,
followed by a list of tag-fragment pairs. For example, the
documentation of a method can start with its general pur-
pose, followed by fragments describing each parameter,
marked by the @param tag. All elements can use HTML
and in-line Javadoc-specific syntax. Before aggregating these
comments, Scode removes the HTML and Javadoc syntax,
and excludes any comment description or fragment that
is too short.7 Excluding short descriptions and fragments
prevents the input from containing incomplete phrases (e.g.,
ªUsed for nontrivial settings upgradeº) and irrelevant informa-
tion (e.g., the authors of a class).

Like most wikification tools, Babelfy is more precise
when processing large texts, because text fragments of only
a few words lack sufficient context to disambiguate the
sense of polysemous words. Thus, Scode aggregates all the
comments of a project into a single input, to provide as
much context as possible.8 The order in which Scode ag-

7. We used an arbitrary minimum of ten words.
8. Due to a limitation of the API, Scode makes several requests if

the aggregated comments contain more than 10 000 characters. Scode
avoids splitting comments to the extent possible.

Input: Set C of explicit concepts
Output: Set of topics T

1: M ← empty map
2: R← ∅
3: for all concept c ∈ C do
4: T ← LARGETRUSS(c) // T is itself a set of concepts
5: T ← REDUCETRUSS(T )
6: if |T | ⩾ 100 then
7: T ← REDUCEECC(T )
8: end if
9: r ← REPRESENTATIVE(T )

10: if r ∈ keys(M ) then
11: T ← T ∪M [r]
12: R← R ∪ {r}
13: end if
14: M [r]← T
15: end for
16: for all r ∈ R do
17: M [r]← REDUCETRUSS(M [r])
18: end for
19: return values(M )

Fig. 4: Implicit Concept Identification Procedure

gregates the documentation from different files is arbitrary.9

Babelfy returns a list of concepts, identified as entries
in the BabelNet knowledge base [28]. BabelNet entries can
be mapped to corresponding Wikipedia articles. Scode re-
moves from the output any concept that is not in our curated
list of computing-specific Wikipedia articles. This filter can
produce false negatives, for example due to non-computing
concepts related to the problem domain of the project.
However, the negative impact of these missing concepts
is outweighed by the larger increase in precision observed
in our prior work when using a whitelist [23]. The explicit
concepts output by this phase seed the search for additional
implicit concepts in the next phase.

3.3 Implicit Concept and Topic Identification

Edges in the computing-specific Wikipedia graph indicate
relatedness between articles, and thus can be used to find
implicit concepts. However, despite the heuristics described
in Section 3.1 to reduce the number of edges, the graph
remains densely connected. Trivial heuristics, such as tak-
ing all concepts within an arbitrary distance of the seed
concepts, produce too many concepts.

To circumvent this issue, we used community search
techniques to identify a practical number of concepts. In-
formed by Fang et al.’s survey of community search algo-
rithms for large graphs [10], we reimplemented three algo-
rithms to identify implicit concepts, as shown in Figure 4.

The procedure starts by identifying a separate commu-
nity around each explicit concept c. An initial community
(or topic) T is generated using Akbas and Zhao’s algo-
rithm [26] to find the largest k-truss around c, for the highest

9. Wikification techniques are noisy and sensitive to the order of their
input. In an ancillary experiment, we confirmed this sensitivity, but
found no obvious way for the input order to systematically improve
the quality of the result. Babelfy introduced a similar amount of noise
for the arbitrary order of Scode as for other random permutations.
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possible value of k (function LARGETRUSS of Figure 4).
Within a graph, a k-truss is a subgraph in which any two
neighbors (i.e., nodes connected by an edge) share at least
k−2 other common neighbors. Akbas and Zhao’s algorithm
is particularly efficient for repeated queries over a large
graph, as it precomputes the key information about the
potential trusses and stores it in a truss index.

As we favor smaller communities, Scode applies Huang
et al.’s algorithm [29] to reduce the size of the k-truss while
maintaining the query concept c and the value of k (function
REDUCETRUSS of Figure 4). Their algorithm approximates
the subset of the initial k-truss for which the maximum
distance from the query concept c to any other concept is
as small as possible.

We observed a bimodal distribution in the number of
concepts per topic. In many cases, the reduced topic has
fewer than 25 concepts. However, when the initial query
concept is a popular computing concept, such as JSON or
SQL, this minimal community still contains several hundred
concepts. Scode further reduces the size of any commu-
nity with over 100 concepts by relying on an alternative
definition of connectivity for communities: k-edge-connected-
components, or k-ECC. A k-ECC is a subgraph that requires
at least k edges to be removed for the graph to become
disconnected (i.e., it is no longer possible to find a path
between any two nodes). For example, a set of k nodes
that are all pairwise connected is a (k-1)-ECC. This con-
nectivity requirement is looser than k-trusses, which allows
to reduce the size of a (k-1)-ECC derived from a k-truss
while maintaining the value of k. We used Hu et al.’s
algorithms [30] to perform this reduction for large k-trusses
(function REDUCEECC of Figure 4).

The algorithms described so far generate a separate com-
munity for each explicit concept. The next step is to merge
communities that describe similar topics. As the size of
communities varies considerably, many intuitive heuristics
(e.g., merging communities with a large overlap) have a
detrimental effect on the output. For example, they can void
the information captured by a small specialized topic by
merging it with a large generic community. Trivial merging
heuristics can also lead to arbitrary topics that depend on
the order in which the communities are merged.

We implemented the community aggregation step by
seeking a representative concept for each community. Fol-
lowing the insights from Lizorkin et al. [31], we chose
the representative as the concept with the highest pagerank
value [32] among the community (function REPRESENTA-
TIVE of Figure 4).10 Scode merges all communities that
have the same representative into a single community, and
applies the k-truss reduction algorithm once more on the
new communities to further reduce their size.

This final set of communities forms the outcome of
Scode. Each community represents a single topic of related
concepts, identified by one representative concept.

3.4 Implementing the Sample Application

We implemented the application described in Section 2 to
demonstrate the usefulness of Scode in a practical scenario.

10. The representative concept is typically more general than the
explicit concept. In our evaluation with Java classes, we observed that
15% of topics have an explicit concept as its representative.

After collecting a set of concepts grouped by topic, the
application separates small topics (i.e., containing at most
25 concepts) from larger ones. The summary badge inserted
at the top of the README file indicates the number of small
topics. For each small topic, the application generates one
badge using the name of the topic’s representative concept
as the value of the badge. The color of the badge is based
on the representative concept: we automatically assigned to
each concept in the computing-related subset of Wikipedia a
unique color, giving similar colors to similar concepts based
on a hierarchical clustering of the Wikipedia graph. The
application uses the Shields.io service to generate the badge
image with the desired name (scode), value, and color.

The application also creates a new file to describe the
topics in more detail. In this file, we add one section for each
small topic, and each badge in the README file links to
its corresponding section. The section body contains the ex-
plicit concepts from this topic first, as they are more likely to
be of importance to the developer. Further implicit concepts
are placed in a collapsible list under the explicit concepts. As
each concept is a Wikipedia article, the application creates a
hyperlink from each concept to the associated article.

Large topics are not included. We observed that they
tend to contain less cohesive groups of general program-
ming concepts. Hence, developers are less likely to find
the extent of such topics useful, especially if they must
scan hundreds of concepts. Hence, we only retain explicit
concepts included in large topics, and list them all under a
ªGeneral Programming Conceptsº section in the new file.

4 EVALUATION

The objective of our evaluation was to understand the
strengths and limitations of an approach based on wikifi-
cation and community search, as represented by Scode, to
identify concepts relevant to a software project. We centered
this evaluation around four research questions:

RQ1 How accurate are concepts identified by Scode?
RQ2 How consistent are concepts identified by Scode?
RQ3 How effective are the internal mechanisms of Scode?
RQ4 How do concepts extracted from documentation differ

from those extracted from code identifiers?

We first evaluated the end-to-end performance of Scode
and compared it to two baseline techniques. To measure the
performance of concept identification techniques, we used
two metrics: The precision of a technique corresponds to
the proportion of the concepts it identifies that are actually
related to the project (RQ1, Section 4.2). Conservative tech-
niques can achieve a high precision by returning few or very
specific concepts. To balance this dimension, we used the
consistency of the identified concepts as the second metric
(RQ2, Section 4.3). A technique should consistently identify
the same concept for any project related to this concept.

To gain a better understanding of the promising and
limiting components of our approach, we evaluated the in-
ternal mechanisms of Scode separately (RQ3): the whitelist
of computing concepts (Section 4.4), the wikification ser-
vice (Section 4.5), and the community search algorithms
(Section 4.6). Finally, as it is a major design decision for
Scode, we studied the impact of extracting concepts from
documentation rather than source code (RQ4, Section 4.7).
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4.1 Study Design

We generated a list of concepts related to a sample of Java
classes and manually validated the concepts’ relatedness
to their associated class. We compared Scode to two state-
of-the-art techniques as baselines, following the same pro-
cedure. We computed the precision and consistency of all
techniques to answer our first two research questions.

We selected as baselines tools that are publicly available
and that extract concepts from the documentation of a
project. The first baseline is a technique to identify concepts
related to Java classes in order to build a comprehensive API
knowledge graph [33], [34]. The technique relies on various
natural language processing heuristics specifically tailored
for API concept extraction. In contrast to Scode and the other
baseline, the concepts are not intended to have a recognized
meaning in an external knowledge base. For our evaluation,
we extracted the concepts from the API knowledge graph,
which we refer to as PengKG, instead of re-implementing
the concept extraction technique.

We used explicit semantic analysis (ESA) [35] as the other
baseline technique. ESA associates arbitrary text inputs with
entries of a knowledge base, such as Wikipedia. We used the
EasyESA implementation of ESA in this evaluation [36]. To
produce the input for EasyESA, we used the same processed
documentation as for Scode, described in Section 3.2.

We limited the size of the subjects in our evaluation
sample, so that the evaluators could understand each subject
in a reasonable amount of time. Thus, instead of using whole
projects, we considered individual Java files as independent
subjects. Because PengKG did not include concepts for
interfaces, we only sampled files for which the top level type
is a class. Hence, we refer to each subject as a Java class, with
the understanding that it may include nested classes.

We randomly sampled 100 Java classes, each with equal
probability, from the standard Java Class Library, version
15. We used the standard library due to its coverage of
many areas and the high quality of its documentation. These
classes were also part of PengKG.

Scode identified a total of 84 to 774 concepts per class
(average of 459), except for five classes that were associated
with no concept due to their insufficient documentation.
To avoid overloading the annotators, for classes associated
with more than 100 concepts, we randomly sampled 100
concepts among Scode’s output for the annotation task, with
each concept having an equal probability of being selected.

For each class, PengKG includes one to 42 related con-
cepts (average of 10). We included all of them in our
evaluation. For EasyESA, as it takes a number of concepts
to generate as part of its input, we generated five more
concepts than the number of concepts identified by Scode.
We did not use a constant number of concepts to account
for classes that are inherently related to very few or many
concepts. Because EasyESA’s results are ranked, we selected
the 100 highest ranked concepts for the annotation task.

In total, we generated 20 005 class±concept pairs to
evaluate. For each pair, the two authors judged whether
the concept may be relevant to a developer working with
the class. We did not rely on external annotators for this
procedure as it requires a significant effort to read and
understand the code of each class and peruse the content of
Wikipedia articles before judging whether the concepts are

TABLE 1: Concept Identification Precision for 100 Java Files

Technique Concepts Sample Gen. Relevant Prec.

PengKG 1006 1006 187 584 71.3%

EasyESA 44 069 9455 674 340 3.9%
top 1 97 97 9 20 22.7%
top 3 291 291 36 44 17.3%
with whitelist 1160 1160 439 79 11.0%
top 1 whitelist 93 93 26 22 32.8%
top 3 whitelist 265 265 96 38 22.5%

Scode 43 584 9663 6432 146 4.5%
small topics 1453 288 159 32 24.8%
representative 548 115 93 9 40.9%
explicit 1071 306 208 65 66.3%
implicit 42 513 9357 6224 81 2.6%

TABLE 2: Examples of Concepts Identified by PengKG,
EasyESA, and Scode

Technique Sample Concepts (original capitalization)

PengKG PREFERREDSIZE, Minimum Size, Property Change
Listener, utc, detail message, CompositeData value

EasyESA Byte stream, GUI widget, Stream (computing), Endi-
anness, Home directory, Aspect ratio

Scode Concurrent computing, Character encoding, Serial-
ization, Layout manager, Dialog box, Parsing

related. To avoid a negative bias against baseline techniques,
the technique that generated each pair was not identifiable
during the annotation task. We also put all concepts in
lower case, and removed parentheses from Wikipedia titles
to further reduce the distinctions between Wikipedia-based
concepts and the free-form concepts from PengKG.

The authors first annotated all concepts associated with
two classes and discussed the results to refine the annotation
procedure. We found that it was unreliable to grade related-
ness on a scale. Thus, the annotators annotated each pair
as a binary variable, i.e., whether the concept is related to
the implementation of the class, its usage, or the abstraction
it represents. During the preliminary phase, we also found
that some general concepts could be relevant to virtually
all developers for any class. These concepts include, for
example, fundamental computer science concepts such as
BYTE and CONDITIONAL BRANCHING. Annotators assigned the
special annotation general to these concepts and did not
further assess their relatedness to specific classes.

After refining the annotation guidelines, each annotator
independently annotated 54 of the remaining 98 classes,
so that the concepts associated with ten unmarked classes
would be annotated by both annotators to assess the inter-
rater reliability. The two annotators achieved a substantial
agreement [24] (Cohen’s κ = 0.74 [25]). Conflicts within the
ten common classes were resolved by a discussion between
both annotators.

4.2 Precision of the Identified Concepts

Table 1 summarizes the results of the annotation task to
answer our first research question. The number of concepts
identified by each technique and those that we annotated
are shown in the ªConceptsº and ªSampleº columns, re-
spectively. The sample size varies based on the number of
concepts identified by each technique (capped at 100 per
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class) for the 100 classes. The ªGen.º column shows how
many concepts were marked as general. Finally, the last two
columns report the number of class±concept pairs marked
as related and the precision of each technique, computed as
the ratio of relevant to non-general concepts. We excluded
general concepts from the precision as they are related
to virtually any class, but capture little information about
them. This conservative decision impacted Scode the most.
For each technique, the top row in bold indicates the global
values for the technique, and subsequent rows show values
for different variations as described below.

PengKG

PengKG is the most precise technique with a precision of
71.3%. It returned a number of true positives comparable to
but smaller than the other techniques.

However, while inspecting the concepts provided by
PengKG, we observed recurrent patterns of concepts that
matched the class name and its members. For example,
the class ServerSocket, which contains the methods get-

LocalPort() and getInetAddress(), was associated with the
concepts LOCAL PORT and INET ADDRESS. Although relevant,
these concepts do not reveal additional information beyond
the interface of a class. In particular, PengKG associated 44
of the 100 classes with a concept that exactly matches the
class name. PengKG also contained many overly specific
concepts such as COMPOSITEDATA VALUE (see Table 2). Con-
trary to concepts with an externally recognized definition,
these concepts are meaningless without prior knowledge of
the class implementation.

EasyESA

In contrast to Scode and PengKG, EasyESA ranks concepts
from most to least relevant to the input text. Considering
only the top concepts increases the precision of EasyESA.
However, we found that even when considering only its
highest ranked result, the precision was only 22.7%. As more
concepts are considered, the precision decreased rapidly,
already to 17.3% when considering the top three concepts
(see rows top 1 and top 3 of Table 1).

Scode

Scode produced a large number of concepts for each class,
with a considerable amount of noise. The high proportion of
false positives can be explained by explicit general concepts,
which tend to gather large, ill-defined topics during the
community search phase of Scode. Concepts from such
large topics were also pervasive in the annotation sets
due to the uniform sampling across topics. For example,
if Scode produces for a class three small, cohesive topics of
20 concepts each, and one large, low-quality topic of 500
concepts, sampling 100 concepts uniformly from the 560
identified by Scode will select mostly concepts from the
large topic, despite most topics being more specific to the
class. Specifically, only 1453 of the 43 584 concepts (3.3%)
identified by Scode were in topics with at most 25 concepts.

When considering only concepts included in topics of
25 or fewer concepts, we observed that Scode’s precision
was significantly higher, up to 24.8% (see row small topics
of Table 1). We used a threshold of 25 concepts for the size

of a small topics based on our preliminary observation of
a gap in the distribution of topic sizes, between 25 and 75
concepts. Although the precision remains modest, within a
topic of 16 concepts, approximately four would be directly
relevant to the project, thus warranting a look by developers
unfamiliar with the domain.

We also assessed the quality of the topics by considering
their single representative concept, as defined in Section 3.3.
The precision of these concepts reached 41% (see the rep-
resentative row of Table 1), although a disproportionately
large number of concepts were marked as general and thus
excluded from this computation.

Without constraints on the number of topics, we found
that most of the time, Scode produced a manageable number
of topics. For our sample of 100 Java classes, Scode produced
at most 15 topics per class. For 90 classes, it even produced
ten or fewer topics (including the five classes for which no
concept were identified). The number of topics for an entire
project is also small: When using 227 Android projects as
input to Scode (see Section 4.6), it produced on average 16
topics per project, with 90% of the projects having fewer
than 26 topics. Thus, it is possible for humans to get an idea
of the conceptual context of an entire project by reviewing
only a small number of topics.

Findings: Scode achieves a low precision when consid-
ering all implicit concepts (4%). However, when filter-
ing out large general topics, the precision rises to 25%.
Scode is even more precise for topic representatives (41%).
In any configuration, Scode outperforms EasyESA for a
comparable output, but EasyESA generates fewer general
concepts. PengKG is the most precise concept identification
technique (71%), but returns many trivial concepts.

4.3 Consistency of the Identified Concepts

Our second research question focuses on Scode’s ability to
generate recognized concepts consistently across projects.
We looked at the concepts marked as related to get a sense
of each technique’s performance, and report illustrative
examples in Table 2. Although PengKG is more precise than
Scode and EasyESA, the concepts it identified were specific
to each class. For example, PengKG identified that many
classes of the Java Swing library define a PREFERREDSIZE,
but such a concept has no meaning outside this library.
Other concepts, such as COMPOSITEDATA VALUE, are obscure
outside the specific context of the class. In contrast, Scode
and EasyESA’s concepts have by design a meaning recog-
nized in a popular independent knowledge base.

To empirically assess the consistency of the three tech-
niques’ output, we measured how often each technique
identified the same concept for different classes. Although
some concepts are genuinely relevant to few classes, a tech-
nique should not only identify concepts so specific that they
are only related to a single class. Otherwise, these concepts
will be of limited value when comparing the conceptual
context of different classes.

Figure 5 shows the recurrence of concepts in our sample
of 100 Java classes. We used all concepts returned by the
three techniques to produce this graph, without limiting
them to 100 concepts per class to avoid the bias of a random
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Fig. 5: Number of classes associated with each concept
identified by Scode, EasyESA, and PengKG. The x axis
shows each concept, in decreasing order of their recurrence
across classes. For readability, the x axis is limited to the
1000 most recurrent concepts.

filter on the output. Therefore, the figure includes false
positives, as not all results were annotated.

As the figure shows, Scode identified the same concept
for multiple classes more often than EasyESA and PengKG.
Some general concepts were associated with almost all
classes, whereas other concepts were more specific to a few
classes. This distribution of classes per concept effectively
supports a comparison of the domain of multiple classes.

In comparison, PengKG’s concepts were rarely reused
across classes. Specifically, the 1006 class±concept pairs from
PengKG contained 776 distinct concepts, 84.9% of which
were associated with a single class. The most common non
general concept, PREFERREDSIZE, was associated with only
eight classes. In comparison, Scode’s 43 584 class-concept
pairs involved only 1281 distinct concepts. Only 10.9% of
them were associated with a single class, and the median
number of classes associated with each concept was 18.

Despite also using a finite set of concepts, i.e., Wikipedia
articles, EasyESA also rarely identified the same concept for
multiple classes. Of the 27 943 distinct concepts identified
by EasyESA, 71.9% were associated with a single class. The
most common concept, METHOD, was only associated with
33 classes, even though such a general concept is related
to virtually any Java class. This result suggests that using
an external knowledge base is not sufficient to identify
consistent concepts, and shows the importance of finding
a strategy to identify implicit concepts.

Findings: Concepts identified by Scode are more consistent
than those identified by EasyESA and PengKG. They were
linked to a varying number of the 100 sampled classes,
from over 90 classes to a single one, with a median of 18.
In contrast, the median EasyESA concept was linked to
two classes, with the most common concept, METHOD, only
found for 33 classes. The majority of PengKG’s concept
(85%) were linked to a single class.

4.4 Whitelist of Computing Concepts

One of our contributions is the manually curated list of 6746
Wikipedia articles about computing-related concepts. Scode
uses this list to remove false negatives from the output
of the wikification service. We investigated whether this

whitelist could also improve the precision of other concept
identification techniques by applying it to EasyESA.11

When using the whitelist to filter the top 100 results
from EasyESA, we observed that it removed 87.7% of the
original concepts, increasing the precision up to 11.0% (see
row with whitelist of Table 1). When considering only the
highest ranked result that is also on the whitelist, EasyESA
achieved its highest precision of 33%, but this precision
dropped rapidly, reaching 22.5% for the first three concepts
(see rows top 1 whitelist and top 3 whitelist of Table 1).

A whitelist of concepts also reduces the number of
unique concepts that a technique can return, limiting the
number of concepts associated with a single class. In the
case of EasyESA, among the 1070 unique concepts both in
the top 100 results for a class and in the whitelist, only 38.5%
were associated with a single class, and the median concept
was associated with three classes.

Findings: Applying the computing-specific whitelist of
Scode to EasyESA improves its precision from 23% to 33%
(considering only the highest ranked concept). Although
better, it remains below the precision of Scode (41% for
topic representatives or 66% for explicit concepts).

4.5 Wikification and Community Search Algorithms

We measured the performance of the wikification service
by considering only the subset of explicit concepts in our
annotated data set (see explicit row of Table 1). We found
that Babelfy identified on average 10.7 concepts per class,
with a precision of 66.3% for non general concepts.

The precision is consistent with what we had observed
in a prior comparative study of six wikification tools [23].
In this prior study, Babelfy achieved a precision of 75% with
the same configuration as used in this current work. For this
precision level, Babelfy achieved a recall of approximately
35%. This value is close to the maximum performance of
other wikification techniques, which hardly surpass 40%
recall. Nevertheless, it motivated the need for a second
phase to recover missed concepts.

Excluding the explicit concepts, we observed that the
precision of the community search algorithms was low,
2.6%, for identifying implicit concepts (see implicit row of Ta-
ble 1). However, as discussed above, most false positives are
due to large, generic topics. When considering only small
topics, which mostly contain implicit concepts, the precision
of Scode is well above the 2.6% value. Thus, the drop in
precision is a necessary cost to achieve additional benefits,
such as identifying further implicit concepts, grouping the
results by topic, and discriminating specialized concepts
from generic ones (based on the size of the community).

Findings: Babelfy’s precision (66%) is almost on par with
PengKG (71%), the most precise technique in our evalua-
tion. In contrast, the community search algorithms intro-
duce a relatively large amount of noise when identifying
implicit concepts (precision of 2.6%), especially due to
concepts that generate large communities.

11. As PengKG does not use Wikipedia articles as concepts, we
cannot apply our whitelist to this technique.
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4.6 Topic Cohesiveness

We evaluated the ability of the community search algo-
rithms, developed for general network science applications,
to generate cohesive topics in the context of software-
specific knowledge graphs. We compared the community
search algorithms to three baselines: a hierarchical clustering
algorithm [37], latent Dirichlet allocation (LDA) [38], and
random groups of concepts as a soundness check. Because
LDA requires a large training set, we sampled entire Java
projects for this evaluation.

Project Sample

Figure 6 summarizes our project and topic sampling proce-
dure. We sampled Android applications from F-Droid [39].
We considered all 3091 applications that were not archived
at the time of the evaluation. We excluded from them appli-
cations for which the last version was released five or more
years ago (recency filter) or for which the time difference
between their first and last released versions was less than
one year (maturity filter). The recency filter is relevant to
ensure that recent concepts have a chance to be included in
our sample. The maturity filter excludes trivial applications.

After applying these two filters, we obtained a set of
1051 projects. We removed projects for which the entire
documentation contained less than 1000 words, computed
as described in Section 3.2 (documentation filter). We only
considered classes and interfaces in the package matching
the application ID of the project, or one of its subpackages.
After applying this filter, we obtained our final sample of
227 Android applications.

Topic Sample

We sampled 45 topics from each approach. This sample size
is sufficient for a statistical analysis when comparing ordinal
score distributions, but small enough to limit the threat of
annotation fatigue (see the Evaluation Metrics).

We applied Scode to the 227 Android projects, generat-
ing a total of 3670 topics. We removed those that contained
more than 100 concepts. We randomly sampled 45 of the
remaining 2099 topics as the sample set from Scode.

Generating hierarchical clusters requires a distance met-
ric between any two concepts, which we defined as the
length of the shortest path between them in the undirected
and unweighted Wikipedia subgraph. We then applied
R’s implementation of the unweighted pair group method
with arithmetic mean (UPGMA) algorithm [37] to aggregate
concepts into hierarchical clusters. As the outcome of this
algorithm is a binary tree by design, it is sensitive to noise
in the distance function. To mitigate this sensitivity, we
rounded the distance function during the merging phase of
the UPGMA algorithm to produce a tree that is not binary
and less deep. After trying different rounding functions, we
chose to round distances to the nearest non-exceeding quar-
ter (e.g., 3.1 and 3.2 were rounded to 3 and 3.3 was rounded
to 3.25). We excluded clusters if they either contained fewer
than five concepts or were contained in larger cluster of ten
or fewer concepts. We also removed clusters of more than
100 concepts. This procedure generated 1098 topics, from
which we sampled 45 at random for the evaluation.

To generate LDA topics, we used the MALLET im-
plementation of the algorithm for Java [40]. LDA is an
unsupervised learning technique that takes as input a set of
documents and generates latent topics represented as lists
of words [38]. As LDA requires a training set with many
documents to generate a good model, we considered each
of the 10 442 files across all projects as a distinct document.
For each document, we only retained nouns, for consis-
tency with Wikipedia titles which are predominantly noun
phrases. We further removed stop words and converted all
nouns to lower case. This preprocessing produced a total
of 298 525 terms across the 10 442 documents, forming a
vocabulary of 16 841 unique nouns. We generated 100 topics,
with the initial value of parameters α and β set to 0.01,
and using 2000 iterations. We left other parameters to their
default values. The resulting topics comprise between 62
and 670 terms (average of 295).

Finally, to support a soundness check, we generated
45 sets of 20 random concepts selected using a uniform
probability distribution over the 6746 computing-related
Wikipedia articles, with replacement between sets.

Evaluation Metrics

We used two complementary metrics to evaluate the cohe-
siveness of the topics. The first metric is a direct, subjec-
tive assessment on a five-point ordinal scale from 1 (least
cohesive) to 5 (most cohesive). We asked three graduate
students that were not involved in the project to provide this
assessment. For each topic, we showed a maximum of 20
concepts to avoid overwhelming annotators with very large
topics. We split the topics so that each annotator evaluated
15 topics from each approach, with no overlap.

We used a second metric to mitigate the subjectivity
of the direct assessment. This metric is the success rate of
the word intrusion task, described by Chang et al. [41]. In
this task, an annotator is shown a set of N + 1 concepts
in random order. N of these concepts belong to the same
topic and the last one, the outlier, is chosen randomly among
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TABLE 3: Success rate of the word intrusion task (per-
centage), median cohesiveness score (ordinal scale from 1
to 5, higher is better), and average cohesiveness score (in
parentheses) for concepts generated by the four techniques
and as evaluated by three annotators.

Ann. Community H. cluster LDA Random

A 60%; 5 (4.3) 40%; 4 (4.2)** 60%; 3 (3.0)** 20%; 2 (1.7)
B 67%; 4 (4.3)*** 60%; 2 (2.5) 60%; 2 (1.9)** 13%; 1 (1.3)
C 73%; 4 (3.8)* 60%; 3 (3.1)* 73%; 2 (2.5)*** 13%; 1 (1.3)

All 67%; 4 (4.2)*** 53%; 3 (3.3)*** 64%; 2 (2.5)*** 16%; 1 (1.4)

Stars indicate the p-value of a one-tailed Mann±Whitney U test
comparing the distributions of cohesiveness scores in a column to
those to its right: less than 0.05 (*), 0.01 (**), or 0.001 (***).

concepts not in the topic. The annotator must then identify
the outlier among the N + 1 concepts. If a topic is cohesive,
identifying the outlier should be easy, resulting in a high
success rate. However, concepts from a vague topic will
be indistinguishable from the outlier. The success rate for
such topics should decrease towards 1/(N + 1). For this
evaluation, we chose the value N = 5. We generated a
word intrusion task for each topic, and asked the same
three annotators to perform the task, dividing topics evenly
among them and ensuring that the same annotator did not
provide a subjective score on the same topic for which they
performed the word intrusion task.

For both measures, annotators were unaware of the
technique that generated each topic. They did not know
how many techniques were being compared, or that some
concepts were Wikipedia titles (which were shown in lower
case) whereas others were simply terms from the vocabulary
of the LDA model. When selecting the evaluation metrics,
we also considered synthetic measures such as the Silhou-
ette index [42]. Although these metrics are arguably more
objective than those we selected, their abstraction of human
judgment poses a threat to construct validity.

Results

The community search algorithms generated topics that
were more cohesive than those from the three baselines. Fig-
ure 7 shows the distribution of cohesiveness scores given by
each annotator to topics generated by all four approaches.
Each boxplot aggregates the scores of exactly 15 topics. The

results show a consistent trend across annotators: commu-
nities are generally more cohesive than hierarchical clusters,
followed by LDA topics, and finally the random baseline.
As expected, random topics were the least cohesive, and
validate that annotators can discriminate spurious topics by
giving them very low scores, most often one or two.

Table 3 confirms this observation. It shows the median
cohesiveness score of each group of topics, as well as the
average scores, in parentheses, as this measure is more
commonly used to approximate the center of a distribution.
However, because cohesiveness scores are not on an interval
scale, the averages cannot be used for further statistical anal-
ysis or interpretation. We used one-tailed Mann±Whitney
U tests [43] to test the hypothesis that the cohesiveness
differences are not due to chance. This test compares two
groups of ordinal values and evaluates the probability that
a value randomly selected from the first group is larger
than a value randomly selected from the second group.
The stars beside each value indicates the significance of
the tests between consecutive approaches in the sequence
{communities, hierarchical clusters, LDA, random}.12

All but two comparisons are statistically significant at the
0.05 level. The difference between hierarchical clusters and
LDA topics annotated by B has a p-value of 0.080, and the
difference between communities and hierarchical clusters
annotated by A has a p-value of 0.30. These inconclusive
results can be explained by the small group sizes (15 topics),
as well as the high cohesiveness scores (capped at 5) given
by A, which limits the discrimination of the most cohesive
topics. When comparing all 45 topics from each approach,
all tests are significant, with p-values all lower than 0.00092,
confirming our initial observation (communities > hierarchi-
cal clusters > LDA topics > random concepts).

Table 3 also includes the proportion of outliers correctly
identified in the word intrusion task. Interestingly, although
communities remain ahead of the other approaches, LDA
topics appear to be more cohesive than hierarchical clusters.
One possible explanation for the higher success rate with
LDA topics is that outliers are selected from a different
vocabulary (i.e., Wikipedia articles) than the terms that form
the topics (i.e., nouns).13 Due to the binary result for each
topic (success or failure), the only statistically significant
differences are between the random baseline and the other
approaches. Detecting a significant difference between the
other approaches would have required an impractical sam-
ple size, i.e., over eight times larger to reduce the confidence
interval radius to 5% at the 95% confidence level.

Findings: Three external annotators found topics identified
by community search algorithms significantly more cohe-
sive in a direct evaluation than topics generated by alter-
native techniques (hierarchical clustering and LDA). This
subjective preference was confirmed by a corresponding
performance on a word intrusion task.

12. P-values for non-consecutive approaches are smaller than the
minimum of the p-values shown in the table. For example, the dif-
ference of community and LDA score distributions for annotator A is
significant with a p-value lower than 0.01.

13. We chose this conservative evaluation approach because it favors
the baseline. The alternative, i.e., selecting an outlier among the much
larger, non computing-specific set of nouns used to train the LDA
model, would have had a negative impact on the LDA baseline.
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4.7 Documentation or Source Code as Input

In this work, we considered the documentation of a soft-
ware project as input for identifying concepts. This decision
contrasts with prior approaches that extract concepts from
source code identifiers (e.g., [12], [16]).

Although using identifiers is the only option when doc-
umentation is lacking, using documentation as input can
leverage more diverse forms of information. We hypothe-
sized that the two strategies should generate different con-
cepts, because information in source code is at a lower level
of abstraction than the information found in documentation.
To validate this hypothesis, we compared the output of
Scode to concepts generated from source code identifiers.

We used LDA to generate topics from the identifiers
in all the source files of the Java 15 standard library.14 We
considered each file as a separate document. We split each
identifier based on camel case conventions and underscores
and removed terms with less than three characters. Then,
for each group of terms with the same stem according to the
Porter stemming algorithm [44], we replaced all terms with
the most common form. We set the number of topics to 100,
the number of training iterations to 2000, and left the other
hyperparameters to their default values in MALLET.

We compared the top LDA topics with Scode’s concepts
that are included in small topics (see Section 4.2). As it is
difficult to compare LDA topics to concepts represented by
Wikipedia articles, we focused on the vocabulary used by
both strategies. We used the union of the top 20 terms from
the top 10 LDA topics and compared it to the set of all terms
from all Wikipedia titles, excluding terms in parentheses.
We used their overlap coefficient, i.e., the ratio of the sets’
intersection size to the size of the smaller set, to quantify
this comparison. As MALLET’s implementation of LDA is
not deterministic, we repeated this procedure 100 times.

We found that the overlap between Scode’s concepts
and LDA topics varied depending on the class. Excluding
classes for which Scode did not find any small topic,15 the
average overlap coefficient for each class, across the 100
trials, ranged from 0 to 0.19 (standard deviation ranges from
0 to 0.11). Inspecting the LDA topics confirmed that they
capture low-level concepts. In addition to implementation-
specific topics with terms such as length, attribute, and string,
other topics representing domain abstraction are expressed
with low-level concepts. For example, a topic about time
zones includes terms such as central, america, and gmt.

Findings: Concepts extracted from recurrent terms in code
identifiers differ from those extracted using Scode: their
vocabulary overlaps on average by less than 20%. This is
explained by the identifier-based concepts typically being
at a lower level of abstraction than Scode’s concepts.

4.8 Discussion

Beyond evaluating the performance of a single tool, the goal
of our evaluation was to explore the theoretical potential

14. An alternative would be to use Scode to identify concepts directly
from source code. However, this comparison would be unfair as the
wikification service expects natural language inputs. Most prior work
uses language models such as LDA to identify concepts.

15. These classes were mostly custom exception types and poorly
documented classes.

and limits of a new concept identification strategy. The
findings demonstrate the difficulty of this problem. Both
phases of Scode achieved good performance in isolation, but
together, the precision remains low. Although there are more
precise concept identification approaches, they typically
represent concepts using a project-specific terminology, lim-
iting the comparison and understandability of the concepts
outside the project’s context. Even for Scode, configuration
details matter: Using only concepts from small topics, topic
representatives, or explicit concepts has a considerable im-
pact on the precision and coverage. Hence, there is currently
no single technique to solve all concept identification tasks.

Scode improves the state of the art with regards to identi-
fying recognized concepts from documentation. The evalua-
tion showed the potential of an approach like Scode to iden-
tify concepts more consistently. It also elicited challenges to
solve to continue improving our approach. In particular, the
density of links in the Wikipedia graph, despite our pruning
steps, introduced noise in the community search algorithms
and generated very large topics that are impractical for
developers. Although itself a challenging knowledge engi-
neering task, constructing a graph of Wikipedia articles with
fewer, more meaningful links should improve the precision
of Scode while reducing the size of its output.

Another aspect to consider when improving concept
identification strategies is the different relations between
concepts and a project. Some concepts that are not related to
the current implementation of a project may still be relevant
to know for developers. For example, developers who work
with the MD5 cryptographic algorithm should likely be
aware of alternative algorithms, such as SHA-256. There may
also be a distinction between core concepts implemented by
a project, and concepts implemented in third-party libraries.
Precisely identifying such categories of relatedness would
be a promising avenue for future work.

Finally, there is no inherent reason for Scode to use
only header comments as input. Future work could include
investigating more types of documentation sources, such as
requirements files and issue trackers, and more preprocess-
ing strategies to improve the precision of Scode.

Solutions to these challenges can be integrated within
Scode without having to modify the other components.
Hence, Scode provides a framework to study different as-
pects of the concept identification problem.

4.9 Threats to Validity

The intangible nature of concepts and of the relatedness re-
lation introduced threats to the internal validity of our results.
Judging whether a concept is related to a class is a subjective
decision. To control this subjectivity, we prepared a strict
coding guide, which in particular avoided speculations
about concepts that may be relevant to be aware of, even
though they are not directly used by a class. The authors also
performed the annotation task entirely. Although this may
introduce a bias in the annotations, judging the relevance
of a concept to a class requires a considerable effort to un-
derstand the class and the concept, as well as their context.
Thus, we favored this threat over the one that would have
been introduced by less motivated external annotators. We
further mitigated the threat of investigator bias by removing
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any indication of the technique that identified each concept
during the annotation task.

Performing the end-to-end evaluation using classes as a
substitute for projects also poses a threat to validity. This
was necessary to design a practical evaluation, as it would
be infeasible for annotators to reliably reject unrelated con-
cepts without understanding the entire project. The impact
of this threat was mitigated by the fact that, in the context
of this work, a concept that is relevant to a single class in a
project is relevant to the project. Hence, despite the smaller
scope of the evaluation units, the precision of Scode on
classes should generalize to projects. This property shows a
beneficial aspect of Scode: it can be used to analyze projects
at different granularities, from a project to a class level.

Similarly, most of our results focus on concepts rather
than topics. We made this decision as prior work have al-
ready rigorously evaluated the properties of the topic mod-
eling techniques used by Scode, including the communities’
cohesiveness [10], [26], [29], [30] and the use of pagerank to
select a topic’s representative [31]. To ensure these previous
results would apply in a software development context, we
performed additional evaluations to measure the cohesive-
ness of topics and the precision of topic representatives.

The evaluation of the topic cohesiveness relied on the
judgment of external annotators. In this case, we found that
external annotators were a better option as the annotation
tasks were better encapsulated and required less contextual
knowledge. Nevertheless, the background of each annotator
can affect the internal validity of the results. To mitigate
this threat, we triangulated results from two complementary
metricsÐa direct but subjective assessment of the cohesive-
ness and the success rate of the word intrusion taskÐand
from three annotators working independently. To assess
the consistency of the external annotators, we tested the
hypothesis that topics for which an annotator succeeded at
the word intrusion task would receive higher cohesiveness
scores by the other annotators. We observed that all tests
were significant at the 0.05 level using Mann±Whitney U
tests, except the one that compared cohesiveness scores
attributed by annotators B and C to topics for which the
word intrusion task was performed by annotator A (p-value
of 0.086). This suggests that the results of the evaluation are
reliable, despite the subjectivity of cohesiveness.

The different vocabulary used by LDA topics and
PengKG’s concepts can also introduce a bias in our evalu-
ation. We mitigated this bias by normalizing the concepts
presentation during the annotation tasks, i.e., by putting
them in lower case. We also removed the occasional clarify-
ing terms in parentheses that are characteristic of Wikipedia
titles for the end-to-end evaluation. By doing so, different
articles can result in the same concept. During the annota-
tion task and when reporting results, we considered these
articles as a single, polysemous concept. We erred on the
side of inclusion when judging the relatedness of such
polysemous concepts, as trying to find an unrelated sense
for each concept would be counter-productive. We did not
remove parentheses from Wikipedia titles for the cohesive-
ness evaluation as the bias favored the LDA baseline.

Finally, our sampling strategies limit the generalizability
of our results. For the topic cohesiveness evaluation, we
sampled open source Android projects. This sampling frame

biases the output of the compared techniques towards Java-
and Android-related topics. For the end-to-end evaluation,
we used classes instead of larger project components as
input units to ensure that it was possible for the annota-
tors to reliably understand the context of each unit when
judging the concepts. We also only sampled classes from a
single source, i.e., the standard Java Class Library. However,
given that this library is intended to provide fundamental
classes supporting a wide variety of applications, it covered
concepts from a large variety of computing domains.

5 RELATED WORK

Using wikification and community search techniques to
identify concepts in software projects is a novel approach,
but there exists a notable amount of research in software
engineering that requires explicit forms of knowledge or
generates a representation of knowledge.

Knowledge Graphs in Software Engineering

Knowledge graphs have enabled the development of tech-
niques to automate many software development activities
that previously relied on human judgment. Wang et al. [45]
and Zhou [46] proposed approaches to fix software defects
by capturing the latent knowledge in various software
artifacts. Liu et al. [33] used, among other features, con-
cepts mentioned in documentation to produce a knowledge-
aware graph of API elements and generate class summaries
tailored to user queries. This knowledge graph also supports
the semantic comparison of similar API elements, such as
StringBuilder and StringBuffer [34]. Ferrari and Esuli [47]
and Ezzini et al. [48] extract subsets of Wikipedia articles
related to a target domain, based on Wikipedia categories, to
support the identification and resolution of language ambi-
guities in requirements. Chen et al. [8] created a knowledge
base for identifying libraries that offer similar functionali-
ties, but for different languages. For example, it can identify
that Gson, Json.NET, and Simplejson are three analogue
libraries for handling JSON objects in Java, C#, and Python,
respectively. Petrenko et al. also observed in two case stud-
ies that self-constructed concept graphs can help efficiently
navigate an unfamiliar code base to fix a bug [49]. Our
technique can contribute to the improvement of knowledge
graphs by supporting a new type of relation: associations
between software projects and a project-independent graph
of concepts, i.e., Wikipedia articles.

Knowledge Extraction and Representation

To address the need for knowledge-aware software engi-
neering techniques, several concept extraction techniques
have been proposed in prior work. A recurrent strategy
for these techniques is to extract relevant terms from source
code identifiers and generate a semantic structure based on
further information in source code. For example, Ratiu et
al. designed an approach to build lightweight ontologies by
parsing the identifiers to generate concepts and using the
syntactic relations between code elements to generate rela-
tions between concepts [15]. Falleri et al. instead used lin-
guistic cues within each identifier to infer relations between
them, as well as identify low-level implicit concepts [11].
A common limitation of these early techniques is that
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the number of concepts grows quickly as more identifiers
are considered. A core issue to solve for extracting useful
concept is to filter out irrelevant terms and cluster similar
concepts in the output.

To partly address this issue, Yang and Tan proposed a
technique to mine pairs of semantically related terms used
in a software project [50]. Kelly et al. used LDA to group
concepts extracted from identifiers into a practical number
of topics, and further group topics generated for differ-
ent projects using the K-means clustering algorithm [12].
Abebe and Tonella designed and compared several concept
extraction and filtering techniques [16], [51], [52]. In par-
ticular, they studied how to distinguish high-level domain
concepts from low-level implementation concepts [52], and
they compared a topic modeling technique similar to LDA
and two keyword-based techniques, one interactive and the
other fully automated, to filter the ontologies they built [16].
They found that the interactive keyword-based technique
outperforms the other automated techniques, even if the
required interaction is minimal. Our work complements this
prior work by exploring techniques to extract concepts from
documentation rather than source code and by focusing
on concepts that are easily interpretable by developers and
consistent across projects.

Abstract Knowledge Representations

Prior work has used abstract knowledge representations
such as LDA and vector space embeddings to operationalize
semantic exchanges. LDA has been used, for example, on
Stack Overflow posts to elicit topics relevant to developers
in general [53] or related to non-functional requirements [54]
and mobile development [55]. Vector space embeddings
have been used to translate various elements, such as words
or API elements, into Euclidean vectors. Ye et al. use this
technique to compute a similarity score between natural lan-
guage text and source code, and propose a bug localization
approach based on this score [56]. Nguyen et al. proposed
an approach to embed API elements in a vector space and
studied the correlation between usage patterns of the API
elements and properties of their respective embeddings [57].
These approaches, however, do not target a specific objective
in terms of how the captured knowledge can be represented
and interpreted. LDA produces large overlapping sets of
terms that are specific to the training corpus, and with
considerable noise. Vector embeddings produce numerical
vectors whose dimensions are, by design, meaningless. In
contrast, Scode uses a mature community-generated knowl-
edge base, Wikipedia, to identify recognizable concepts.

Natural Language Understanding

The extraction of structured information from natural lan-
guage documents is an active area of research in the natural
language understanding community. Prior work has devel-
oped techniques to automatically extract concept dependen-
cies from on-line and university courses, a problem similar
to the one addressed by our approach [58], [59]. Linking
documents to entries of a knowledge base, a task known
as concept linking or entity linking, is particularly relevant to
our work, as we leveraged a state-of-the-art concept linking
technique to identify Wikipedia articles from the documen-
tation of software systems [9], [21], [27]. The concept linking

task is itself a part of the knowledge base population prob-
lem that focuses on generating comprehensive knowledge
bases [60]. However, applying such techniques designed for
a general context on software documents requires specific
adaptations, as we found in a prior study [23]. Furthermore,
a notable component of our approach is a post-processing
step that aggregates cohesive concepts into topics.

Our work is also related to the generation of knowledge
graphs from large document corpora. Notable large knowl-
edge graphs include Wikidata [61], DBpedia [62], and Babel-
Net [28]. However, because these knowledge graphs are not
specific to software development, they often cannot be used
directly for software engineering applications, despite the
vast knowledge they capture. Researchers have proposed
techniques to generate software-specific knowledge graphs
using association rule mining [63] or heuristics based on
grammatical dependencies identified by natural language
parsers [64]. Although the latter techniques are specific to
the software domain, they lack the inclusion of high-level
concepts such as algorithms or design patterns. Our work
can bridge this gap by providing a way for software-specific
knowledge graph generation techniques to incorporate links
to abstract concepts. Related to knowledge graph construc-
tion is the problem of automated glossary construction,
which attempts to identify relevant terms specific to a
project [13], [14]. Glossaries provide a basis for developers
to precisely express and discuss requirements and solutions
of the software project. However, they are typically only
relevant within the context of a single project.

Traceability

Finally, this work relates to the traceability recovery prob-
lem, as Scode depends on the identification of links between
software artifacts, i.e., documentation, and entries of the
Wikipedia knowledge base. In the software engineering do-
main, many researchers have studied the idea of traceability
between software artifacts [65], and proposed techniques
to identify mentions of API elements in natural language
texts [66], [67], [68], [69]. Our work complements these
advances in the traceability problem by proposing a new
data source to link software artifacts to.

6 CONCLUSION

Understanding the conceptual context of a software project
is useful to the project’s contributors and users of its API, as
well as researchers and tool-makers who design semantic-
aware techniques, e.g., to locate bugs or choose third-party
libraries. However, concepts that are relevant to a software
project are often only implicitly known, and knowledge
transfer is still an ad hoc process between developers. Pre-
cisely understanding and representing this exchange of
knowledge is challenging. To address this issue, we in-
vestigated the use of wikification and community search
techniques to identify concepts from a project’s documen-
tation. Our approach, named Scode, generates concepts
whose meaning is generally recognized and externalized in
a popular independent knowledge base, Wikipedia.

Our comprehensive evaluation revealed that Scode is
more consistent when retrieving recurring concepts across
projects. However, although Scode is more precise than
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other Wikipedia-based concept identification techniques,
future work is needed to reach the precision level of tech-
niques that are not tied to a knowledge base. One promising
direction for improvement is to carefully engineer a graph
of computing concepts that is less densely connected than
Wikipedia’s wikilinks, especially around general computing
concepts. Such a graph would reduce the noise produced by
community search algorithms.
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