Jigsaw Image Mosaics

Kim and Pellacini, Cornell 2004

Presented by Kacper Wysocki

Introduction

- Fill arbitrary container compactly with arbitrarily-shaped tiles of similar color
- Deform tiles slightly for effect

Figure 1 from Kim and Pellacini

Motivation

Arcimboldo, Renaissance Italian Painter

Vertemnus

Seasons

Related work

- Photomosaics
 - Finkelstein and Range '98
 - Silvers and Hawley '97
 - Images in rectangular grid

Dog of beer

Shining shot composed of various actors

Related work

- Simulated Decorative Mosaics
 - Hausner '01
 - Align square tiles with varying orientations to preserve edges and maximise coverage

Figure 2 from paper

Related work

- Escherization
 - Kaplan and Salesin '01

Regular dog tilings

Overview

- Packing problem is NP-hard
- Energy-based framework generalizes known algorithms
- Energy-minimization algorithm for solving mosaicing 'soft' packing problem

Preparing inputs

- Input:
 - Container image
 - Set of arbitrarily shaped tiles
 - Shape of tiles and container as polygons
- Preprocessing:
 - Automatic segmentation
 - Segment input image to retain edges

Mosaicing Energy Framework

- *Tile configuration:* subset of input tiles + transformations
- JIM when minimizes energy function

$$E = w_C \cdot E_C + w_G \cdot E_G + w_O \cdot E_O + w_D \cdot E_D$$

C – color difference

G – gap

O – overlap

D – deformation

Can make Photomosaics and Simulated Decorative Mosaics

Energy Evaluation

$$E = w_C \cdot E_C + w_G \cdot E_G + w_O \cdot E_O + w_D \cdot E_D$$

- Ec L-squared color difference
- Eg gap spring energy formula
- Eo overlap
- Ed deformation

$$E_D = \frac{1}{2} \sum_{i=1}^k \int_0^1 \alpha |D_i''(s) - T_i''(s)|^2 + \beta |D_i'''(s) - T_i'''(s)|^2 ds$$

Energy Evaluation

$$E = w_C \cdot E_C + w_G \cdot E_G + w_O \cdot E_O + w_D \cdot E_D$$

Figure 3 from Kim and Pellacini

Basic Algorithm

- Three phases
 - Packing
 - Refine and deform
 - Assemble and adjust

Figure 4 from Kim and Pellacini
McGill COMP-767 Winter 2005

Basic Algorithm

- Packing
 - Ignore deformations
 - Search database, one tile at a time
 - Position and location
 - Backtracking
 - New container = old container shape of tile

Figure 5 from Kim and Pellacini
McGill COMP-767 Winter 2005

Backtracking

Figure 6 from Kim and Pellacini
McGill COMP-767 Winter 2005

Basic Algorithm

- Refine
 - Deform to reduce gaps and overlaps
 - To minimize energy, solve

$$w_c \cdot \nabla E_C + w_G \cdot \nabla E_G + w_O \nabla E_O + w_D \cdot \nabla E_D = 0$$

Figure 7 from Kim and Pellacini
McGill COMP-767 Winter 2005

Basic Algorithm

- Refine
 - Use active contours to solve

$$w_c \cdot \nabla E_C + w_G \cdot \nabla E_G + w_O \nabla E_O + w_D \cdot \nabla E_D = 0$$

$$\nabla E_C$$
 is close to 0

$$\nabla E_O = 2d \cdot n$$
 or gap, shrink/expand

$$\nabla E_D = \alpha(D_i \prime \prime \prime (s) - T_i \prime \prime \prime (s)) + \beta(D_i \prime \prime \prime \prime (s) - T_i \prime \prime \prime \prime (s))$$

Complexity

$$O(V_{tile} \cdot N_{tile} \cdot V_{container} \cdot N_{tilesIn} \cdot (1+b))$$

- We can improve this
 - Tile placement
 - Branch-and-bound with lookahead
 - Container cleanup
 - Geometric hashing

- Tile placement
 - Smarter easier after placement
 - Guess container after 'average' tile
 - Achieved by constructing Centroidal Voronoi Diagram

Figure 8 from Kim and Pellacini

- Branch-and-bound with look-ahead
 - Penalize tiles that make filling more difficult
 - Add term to energy equation:

```
E = w_G \cdot E_G + w_O \cdot E_O + w_C \cdot E_C + w_{LA} \cdot E_{LA}
E_{LA} = w_A \cdot area + (1 - w_A) \cdot length^2
```

- Container cleanup
 - After update, there are jagged or disjoint edges in container
 - Separate and consider as gaps
 - How does this help?

- Geometric hashing
 - Match geometric features against database
 - Find a set of tiles, evaluate energy formula
 - Preprocessing
 - Grid of squares in plane
 - If shape crosses square, add to entry
 - Place tiles in all orientations in grid
 - Packing stage
 - Register container boundry to hash table
 - For every (tile, orientation) cast vote

Geometric hashing

Figure 9 from Kim and Pellacini

How does this help?

Conclusion

- Energy-based framework for mosaicing problems generalizing existing algorithms
- Jigsaw Image Mosaic
- 'soft' packing for texture synthesis and product manufacturing
- Some results:
 - 900 tiles
 - 8x size variations in tiles
 - Process took from 10 minutes to 2 hours

Future work

- Bounds on energy hard to prove
- 3D mosaics for surface and volume
- Video mosaics Klein et al.

Figure 10 from Kim and Pellacini

Figure 11 from Kim and Pellacini

Figure 12 from Kim and Pellacini

Figure 13 from Kim and Pellacini