
Technical Quake ∗

Michael Batchelder
mbatch@cs.mcgill.ca

Kacper Wysocki
kacper@cs.mcgill.ca

Abstract

The basic goal of digital rendering is to closely approximate
a projection of a 3D scene onto a 2D surface in some render-
ing style. Classically, the style of choice has been photore-
alistism. However, more and more research is being done in
the realm of non-photorealistic rendering. This is an area
ripe with new possibilities - new ways to consider visual
scenes, new ways to look at the world, new ways to share in-
formation. One particular non-photorealistic style, dubbed
technical illustration, can be used to draw out important de-
tails of a scene. This style renders silhouettes and creases
of models in a clear fashion, which leads to better compre-
hension of model shape. It moves away from realistic light-
ing models which can add ambiguity to a scene. The style
also favours single hard shadows as well as shading, which
clearly conveys shape. This style has been explored by many
within the last decade. In this paper we attempt to render
the 3D first-person shooter video game Quake [ID Software
1992] in a technical style. We first explore the possibility of
gathering neighbouring polygon information for the edges
in a model, in order to render silhouettes and various crease
styles in a view-dependent fashion, similar to [Raskar 2001].
We then implement two different technical shading models
as well as two different shadow models described by [Gooch
et al. 1999]. Finally, we explore a few new ideas - blend-
ing creases and silhouettes with model colour, and fading

∗McGill University COMP-767 Non-Photorealistic Rendering

creases and silhouettes with distance. These ideas have not
yet been mentioned in literature to date that we are aware of.
We feel they are potentially useful in interactive 3D environ-
ments rendered in the technical illustration style.

1 Introduction and Motivation

Traditionally, technical illustrations are drawn by hand
to draw out certain details for the viewer. Artists have
the ability to shade, contrast, and highlight information
as they see fit. Unfortunately these illustrations are,
by their very nature, single instances of 2D approxima-
tions of a 3D scene. When multiple views of a model
are needed, multiple illustrations must be drawn. This
is both time consuming and expensive. Attempting to
make a video in this technical rendering style would
be even more expensive. However, the advent of com-
puter modeling opens up the possibility of automati-
cally rendering sufficient views of 3D model, no more
than the cost than a single image. Videos and real-time
interactive 3D systems in which the user can rotate and
explore a 3D scene are even possible, giving the user
far more information than any set of static illustrations.
The problem, is developing rules for detailing technical
illustrations which can be automatically applied while
still retaining the aesthetically pleasing results of a tra-
ditional artist.

Literature exists detailing various styles that can be
used to enhance the level of shape information in 3D
scenes. It is universally understood that artists enhance
important edges which consist of silhouettes and sur-
face discontinuities, such as creases. These edges are
inherently included in a digital 3D model and there-
fore, computers can be used to find and render these
special edges. Edges can be drawn with unique colours
to differentiate between them, such as black for silhou-
ettes and white for creases. In addition, crease edges
can be drawn with different widths or colours based on
whether they are jutting out of the model like a moun-
tain ridge or sinking into a model like a valley [Raskar
2001].

1

Artists also use non-realistic shading to convey shape
and curvature. By shading across a model from light
to dark, computers can achieve similar results. This al-
lows a user to rotate a model, effectively observing the
shape; as the model rotates, any particular part of the
model is rendered from light to dark. Seeing the same
part of a model under varied lighting can provide far
more insight than a static image.

Photorealistic shadows generally do not provide much
useful shape information about an object. Artists will
often draw shadows with clear edges that don’t just ap-
proximate the objects silhouette, but mirror it exactly.
This allows the viewer to gather information about parts
of the model that aren’t even visible, depending on
lighting direction. Imagine a robot standing in front
of you, with a light source above and to the right. The
shadow that is spilled on the floor to the left will contain
information about the shape of the back of the robot:
the silhouette the viewer would see if they were look-
ing at a profile of the robot. This is useful even in an
interactive system where a user can see objects from
any angle. Because the user is seeing more informa-
tion at any given instance in time, there is less need to
alternate between views.

2 Related Work

2.1 Technical Illustration

Technical illustration techniques have been explored
by a number of researchers in recent years. [Gooch
et al. 1999] implemented a real-time interactive system
which renders lines, shading, and shadows in a techni-
cal style. They draw silhouettes in black and creases
in white. They outline three shading methods, build-
ing on their previous work from [Gooch et al. 1998].
The first, is a cool-to-warm diffuse shading for matte
objects. This method linearly interpolates from a cool
colour (blue) to a warm colour (yellow) based on the
surface normals of a model. This cool-to-warm shift
causes cool areas of the model to recede while warm ar-
eas advance, accentuating the model’s shape. The sec-
ond method of shading is for metallic objects. It simu-
lates the traditional artistic method of using alternating
light and dark bands to represent anisotropic reflection
resulting from the milling of a metal object. The final
shading method is a modification of the cool-to-warm

shift that introduces an element of light splash-back,
which is in the opposite direction of the light source.
This method gives a dramatic effect that can some-
times communicate more shape information. Gooch et
al also explore three styles of non-photorealistic shad-
ows. These methods are meant to describe more clearly
shape information of parts of the object that are not nec-
essarily in view. Their best approach is the simplest:
they render one hard shadow that does not fade at all.
This results in clear edges as long as the background
colour is sufficiently different from that of the shadow.
However, they also explored painting a shadow with
a hard penumbra and a hard umbra which is a nice
compromise between a photo-realistic approach and an
approach richer in information. Their final style, soft
shadows, which we do not explore, is not particularly
useful in technical illustration because the softness of
the shadow effectively removes the shape information
gained from a hard shadow.

[Raskar and Cohen 1999] introduce a novel approach
to drawing silhouettes. They show how back-facing
polygons can be “fattened” so that their edges stick
out from behind front-facing polygons. This is done
by extending each edge of back-facing polygons with
a quadrilateral [Raskar 2001], or by simply pushing
these back-facing polygons forward enough that their
edges stick out in front of front-facing polygons. The
width of these silhouettes can be controlled by using the
view vector and the surface normals to calculate the 2D
width of the extensions on the view plane. The width
of the resulting silhouette is controlled by the width of
the quadrilateral, in relation to the viewing angle. In the
case of pushing back-facing polygons forward, width is
controlled by how far the polygons are pushed forward.

Raskar’s later paper on the subject [Raskar 2001],
which uses the quadrilateral method for silhouettes,
outlines a new algorithm for classifying creases as
ridges or valleys based on the normals of the two sur-
faces which the edge connects. He suggests rendering
ridges with one width while rendering valleys with an-
other in order to differentiate between them, giving bet-
ter shape information to the viewer.

[Lake et al. 2000] suggest the idea of rendering silhou-
ettes in a style other than the simple black line. They
extend the work of [Markosian et al. 1997] in render-
ing edges with textures, in order to map curved textures
to silhouettes to simulate the curve of edges better than

2

the primitive polygons that a model is built with. We
observed from this work that other styles of edges are
possible, such as coloring based on shading.

2.2 Quake and NPRQuake

The video game Quake [ID Software 1992] is a first-
person shooter style game created by ID Software. A
version of the game which uses OpenGL [Woo et al.
1999] for it’s 3D rendering is available as open source
software, thanks to the generosity of ID Software, and
this version has been extended by [Mohr et al. 2002]
to handle dynamic loading of rendering styles. [Mohr
et al. 2002] implemented three non-photorealistic styles
in Quake: Sketch, Blueprint, and Brush. Sketch ren-
ders a pencil-sketch style which gives a very nice ef-
fect. The blueprint style draws white lines on a blue
background similar to architectural blueprints, as it’s
name would suggest. The final style, Brush, is intended
to give a paintbrush style but unfortunately doesn’t give
very good results.

[Ilie 2003] used [Mohr et al. 2002]’s abstraction of the
rendering code to create a toon-style renderer that in-
cluded an implementation of [Raskar 2001]’s silhou-
ettes and creases as well as hard shadows and toon
shading.

3 Approach

We chose the Quake engine to implement our technical
illustration methods because the source was available
and the game itself provided an environment and mod-
els that we could use to test and compare our results.
The availability of dynamic render loading in [Mohr
et al. 2002] was useful as well since it provided a nicely
modularized framework for quickly introducing differ-
ent rendering styles in Quake.

3.1 Edges

Our first approach was to find silhouette edges as in
[Gooch et al. 1999], which are edges~e such that:

(~n1 · (~v−~e))(~n2 · (~v−~e)) ≤ 0,

where ~v is a vertex on the edge, and ~ni are the out-
ward facing surface normals of the two neighbouring

surfaces. Furthermore, creases can be defined as edges
where the dot product of unit adjacent surface nor-
mals is higher than a pre-specified user threshold. This
threshold controls how steep a ridge or valley must be
before it is considered a crease.

3.1.1 Recovering neighbouring information

Unfortunately, Quake stores each frame of its models as
a ”polygon soup”, that is, series of independent triangle
strips and fans which consist of independent points in
model space. Such a model format does not contain
neighbouring information for edges, and can therefore
not be used to test for silhouettes.

Our approach was to attempt to recover this edge infor-
mation by creating a three-level hash structure at run-
time. We do this by employing a three-dimensional
hash using the two vertices of an edge as the hash key.
The hash value is a structure containing the normal vec-
tors of the planes adjacent to the key edge. Each time a
model is drawn, it’s name is looked up in a hash table
containing a table of frame numbers. Then, the frame
number is looked up in this second-level hash table. If
the frame number does not exist, a new edge hash ta-
ble is created for this frame by visiting every polygon
of the model, adding edges and surface normals to this
third-level hash table as we encounter them. If an edge
already exists in the hash table, this signifies that the
current polygon is a neighbour of a previously encoun-
tered polygon, and its normal is added to the hash value
of this edge.

Figure 1: Custom three-level data structure for storing edge
neighbouring information.

Once this structure was in place, we were surprised that
creating the edge tables on the fly did not significantly
slow down the rendering. However, we were also disap-
pointed in finding that the Quake models contain degen-
erate polygons (polygons with colinear vertices), and
polygons that should be neighbours but do not share
an edge geometrically, possibly due to the edge of one

3

polygon being slightly offset from its neighbours edge.
We also found that there were some edges that con-
nected a front-facing polygon to an overlapping back-
facing polygon with a normal going in the reverse di-
rection of its neighbour. Because we were unable to
get clean neighbouring information we were unable to
properly employ the techniques of [Gooch et al. 1999]
or [Raskar 2001]. The results were unsatisfying at best,
which can be seen in figure [2].

3.1.2 Recovering the camera position

In order to properly render the width of silhouettes and
creases using the method of [Raskar 2001], the camera
position and direction is required. Silhouette and crease
edges (quadrilaterals attached as extensions to polygon
edges) are not oriented towards the camera as billboards
are. Because of this, edges will appear, visually, to have
different widths depending on the viewing angle and
direction. However, the camera direction and position
can be used to calculate the proper width of edges based
on their orientation.

However, due to limitations in the abstraction of the
rendering calls in [Mohr et al. 2002], we were unable to
discover a direct way of accessing the camera position
or viewing direction. In order to use this information
for edge rendering, we attempted to recover the cam-
era vector by inverting the OpenGL modelview matrix.
Then, the camera position v is given by:

~0M−1 = v,

where M is the OpenGL modelview matrix, and the
camera direction is specified similarly. This follows
from the fact that the classical approach in OpenGL
is to have the camera position always be the origin in
world-space, and the camera is always directed in the
z-direction. This approach did not yield a useful cam-
era vector, however, possibly due to the way Quake
uses the modelview matrix. ID Software originally im-
plemented its own rendering engine, and later ported
Quake to OpenGL to support a growing user base with
accelerated OpenGL hardware. The orientation of the
Quake coordinate system is thus different from the reg-
ular OpenGL coordinate system, and the mapping is not
documented.

We were therefore unable to get a useful camera vector.

Figure 2: Flawed models and an incorrect camera vector
yield unsatisfying creases and silhouettes

3.1.3 Silhouettes

Without proper edge neighbouring information or the
correct camera position or direction we were not able
to find silhouettes in the manner proposed by [Raskar
2001]. Instead of pushing back-facing polygons for-
ward as in the second diagram of figure [3] or render-
ing quadrilaterals as in the third diagram of figure [3]
we observed that we could adapt Raskar’s approach to
simply draw thick polygon edge lines for back-facing
polygons. The effect of a thick line is sort of like a
rectangular billboard. Because lines, width-wise, are
centered along the line connecting the line’s two end
points, the line will always have a visual thickness half
that of what is rendered, as in the final diagram of figure
[3], and this thickness does not vary with viewing angle
as do the other approaches. This form of silhouette ren-
der is not only simple but also efficient. It does not re-
quire any calculations of dot products like the other ap-
proaches and it does not introduce more polygon prim-
itives as in the quadrilateral extension approach.

3.1.4 Creases

Without adjacency information, our chosen method for
crease detection became unfeasible. With silhouettes

4

eye
Thick line drawn as
 edges of each
 back-facing
 polygon

eye quadrilateral as edge
 extension of back-
 facing polygons�

eye back-facing
 polygon pushed
 forward

eye

front-facing
polygon

back-facing
 polygon

Figure 3: In the top diagram, the normal rendering is shown
with a back-facing polygon in red and a front-facing poly-
gon in green. The second diagram shows the effect of push-
ing a back-facing polygon forward so it’s edge sticks out in
front of the front-facing polygon’s edge. The third diagram,
the back-facing polygon is extended with a quadrilateral, in
blue. The final diagram shows our simple approach of draw-
ing thick edge lines (in blue) for all back-facing polygons.

eye creases rendered
as quad extensions
in bright red and
green

Figure 4: Raskar’s approach is shown in this diagram, with
a ridge being rendered as quadrilaterals (bright green and
bright red) extended at an angle off of two front-facing poly-
gon’s joining edge. As the angle between the two polygons
approaches 180 degrees, the quadrilateral extensions become
hidden behind the polygons.

we were able to exploit the back-facing polygons to
achieve our goals. With creases, this is not possible.
In order to classify a crease properly as a ridge or a val-
ley, surface normals of adjacent polygons are required
to find the angle between the two polygons, as in fig-
ure [4]. Since we did not have this information we
instead draw polygon boundary lines for all polygons.
Unfortunately, this approach looses much of the bene-
fits we were hoping for. Detail of model shape is not as
clear because all edges are drawn. Most disappointing
is the inclusion of edges joining two polygons on the
same plane. These edges introduce a sense of division,
geometrically speaking, when in fact there is none.

3.1.5 Less Jarring Edges

Creases and often silhouettes can sometimes look jar-
ring. The choice of white for creases is quite common
in technical illustration but we observed that this often
chops up the models too much as opposed to convey-
ing shape, especially when the underlying model colour
differs greatly from white. In fact, as the model moves
farther away from the viewer the white creases can of-
ten complicate the scene as seen in figure [5]. We intro-
duce the idea of blending the colour of silhouettes and
creases with the underlying model colour, an approach
we did not find any mention of in the literature. This
creates a less jarring visual style while maintaining the
detailed shape information provided by silhouettes and
creases.

We accomplish this by blending the crease colour
(white) with the underlying shaded colour of the model
at each vertex. In order to control the level of blend-
ing, we use a user-definable parameter which specifies
how much white to add. We call this the white addition
value. This value is added to each RGB colour compo-

5

Figure 5: White creases can be too jarring as models move
farther away from the viewer.

nent of the colour at a given point. In it’s simplest form,
this parameter is 1 and all creases will always be white.
Choosing a lower value, such as 0.1, will retain more
model colour and less crease colour. OpenGL then in-
terpolates the colour of the edge at any point based on
the colours assigned to it’s two endpoints as seen in fig-
ure [12].

Even when crease colours were blended with the un-
derlying model colour we still observed that models far
away did not convey their shape very well. Creases
become highly dense on the model surface the farther
away it became, complicating the scene. We also ob-
served that the simple cool-to-warm shading discussed
in the next section communicated a decent amount of
shape information by itself from far away. Using these
realizations we introduced the idea of fading the colour
of silhouettes and creases into the underlying model
colour as a model moves farther away from the cam-
era. This prevents the ”cluttered” look of a model that
is far away with lots of creases being rendered into a
tiny 2D volume.

We implemented depth blending of edge colour with
model colour using a user-definable parameter which
we called the blend threshold. This parameter speci-
fies the distance at which edges should fade completely
into the model colour. At any given point the distance
of a model to the viewer is calculated and the ratio of
this distance over the blend threshold distance defines a
percentage of the white addition value to add to the un-
derlying model colour. This produces a very nice effect
that keeps models clean as they move farther away yet

Figure 6: As the distance to the object increases, silhou-
ettes and edge lines are blended with the object colour. Edge
lines are clear and distinct when viewed up close, and do not
clutter the model when viewed from far away.

still allows for clear edges when up close to a model, as
seen in figure [6].

3.2 Shading

We implemented the technical illustration shading
model as described in [Gooch et al. 1998]. Traditional
diffuse shading sets surface irradiance I of a point pro-
portional to the angle between the light direction and
the surface normal:

I = kdka + kdmax(0,~l ·~n)

where ka is the ambient illumination, kd is the diffuse
illumination, ~l is the unit vector in the direction of the
light source and ~n is the unit surface normal at that
point. We cannot add edge lines in this model, because
highlights would be lost in the well-lit areas while sil-
houettes would be lost in dark regions of the object.
[Gooch et al. 1998] propose a shading model based
on the perception that cool colours recede while warm
colours advance. This shading model increases shape
comprehension by restricting the range of colours avail-
able for shading so as to not interfere with the colour of
edge and silhouette lines. The surface irradiance I is
calculated under this model by blending between two

6

Figure 7: The object shaded with a cool-to-warm transition.

colours kcool and kwarm according to:

I = (
1+~l ·~n

2
)kcool +(1−

1+~l ·~n
2

)kwarm

The model is rendered with approximately constant lu-
minance tone, as shown in figure [7]. This lends for
subtle shape information that does not require a large
dynamic range, but renders the object in rather unnatu-
ral colours.

3.3 Splash-back

[Gooch et al. 1999] describe an adaptation of the above
cool-to-warm shading that simulates the more dramatic
shading effects sometimes used by artists. The effect
is achieved when the reflected light from the left of the
object produces a back-splash of light opposite the di-
rect lighting source. We achieve this effect by adding
the following multiplier to the cool-to-warm irradiance
equation:

(α |cos θ |+(1−α))p

Here, α and p are free parameters that we have set to
0.76 and 0.78 respectively, as recommended in [Gooch
et al. 1999]. The effect is quite pronounced, as seen in
figure [8].

3.4 Shadows

Shadows are only drawn in technical illustration when
they do not occlude detail. Objects typically do not self-
shadow in this model, and shadows are only cast onto

Figure 8: The splash-back term in the irradiance equation
results in a more dramatic shading effect.

the ground plane. Shadows can help convey shape in-
formation about parts of the object that are otherwise
occluded from view, as shown in figure [9]. It is how-
ever not as important for the shadow to be entirely ac-
curate or realistic. We have implemented two types of
shadow in Quake: the single hard shadow, and a soft
shadow with a hard umbra and a hard penumbra.

The shadow shape is achieved by projecting each poly-
gon of the model onto the ground plane in a solid
colour, in the direction opposite to the light source.
Quake scenes are always lit using a single light, so the
direction a shadow is cast is computed without much
difficulty. The shadows are achieved by drawing three
projections of the model onto the ground plane: The
first two are drawn with a negative and a positive off-
set in the y direction, respectively, and with a lower
alpha value, thus approximating the penumbra. Sub-
sequently, the third projection is drawn on top of the
first two, with a higher alpha value. It is scaled down a
factor, and models the umbra. In our implementation,
the colour, offset(figure [13]), scaling(figure [12]) and
alpha value(figure [11]) of the shadow is configurable,
and the drawing of the penumbra can be switched off in
order to model a single hard shadow.

4 Results

We tested our rendering library on an Intel P4 2.66GHz
with 512MB of RAM and a nVidia GeForce4 Ti 4200
graphics card. The Quake game itself has three time de-
mos from various 3D environments and a larger demo,

7

Figure 9: Shadows supply more information with one view-
point. We can see from the shadow that the model is holding
a staff, even though the staff is entirely occluded by the body
of the model.

BigAss1, is obtainable from the Internet which is a
much better stress-test. We use these four demos to
evaluate the performance of our renderer.

Our initial attempts at recovering edge adjacency infor-
mation, though unfruitful, did give some insights into
the speed of the Quake engine. Building an edge ad-
jacency data structure for each model’s frame that we
encounter on the fly, as well as edge retrieval from
this data structure at the time of crease rendering slows
the game down by 25% when measured in frames per
second, on average. This is clearly a bit of a perfor-
mance hit but considering the frame rates we were able
to achieve, it did not present a problem:

Demo1 Demo2 Demo3 BigAss1
78.2 fps 83.2 fps 72.4 fps 71.0 fps

If the edge information could be properly gathered, it is
quite clear from these numbers that detecting and ren-
dering ridges and valleys in their own styles, as well as
detecting silhouettes, would not be too much of a per-
formance bottleneck at all. It is unfortunate that this
was not possible since our results would surely have
been much better had this worked.

Our method for silhouette rendering was a simplifica-
tion of [Raskar 2001]’s approach which draws back-
facing polygon edges with thick lines. The results of
this method are quite pleasing, as seen in figure [10].
Creases, however, were not particularly impressive be-
cause we were unable to discern between proper ridges
and valleys and just normal polygon edges. Our exper-
imentation with colour blending edges with their un-

derlying model colour improved things somewhat by
reducing the jarring effects of rendering all edges re-
gardless of classification. Our use of a distance metric
to determine colour blending levels nullified the clut-
tering artifacts introduced in models rendered far from
the viewer.

The cool-to-warm shading technique of [Gooch et al.
1998] proved to be very nice and easy to implement.
The simplicity of the algorithm makes for good perfor-
mance as well as visually appealing results as can be
seen in figure [7]. The addition of [Gooch et al. 1999]’s
newer splash-back term in the cool-to-warm shading
also gave interesting results but ultimately proved to
be less useful in conveying shape information since the
resulting renderings were darker and more uniform in
color across the models.

The shadow model described in [Gooch et al. 1999]
as shown in figures [12], [11] and [13], provide more
shape information in the scene, by essentially showing
the viewer a profile of the object shape. The implemen-
tation is conceptually simple as it is just a projection
of the model onto a plane. We feel that our approach
serves its purpose well, and the soft shadowing tech-
nique generates visually pleasing results.

Nevertheless, this approach is not intended to produce
geometrically accurate results. Shadows appear to float
when the object is elevated from the surface, for exam-
ple if the object is positioned on a step and its shadow
is cast off the step, and shadows do not contact prop-
erly. Instead of casting shadow on a wall, the shadow
will disappear into the wall. Still, this shadow model
does not intend to be accurate, but merely to convey
shape that would otherwise be obscured. Even in an in-
teractive environment this may save the user from mov-
ing between several views excessively to gain adequate
comprehension of the object.

Our final timing benchmarks with all of effects turned
on including silhouette and edge rendering, shading,
edge colour blending with distance, and shadows is as
follows:

Demo1 Demo2 Demo3 BigAss1
98.7 fps 96.3 fps 90.9 fps 87.5 fps

These numbers include the optimizations we made to
our code which take advantage of faster OpenGL calls
as outlined in [Blythe et al. 1999]. In all cases, we made
our best attempt to write concise and optimized code in

8

Figure 10: Our method of rendering silhouettes by
drawing back-facing polygons with thick edge lines
that peek out from behind front-facing polygons.

order to eek out every last frame per second possible.

5 Future Work

The technical illustration style for Quake could still be
extended with many improvements. The edge adja-
cency information for models could be properly com-
puted by either using improved models that are free
from inconsistencies, rounding vertex locations so that
more polygon edges coincide, or weeding out degener-
ate polygons. The camera position and direction could
be recovered by further exploring the Quake source
code and the OpenGL mapping. The neighbouring in-
formation coupled with the camera information could
then be used to implement ridges and valleys as de-
scribed by [Raskar 2001].

Furthermore, the Quake walls and sprites may be mod-
ified for a more technical look. Environment and tex-
ture maps could be employed to render the scene in a
style that is a compromise between the technical and
the more realistic method of rendering. Texture colour
could be blended with cool-to-warm shading to sacri-
fice some shape clarity for object surface detail that is
otherwise not represented by the surface shape.

Figure 11: A lower alpha value can be used to create
the suggestion of a shadow

Figure 12: Shadows are drawn here with a large scale
factor, creating a somewhat gloomy artistic effect.

9

Figure 13: The penumbra is drawn here with a large
offset. The shadow gives the appearance of being cast
by two lights: the torch visible on the wall, and a light
behind and on the right of the camera, outside the view-
ing frame.

6 Conclusions

We have shown that better shape information can be
conveyed through the use of shading and edge ren-
dering even on basic models represented as ”polygon
soups”. Even with no camera direction or position, and
no edge adjacency information for the models it is pos-
sible to render scenes that communicate more overall
detail than that of photorealistic approaches. We have
explored a novel approach to handling silhouettes and
creases that allows for blending of edge colour with
the underlying shaded model colour. This gives results
that are less jarring then the classical black silhouettes
and white creases, yet maintains an appropriate level
of shape detail. Finally, we outline an approach to fade
creases and silhouettes of a model based on the distance
the model is from the viewer, which is novelly pimpin‘.

References

BLYTHE, D., GRANTHAM, B., MCREYNOLDS, T.,
AND NELSON, S. R. 1999. Advanced Graphics Pro-
gramming Techniques Using OpenGL. SIGGRAPH
’99 Course.

GOOCH, A., GOOCH, B., SHIRLEY, P., AND COHEN,
E. 1998. A non-photorealistic lighting model for au-
tomatic technical illustration. In Computer Graphics.
ACM Siggraph ’98 Conference Proceedings.

GOOCH, B., SLOAN, P.-P., GOOCH, A., SHIRLEY,
P., AND RIESENFELD, R. 1999. Interactive tech-
nical illustration. ACM SIGGRAPH, 31–38. ISBN
1-58113-082-1.

ID SOFTWARE. 1992. Quake. http://www.

idsoftware.com.

ILIE, A. 2003. Non-photorealistic rendering tech-
niques for a game engine. http://www.cs.unc.

edu/~adyilie/comp238/Final/Final.htm.

LAKE, A., MARSHALL, C., HARRIS, M., AND

BLACKSTEIN, M. 2000. Stylized rendering tech-
niques for scalable real-time 3d animation. In
Non-Photorealistic Animation and Rendering 2000
(NPAR ’00).

MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN,
S. J., BOURDEV, L. D., GOLDSTEIN, D., AND

HUGHES, J. F. 1997. Real-time nonphotorealistic
rendering. Proceedings of SIGGRAPH 97 (August),
415–420. ISBN 0-89791-896-7. Held in Los Ange-
les, California.

MOHR, A., BAKKE, E., GARDNER, A., HENN-
MAN, C., AND DUTCHER, S. 2002. NPRQuake.
http://www.cs.wisc.edu/graphics/Gallery/

NPRQuake/.

RASKAR, R., AND COHEN, M. 1999. Image Precision
Silhouette Edges. In Proc. 1999 ACM Symposium on
Interactive 3D Graphics.

RASKAR, R. 2001. Hardware support for non-
photorealistic rendering. 2001 SIGGRAPH / Euro-
graphics Workshop on Graphics Hardware (August).

SCHREINER, D., SCHREINER, D. E., AND

SHREINER, D. 1999. OpenGL Reference Manual:
The Official Reference Document to OpenGL,
Version 1.2. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

WOO, M., DAVIS, AND SHERIDAN, M. B. 1999.
OpenGL Programming Guide: The Official Guide
to Learning OpenGL, Version 1.2. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

10

