
McGill University

School of Computer Science

COMP 621

Improving locals stack placement in Java with Soot

Report No. 2005-13

Kacper Wysocki

April 17, 2005

w w w . c s . m c g i l l . c a

Contents

1 Introduction and Motivation 2

2 Background and Related Work 3

3 Problem Statement 5

4 Solution Strategy and Implementation 5

4.1 Locals Packing by Priority-based Colouring . 6

4.1.1 Assigning priorities to locals . 7

4.2 Briggs et al alternate implementation of colouring heuristics 7

5 Experimental Framework 9

6 Results 10

6.1 Experimental environment . 10

6.2 Benchmark programs . 10

6.3 Results and analysis . 12

7 Conclusions and Future Work 13

A Appendix 13

A.1 Source code and online copy of project report . 13

A.1.1 A Better Mutable Graph . 13

A.2 A note on the spelling of “colour” . 13

List of Figures

1 Instruction execution times for Intel Pentium 4 2.66MHz on Gentoo GNU/Linux 2.6. 3

2 Instruction execution times on the IBM JVM. 4

3 Instruction execution times for Intel Pentium 4 2.66MHz running FreeBSD R5.2. 4

4 Instruction execution times for AMD Athlon 2400+ MP Dual running DebianGNU/Linux 2.6. 4

5 Instruction execution times for Sun Sparc Ultra-60 running Sun Solaris 5.8. 4

6 Detail of the int load and store times on the Pentium 4 running Gentoo GNU/Linux 2.6. . . 5

7 Detail of the double load and store times on the Pentium 4 running Gentoo GNU/Linux 2.6. 5

8 Detail of double load and store times on the Pentium 4 running FreeBSD R5.2. 6

9 The Soot FastColourer algorithm. 7

10 Pseudocode for the priority-based colourer. 8

11 Control flow graph strongly connected component illustration. 9

12 The NestDepth algorithm . 9

13 Comparison of benchmark runtimes. 11

List of Tables

1 Comparison of runtimes averaged over all benchmarks. 10

1

Abstract

Efficient allocation of locals has traditionally been one of the most important parts of an optimizing

compiler, typically giving gains in runtime of 25% compared to code compiled with simplistic allocators.

However, finding the optimal allocation is an NP-complete problem, and it is therefore crucial to find

approximation algorithms that give economic packings on average. It is often not practical to spend a

lot of time compiling a program, such as during development where more time spent compiling means

less time spent testing, or in a JIT where compilation time takes its toll on runtime. Therefore, it is

important that the allocation strategy can complete in a reasonable timeframe. I look at how such

allocation strategies can apply to the Java Virtual Machine. The Java Virtual Machine is a stack-based

machine that lacks registers, keeping locals on a per-method locals stack. Bytecode instructions are

used to store and load locals to and from the locals stack onto the operand stack. There are five load

instructions and five corresponding store instructions for each basic type in the Java Virtual Machine.

The first four are one-byte nullary instructions which address the top four positions on the locals stack,

while the remaining load and store are unary instructions relying on an immediate operand to supply the

position of the local. The nullary loads and stores are therefore smaller and should be faster to execute

than the unary loads and stores. It would therefore be beneficial to store the most frequently accessed

locals on top of the stack, hopefully leading to faster execution of the program. I show that for certain

basic types, namely integers, addresses and doubles, there is a measurable decrease in execution time

when using only the nullary bytecodes in comparison to using only unary bytecodes to load and store

locals. I show how two existing weight-based heuristics for register allocation can be applied to placing

locals on the JVM locals stack. The locals placement algorithms are then implemented in Soot, the Java

Optimization Framework, where we show that although there are improvements in runtime, more work

is needed to find a better heuristic for locals placement.

1 Introduction and Motivation

Effective global register allocation has long been viewed as one of the single most beneficial phases of an
optimizing compiler. Improvements in runtime of up to an order of magnitude can be seen when employing
a good register allocation strategy instead of a simplistic one. The register allocation problem can be cast
as a graph colouring problem, leading to conceptually simple algorithms for register allocation. However,
finding the optimal colouring and therefore also the best register allocation is an NP-complete problem,
so no algorithms are known that can find the solution in time better than exponential in the size of the
input. Compilation time is at a premium in many applications, for example during development and in a
JIT compiler. It is therefore crucial to employ approximating algorithms that find a good register allocation
on average, and do not blow up on boundary cases.

Soot [1, 2] is a Java optimizing framework that allows researchers, compiler developers and packagers to
more easily explore program analyses and transformations in a common, open-source framework. It provides
several intermediate representations to facilitate reasoning about and implementing program transformations.
It includes an API and several local, global and inter-procedural analyses as well as a toolkit of useful classes
for program analysis.

The Java Virtual Machine (JVM) divides the memory allocated to a program into heap and stack.
Dynamic memory is kept on the heap, while frames are kept on the stack. Each frame comprises the
execution of a method body, and is divided into the locals stack and the operand stack. JVM instructions
are a byte long, and take as operands either immediate values or values popped off the operand stack, pushing
the result back on the operand stack. Since each instruction is a byte long, there are a maximum of 256
representable instructions.

There are seven basic types in the JVM: byte, short, int, long, float, double and reference. Each basic
type has its own class of load and store instructions, except for bytes and shorts, which are loaded and stored
using the integer load and store instructions. Each class of loads and stores consists of five loads and five
stores. The first four are nullary load and store instructions: the first six bits specify the opcode, and the last
two specify the location on the stack. These four instructions can thus access positions zero through three
on the locals stack. The remaining load and store are unary instructions that take a word-long immediate
operand. The byte-long nullary loads and stores are therefore smaller and should be cheaper to execute.

2

Longs and doubles do however take up twice as much space on the locals stack.

I show through empirical results on several architectures that the nullary loads and stores do indeed
execute faster in general. Building on these observations, I show how to adapt two heuristics-based register
allocation algorithms to the Soot Framework and the Java Virtual machine. I use a method of prioritizing
locals by the number of appearances of each local, weighted by the loop nesting level the local appears in.
These two allocation strategies are then implemented in soot, and used to transform several test benchmarks,
to examine how the allocation strategies affected performance.

Figure 1: Instruction execution times for Intel Pentium 4 2.66MHz on Gentoo GNU/Linux 2.6.
We see a 14% and a 30% improvement for nullary integer and double load/stores, respectively.

2 Background and Related Work

Much work has been devoted to developing efficient approximately good algorithms for register allocation.
Appel [3] provides an overview of different allocation schemes, including interference graphs. Liberatore et
al. [4] evaluated several different allocation schemes, including the graph colouring and interference graph
algorithms. Chaitin et al. [5, 6] describe the graph colouring algorithm in detail. Chow and Hennessy [7, 8]
confirm that priority-based colouring is both practical and effective. Briggs et al. [9] developed colouring
heuristics that reduced the amount of register spill code. Poletto and Sarkar [10] developed the Linear Scan
register allocation algorithm.

Derryberry and Lau [11] incorporated better register allocation into the Jikes RVM. Hummel et al. [12]
annotated class-files to provide optimization hints to the VM. The annotations included information about
register allocation.

Vallée-Rai[13] instrumented the kaffe VM to examine real costs incurred by JIT translation of bytecode
into native code, showing that certain instructions, like “invokevirtual”, are far more expensive than others.
Alpern et al[14] developed methods to reduce the costs incurred with such expensive instructions.

Finally, Hendren et al. [15] describe an approach to register allocation based on hierarchical cyclic interval
graphs, and also provide a survey of the existing work on the subject.

I will mainly concern myself with Chow and Hennessy’s priority-based colouring strategy for register
allocation [7, 8] and the colouring heuristics for register allocation developed by Briggs et al. [9]. There is
little in terms of published work on applying register allocation techniques to the Java VM locals stack, and
therefore the implementation detailed in this paper can be regarded as new approaches derived from these
previous register allocation techniques.

3

Figure 2: Instruction execution times on the IBM
JVM.

Running Intel Pentium 4 2.66MHz on Gentoo
GNU/Linux 2.6. This IBM JVM test shows that
there are measurable differences in the load/store

instruction execution times, but the largest
difference here is a 7% speedup in the execution of

nullary address load/stores.

Figure 3: Instruction execution times for Intel Pen-
tium 4 2.66MHz running FreeBSD R5.2.

The nullary double load/stores are the only
load/stores faster than unary loads and stores on

this platform, with a 10% difference.

Figure 4: Instruction execution times for AMD
Athlon 2400+ MP Dual running DebianGNU/Linux
2.6.
The nullary double load/stores are faster than unary

loads and stores on this platform, with a 10%
improvement over the unary instructions.

Figure 5: Instruction execution times for Sun Sparc
Ultra-60 running Sun Solaris 5.8.

All nullary loads and stores are faster to execute
than the unary loads and stores, with the long
instructions seeing up to 50% improvement.

4

Figure 6: Detail of the int load and store times on the Pentium 4 running Gentoo GNU/Linux 2.6.
There is a 14% increase in runtime when employing the unary loads and stores as opposed to the nullary

loads and stores.

Figure 7: Detail of the double load and store times on the Pentium 4 running Gentoo GNU/Linux 2.6.
There is a 30% increase in runtime when employing the unary loads and stores as opposed to the nullary

loads and stores.

3 Problem Statement

My aim is to improve locals stack placement in the Java Virtual Machine by reordering locals by priority.
I investigate whether one can expect gains in performance by more often using shorter load and store
instructions. A quick investigation is made into the locals allocation strategies of the Sun Java compiler and
the Soot compiler.

To this end, I adapt Chow and Hennessey’s Priority-based colourer [7, 8] and the colouring heuristics of
Briggs et al [9] to the Java Virtual Machine. I look at some potentially useful heuristics for weighting locals
by priority.

The two locals placement allocators are implemented in the Soot Framework. The allocators are then
used to compile several benchmark programs, which are subsequently timed to investigate what performance
gains can be achieved with this approach.

4 Solution Strategy and Implementation

I measured the relative performance of the nullary and unary load/store. The torture test I devised involves
repeatedly loading and storing a local in a tight loop, where the local is either one of the topmost four on the
locals stack, or it is placed in position 37. The test was run on the short and long versions of the load/stores
of each basic type, and the loop was executed 100 million times. The test was run twelve times, the highest
and lowest results were discarded and the times were averaged out of ten. This was repeated on four different
architecture/operating system combinations. With the exception of one test, which was run on the IBM
JVM, the tests were run on the Sun VM as this was the only VM implementation readily available for all
four platforms.

In Figures 1, 2, 3, 4 and 5 we see that although the timings are very platform-specific, the byte-long

5

Figure 8: Detail of double load and store times on the Pentium 4 running FreeBSD R5.2.
There is a 9% increase in runtime when employing the unary loads and stores as opposed to the nullary

loads and stores.

load/stores in general execute faster than the unary load/stores, with the biggest differences being apparent
in the int and double types. I therefore posit that reordering locals such that the most often accessed locals
have the premium top four locations on the locals stack should give a measurable improvement in runtime
performance for the general program.

Looking more closely at the figures, we see particularly large gains in execution speed with the shorter
double operations across all architectures. On the p4 in particular, the difference is a whopping 30%! The
shorter integer operations also see an improvement on the p4, while we can see that in general the longer
operations are faster on the FreeBSD. The Sparc tests show that this platform could potentially benefit the
most, as nullary operations are as good as if not far faster than the corresponding unary operations for all
basic types, while the IBM JVM tests show that there is not much to gain with this particular optimization
on this virtual machine.

I investigated the locals packing strategy present in the Sun Java compiler. The strategy is very simplistic,
allocating the first locals position to the first declared local, and incrementally assigning locals as they appear
in the Java source. The strategy properly accounts for scope, in that when a local has fallen out of scope,
its position is freed for use by the next appearing local, but the allocation does otherwise not do anything
clever. The Sun Java compiler does not optimize the bytecode at all, and this simplistic locals placement
strategy seems to be what the IBM and Blackdown Java compilers have chosen to do as well.

The Soot optimizing framework does have a LocalsPacker module that explicitly packs locals; were this
phase absent, some of the optimizing phases would cause an unnecessary blowup in the number of locals in
a method. If the packing phase is enabled, the LocalsPacker reduces the amount of locals in jimple, which
is a 3-address intermediate representation. The LocalsPacker interfaces with a FastColorer class that does
the bulk of the work; this class employs a fixed-point liveness analysis to construct an interference graph,
and attempts to find a good colouring by repeatedly assigning an available colour to each node in the graph.
Furthermore, if the jimple intermediate representation is later taken directly to bytecode via JasminClass,
which is the assembling module, the FastColorer is again called to produce an economical packing of the
locals. However, if the program is taken to baf, an aggregated expression intermediate representation, locals
are assigned in the order they appear in the baf method bodies. The FastColorer algorithm is detailed in
Figure 9.

4.1 Locals Packing by Priority-based Colouring

To apply existing allocation algorithms to the JVM, we must keep in mind that we do not have any restriction
on the number of positions to place our locals. Instead, we initially aim for a 4-colouring of the locals, to see
if all the locals fit in our coveted top four stack locations. When the algorithm does not find a 4-colouring,
it merely increases the number of colours available and restarts the algorithm, instead of spilling to memory
as would be done in a k-register machine.

Figure 10 describes the Chow and Hennessey [8] priority-based colouring heuristic. The algorithm relies

6

for each method body

do liveness analysis

build interference graph

for each local not already assigned a colour

for each interference

remove colour of interfering local from available colours

colour this local with the highest-valued available colour

if no colours are available,

create a new colour with value one higher than highest colour

Figure 9: The Soot FastColourer algorithm.

on a heuristic for computing the relative weight of each local. At each iteration of the main loop of the
algorithm, the colourer sets aside all nodes with neighbours fewer than the current number of colours as
unconstrained nodes. This is because we are guaranteed to have colours available for such nodes. The nodes
with more neighbours than available colours are put in a constrained nodes list.

Then, for each constrained node, if the number of coloured neighbours for that node is greater than or
equal to the number of available colours, we simply increase the number of available colours. Otherwise,
if the number of available colours is greater than the number of neighbours of this node, we can assign a
priority to the node.

4.1.1 Assigning priorities to locals

To be able to assign priorities to locals, a good heuristic is needed to approximate which locals are going to
be accessed most often. Ideally, we would assign a score based on how often a local is going to be accessed,
but this information is never completely available before runtime, when the program has all its inputs. It
is possible to use simple metrics, like the maximum abstract syntax tree depth each local appears in, but
we would like to be able to transform programs for which we do not have the source. My approach is based
on the weighted sum of all definitions and uses of a local, where higher weights are assigned to uses and
definitions that appear in nested loops. Thus, the weight wi of a local li is computed as:

wi =
∑

∀defs(li)

10depth(def(li) +
∑

∀uses(li)

10depth(use(li)).

The loop depth of each definition is therefore required, and can not be simply looked up in the source code,
because the intermediate representation is all that is available at optimization time. To find the depth of
each use and definition of each local in the control flow graph, we use the algorithm detailed in Figure 12.

At each iteration, the NestDepth algorithm finds all loops of depth one in the control flow graph, and
removes the heads of these loops from the graph. Any loops remaining in the graph will necessarily have
been previously nested inside the detected loops, and will be found in the next iteration. This is illustrated
in Figure 11.

4.2 Briggs et al alternate implementation of colouring heuristics

For comparison, I also implemented the Briggs et al [9] colouring-based register allocator, which is an
improvement to the original colouring algorithm by Chaitin et al. [6].

The Chaitin algorithm is conceptually divided into three phases, and its outline is as follows:

1. Build interference graph.

2. Simplify graph: if there exists a node n with deg(n) < k, where k is the number of available colours,

7

PriorityColourer(program)

for each method body

do liveness analysis and build interference graph

Constrain(locals)

while there are unassigned constrained nodes

get interferences of constrained nodes

for each node,

if number of coloured neighbours >= number of remaining colours

increase k, the number of available colours

Constrain(locals)

otherwise

AssignPriority(node)

Color(constrained)

Color(unconstrained)

subroutine Constrain(locals) returns sets: constrained, unconstrained locals

for each local

if coloured

add to list of coloured locals

if color value > k, the number of available colours

set k to the colour value

otherwise,

if the number of interferences of this local < k

set aside local as unconstrained

else

add to list of constrained locals

subroutine Color(local)

for each local in order by priority

get interfering colours

colour node with lowest non-interfering colour

Figure 10: Pseudocode for the priority-based colourer.
Developed by Chow and Hennessey [8], with my modifications for the Java Virtual Machine.

remove n ad place it on the stack. Otherwise choose a node m for spilling, remove m from the graph
and mark it for spilling.

3. Assign colours to nodes from stack: For each node n in stack order, insert n into interference graph,
and assign n a colour not equal to the colour of its neighbours.

Briggs et al. developed improvements both in the simplification of the graph, and the selection of nodes
for spilling. In the Briggs version of the simplify stage, we select for removal the lowest degree node and
push it onto the stack. This intuitively makes sense, as the fewer neighbours it has, the easier it will be to
colour that node, and so we can defer selection of a colour for that node until all nodes with greater degree
have been coloured.

The selection of the lowest-degree node at each step can be made efficient by storing all nodes in an
array N , where N [i] is the first element of a linked list of nodes that have i neighbours. If there are no such
neighbours, N [i] is null. At fist N is searched from the beginning until the first non-null cell N [i] is found.
The node at the head of the list at N [i] is removed, and each of its neighbours are moved one index down
in N . Since we removed a node with degree i, this might have created nodes with degree i − 1, and we can
start the search in the next iteration at index i− 1, as we know that no nodes of lower degree are available.

8

Figure 11: Control flow graph strongly connected component illustration.
The nested depth algorithm first finds all loops of level 1, then removes the entry points of these loops and
repeats on the resulting graph. Shown here is the labeling that would result were this control flow graph

fed as input to the NestDepth algorithm.

set depth of all nodes in the control flow graph to 0

find strongly connected components in the control flow graph

for each strongly connected component with size > 1

find entry points, ie. nodes with predecessors not in the component

increment the depth of nodes in this component

remove the entry points of this component from the graph

repeat until there are no strongly connected components of size > 1

Figure 12: The NestDepth algorithm
for finding the depths at which each local is used or defined. A strongly connected component of a graph is
a set of nodes in which there exists a path between any two members of the set.

Because my work is on the Java Virtual Machine, I do not have to worry about spilling. If there is no
node n with deg(n) < k, then the algorithm can not find a k-colouring of the graph, and k merely has to be
incremented, resulting in increasing the locals limit for this method body.

5 Experimental Framework

Experiments were designed and run to show the relationship between runtime of test programs and the

During the development of the allocation algorithms it proved valuable to compile test programs and
benchmarks with the allocators and disassemble the class files, comparing the resulting allocation to the
original Soot FastColorer allocation, even when the classfile produced did not pass muster in terms of
verifiability. Produced, verifiable classfiles were run on the JVM to test the correctness of the algorithms,
checking for differences in program behaviour.

Some small test cases were output to the screen through Soot’s verbose logging facility and intermediate
representation tagger, and hand-verified on paper. This is especially true for the NestDepth locals weighting
algorithm, since the preliminary results did not lend themselves for testing in any other way.

Finally, a suite of benchmarks was compiled with Sun Javac, ABC: the AspectBench compiler and AJC,
where applicable and their runtimes were recorded. The compiled classfiles were then transformed with the
standard Soot FastColorer as well as the priority-based colourer and the Briggs colourer, and their runtimes
were recorded. Each transformed version of each benchmark was timed seven times, the highest and lowest
times were discarded and the remaining five times averaged.

9

Compiled Soot Priority Briggs
Average 37.5468 s 38.0503 s 38.0364 37.6004

Ratio/compiled 1.0000 0.9868 0.9872 0.9986
Ratio/Soot 1.0134 1.0000 1.0004 1.0120

Table 1: Comparison of runtimes averaged over all benchmarks.
Shown are the averages for each set of classfiles in seconds, the relative improvement compared to the Sun

javac-compiled runtime and the relative improvement compared to the standard Soot allocation.

6 Results

I show that although the performance gains are highly dependent on the benchmark application, there is
on average a 1.2% performance gain compared to the standard soot allocator, and on average the same
running time as classfiles compiled with the Sun Java compiler, as is apparent from Figure 6. One particular
benchmark, Scimark, showed a 10% increase in performance when using the priority-based colourer compared
to the Java compiler and original soot packers, while another benchmark, chromosomes, took a 15% hit in
performance when using the priority-based allocator. Figure 6 shows that the Briggs allocator comes out
best overall, with most timings being equal in performance to the Sun javac timings while a select few (asac
and fractal) finish about 5% earlier.

6.1 Experimental environment

All final benchmarks were performed on a Pentium 4 2.66GHz 512MB RAM running Gentoo GNU/Linux
with kernel version 2.6.7. Each benchmark program was compiled using ajc or, in the non-aspect case, plain
Sun javac. Then, each benchmark was transformed using the latest development version of unmodified Soot,
and also transformed using the PriorityColorer and the BriggsColorer. This produced four sets of classfiles
for each benchmark. Each set of classfiles for each program was timed 7 times with the standard Unix
program time(1). The highest and lowest times were discarded, and the remaining 5 times were averaged to
produce the final benchmark timing.

6.2 Benchmark programs

For my testing I used the McGill COMP-621 class of 2005’s benchmarks. There were 13 benchmarks in
total, each with their own special characteristics. Here I give a brief summary of the notable characteristics
of each benchmark program.

• AORecoveryBlock - Aspect-oriented implementation of a recovery block for software fault-tolerance.
Uses a lot of reflection.

• asac - Aspect-oriented multithreaded comparison of three sorting algorithms.

• bookstore - Aspect-oriented bookstore simulation with lots of reflection.

• chromosomes - Aspect-enabled genetic algorithm to maximize a function f(x) over some domain.

• eigenv - Computes the eigenvalues and eigenvector of a singular matrix created by computing the
Fibonacci number of each entry of the original matrix recursively. Array and integer-heavy.

• Fractal - Draws a Fractal tree to a certain depth as specified by the user. Aspect-enabled for profiling.
Lots of recursion.

• Imaging - Transforms an input image by using the Java Imaging Utilities library. Loop and array-heavy.

• Rasterizer - A triangle rasterizer sampling randomly-coloured triangles with 9X anti-aliasing. CPP2Java
compiled, interesting program structure.

10

Figure 13: Comparison of benchmark runtimes.
Shown are runtimes for benchmarks compiled with Sun javac, transformed with unmodified soot,

transformed with the priority-based colouring algorithm and transformed with the Briggs allocation
strategy.

11

• Scimark - Well-known numerical computing benchmark, including FFTs, Jacobi SOR, matrix-multiply,
Monte Carlo integration and LU-factorization. Matrix and floating-point heavy.

• sliding block - A program to solve the sliding block puzzle with A* exhaustive search. Memory-heavy
and aspect-enabled.

• traffic - Simulates cars moving past intersections on roads. Multithreaded with heavy use of semaphores,
condition variables and monitors.

• tribench - Three-part benchmark.

1. Gaussian elimination with partial pivoting.

2. Massively-multithreaded matrix multiplication.

3. Multithreaded Sieve of Eratosthenes.

Aspect-enabled for profiling.

• wig11 - Compiler implementation that compiles a web gateway source language into python. Gigantic
switch statement for control flow in the auto-generated parser.

6.3 Results and analysis

We can see that the results depend heavily on the type of benchmark program. Priority-based reordering of
locals, and Briggs improved colouring heuristics both clearly have an effect on execution time, which can be
said to be positive overall. Seeing a 1.2% improvement overall over the original Soot locals packer is relief,
as my approach is far less simplistic. This is a good sign that the reordering of locals is doing what it is
supposed to be doing: placing the most frequently accessed four locals on top of the locals stack for each
method body. Overall, my locals packing algorithms, and the Briggs colourer in particular bring the Soot
Framework closer in terms of performance to Sun javac-produced bytecode.

We see in Figure 6 that while the PriorityColourer produces the highest improvements - up to a whole
10% on Scimark, the strategy also produces the poorest results for other benchmarks: a 15% increase in
running time on the chromosomes benchmark. In contrast, the Briggs colourer performs rather evenly at a
little above the Soot packer, with modest improvements of 1% to 5% on select benchmarks.

The traffic benchmark shows no improvement because it spends 98% of its running time waiting for
locks. We also do not see any significant changes in running time for triphase, sliding block, eigenv nor
AORecoveryBlock, possibly because these benchmarks are all balanced and large enough to negate the effects
of the heuristics. Although the differences are marginal, both bookstore and imaging show a slight increase
in running time for the classfiles that employ my new locals allocation. The Briggs colourer shines in fractal
and asac, while the priority colourer in both cases keeps up with the pack; in the fractal case, it does as well
as the Soot colourer, while in the asac case, both allocators outperform the Sun-built classfile.

The largest differences can be seen in scimark and rasterizer, where the priority-based colourer clearly
find a better ordering on locals, and in chromosomes, where the same strategy fails pitifully, blowing up with
a 15% increase in running time over the three other alternatives.

On a final note I would like to remark that the Wig11 benchmark never finishes compiling with the
new locals packers - the compilation phase simply runs far longer than the author’s patience. Preliminary
profiling suggests that the problem may be in the implementation of NestDepths somehow blows up on the
extremely dense control flow graph of the auto-generated parser that is part of Wig11, because that’s where
the execution stalls and cannot proceed.

12

7 Conclusions and Future Work

I have presented experimental results showing that execution time may be improved on several architectures
by reordering locals so that the most used ones receive the first four stack locations. I have modified two
existing register allocation algorithms to work with the Java Virtual Machine, and I have implemented these
algorithms in the context of the Soot Optimizing Framework. I have shown that assigning priorities to locals
can measurably affect performance on all architectures, improving the performance of programs compiled
with Soot by 1.2% on average, and in particularly well-conditioned cases by up to 10%.

The never-terminating compilation of the Wig11 benchmark is a stumbling block that would have to be
resolved before the allocation strategies developed in this paper could be put to general use. The weight
function could be improved to take into account for example the relative benefits of int and double types on
the Intel architecture, to prioritize these types over for example longs, which do not see any improvement
on any architecture/operating system combination. A constant propagation analysis can be used to better
determine the number of times a loop is executed, which could lead to a better approximation for the
weighting of locals.

Due to time constraints, investigations into the merit of reordering locals were not completed: it would
be helpful to see, for each class file or program, the sum of weights over type, and the maximum depth that
each type appears in. It would further be helpful to examine whether the new allocators show improvement
in benchmark execution time on virtual machines other than the Sun JVM. Also, it would be interesting to
see if the register allocators significantly improve execution on the Sun Sparc architecture, as promised by
the preliminary results.

A Appendix

A.1 Source code and online copy of project report

The PriorityColorer, BriggsColorer and all auxiliary source files, along with a patch for the latest version
of soot and a tarball can be downloaded from http://kacper.doesntexist.org/optimizing/. An online
copy of this document can also been found on the same page.

A.1.1 A Better Mutable Graph

During the course of development, I found the need to extend the existing Soot MutableGraph to supply
breadth-first-search and depth-first-search traversals of the graph, along with a conversion algorithm that,
given any DirectedGraph, will produce an equivalent MutableGraph.

A.2 A note on the spelling of “colour”

The author finds the British spelling of colour to be the most natural. However, the existing Soot imple-
mentations refer exclusively to “colors”, so for consistency it was not possible to in good faith use a different
spelling for the implementations in this project. It is for this reason that this report uses the British spelling
except where referring to the names of objects that are part of or additions to the Soot Framework.

13

References

[1] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. Soot
- a java optimization framework. In CASCON ’99: Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative research, pages 125–135. IBM Press, 1999.

[2] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice Pominville, and Vijay Sun-
daresan. Optimizing Java bytecode using the Soot framework: Is it feasible? In Compiler Construction,
9th International Conference (CC 2000), pages 18–34, 2000.

[3] Andrew W. Appel. Chapter 11, register allocation. In Modern Compiler Implementation in C, pages
235–264. Cambridge University Press, 1998.

[4] V. Liberatore, M. Farach-Colton, and U. Kremer. Evaluation of algorithms for local register allocation.
1998.

[5] G. J. Chaitin. Register allocation & spilling via graph coloring. In SIGPLAN ’82: Proceedings of the
1982 SIGPLAN symposium on Compiler construction, pages 98–101. ACM Press, 1982.

[6] G.J. Chaitin, M. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, , and P. Markstein. Register
allocation via coloring. In Computer Languages, pages 6:47–57, 1981.

[7] Fred C. Chow and John L. Hennessy. The priority-based coloring approach to register allocation. ACM
Trans. Program. Lang. Syst., 12(4):501–536, 1990.

[8] Frederick Chow and John Hennessy. Register allocation by priority-based coloring. In SIGPLAN ’84:
Proceedings of the 1984 SIGPLAN symposium on Compiler construction, pages 222–232. ACM Press,
1984.

[9] P. Briggs, K. D. Cooper, K. Kennedy, and L. Torczon. Coloring heuristics for register allocation. In
PLDI ’89: Proceedings of the ACM SIGPLAN 1989 Conference on Programming language design and
implementation, pages 275–284. ACM Press, 1989.

[10] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM Trans. Program. Lang.
Syst., 21(5):895–913, 1999.

[11] Jonathan Derryberry and Manfred Lau. Incorporating better register allocation into jikes. 2003.

[12] J. Hummel, A.Azevedo, D.Kolson, and A. Nicolau. Annotating the java bytecodes in support of opti-
mization. In Concurrency: Practice and Experience, 9(11), pages 1003–1016, 1997.

[13] Raja Vallée-Rai. Profiling the kaffe jit compiler. Technical report, 1998.

[14] Bowen Alpern, Anthony Cocchi, Stephen Fink, and David Grove. Efficient implementation of java inter-
faces: Invokeinterface considered harmless. In OOPSLA ’01: Proceedings of the 16th ACM SIGPLAN
conference on Object oriented programming, systems, languages, and applications, pages 108–124. ACM
Press, 2001.

[15] Laurie J. Hendren, Guang R. Gao, Erik R. Altman, and Chandrika Mukerji. A register allocation
framework based on hierarchical cyclic interval graphs. In CC ’92: Proceedings of the 4th International
Conference on Compiler Construction, pages 176–191. Springer-Verlag, 1992.

14

