
 
 

 

 

Extensible Architecture for 

ConcernMapper 
 

 

by: 
Mohammad Usman Ahmed 

Student #: 260044056 

 

 

 

Supervisor: Martin Robillard 



Overview 
 

The project that I chose for Comp400 is directly related to an Eclipse plug-in 

called ConcernMapper. ConcernMapper is a plug-in that allows you to 

reorganize the modularity of a software system in a way that suits your needs, 

without altering its actual structure or behavior. It also allows you to keep a 

permanent record of the code associated with various concerns. A concern is a 

set of related methods and code-fragments of a large project that are related to a 

certain feature of the software but are scattered in multiple classes. These 

concerns can be monitored in a user-friendly view provided by the 

ConcernMapper plug-in where you can easily see the tree structure of the 

concern elements as they are found in your software code while also being able 

to keep together all elements that are part of one concern in the software design. 

 

The ConcernMapper is an Eclipse plug-in for experimenting with techniques 

for advanced separation of Concerns. It supports software development 

involving scattered concerns and also paves way for new research methods in 

software investigation by observations of concern creation and usage during 

development of large software projects. 

 

 

Background & Motivation 
 

Although it provides a very good feature, there is a restriction to this useful 

plug-in that it only supports Java Elements such as methods and fields in the 

Concern Model. This means that a concern can only contain fields and methods 

defined in a Java Class, however many people in the industry and academia use 

languages other than Java and would like to have a similar tool for the language 

of their choice.  

 

The problem with encoding other types of elements directly into the plug-in is 

that there are an unlimited number of useful types that one could want to add to 

a Concern Model, each with its own special features and properties and it would 

be infeasible to continuously hack into the code of an independently complete 

plug-in.  

 

The extensible platform of Eclipse provides a plug-in architecture which 

suggested another solution to this problem. The existing ConcernMapper could 



be changed into a generic plug-in implementing the ConcernMapper with 

support for a generic element node in its model. We could then write, plug-ins 

extending this generic ConcernMapper plug-in to specify the exact type for 

some new element that the Concern Model would then support. This would also 

allow further customization on the elements supported in the ConcernMapper 

depending upon the level of abstraction provided by the ConcernMapper. For 

the purpose of this project, this abstraction has been limited to the level where 

the existing functionality of the ConcernMapper can be reproduced for the 

existing supported types (i.e. Java Methods and Java Fields) as well as the 

addition of a new type unrelated to the Java Elements having complete and 

independent functionality of its own. 

 

This required that the ConcernMapper host plug-in make no reference to any 

specific type of element throughout its code. Due to the extensive use of Java 

specific helper methods to provide special functionality for elements in the 

ConcernMapper caused by the assumption that the elements stored in the 

concern model are always one of two types of Java Elements, the 

ConcernMapper plug-in had to be re-visited throughout the code to replace the 

Java specific code with a general processing of all element types for each 

functionality at the locations found. Doing so required varying strategies 

depending upon the specific task being re-designed. 

 

In the following pages I will be presenting the new extensible architecture of 

the ConcernMapper plug-in as outlined above. 

 

 

The Extensible Architecture 
 

A major part of this project was spent in becoming familiar with the eclipse 

platform and development environment, the eclipse plug-in architecture and the 

ConcernMapper plug-in.  

Following the extensive study of the eclipse architecture and the code of the 

existing ConcernMapper plug-in, I began to re-design the ConcernMapper to an 

extensible version. I did not set out to implement the change with a complete 

design for the extensible version in hand; instead the new design was gradually 

developed as I came across certain challenges during the process of extracting 

the code implementing Java specific functionality in ConcernMapper. 

 

The final design is presented below. 



The first step was to create an extension-point in the existing plug-in to define 

the requirements that an extending plug-in must fulfill when providing the 

definition for an element type. 

 
 

This schema is defined as shown below 

 

 



The extension-point has three elements, namely, �ature, Sorter, and 

LabelProvider. The nature is the main extension-element with the class attribute 

that requires the extender plug-in to implement the ‘IElement�ature’ interface 

defined in the nature package. The extension-point uses the sequence 

compositor to force the extender plug-in to implement one instance of a sorter 

class implementing the ‘IElementSorter’ interface, one instance of a 

LabelProvider and one or more instances of the element nature.  

 

The extension-point description page shown below summarizes these 

properties. 

 

 

 



 

 
 

 

This usage of the extension-point shown above was defined using the extension 

wizard for the plug-in definition file. 

For the creation of the extension elements, I specified the id, name, and class as 

required in the definition above. The final extension is shown below 



 
A diagram illustrating the ConcernMapper plug-in extension-point design 

 

 

 

 
 

 

 

 

The main ConcernMapper class contains an instance of the sorter 

implementation class, a label provider class, and a list of the nature 

implementation classes provided by the extender plug-in. These ‘callback 

objects’ can be retrieved by the static call for the singleton and the following 

getter methods for these objects. 
 

 

 

<<plug-in>> 

Eclipse Platform 

<<plug-in>> 

ConcernMapper 

<<plug-in>> 

ElementNature2 

<<plug-in>> 

ElementNature1 

<<plug-in>> 

ElementNature3 



 
    /** 
     * This returns the ElementNatures implemented by extensions to the 
     * 'nature' extension-point. 
     * @return A list of natures implementing nature.IElementNature. 
     */ 
    public ArrayList<IElementNature> getElementNatures() { 
     return aElementNatures; 
    } 
     
    /** 
     * This returns the sorter provided by the nature extension. 
     * @return An element sorter implementing nature.IElementSorter 
     */ 
    public IElementSorter getElementSorter() { 
     return aElementSorter; 
    } 
      
    /** 
     * This returns the label provider provided by the nature extension. 
     * @return The label provider extending LabelProvider. 
     */ 
    public LabelProvider getConcernElementLabelProvider() { 
     return aLabelProvider; 
    } 

 

The element sorter and label provider is retrieved when setting the sorter and 

label provider for the tree viewer in the ConcernMapperView class. 
 
    aViewer.setSorter( (ViewerSorter) ConcernMapper.getDefault().getElementSorter()); 

     
    aViewer.setLabelProvider( ConcernMapper.getDefault().getConcernElementLabelProvider() ); 

 

 

A list of callback objects for all the natures in the plug-in extension is created 

when the ConcernMapper constructor is called 

 
    private ArrayList<IElementNature> setElementNatures(){ 
        ArrayList<IElementNature> natures = new ArrayList<IElementNature>(); 
        IExtensionRegistry r= Platform.getExtensionRegistry(); 
        String pluginID= "ca.mcgill.cs.serg.cm"; 
        String extensionPointID= "nature"; 
        IExtensionPoint p= r.getExtensionPoint(pluginID, extensionPointID); 
        IConfigurationElement[] c= p.getConfigurationElements(); 
         
        if (c != null) { 
           for (int i= 0; i < c.length; i++) { 
              IElementNature nature= null; 
              try { 
               IConfigurationElement ce= (IConfigurationElement) c[i]; 
               if(ce.getName().equals("nature")) { 
                nature= (IElementNature) c[i].createExecutableExtension("class"); 
               } 
                  if(nature != null)  
                   natures.add((IElementNature)nature); 
              } catch (CoreException x) { 
                 System.out.println(x.getMessage()); 
              } 
           } 
        } 
        return natures; 
     }  

 



We retrieve the Extension Registry from the Platform and then provide it with 

the plug-in id and the extension-point (‘nature’) that we are looking for. That 

gives us the extension-point from which we can then get a list of all its 

configuration elements. These are the elements we saw above that were defined 

in the extension-point schema. Each configuration element has a name which 

was defined above and here during extension-processing we distinguish 

between them using this name. In the case shown above, we are interested in 

the ‘nature’ element so for each configuration element of type ‘nature’, we 

instantiate the class implemented by the extender plug-in to create a callback 

object for this nature.  

 

The most common use of the callback objects for the ‘nature’ element is to 

check for supported types wherever the elements were assumed to be a Java 

element in the previous plug-in code. 

For example, in the ‘AddToConcernAction’ class we replace the previous 

supportedElement(IJavaElement pElement) 

 
  /** 
   * Determines if pElement can be included in a concern model. 
   *  
   * @param pElement 
   *            The element to test 
   * @return true if pElement is of a type that is supported by the 
   *         concern model. 
   */ 
  private boolean supportedElement( IJavaElement pElement ) 
  { 
   boolean lReturn = false; 
   if( ( pElement instanceof IField ) || ( pElement instanceof IMethod ) ) 
   { 
    try 
    { 

if( ( (IMember) pElement ).getDeclaringType().isAnonymous() ||   
(     (IMember) pElement ).getDeclaringType().isLocal()) 

     { 
      lReturn = false; 
     } 
     else 
     { 
      lReturn = true; 
     } 
    } 
    catch( JavaModelException lException ) 
    { 
     ProblemManager.reportException( lException ); 
     lReturn = false; 
    } 
   } 
   return lReturn; 
  } 

 

 

With the following implementation using the ‘element nature’ callback objects 

 



 
   

/** 
   * Determines if pElement can be included in a concern model. 
   *  
   * @param pElement 
   *            The element to test 
   * @return true if pElement is of a type that is supported by the 
   *         concern model. 
   */ 
  private boolean supportedElement( Object pElement ) 
  { 
         boolean lReturn = false; 
         for(IElementNature nature : ConcernMapper.getDefault().getElementNatures()) { 
          if(nature.supportedElement(pElement)) { 
           lReturn = true; 
           break; 
          } 
         } 
         return lReturn; 
  } 

 

In the rest of the code replacement we use a number of methods that are 

provided by the IElement�ature interface. This interface is shown below to 

give a picture of what the extender plug-in needs to implement for creating an 

extension to this ConcernMapper plug-in apart from providing a sorter and a 

label provider. 

 

 

 



 

 

 



 
 

 

The methods for converting from ‘element to string’ and ‘string to element’ are 

used when writing to a file and reading from a file in the ‘model.io’ package. 

 
    private Element createConcernNode( Document pDocument, String pConcern ) throws 
ModelIOException 
    { 
        … 
        Set lElements = aModel.getElements( pConcern ); 
        for( Iterator lI = lElements.iterator(); lI.hasNext(); ) 
        { 
         … 
         for(IElementNature nature : ConcernMapper.getDefault().getElementNatures()){ 
       try { 
        if( nature.supportedElement(lNext)) { 
         natureFound = true; 

lElement.setAttribute( XMLElementTypes.ATTRIBUTE_TYPE, 
nature.getXMLType() ); 
lElement.setAttribute( XMLElementTypes.ATTRIBUTE_ID, 
nature.convertElementToString(lNext )); 
lElement.setAttribute( XMLElementTypes.ATTRIBUTE_DEGREE, 
new Integer( aModel.getDegree( pConcern, lNext 
)).toString()); 

        } 
       } 
       catch(ConversionException lException){ 
        lReturn.removeChild( lElement ); 
       } 
         } 
         … 
  /* Similarly done for inconsistent elements */ 
         … 
    } 

 

Here we go through the list of ‘natures’ and whenever we find a match for the 

object we are comparing, we request the callback object to provide a string 

representation for this object. 

 

The implementation of the required methods from the interface in the Java 

Extension to the ConcernMapper plug-in is very similar to the actual 

implementation for Java Elements in the previous ConcernMapper plug-in.  

 



A good example for that would be the ‘fillContextMenu(IMenuManager)’ 

method in the ConcernMapperView class. 

 
/** 

  * Fills the context menu based on the type of selection. 
  * @param pManager 
  */ 
 private void fillContextMenu( IMenuManager pManager ) 
 { 
  ISelection lSelection = aViewer.getSelection(); 
  if( lSelection instanceof IStructuredSelection ) 
  { 

IStructuredSelection lStructuredSelection = 
(IStructuredSelection)lSelection; 

   if( lStructuredSelection.size() == 1 ) 
   { 
    Object lNext = lStructuredSelection.iterator().next(); 
    if( lNext instanceof ConcernNode ) 
    { 

pManager.add( new RenameConcernAction( this, 
((ConcernNode)lNext).getConcernName() )); 

    } 
    else 
    { 

for(IElementNature nature : 
ConcernMapper.getDefault().getElementNatures()){ 

      if(nature.supportedType(lNext)) { 
pManager = 
nature.fillContextMenu(pManager, lNext); 

       break; 
      } 
     } 
    } 
   } 
   pManager.add( getDeleteActionFromSelection( lStructuredSelection )); 
  } 
  pManager.add( new Separator( IWorkbenchActionConstants.MB_ADDITIONS )); 
 } 

 

Here first we get the selected element in the Concern Model for which the user 

is requesting the context menu. Then we search for that element’s type in the 

list of callback objects from the extender plug-in if the selected element wasn’t 

a ConcernNode itself. Once a match is found for a supported element in a 

callback object, we populate the MenuManager by passing the MenuManager 

as an argument to the callback object’s fillContextMenu(IMenuManager, 

Object) method which returns a filled version of the MenuManager as 

demonstrated in the code below. 

 
 /** 
  * This method provides context content for the menu.  
  * @param pManager The menu manager where the new menu group will be added 
  * @param pElement The element for which the context menu is needed. 
  * @return The Menu Manager with the context Menu group added. 
  */ 
 public IMenuManager fillContextMenu(IMenuManager pManager, Object pElement){ 
  IJavaElement lElement = ((JavaElementNode)pElement).getElement(); 
  if( lElement.exists() ) 
  { 

aJavaSearchActions.setContext( new ActionContext( new 
StructuredSelection( lElement ))); 

   GroupMarker lSearchGroup = new GroupMarker("group.search"); 



   pManager.add( lSearchGroup ); 
   aJavaSearchActions.fillContextMenu( pManager ); 
   aJavaSearchActions.setContext( null ); 
   pManager.remove( lSearchGroup ); 
  } 
  return pManager; 
 } 

 

The SearchActionGroup for Java was initialized with the 

ConcernMapperView’s ViewPart using the following helper method in the 

ConcernMapperView class’ createPartControl(Composite) method. 

 
  
 /** 
  * This is a helper method to provide initialization data that an extension 
  * might use when populating the context menu. For example, the Java extension 
  * would use the ViewPart to initialize a JavaSearchActionGroup. 
  * @param pViewPart  
  */ 
 public void initSearchDataForViewPart(ViewPart pViewPart){ 
  aJavaSearchActions = new JavaSearchActionGroup(pViewPart); 
 } 

 

As a doubleClickAction for the Resource File we had to provide a 

revealInEditor method that would open the file that was clicked upon, in the 

editor view of Eclipse.  

This doubleClickAction is created in the makeActions() method of the 

ConcernMapperView class by creating an instance of the Action class that calls 

the corresponding nature callback object to reveal in the editor the given object. 

 
     aDoubleClickAction = new Action()  
  { 
   public void run()  
   { 
    ISelection lSelection = aViewer.getSelection(); 
    Object lObject = ((IStructuredSelection)lSelection).getFirstElement(); 
 
    for(IElementNature nature : ConcernMapper.getDefault().getElementNatures()) { 
     if(nature.supportedType(lObject)) { 
         nature.revealInEditor(lObject); 
      break;      
     } 
    } 
   } 
  }; 

 

This method for revealing the object in the editor is then implemented by the 

extending plug-in in the implementation for a Resource File element type 

 
 /** 
  * This method implements a way to load the given object in the corresponding  
  * editor. 
  * @param pObject The object to be revealed in the editor. 
  */ 
 public void revealInEditor(Object pObject) { 
  IFile lElement = (IFile)((WrapperNode)pObject).getElement(); 
     if( lElement.exists() ) 
     { 



IWorkbenchPage lPage = 
PlatformUI.getWorkbench().getActiveWorkbenchWindow().getActivePage(); 

      try 
      { 
       IDE.openEditor( lPage, lElement); 
      } 
      catch( PartInitException lException ) 
      { 
       ProblemManager.reportException( lException ); 
      } 
     } 
 } 

 

In the Label Provider the, for the Resource File type, the default ‘file image’ is 

returned by the getImage(Object) method.  

 
 /** 
  * Provides the image for an object in a concern model. 
  * @param pObject The object to provide the image for. 
  * @return The image 
  */ 
 public Image getImage( Object pObject ) 
 { 

… 
else if( pObject instanceof WrapperNode ) 

  { 
   Object lElement = ((WrapperNode)pObject).getElement(); 
   if(lElement instanceof IFile)  
   { 

    lReturn = PlatformUI.getWorkbench().getSharedImages().getImage( 
ISharedImages.IMG_OBJ_FILE ); 

   } 
  } 

… 
} 

 

A major part of the Java element code extraction was to be able to dynamically 

create a structure for the Concern Model from the elements that get added to a 

concern. For this purpose the extending nature provides the host plug-in with a 

method called getElement�ode(Object) which takes as an argument the element 

that is being added to the concern, and it wraps it into a wrapper node and 

returns it as an IConcernMapperView�ode so that from the Concern Models 

point of view, all elements are wrapped in the same form, no matter what the 

element type turns out to be. 

 

This concludes the implementation summary of the extensible version of 

ConcernMapper. 

 

 

 

 

 

 



Unsolved Challenges 
 

During the course of this project there were a couple of design issues that came 

up which I wasn’t able to deal with satisfactorily.  

 

When a concern is loaded or elements are added to a new concern, the 

ConcernMapper decorates these elements and other elements related to the one 

added (i.e. the immediate parents in the hierarchical structure within the project 

from which the element was dragged into the concern). These decorations 

include changing the font of the included element and its immediate parents to 

bold as well as displaying the name of the concern that the element has been 

added to, next to the name of the element in the other views in the workbench. 

 

In the current version, the ConcernMapper plug-in provides the choice of the 

limit to which the parents of an element in the hierarchical tree-structure in the 

workbench views should get the bold font. The way this feature is implemented 

in the plug-in requires the comparison of the encoded integer value of the 

possible element types in the hierarchical tree-structure within a Java project 

with the value stored as a preference (which can be set by the user).  

 

In the new version of ConcernMapper, the user is no longer limited to adding 

only Java elements and therefore the elements added to the Concern Model 

could possibly have different integer encoding than those of Java elements 

hence making comparison between the saved preferences and the actual values 

of the element and their hierarchical parents infeasible.  

 

As a temporary fix in the final version, the plug-in is being released with an 

added facility to add any type of resource file into the Concern Model and the 

decoration of the element in the workbench views is limited the actual element 

itself. 

 

A further complexity in this issue occurs once we are able to return the 

immediate parent of the resource file being dragged-in (which would be either a 

folder or the project root). The way the decoration works is by performing a 

search over all the available elements of the project (i.e. project root, package 

root, package fragments, and classes) where as the only way/‘light’ in which the 

resource file sees its parent, is as a ‘folder’ and not as a ‘package fragment’ 

within a larger project since a simple resource file cannot perceive the larger 

view which includes the project that it belongs to. Therefore the search is 



looking at the same element as a package fragment and the file element claims 

it to be its parent folder, leading to a mismatch, making the two concepts 

incomparable.  

One possible solution to this issue could include re-defining the search method 

for finding the parents provided by the element by including a separate check 

for cases like this mismatch. 

 

 

Another issue that I wasn’t able to solve is the implementation of the 

ConcernMapperElementChangeListener class which implements the 

IElementChangedListener interface which implements an element changed 

listener that receives notification of changes to Java elements maintained by the 

Java model. This implementation relies mainly on  
org.eclipse.jdt.core.ElementChangedEvent 

An element changed event describes a change to the structure or contents of a tree of Java elements. The changes 
to the elements are described by the associated delta object carried by this event.  

This class is not intended to be instantiated or subclassed by clients. Instances of this class are automatically 
created by the Java model.  

See Also:  
IElementChangedListener  
IJavaElementDelta 

This class uses the IJavaElementDelta which encodes in it the changes made to 

a Java Element in the Java Model as a Set containing the original element 

description and the new element description, be it an addition, removal or a 

static change to an existing Java element. 
 



 

Related Work and Availability 
 

The ConcernMapper plug-in was developed and is currently maintained by 

Professor Martin Robillard and Frédéric Weigand-Warr. The source code for 

the plug-in is available at http://www.cs.mcgill.ca/~martin.cm and it may be 

worked upon to experiment further extensions to the existing plug-in. 

 

This extensible version of the plug-in is available for testing and 

experimentation for anyone interested in creating an extension for a new type of 

Concern Element. 
 

 

 

Conclusion 
 

While this project is only a small addition to the existing ConcernMapper plug-

in, there is still a lot to be gained from this plug-in through further extensions. It 

provides good grounds for research in patterns of concern usage during the 

software development lifecycle. Further extensions to this plug-in could provide 

the user with statistical analysis of the usage of this plug-in during the active 

stage of a project in an eclipse environment. This could include the number of 

concerns created, the correlation between their contents, the frequency of their 

usage by the developer as compared to the conventional navigational paths in 

eclipse, and other statistical data produced in the form of graphical correlation. 

This could help in the analysis of the current design of a large project and 

suggest ways for design improvement by motivating towards an aspect oriented 

design. 

 

Thus there is much to be benefited from use of this tool in Software 

Engineering Research, and any further enhancements to the current 

functionalities could greatly help the research community in that regard. 

 

 

 


