
Department of Computing Science and Mathematics
University of Stirling

Exploiting the m4 Macro Language

Kenneth J. Turner

Technical Report CSM-126

 September 1994

Department of Computing Science and Mathematics
University of Stirling

Exploiting the m4 Macro Language

Kenneth J. Turner

Department of Computing Science and Mathematics, University of Stirling
Stirling FK9 4LA, Scotland

Telephone +44-1786-467421, Facsimile +44-1786-464551
Email kjt@compsci.stirling.ac.uk

Technical Report CSM-126

 September 1994

Abstract

m4 is a macro language and macro processor that is available with a number of operating
systems such as UNIX and MS-DOS. The role of m4 is discussed, and it is concluded that m4
has a useful part to play even though it has not achieved widespread popularity. A summary of
m4 is given along with some basic examples. A cookbook of techniques is then described,
allowing surprisingly sophisticated macros to be developed. Some applications of the
approach are described for specifying Open Systems Interconnection standards, telecommuni-
cations service creation and digital logic circuits. To show the range of possibilities for m4, a
few uses by others for specification and text-processing are briefly discussed.

1

1 Intr oduction

1.1 The Role of m4

m4 is a macro language and an associated macro processor designed by Dennis M. Ritchie [7].
m4 has been supplied with UNIX systems for some years, and is also available for other environments
such as MS-DOS. m4 is quite simple but can be used in surprisingly sophisticated ways.

A macro processor like m4 is a useful software engineering tool. Apart from simple macro fea-
tures such as named constants and conditional expansion, m4 can be used to provide syntactic sugar
for a language and to support translation between languages. UNIX systems are supplied with a
number of other tools that could be used to achieve roughly similar results, but none of them is as con-
venient for these purposes. sed, the stream editor, can be used for simple text substitution but little
more. More could be done with awk, but parameterisation would have to be programmed and other
features such as re-scanning output for macros would be hard to emulate. For a full-blown translator,
lex and yacc could certainly be used. However, they would impose a comparatively complex solution
involving definition of a full language grammar. The only other commonly available macro processor
is cpp, the C preprocessor. This is perfectly adequate for conditional compilation, but lacks the more
advanced features found in m4.

Despite is availability and utility, m4 has somehow never achieved widespread popularity. It cer-
tainly deserves to be better known. The purpose of this paper is to show how m4 can be effectively
exploited using a variety of techniques.

1.2 Structur e of the Paper

Section 2 summarises the facilities of m4 and gives some basic examples. Section 3 lists a variety of
techniques in cookbook fashion for using m4 in more sophisticated ways. Section 4 briefly overviews
some applications of the techniques described. The principal applications concern specification of
Open Systems Interconnection standards, telecommunications service creation and digital logic cir-
cuits. Other applications briefly discussed are related to text-processing. The macro libraries
described in this paper are available from the author on request.

2 Summary of Facilities

m4 seems to have escaped much mention in the literature, and appears to be documented mainly in
manual pages; one of the few discussions in the literature is [6: Chapter 8]. The only tutorials known
to the author are the original paper on m4 [7] and one published by SUN Microsystems with their sys-
tem documentation. A brief overview of m4 is therefore appropriate.

The m4 built-in commands (macros) are summarised in Table1. A pleasant feature of m4 is that
its commands are themselves macros, so that the core language and the macros defined with it have a
uniform style. In practice, m4 is a smaller language than even Table1 would suggest. The most fre-
quently used commands are define, eval, ifelse, index, len and substr ; a close second are ifdef,
include, incr and translit. Despite the apparent paucity of the language, a remarkable range of effects
can be achieved – as Section3 will show.

m4 allows macros to be defined with some name and some text with which instances of the name
are to be replaced. Names begin with a letter and may be followed by letters, digits and underscores;
case in names is significant. As an example:

define(Operator,Plus)

defines a macro called Operator with value Plus. White space is not allowed in a macro call between
the macro name (here, define) and the opening parenthesis. The value of a macro may be any piece of
text including white space; however, literal commas and parentheses need to be quoted1. The value is

2

treated as text even if it is numeric. A macro name is replaced by its value whenever the name is used
subsequently (or until it is undefined). The macro name must appear in a call as a separate identifier
(or, more exactly, token); thus Operators would not call Operator, though Operator’s would.

Quotes are used to prevent macro expansion in the macro value. The macro processor effectively
strips off one layer of quotes (there may be several) when reading the value. Quotes are generally used
to prevent macros being expanded prematurely when they appear in the value of a macro; quotes usu-
ally do no harm if they are not needed, but see Section3.2.

1Matching parentheses and any commas they enclose are also taken literally, e.g. (a,b).

Built-in Command Description

#… Ignore comment text up to and including the newline
changequote(left,right) Define quote characters as left and right (instead of ‘…’)
define(name,text) Define macro name to be text
divert(stream_number) Divert future output to stream stream_number (1 to 9);

the default of 0 is standard output
divnum Expand to currently active diversion number
dnl Delete up to newline, generally to prevent extra white

space in macro definitions from appearing in output
dumpdef(‘name’,…) Print the definition of one or names, generally for

debugging; names are quoted to prevent expansion
errprint (string,…) Print one or more strings to standard error
eval(expression) Expand to result of numeric expression; the arithmetic

and logical operators are essentially those of C
ifdef(‘name’,def_text,undef_text) If macro name (quoted to prevent expansion) is defined,

expand to def_text otherwise undef_text
ifelse(text1,text2,eq_text,ne_text) If text1 and text2 are equal strings, expand to eq_text

otherwise ne_text; conditions may be repeated
include(file_name) Expand to contents of file_name
incr (number) Expand to number+1
index(string1,string2) Expand to position in string1 where string2 occurs (0 is

start, -1 means not found)
len(string) Expand to length of string
maketemp(…XXXXXX…) Expand to temporary filename, replacing Xs with a proc-

ess id; like C function mktemp
sinclude(file_name) Expand to contents of file_name, without complaint if it

does not exist (‘silent include’)
substr(string,position,number) Expand to string from position (0 is start) for number

characters (default to end of string)
syscmd(string) Execute the command string; like C function system
translit (string,from,to) Expand to string with from characters replaced by corre-

sponding to characters (or deleted if there is no corre-
sponding to character); like UNIX command tr

undefine(‘name’) Delete definition of name (quoted to prevent expansion)
undivert(stream_number,…) Retrieve text from diversion stream_number (all diver-

sions as default) and append to current diversion (usu-
ally standard output)

Table 1 Summary of m4 Built-In Commands (Macros)

3

Suppose in the above definition of Operator that Plus had already been defined as a macro:

define(Plus,+)

A macro must be defined before it is called, so the definition of Plus must come before that of Opera-
tor. Since parameters are evaluated before a macro is expanded, the definition of Operator is equiva-
lent to:

define(Operator,+)

It may be that the literal value Plus is required for Operator. In this case, the value of the macro must
be quoted:

define(Operator,‘Plus’)

Although Operator will now expand to Plus, the output of a macro is re-scanned for new macros. As
a result, Plus will be expanded to +.

A macro without parameters may be used simply by giving its name, e.g. Operator. A parameter-
less macro can also be called with an empty parameter list, e.g. Operator(). A macro may be defined
to have text parameters numbered $1 to $9, $0 being the name of the macro itself. When a parameter-
ised macro is called, the parameters are given in parentheses.

Parameters are assigned to $1, $2, etc. in order. Actual parameters need not all be used in the def-
inition. Conversely, $n will be assigned the empty string if the nth parameter is not actually supplied
in the call. Unquoted white space before the start of a parameter is discarded; white space within a
parameter is preserved. If it is necessary to include a comma or parenthesis in a parameter, it should
be quoted.

As an example of parameterisation, here is a decrement macro used later that complements the
built-in incr macro:

define(decr,‘eval($1-1)’)

The quotes are necessary here because the macro parameter is not known at the time the macro is
defined. The following two-parameter macro expands to the average of the given numeric values:

define(Average,
‘eval(($1 Operator $2)/2)’)

When the macro is called, e.g. Average(6,3), it will expand to eval((6+3)/2). This in turn will expand
to 4, since ‘/’ truncates to an integer.

3 Tricks of the Trade

The level of facilities described in Section 2 is perfectly adequate for simple text substitution. How-
ever, a wide range of effects can be achieved with some additional thought. The following subsections
describe a few techniques, and also some of the pitfalls with m4. This section can be used as a cook-
book of ideas to be adapted as required.

With judicious selection of techniques, m4 can be used almost like an imperative or a functional
programming language! In some senses it is even declarative. The following techniques tend to an
imperative style: variables (Section 3.3), conditionals (Section 3.5), side effects (Section 3.12) and
iteration (Section 3.13). The following techniques tend to a functional style: conditionals
(Section 3.5), higher-order macros (Section 3.8), curried macros (Section 3.9), recursion
(Sections3.10 and 3.11) and list processing (Sections3.14 and 3.15).

A functional style of macro definition offers freedom from side-effects and referential transpar-
ency as in functional programming. It is not intended to promote this style particularly, but it has
proven useful in a number of applications described in Section4.1.

4

3.1 Use of Files

Although m4 will read macro definitions from standard input, it is best to store macros in a file and
use them by giving the filename on the command line: m4 filename. A filename extension of ‘ .m4’ is
suggested for such files. It is also convenient to separate files containing only macro definitions from
files that use them. In this way, generic macro packages can be built up and then used for a variety of
applications. A macro package can be read in using include. If a file to be read may not exist (e.g. it is
conditionally generated) then use sinclude.

3.2 Quoting

The value of a macro should almost invariably be quoted. When a macro is defined its name should
always be quoted if there is a risk that it is already defined as a macro. This would apply to redefining
a macro, and also to other uses of macro names such as with dumpdef, ifdef and undefine. Quoting
requires more thought when a macro definition includes calls to other macros. Again, the safest rule is
to quote subsidiary calls so they are not expanded until necessary:

define(Macro1,
‘Macro2(Parameter1,‘Macro3(Parameter2)’)’)

It is very easy to get quotes and parentheses mismatched with complex macros. Unless the text editor
used to produce the m4 file has facilities to help, there may be no solution but to copy the file and cut
out pieces of text until the problem is found.

Insufficient quotes will cause a macro to be expanded prematurely. This will cause macros to be
expanded in the wrong order, cause parameters to be used before they have been defined properly, or
cause argument stack overflow. Note that all parameters are evaluated before calling a macro. Excess
quotes will prevent macro expansion at the correct time, usually causing macro names or parameters
to be taken literally.

Sometimes it is necessary to introduce empty quotes in order to have the input parsed correctly.
For example, a macro that expands to the value of Operator twice in succession cannot be defined as:

define(Double,‘OperatorOperator’)

because OperatorOperator is parsed as a single token. The following is required:

define(Double,‘Operator‘’Operator’)

3.3 Variables

m4 does not provide conventional variables. However, macros may be treated as (text) variables. Sup-
pose that a Count variable has to be periodically incremented. This might be achieved with:

define(‘Count’,‘ incr (Count)’)

This replaces the current value of Count with its incremented value. Note that the first reference to
Count must be quoted since it is already a macro. Failing to quote it will define a macro whose name
is the current value of Count!

Macro names in m4 are unfortunately global; there is no notion of nested scope. As a result, local
variables within macros must be named carefully to avoid clashes. It is suggested that local variables
start with the name of the macro in which they are defined, e.g. if Average required a local sum it
might be called AverageSum. This could be achieved automatically using $0, the current macro name.
The local variable of Average might therefore be called $0Sum. Some examples of local variables
appear in Appendix3.14.

5

3.4 Controlling White Space

It is unfortunately easy to introduce extraneous white space in the output of a macro. White space
after a parameter is usually the problem. For example, the following inadvertently produces a newline
after the result:

define(Average,
‘eval(($1 Operator $2)/2)

’)

To include white space intentionally, include it inside quotes:

define(Operator,‘
Plus

’)

This expands to a newline, some spaces, Plus and a newline.
In a macro package, it is desirable not to generate white space in the output while the macro def-

initions are being read. One way to do this is to join the end of one definition onto the start of another:

define(Macro1,
Text1)define(Macro2,
Text2)

However, this is rather untidy. An alternative is to use the dnl command to discard text up to and
including the next line:

define(Macro1,
Text1)dnl

define(Macro2,
Text2)

However, this is rather ugly too. A better solution is to include macros inside a diversion. Diversions
are discussed further in Section3.12, but for now it is sufficient to note the following approach:

divert(-1)
define(Macro1,

Text1)
define(Macro2,

Text2)
divert

The first diver t sends all subsequent output to stream -1 (‘ the void’), causing it to be ignored. The sec-
ond diver t restores normal output2. This pair of diver t commands would normally appear around a
macro package, ensuring that reading in the package causes no output.

3.5 Conditionals

The ifelse(text1,text2,eq_text,nel_text) command corresponds to the Pascal form:

if text1 = text2
then eq_text
else ne_text

Either eq_text or ne_text may be the empty string, meaning that there is no result. In particular, if there
is no ‘else’ alternative then the fourth parameter may be omitted. There may only be a check for
equality of the text1 and text2 strings. For logical conditions, use the eval command and check the
result against 1 (true) and 0 (false). For example:

2dnl might be used after the final divert to prevent it generating a newline.

6

ifelse(eval(4<7),1,is less,not less)

If conditionals contain macro calls as parameters it is likely that these should be quoted. Condi-
tionals may be nested, as in the following macro that expands to text giving the sign of its operand:

define(Sign,
‘ ifelse(eval($1<0),1,

negative,
ifelse(eval($1==0),1,

zero,
positive))’)

Nested conditionals like this are so common that m4 supports a convenient short-hand: the ‘else’
clause can be replaced by further ‘if then’ clauses. Sign can therefore be rewritten more simply as:

define(Sign,
‘ ifelse(eval($1<0),1,

negative,
eval($1==0),1,

zero,
positive)’)

It is also possible to build up nested conditionals using ifdef to check if macros are defined or
not.

3.6 Recording Definitions

Due to conditional expansion, a particular part of a macro package may not actually be used. In such a
case it may be useful to record that a certain expansion took place. It is possible to define a macro with
no value (or more exactly an empty string as value) just to record that its definition was met. The
existence of the macro can be checked with ifdef:

define(Used)

ifdef(‘Used’,was defined,not defined)

Note that there is no equivalent of ifndef in cpp; the ‘else’ part of ifdef should be used instead.

3.7 Nested Definitions

More sophisticated macros may themselves define macros. Suppose, for example, that is useful to
know whether macros to perform arithmetic have been called:

define(Minus,‘define(‘Maths_Used’)eval($1-$2)’)
define(Times,‘define(‘Maths_Used’)eval($1*$2)’)
… Minus(5,3) …
ifdef(‘Maths_Used’,Maths_Functions)

When Minus or Times is invoked, the Maths_Used macro is defined. (A common macro called by
Minus and Times could also be defined to do this.) Maths_Used can later be tested to take appropriate
action (say, to include mathematics functions in the output).

As discussed in Section3.10, a macro may even redefine itself.

3.8 Higher-Order Macr os

It can be convenient to define higher-order macros: macros that take macros as parameters. Fortu-
nately this is achieved quite straightforwardly. The macro as parameter must be quoted on the call and
used unquoted in the definition. The reason this works is that m4 scans the expansion of a macro for

7

the presence of other macros. An example might be a macro that applies the ‘operation’ it is given to
the rest of the parameters:

define(Apply,$1($2,$3))

This allows for operations with one or two parameters, such as:

Apply(‘incr’,42) incr (42) or 43
Apply(‘Average’,15,8) Average(15,8) or 11

Because macros usually ignore extra parameters3, the same definition of Apply can be used for unary
or binary operators. Obviously this can be extended to n-ary operators (for n up to 8 due to the param-
eter limit in m4).

3.9 Curried Macr os

A curried4 function is one that has been partially applied to its initial parameters. Similarly it may be
useful to define a curried macro that has some of its parameters fixed.

Suppose a Times3 macro is required that acts like Times with its first parameter fixed at 3:

define(Curry1,‘define($1,‘$2’($3,$‘’1,$‘’2))’)
Curry1(Times3,‘Times’,3)

Times3(5)

Curry1 defines its first parameter to be a macro that always calls the second parameter with the third
parameter plus others. The second parameter must be quoted as it will be a macro name.

There is a complication with parameters for curried macros. The first parameter is supplied as $3
on the call of Curry1. Other parameters will be supplied only when the curried macro is called, so
they cannot be included in the definition as $1, $2, etc. By including empty quotes, as in $‘ ’1, the def-
inition of the curried macro is made to refer to literal $1 and not to the value of the first parameter
when Curry1 is called. When the curried macro is called, its first parameter (actually the second
parameter of Times) will be used. The definition above allows the curried macro to have two parame-
ters, but this could be extended to more parameters.

Unfortunately a single Curry macro cannot be defined since the number of parameters to be fixed
must be known. Currying n parameters is, however, possible. For example, for two parameters:

define(Curry2,‘define($1,‘$2’($3,$4,$‘’1,$‘’2))’)
Curry2(Times35,‘Times’,3,5)

Times35

This defines a Times35 macro that always multiplies 3 and 5; Times35 always returns the constant
result 15. Although Curry2 allows for the curried macro to have additional parameters (here two),
they are not actually used in this case.

3.10 Recursion

The expansion of a macro may include a call to the same macro. (Recall that the expansion is scanned
for further macro calls.) As with any language, there must be a condition to stop the recursion.

As an example, here is the classical factorial function:

define(Fact,
‘ ifelse(eval($1<=1),1,

1,

3The approach here would not work if the applied macro specifically checked that spare parameters were unused.
4The name derives from Curry the mathematician.

8

‘eval($1*Fact(decr($1)))’)’)

fact(15)

If the argument is 1 or less then the factorial is 1, otherwise the result is the argument times factorial
of the argument decremented.

There are two problems with the definition above. One is that large arguments (perhaps as little
as 16) may cause integer overflow. The other is that a complex expression has to be finally evaluated:
eval(15*eval(14* ...1)), possibly causing overflow of the m4 argument stack. This is a more serious
problem which is solved in Section3.11.

The classical Fibonacci function can also be defined recursively:

define(Fib,
‘ ifelse(eval($1<=1),1,

$2,
‘ ifelse(eval($1==2),1,

$3,
‘eval(Fib(decr(decr($1)),$2,$3)+Fib(decr($1),$2,$3))’)’)’)

fib(17,1,1)

The first parameter is the number of the term required (starting at 1), and the other two parameters are
the ‘seeds’ for the series. As usual, the first term is the first seed and the second term is the second
seed. For later terms, the nth term is calculated as Fib(n-2)+Fib(n-1). As with Fact, trying to calculate
too high a term may cause integer overflow or argument stack overflow.

Mutual recursion is also possible. Macros Flip and Flop call each other the number of times
given by their parameter, outputting On or Off each time:

define(Flip,‘ ifelse(eval($1>0),1,‘On Flop(decr($1))’)’)
define(Flop,‘ifelse(eval($1>0),1,‘Off Flip(decr($1))’)’)

Flip(5)

3.11 Dealing with Arbitrary Recursion

Because recursion is often used in the definition of a macro, some solution should be found to the
problem of argument stack overflow if there are many levels of recursion. A general approach is to
accumulate the results of recursion in auxiliary parameters; these can be initialised with the base val-
ues for recursion. To preserve the same calling interface, an auxiliary macro should be invoked by one
that supplies these parameters invisibly. As an example of this, here is a reworked factorial macro:

define(Fact,‘FactAux($1,1)’)

define(FactAux,
‘ ifelse(eval($1<=0),1,

$2,
‘FactAux(decr($1),eval($1*$2))’)’)

The auxiliary parameter to FactAux is initially given as 1 by Fact. On each recursive call, the auxiliary
parameter is multiplied by the main parameter. Fact(15), for example, will be evaluated progressively
as 15*1, 14*15, …, 2*1002155008, 2004310016. This avoids the arbitrarily nested list of calculations
that can cause argument stack overflow with the first definition of Fact. The same approach can be
applied to other recursive macros, such as those for list-processing is given in Appendix3.14.

9

3.12 Side-Effects

Sometimes it is necessary for a macro to have side-effects, say to generate definitions or text that are
used in later processing. One way of achieving this is a via a diversion using the diver t command.
This causes subsequent output to be accumulated in a temporary file identified by a stream number A
diversion is ended by a new diver t command. By default, all diversions are output at the end of
processing in ascending order of stream number. More explicit control is possible with the undiver t
command which appends the diverted output to the current diversion (usually the standard output).
Note that text recovered from a diversion is not scanned again for macros.

Suppose that it is required to record which arithmetic macros are called and to output a list of
their names at the end of processing:

define(Minus,‘Called(-)eval($1-$2)’)
define(Times,‘Called(*)eval($1*$2)’)
define(Called,‘divert(1)‘ Called $1’divert(0)’)

The Called macro records the call of each macro in diversion 1, then reverts to diversion 0 for normal
output; a plain diver t would have the same effect as diver t(0). During processing, the result of each
macro call would be recorded in the diversion. At the end of processing, the text accumulated in diver-
sion 1 would be output automatically. The diversion could be output at an earlier point in processing
by calling undivert, or undivert(1) if there were other diversions.

Another way of using an intermediate file of results is to write to a temporary file explicitly and
then read this back in again using include. To write anything to such a file requires syscmd since m4
output can be redirected only with diver t. Temporary files should therefore be used for the output of
system commands, and diversions should be used for the output of m4 commands. Note, however, that
use of syscmd may reduce portability by use of system-specific commands.

The fact that diverted text is not scanned again for macros may be desirable or not. In fact the
above example takes advantage of this since the word Called is stored in the diversion; it certainly
should not invoke macro Called when the diversion is recovered. If the stored text is to be re-scanned
for macros, it must be appended to a text variable that is later output. Here is a more complex revision
of Called using this idea:

define(Called_List)
define(Call_text, ‘Call of $1’)
define(Called,‘define(‘Called_List’,Called_List ‘Call_Text($1)’)’)
…
Called_List

Now Called maintains a list of calls in variable Called_List which is initialised to the empty string. On
a new call, the details are appended to the current value of Called_List. Instead of storing Call of …
directly, the name of the Call_Text macro is stored. When the list is generated by using Called_List,
Call_Text is replaced by its expansion5.

3.13 Iteration

Iteration can be achieved only through recursion. For example, the following macro and its call will
result in the output Counter is 10…Counter is 1:

define(loop,
 ‘ ifelse($2,0,,

 ‘define(‘$1’,$2)$3‘’loop(‘$1’,decr($2),‘$3’)’)’)

loop(‘i’,10,‘Counter is i’)

5In truth, Call_Text is expanded each time Called_List is redefined. It is only the last Call_Text that is expanded
when Called_List is used.

10

The name of the loop counter, the number of iterations and the loop body are given as parameters. The
name of the loop counter will have to be quoted if it is used previously, since it is redefined as a macro
inside loop; the loop counter is progressively decremented. The loop body will almost certainly need
to be quoted since it should not be expanded until loop is being executed. The reason for the empty
quotes after $3 is to prevent the loop body from being combined with the recursive call of loop; here,
the loop expansion would be Counter is iloop... and thus not be parsed properly.

A Pascal-like for loop to do the same thing could be achieved with:

define(for,
‘ ifelse(eval(($4==0) || (($4>0) && ($2>$3)) || (($4<0) && ($2<$3))),1,,

‘define(‘$1’,$2)$5‘’for(‘$1’, eval($2 + $4),$3,$4,‘$5’)’)’)

for(‘i’,10,1,-1,‘Counter is i’)

The name of the loop counter, the start value, the finish value, the step value and the loop body are
given as parameters. The condition for stopping the loop is that the step is zero, or the step is positive
and start is greater than finish, or the step is negative and start is less than finish.

To achieve a Pascal-like while loop requires:

define(while,
‘ ifelse(eval($1),1,$2‘while(‘$1’,‘$2’)’)’)

define(‘i’,10)

while(‘i!=0’,‘Counter is i‘’define(‘i’,‘decr(i)’)’)

The parameters here are the loop condition and the loop body, both quoted to prevent premature
expansion. The definition of the while macro is straightforward, but its use is more complex. The loop
condition need not involve a counter, though it does so here. The condition is assumed to be a logical
expression to be checked using eval; other possibilities not catered for would include the use of ifdef.
The initial value of the counter must therefore be defined, the loop terminating condition must be
framed in terms of this, and the loop body must redefine the counter (here decrementing it).

A Pascal-like repeat loop is very similar:

define(repeat,
‘$1‘’ ifelse(eval($2),0,‘repeat(‘$1’,‘$2’)’)’)

define(‘i’,10)

repeat(‘Counter is i‘’define(‘i’,‘decr(i)’)’,‘i==1’)

Following Pascal syntax, the loop body and loop condition are given in the opposite order to while.
As in Pascal, the loop body is always executed at least once for repeat.

3.14 List Notation

List-valued macros may be defined. The simplest solution is to separate list elements by, say, white
space though this will not work if list elements may contain white space. More conventional list nota-
tion may be used, but care has to be taken over values containing commas and parentheses. These can
cause considerable problems because they are part of the m4 meta-syntax. If it is really necessary to
use a list notation such as (1,2,3), the best solution is to use this notation only externally (i.e. as input
or output of a macro package). A less troublesome notation such as [1;2;3] should preferably be used
internally (i.e. between macros of the package). The following macros convert between these repre-
sentations:

define(IntList,‘translit ($1,(,),[;])’)
define(ExtList,‘translit ($1,[;],(,))’)

11

The text string of three characters (,) is considered to be one parameter because parentheses are
matched. These characters correspond to the internal list characters [;] . For generality, it should be
possible to change the internal list characters; they might be defined as macros ListOpen, ListSep and
ListClose. However, for simplicity the characters have been fixed in the examples discussed here.

Because the internal notation avoids commas and parentheses, there is no risk of an internal list
being parsed as other than one parameter string. When macros require to input a list, they should
apply IntList to convert them to internal form. When macros require to output a list, they should call
ExtList to reverse the conversion.

3.15 List Processing

m4 lends itself to list processing, for which a number of functions are fairly standard. As in
Section 3.14, lists are used in the form […;…] . The implementation of list processing functions is
rather detailed and so is given in Appendix3.14. The functions may be used as follows:

Cons(abc,[de;fghi]) construct new list element [abc;de;fghi]
Head([alpha;beta;gamma]) first element of list alpha
Tail([aleph;beth]) all but first element [beth]
Concat([1;2],[3;4]) concatenate lists [1;2;3;4]
Length([x;y;z]) length of list 3
Reverse([aa;bb;cc]) reverse order of elements [cc;bb;aa]
AppList(‘decr’,[2;-8;7]) apply macro to list 1 -9 6
MapList(‘incr ’,[2;-8;7]) map elements using macro [3;-7;8]

3.16 Debugging

All except very simple macro packages will need debugging. When it is not clear what is happening
during macro expansion, the best approach is to put ‘debugging statements’ inside macro values.
These are not statements at all, of course, just text to be expanded for debugging purposes.

Suppose that inside Average it seems that Operator is being expanded incorrectly. The definition
of Average can be temporarily altered to produce diagnostic output:

define(Average
‘‘Operator’ is Operator in eval(($1 Operator $2)/2)’)

Note that the first occurrence of Operator is quoted so that it is taken as a literal string. The second
occurrence will be replaced by the current value of Operator. The result of expanding Average(6,3)
would thus be Operator is + in 4. To make it easier to distinguish diagnostic output, it may be delim-
ited in some way (say, using {…}).

An alternative is to use errpr int to send diagnostic output to standard error. This has the advan-
tage of separating diagnostics and normal output. However, the approach above has the advantage of
showing diagnostics at the relevant place in the output.

dumpdef may occasionally be useful during debugging to confirm the definition of a macro, par-
ticularly one defined dynamically inside another or where the effect of quoting is unclear.

4 Applications of m4

The techniques described in Section 3 were evolved by the author to support formal specification in a
number of domains. In each case a macro library was developed to allow translation from some sur-
face syntax to an underlying specification language. The purpose of this section is to give a feel for the
range of applications that m4 can support; the work of some colleagues is therefore included. It is not
practicable to describe each application in detail here.

12

4.1 Specification Applications

The formal specification language LOTOS (Language Of Temporal Ordering Specification [5]) uses
algebraically specified data types. The data typing facilities are powerful but very basic, and the stand-
ard library of data types is rather impoverished. Work is in progress to enhance the data types in
LOTOS, but it will take time before these are standardised and supported by tools. In the interim, the
author and Junhai Lee (University of Stirling) have developed support for a provisional syntax of the
new data types. This includes characters, integers, enumerated types, records, arrays, sets and various
kinds of lists. The data type syntax is translated into the current version of LOTOS using about 40 mac-
ros in 560 non-comment lines of m4. The macro library uses some of the techniques described in
Section3.

When applying a formal language to the specification of an architecture, it is desirable to develop
an architectural semantics to relate architectural concepts to language concepts [8, 10, 12]. The archi-
tectural semantics gives a denotation for each architectural concept and can be embedded in specifica-
tion templates. These can be realised as a library of macros that expand to the required specification
fragments.

OSI (Open Systems Interconnection [4]) is a complex set of standards for layered communica-
tions systems. Using m4, the author has developed a library of templates to support the specification
of OSI standards in LOTOS. As an example, a connection-oriented communications service is one in
which a connection must established before data is transferred, and the connection must be broken on
completion of data transfer. Interactions with a service take place using service primitives, which in
the following look like function calls. A typical service of this type might be described as follows:

include(coserv.m4) # import connection-oriented service library

co_serv_spec(# generate connection-oriented service specification
 co, # name of channel for communicating with service

Conn_Request(Addr1,Addr2) # connection attempt from address 1 to address 2
Conn_Indication(Addr1,Addr2) # notification of connection attempt
Conn_Response(Addr) # acceptance of connection at address
Conn_Confirm(Addr) # confirmation of connection set-up
Data_Request(Data) # request to transfer normal data

 Data_Indication(Data) # notification of normal data arriving
Exped_Request(Data) # request to transfer expedited (priority) data
Exped_Indication(Data) # notification of expedited data arriving
Disconn_Request(Reason) # disconnection for given reason
Disconn_Indication(Reason) # notification of disconnection

)

The top-level macro co_serv_spec relies on about 70 other macros in 530 non-comment lines of m4.
The macro library is quite intricate and exploits nearly all of the techniques described in Section 3.
The result of the call to co_serv_spec is about 490 lines of LOTOS – an expansion of roughly 1:35.
Some details of the translation can be found in [10].

Another template library was developed for flexible creation of telecommunications services [9].
Services are defined as combinations of service facilities – the basic functions of a service provider.
Service facilities are characterised by their interaction pattern and the way in which multiple instances
of facilities are ordered. Combinations of service facilities reflect the kinds of service behaviour found
in OSI, from simple interleaving of data transfer in each direction to complex interdependencies
between connection establishment and data transfer. For service creation, the macro library defines a
special-purpose language called SAGE (Service Attribute Generator) to describe telecommunications
services. About 35 macros in 650 non-comment lines of m4 carry out the translation from SAGE to
LOTOS. The macro library is relatively complex, but more in terms of the LOTOS to be generated than
the m4. As an example of service declaration using SAGE, the following describes a simple datagram
service for connection-less message transfer:

13

global(# define global service behaviour
cl, # name of channel for communicating with service

forall(# applies to all instances of service facility
facility(# declare service facility

12, # direction is from user 1 to user 2
provider_confirmed, # service provider confirms delivery
reliable, # data transfer is reliable
Datagram(Addr,Addr,Data) # datagrams carry from address, to address and data

)
)

)

This description results in about 30 lines of LOTOS. The description of more complex services results
in roughly a 1:25 expansion from m4 to LOTOS. See the paper cited above for a fuller explanation of
SAGE and more examples of its use.

The final application of m4 to be discussed is specifying digital logic [9, 11]. Although the macro
library for this again defines a surface syntax, the layer of syntactic sugar is rather thin. The library
mainly acts as a repository of LOTOS specifications for digital logic components, earning the name
DILL (Digital Logic in LOTOS). In fact, many of the macros are unparameterised and generate fixed
text. However, parameterisation is taken advantage of when it comes to defining n-input logic gates;
these can be described generically and then instantiated with the number of inputs and the kind of
logic function to be performed (e.g. a two-input ‘nand’). The library contains about 60 macros in 650
non-comment lines of m4. The following example describes a ‘not and’ circuit that realises the logical
function :

circuit(# define circuit
‘NotAnd2 [Ip1, Ip2, Op]’, # functionality of LOTOS specification
‘hide NotIp1 in # behaviour of LOTOS specification …

Inverter [Ip1, NotIp1] |[NotIp1]| And2 [NotIp1, Ip2, Op]
where # give subsidiary declarations

Inverter_Decl # inclusion of inverter gate declaration
And2_Decl # inclusion of two-input and gate declaration

’)

The LOTOS expressions here are unimportant. The circuit macro wraps up the specification of a whole
circuit. Inverter_Decl and And2_Decl are references to component declarations in the library whose
specifications are to be automatically included in the generated LOTOS. The use of m4 in the macro
library is quite straightforward, the only slightly tricky aspect being to make sure that each required
component is specified only once in the generated LOTOS. The library is described fully in [11].

4.2 Other Applications

Some systems programs such as sendmail and application programs such as FrameMaker™ make use
of m4 as a preprocessor. However, the possible uses of m4 are very wide. The following applications
were developed by Richard Bland (University of Stirling [3]).

Creating pictures using LaTeX is tedious and error-prone. Some of the problems stem from using
literal coordinates and the difficulty of piecing together a complex picture from self-contained parts.
Although some of these problems can be solved directly in LaTeX, picture definitions still suffer from
an ungainly syntax. m4 can be used to provide a more pleasant picture-drawing syntax that translates
into LaTeX. [2] describes a macro package that provides facilities for drawing rectangles, ovals, cir-
cles, arrows, etc. A useful bonus is that standard m4 features allow symbolic coordinates and easy
arithmetic calculations using coordinates.

A collection of files or documents will typically have some kind of interdependency, often hierar-
chic. It is useful to able to process the files according to their relationships, say to list them in a spe-

IP1¬ IP2∧

14

cific order. The relationships could be captured in a separate file (much as the UNIX utility make
does). However, this removes the close link between the definition of a file and its relationships. A
preferable solution is to include the relationships directly in the files as part of their ‘documentation’ –
an approach that is reminiscent of Donald E. Knuth’s literate programming. The adopted approach
declares these links using m4 macros as comments in the files. (Of course, the user need only know
that these are stylised comments and need not know they are macros.) The macros allow m4 to recur-
sively traverse the tree of files and extract the necessary information in the right order. The documen-
tation in [1] was produced using this technique.

A similar problem arises where it is necessary for a file to refer to a named section of another file.
This file cannot simply be included as only part of it is required, and the section should not be literally
copied in case there are later changes to the file. A set of m4 macros can be defined for extraction and
inclusion of the sections as required. In a particular application, the sections are tables produced by a
statistical package. The tables are referenced by name, type and file using a few m4 macros of the gen-
eral form TableType(TableName,FileName). The advantages of the approach are easy inclusion (or
later exclusion) of particular tables, and guaranteed consistency of the extracts.

5 Conclusion

A summary of m4 has been given along with some basic examples. A cookbook of techniques has
been described, allowing surprisingly sophisticated macros to be developed. Many of the ‘ recipes’
support a style that is reminiscent of functional programming. Some applications of the approach
have been briefly described for the specification of OSI standards, telecommunications service crea-
tion and digital logic circuits. It is hoped that this paper will stimulate interest in m4 and its wider
application in software engineering.

Acknowledgements

The author is grateful to Richard Bland (University of Stirling) for careful and helpful comments on a
draft of this paper.

A Implementation of List Processing Functions

As in Section 3.14, lists are used in the form […;…] . There is no check on the syntactic integrity of
lists (e.g. that opening and closing brackets are balanced).

The list constructor Cons prefixes an element to a list:

define(Cons,
‘ ifelse($2,[],

[$1],
[$1;substr($2,1,decr(len($2))))’)

If the existing list is empty then a one-element list is made, otherwise the element is prefixed to the
rest of the list6. The opening bracket of the list is supplied literally and is omitted when extracting the
rest of the string.

Head and tail are common operations on lists. It is convenient to define the supporting macro
HeadEnd first to determine the end position of the head element in the list. Because lists may be
nested, HeadEnd is defined in terms of an auxiliary macro HeadEndAux that takes the list, the posi-
tion to begin searching for the head element, and the current level inside the list.

6Here and elsewhere, an expression like substr ($2,1) should extract the rest of the list. Unfortunately the version of
m4 available to the author fails to do this for strings longer than 128 characters.

15

define(HeadEnd,‘HeadEndAux($1,1,0)’)

define(HeadEndAux,
‘define(‘$0Char’,

substr($1,$2,1))ifelse($0Char,[,
‘HeadEndAux($1,incr ($2),incr ($3))’,
$0Char,],

‘ ifelse($3,0,
decr($2),
‘HeadEndAux($1,incr ($2),decr($3))’)’,

$0Char,;,
‘ ifelse($3,0,

decr($2),
‘HeadEndAux($1,incr ($2),$3)’)’,

‘HeadEndAux($1,incr ($2),$3)’)’)

Initially the head element is scanned from just after the opening bracket. If a further opening bracket
is found, the list level is incremented; the matching closing bracket must be found before the head ele-
ment can be considered as terminated. For all elements, a semicolon or the end of the list terminates
the head element. The introduction of HeadEndAux avoids argument stack overflow for long lists
using the technique described in Section 3.11. The auxiliary parameters are the list position and list
level, to be updated as required on a recursive step. The current character $0Char is named as a local
variable using the technique described in Section3.3.

Now the head and tail of a list can be defined fairly directly:

define(Head,‘substr($1,1,HeadEnd($1))’)

define(Tail,
‘define(‘$0Pos’,

HeadEnd($1))define(‘$0Len’,
len($1))ifelse($0Pos,eval($0Len-2),
[],
‘[substr($1,eval($0Pos+2),eval($0Len-$0Pos-2))’)’)

The head element begins just after the opening bracket and finishes as calculated by HeadEnd. The
head of an empty list is returned as the empty string. The tail begins after the head element and its the
semicolon unless there is just one element (i.e. the head element finishes just before the closing
bracket).

The concatenation of two lists requires a check to see if one is empty; if so the result is the other
list. Otherwise the lists are concatenated by stripping off the first closing bracket and the second open-
ing bracket, inserting a semicolon in between:

define(Concat,
‘ ifelse($1,[],

$2,
$2,[],

$1,
‘substr($1,0,decr(len($1)));substr($2,1,decr(len($2)))’)’)

To avoid excessive recursion causing argument stack overflow, the length of a list is calculated
using an auxiliary function that updates the current list length given as parameter prior to recursing:

define(Length,‘LengthAux($1,0)’)

define(LengthAux,
‘ ifelse($1,[],

16

$2,
‘LengthAux(Tail($1),incr ($2))’)’)

The next macro reverses the order of elements in a list. An auxiliary macro takes the partially
reversed list as parameter:

define(Reverse,‘ReverseAux($1,[])’)

define(ReverseAux,
‘ ifelse($1,[],

$2,
‘ReverseAux(Tail($1),Cons(Head($1),$2))’)’)

It is often convenient to apply a macro to all elements of a list. AppList does so without regard to
the expansion of the macro, MapList rebuilds the list by replacing each element with the result of the
mapping:

define(AppList,
‘ ifelse($2,[],

,
‘$1(Head($2))‘’AppList(‘$1’,Tail($2))’)’)

define(MapList,‘MapListAux(‘$1’,$2,[)’)

define(MapListAux,
‘ ifelse($2,[],

$3],
‘ ifelse($3,[,

‘MapListAux(‘$1’,Tail($2),$3$1(Head($2)))’,
‘MapListAux(‘$1’,Tail($2),$3;$1(Head($2)))’)’)’)

AppList and MapList take as parameters the (quoted) name of a macro to be applied to each element
and a list. AppList repeatedly calls the macro with each element of the list as parameter. The macro
might simply have a side-effect or may expand to text. In case of the latter, the output of the macro is
separated by empty quotes from the recursive call of AppList. MapList, however, uses the result of the
macro call to recreate the list element. MapListAux takes as auxiliary parameter the current list value
(initially just an opening bracket). The first element is just appended to the list, later elements are pre-
fixed by a semicolon. At the end of the list the closing bracket is added.

References

[1] Richard Bland. Progress with logging subsystem O: A prototype knowledge source. Technical
Report CSM-071, Department of Computing Science, University of Stirling, UK, April 1991.

[2] Richard Bland. Relative moves in LaTeX pictures. TUGBoat, 14(4):433–437, December 1993.

[3] Richard Bland. Applications of m4. Private communication, September 1994.

[4] ISO/IEC. Information Processing Systems – Open Systems Interconnection – Basic Reference
Model. ISO/IEC 7498. International Organization for Standardization, Geneva, Switzerland,
1984.

[5] ISO/IEC. Information Processing Systems – Open Systems Interconnection – LOTOS – A Formal
Description Technique Based on the Temporal Ordering of Observational Behaviour. ISO/IEC
8807. International Organization for Standardization, Geneva, Switzerland, 1989.

[6] Brian W. Kernighan and P. J. Plauger. Software Tools. Addison-Wesley, Reading,

17

Massachusetts, USA, 1976.

[7] Brian W. Kernighan and Dennis M. Ritchie. The m4 macro processor. Technical report, Bell
Laboratories, Murray Hill, New Jersey, USA, 1977.

[8] Kenneth J. Turner. An architectural semantics for LOTOS. In Harry Rudin and Colin H. West,
editors, Proc. Protocol Specification, Testing and Verification VII, pages 15–28. North-Holland,
Amsterdam, Netherlands, 1988.

[9] Kenneth J. Turner. An engineering approach to formal methods. In André A. S. Danthine, Guy
Leduc, and Pierre Wolper, editors, Proc. Protocol Specification, Testing and Verification XIII,
pages 357–380. North-Holland, Amsterdam, Netherlands, June 1993.

[10] KennethJ. Turner. Relating architecture and specification. September 1994. Forthcoming.

[11] Kenneth J. Turner and Richard O. Sinnott. DILL: Specifying digital logic in LOTOS. In
Richard L. Tenney, Paul D. Amer, and M. Ümit Uyar, editors, Proc. Formal Description
Techniques VI, pages 71–86. North-Holland, Amsterdam, Netherlands, 1994.

[12] Kenneth J. Turner and Marten van Sinderen. LOTOS specification style for OSI. In Jeroen
van de Lagemaat and Tommaso Bolognesi, editors, The LOTOSPHERE Project. Kluwer, 1994.
Forthcoming.

