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Figure 1: Our stippling aerial robot uses motion capture markers for positioning, and an ink sponge on a small arm to create stipples. Also
shown is an example result: from left to right, a well known image of Alan Turing, a stippled version of the image with 500 dots, and a
finished print with 500 stipples, drawn using a dynamic correction for the placement of stipples.

Abstract

We describe a method for creating stippled prints using a quadrotor flying robot. At a low level, we use motion capture to
measure the position of the robot and the canvas, and a robust control algorithm to command the robot to fly to different stipple
positions to make contact with the canvas using an ink soaked sponge. We describe a collection of important details and chal-
lenges that must be addressed for successful control in our implementation, including robot model estimation, Kalman filtering
for state estimation, latency between motion capture and control, radio communication interference, and control parameter
tuning. We use a centroidal Voronoi diagram to generate stipple drawings, and compute a greedy approximation of the travel-
ing salesman problem to draw as many stipples per flight as possible, while accounting for desired stipple size and dynamically
adjusting future stipples based on past errors. An exponential function models the natural decay of stipple sizes as ink is used in
a flight. We evaluate our dynamic adjustment of stipple locations with synthetic experiments. Stipples per second and variance
of stipple placement are presented to evaluate our physical prints and robot control performance.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Display
algorithms I.2.9 [Artificial Intelligence]: Robotics—Commercial robots and applications

1. Introduction

Pen plotters, fax machines, and modern laser printers are all highly
specialized robots that permit the reproduction of images. Over
many decades, these machines have been relied upon to produce
physical copies of computer generated images. In contrast, it is
interesting to consider how general purpose robots can be used
to apply ink to paper. Notable recent examples of this alternative
approach have used industrial robot arms and humanoid robots to
draw and paint [TL13,LMPD15]. In this paper, we explore the ben-
efits and challenges of using aerial robots for stippling, that is, the
creation of images with many small dots.

Flying robots present interesting new possibilities for painting
because they can easily get to hard to reach places. Equipped with
a brush, a flying robot can make strokes at the top of a wall, and
can likewise apply paint or ink to curved surfaces. We focus ex-
clusively on stipples because this lets us avoid the hard problem of
controlling contact between an airborne robot and the canvas during
continuous strokes. The simpler problem of controlling the robot’s
trajectory with intermittent contact still remains an interesting chal-
lenge.

The aerial robots we use are quadrotors, which are special be-
cause they can efficiently put all power into torque free lift, and are

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



B. Galea & E. Kia & N. Aird & P. G. Kry / Stippling with aerial robots

simple and reliable thanks to inertial measurement units and stabil-
ity control. Advances in hardware and miniaturization have made
these flying robots very affordable and popular for both serious and
leisure applications. In our work, we use Crazyflie quadrotors (see
Figure 1 left) because they are a particularly nice platform for re-
search and development due to the open hardware and software de-
sign and well organized development environment. They are also
small and light, which makes them much safer than larger quadro-
tors.

There are a number of unique challenges to using quadrotors for
stippling. The control task is all about putting a dot in the right
place, with the time of placement being unimportant. At a high
level, there are important computational problems, such as path
planning with the constraints of limited battery life, dynamic ad-
justment of stipples to accommodate errors in placement, and the
variability of stipple sizes as ink on the brush gets used up. At a
lower level, there is a critical need for robust and stable control.
Trajectory control of position is difficult because the robot is under-
actuated. With four motors, the robot can only adjust its thrust, roll,
pitch, and yaw. Therefore, control of horizontal position can only
be achieved by rolling and pitching to let thrust produce acceler-
ations in directions orthogonal to gravity. Under-actuation, com-
bined with the small size and weight of our robot, makes absolute
accuracy in position challenging as the robot is easily perturbed by
air currents. State estimation is also challenging for mobile robots.
Larger flying robots often include cameras and GPS systems that al-
low absolute position estimates for both indoor and outdoor flight.
Because of the small size of the Crazyflie, it has a limited payload
for cameras or additional sensors, and likewise has limited com-
pute power for performing on-board localization. We instead use a
motion capture system to track position and orientation easily and
accurately.

Flying robots have been used within a variety of art projects for
the creation of light paintings (e.g., demos by Ascending Tech-
nologies, and Spaxels at Ars Electronica). Quadrotors have like-
wise recently been used for producing rim illumination for pho-
tography [SBD14]. However, to the best of our knowledge, we are
the first to address the computational issues of painting with au-
tonomous aerial robots.

2. Related work

The creation of art by robots is a topic that spans several fields. It
involves aesthetic choices in the placement of brush strokes, selec-
tion and tuning of state estimation and control parameters to make
the robot execute these strokes, and computational aspects to effi-
ciently plan robot trajectories and dynamically adjust for errors.

There are a number of examples where robots have been used in
the creation of art and drawings. One example is the sketches and
portrait drawing of Paul the robot [TL12, TL13]. In earlier work,
Lin et al. [LCM09] use a camera and a humanoid robot to draw a
line drawing portrait of the person in view. In similar work, Lu et
al. [LLY09] use cameras and visual feedback to create images with
hatching patterns that capture both texture and tone of the original
image. Indeed, feedback is a critical aspect in robot drawing and
painting systems. Other computational approaches to painting with

a robots address feedback guided stroke placement [DLPT12], im-
age stylization with semantic hints [LPD13], and dynamic adjust-
ment of layered strokes [LMPD15]. In our work, the challenge of
stippling with flying robots is significant because of how hard it is
to control the position of the robot and the brush, and thus, dynamic
adjustment of stipples is critical.

Understanding the shapes of strokes is useful in the analysis
and creation of robot or computer art. Berlio et al. [BL15] design
a curve representation suitable for creating and analyzing graffiti
tags. Similarly, Evan Roth and colleagues at the Free Art and Tech-
nology Lab have created a Graffiti Markup Language for use in
analysis of graffiti, and for programing industrial robot arms to cre-
ate tags. Lehni developed a system called Hektor [LF02], a graffiti
robot positioned by cables. It is small, light, and can work on a
large surface, but that surface must be flat and there must be places
where the cable pulleys can be mounted. By using a flying robot we
are not limited to planar surface, but this comes at the cost of losing
precision in position control. By using stipples to create images, we
avoid the problem of modeling and drawing more complex strokes
or curves.

Following the work of Secord [Sec02], we use a centroidal
Voronoi diagram to compute stipple positions. When working with
a small number of stipples, it can also be advantageous to encour-
age stipple placements that reveal important image features such
as edges [Mou07]. In more recent work, Li and Mould describe
how error diffusion allows for reduced stipple counts while pre-
serving structure of an original image [LM11]. While our results
would benefit from these recent advances, we use Secord’s method
because it is simple to implement, fast to compute for small stip-
ple counts, and easy to update during the drawing process to ac-
count for errors in the placement of stipples. Stippling robots can be
found within the maker community, specifically the eggbot (avail-
able as a kit from distributors such as Adafruit and SparkFun). The
eggbot is a pen plotter that is designed for drawing on the surface of
an egg. This is a nice example of stippling on a non-flat surface. By
using an aerial robot, as we do in this paper, we see the advantage
that future versions of our robot will be able to apply ink to a wide
variety of hard to reach non-flat surfaces.

Finding optimal paths is an important problem for a stip-
pling robot. Optimal paths have been used in the construction of
labyrinths and mazes [PS06]. Similarly, approximate solutions to
the traveling salesman problem have been used to produce contin-
uous single-stroke drawings [BH04, KB∗05]. In our case, we have
a problem of finding a path that takes the robot between a subset of
the stipples before returning to a landing pad for a fresh battery and
an ink refill. This is related to a traveling salesman problem as we
would like to draw as many stipples as possible on a single charge,
but there there are additional challenges and complexity involved.
Specifically, the time and distance to fly between the stipple posi-
tions is not the only cost because there is also the time cost of sta-
bilizing the robot before creating a stipple, and constraints related
to the desired stipple sizes.

Optimal path planning for robots has received a vast amount
of attention for robotic manipulators, vehicles, and flying robots
[KL00, HG10]. Furthermore, many control problems specific to
quadrotors have been investigated, such as methods to produce ag-
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gressive maneuvers [MMK12] and flips [LSSD10]. The robot con-
trol algorithms we implement in this work is largely inspired by
that of Mellinger et al. [MMK12], as well as the PhD thesis of
Landry [Lan15].

3. Flight control

Much of what we would like to accomplish involves having the
quadrotor approach a specific point or maintain its position. In
some cases, based on perturbations in the air or contact with a can-
vas, we will need to abruptly change the current control plan. In this
section we describe two simple methods that we use to control the
flight for the purpose of being able to draw points on a canvas. Both
of these methods rely on feedback on the position of the quadrotor
obtained from the motion capture system. We acknowledge that the
model we use has been simplified to avoid a full system identifica-
tion of the quadrotor in use, while recognizing that much higher
fidelity control can be obtained with better models, learning, and
by controlling the motor torques directly instead of relying on the
Crazyflie’s internal PID control.

3.1. Software based speed controller

Due to its small form factor, the motors of the Crazyflie 2.0 are
not brushless (unlike some larger quadrotors) and are powered by
an unregulated power supply. This has the disadvantage that the
torques produced by the motors do not always reflect the commands
being sent. We correct for this in software by using feedback from
the measured battery voltage [Lan15]. The duty cycles sent to the
motors can be treated as a function of the measured battery voltage
and the desired angular velocities of the motors,

u =
Vmax

Vactual

(√
ω2−β

)
+α, (1)

where u is the command input to the motors, Vmax is the battery’s
rated voltage, Vactual is the most recent measured battery voltage,
and α can be interpreted as the minimum duty cycle that must be
sent to the hardware in order to get any angular velocity ω at the
motors. Parameter β then accounts for the fact that the propellers
start out at a certain non-zero velocity. We find that this software
based speed controller proposed by Landry is critical for obtaining
reliable thrust control with our Crazyflies.

3.2. Quadrotor model

The simplified model we use represents the quadrotor as a point
mass that can align its pitch and roll instantly. This has the benefit of
requiring only two forms of off-line system identification. We can
accomplish both using an inexpensive scale. First, we must know
(approximately) the mass of the quadrotor. Second, we require a
mapping between the commands sent to the motors and the total
force generated by the motors.

The duty cycle commands that are sent to the motors of the
quadrotor are represented arbitrarily by 16 bit unsigned integers.
We experimentally determined a mapping between these values and
the actual forces produced by inverting the quadrotor and measur-
ing the force produced while varying this value. With the software

based speed controller in place, this relationship can be approxi-
mated with a linear function.

Absolute accuracy in positioning is difficult because quadrotors
are inherently under-actuated. Any change in position is dependent
on the current orientation, therefore errors in position are acted
on indirectly by controlling orientation. The following controllers
compute the desired pitch, roll, yaw rate, and thrust and rely on the
Crazyflie’s internal PID to achieve the desired orientation.

3.3. Hover controller

A PID controller is used to reach and maintain a desired position
with zero velocity. This is accomplished by using the pitch and roll
angles of the quadrotor to control its position. PID feedback on the
position error is first used to compute the desired net force acting
on the quadrotor. This is computed as a force,

Fnet = kP(xt − x)+ kI

∫
(xt − x)+ kD(ẋt − ẋ), (2)

where xt is the target position, ẋt is the target velocity, and x is
the current position of the quadrotor in world space. In situations
where a stable hover at a point is desired, the target velocity should
be zero. Once the desired net force has been computed, the steering
force can be computed by subtracting all other body forces from
the net force. For all intents and purposes, this simply involves sub-
tracting the force due to gravity. Due to physical limitations, not
all steering forces can be realized by the quadrotor. The steering
force is therefore clamped to a maximum force (i.e., the maximum
measured force that the quadrotor produced during system identifi-
cation).

Once the desired steering force has been computed it is trans-
formed into the intermediate body frame using the most recent
reading for the yaw from the motion capture system. This is ac-
complished with a simple rotational transform about the yW axis
(i.e., world vertical). Once in this frame, the desired pitch and roll
are computed so that the yB vector (i.e., robot body vertical) will be
pointing in the same direction as the steering force. The value for
thrust that is sent to the quadrotor is computed using the linear map-
ping experimentally determined with the magnitude of the steering
force as input. Note that we control the yaw of the quadrotor with
a separate P controller that calculates the yaw-rate.

When preparing to draw a stipple, a target hover position is com-
puted at a distance of 20 cm away from the desired stipple position
along the normal of the canvas (or 12 cm between the tip of the
brush to canvas). The quadrotor stabilizes around this point before
attempting to draw the stipple.

3.4. Stipple controller

The stipple controller is a PD controller that is used in combination
with the hover controller while the quadrotor is completing a stipple
action. First the quadrotor’s position is projected into the plane of
the canvas. Then the error between the projected position and the
target stipple location is calculated and used as input to the PD
controller for computing the desired net force. This force is always
in a direction parallel to the canvas.
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The act of stippling consists of three stages, preparation, stip-
pling and recovery. During the preparation stage, the quadrotor at-
tempts to stabilize around a point a set distance away from the can-
vas, such that it is normal to the target stipple location. The prepa-
ration stage uses the hover controller to approach and maintain its
target location. The quadrotor is said to be stable if it can maintain
an error of less than 2.8 cm for 350 ms between its position and the
target hover position. Additionally, during this period its velocity
must not exceed 4.2 cm/s. Only when the quadrotor is stable may
it proceed to the stippling stage.

During the stippling stage, the quadrotor uses the sum of the de-
sired net forces computed by the hover controller and the stippling
controller. The target location for the hover controller is set to the
stipple location. In addition, the hover controller is set to have a tar-
get velocity in the direction of the canvas to increase the momentum
of the quadrotor at the point of impact. The act of completing a stip-
ple is determined when the distance between the quadrotor and the
canvas is less than a fixed threshold. When this is detected, control
proceeds to the recovery stage. The location of the placed stipple is
computed using the location and orientation of the quadrotor mea-
sured by motion capture, using the known position of the sponge in
the quadrotor’s reference frame.

The recovery stage is responsible for controlling the robot as it
moves away from the canvas, and preventing any accidental colli-
sions following the stipple. It uses the hover controller with a set
target velocity away from the canvas. The target location of the
hover controller is set to the expected location of the next prepa-
ration stage. Control transitions to the next preparation stage once
500 ms have past and the location of the next stipple is known.

3.5. End to end latency measurement

The amount of latency from motion capture to quadrotor response
has an important effect on the quality of the control. We experi-
mentally measure the latency in the system and account for it to
improve control. To measure the latency we attach an LED to the
quadrotor and turn it on upon receiving a command. The command
is sent from the computer upon receiving input from the motion
capture revealing that a tracked object was moved (the threshold
to trigger the command is set to 0.4 mm). We measured the end to
end latency using a high-speed 1200 fps Nikon camera. The video
records the LED and tracked object being struck, and thus we count
the number of frames between the time of impact and the illumina-
tion of the LED. We find the latency to be ∆T = 49.6 ms ± 11.6
ms.

There are multiple sources that introduce a variable amount of
latency into the system, such as the amount of processing required
to identify the position of the quadrotor by the motion capture sys-
tem. This is dependent on the number of markers in the scene, the
visibility of the markers relative to the cameras, and performance
can be degraded when there are reflective surfaces in the capture
volume. To minimize potential problems, reflective surfaces were
covered whenever possible and all unnecessary markers were re-
moved from the capture volume.

Additionally, radio interference may require a command to be
resent multiple times before reaching it’s destination. Depending

34 35 36 37 38 39 40
Time (s)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

X
 V

e
lo

ci
ty

 (
m

/s
)

First Differences
Kalman Filter

Figure 2: The Kalman filter provides a smooth estimation of the
quadrotor’s velocity

on how many times the command must be sent, there may be up to
10 ms of additional latency before the command is simply dropped.

3.6. Kalman filtering and state prediction

We use a Kalman filter to filter the position obtained from the mo-
tion capture system. The filter also provides estimates for the veloc-
ity and acceleration. To counter the latency in the system, we pre-
dict what the quadrotor’s position and velocity will be at the time
it receives the command and use those values when computing the
desired net force. Specifically, we compute

ẋ = ẋF +∆T ẍF

x = xF +∆T ẋ
(3)

where xF , ẋF , and ẍF are the position, velocity and acceleration
estimated by the Kalman filter, and ∆T is the average latency of
the system, which we previously determined experimentally as de-
scribed in Section 3.5. Figure 2 shows how the filter performs for
estimating velocity when the crazyflie is hovering, compared to a
simple numerical differentiation of the motion capture position tra-
jectory.

3.7. Radio communication improvements

The default communication protocol provided by the Crazyflie is
not optimal for real-time control in environments with interfer-
ence. The existing protocol maintains a queue of all commands,
and sending a command from the computer to the quadrotor re-
quires an ACK to be sent back before sending the next command in
the queue. If no ACK is received, the computer must retry sending
the same command up to a maximum of 10 times before forcing
a disconnect. This implementation has the benefit, barring a dis-
connect, that all commands are ensured to reach the quadrotor in
the order they were sent. However, in the case of interference, we
often found that commands from the computer were successfully
received, but it was only the ACKs being returned that were not
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received. In this situation the computer would continue to repeat
the same command, even when new commands were waiting in the
queue. When the interference was high, the computer would force
a complete disconnect despite the quadrotor successfully receiving
all commands being sent.

The protocol we implement relaxes the requirement that all com-
mands be received. If a new command enters the queue, we stop
trying to resend an old command and send the most up to date
command instead. By allowing the possibility that some commands
may never be received, we can focus on sending commands using
the most up to date position information from the motion capture.
This is a more appropriate for a real-time scenario since commands
computed using delayed position information are no longer valu-
able. This protocol also prevents duplicate messages being received
in the case where the original command was received but the com-
puter simply did not receive the ACK.

4. Stipple generation and planning

To provide our aerial robot with something to draw, we convert a
selected image into a set of stipples given a set of constraints such
as the number of stipples and a range of stipple sizes. Because the
robot will make small errors when placing stipples, it is important
that we be able to quickly update the positions of the remaining
pixels and to adjust the order in which stipples are drawn. In this
section, we review how we compute a set of stipples for an image,
and discuss the problems of stipple ordering and dynamic updates.

4.1. Weighted centroidal Voronoi diagrams

The core of our stippling algorithm is based on weighted centroidal
Voronoi diagrams (CVD), as described by Secord [Sec02]. The
main idea is to start with a random set of points and to compute
a Voronoi diagram. Then, we compute centroids for each region in
the Voronoi diagram by integrating over the pixels of the target im-
age using the brightness as weights. We then shift each point to the
centroid of its region and repeat these steps until we reach a stable
configuration.

To select the size ri of a stipple i, we use the average brightness
of its Voronoi region. We linearly map the average pixel brightness
ρi ∈ [0,1] to a stipple size in the available range,

ri = ρirmin +(1−ρi)rmax, (4)

where rmin and rmax are the minimum and maximum radii. Because
of the limited range of stipple sizes and our desire to use small
stipple counts to minimize print time, a printed result will generally
have a lighter tone than the original image. Furthermore, large light
areas in the image result in a sparse collection of tiny stipples that
would be poorly drawn given our minimum stipple size. Therefore,
we prune these points by removing any stipples that fall below a
given threshold.

4.2. Brush, ink usage, and stipple sizes

The brush we use to draw stipples is a small spherical sponge
mounted at the end of a stiff wire arm. At the beginning of each
flight, we soak the sponge with a black liquid acrylic ink. While the
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Figure 3: Stipple size decay model fit to six sequences of ink trans-
fer tests (example shown as inset image). The area of each stipple
is measured in source images, from which we fit a two parameter
exponential model.

size and shape of the sponge is an important factor in determining
the size of stipples that we will draw, the amount of ink remain-
ing in the sponge is also an important factor. The inset image in
Figure 3 shows several sequences of how stipple sizes decrease as
drawing progresses from left to right and top to bottom. Using a
set of six sequences, we measure the area of the stipples and build
an approximate ink decay model by fitting the exponential function
shown in Figure 3. This allows us to predict the size of the next dot
the robot will draw. Note that the velocity of the robot at impact
will influence the deformation of the sponge, and will allow for
some additional control of the stipple size. However, to maintain
good accuracy of stipple placement we use a consistent velocity
and control strategy for all stipples.

Note that the maximum stipple rmax size comes directly from the
exponential function of our ink model. We set the minimum stipple
size by evaluating the function at the maximum number of stipples
that we can draw in a flight (typically no more than 70).

4.3. Stipple order and dynamic updates

While the static set of stipples generated by the algorithm in Sec-
tion 4.1 generates good results, the quadrotor will ultimately make
errors in the placement of each stipple. To try and mitigate this er-
ror, we use a dynamic update to the remaining stipple positions to
accommodate errors as they happen.

Our dynamic update happens on-line using a server-client archi-
tecture. The quadrotor controller requests the next point to draw
from the server and reports back the position it ended up hitting.
The server then sets the position of this point and marks it as un-
movable. The optimal position for the remaining points is then ad-
justed by running a few iterations of the CVD algorithm. This is
fast because we only constrain one point to a new position, and
we start from a stable configuration. Thus, the next point is always
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available by the time the quadrotor is ready to start its flight to the
next stipple location.

There are three main factors that influence the order in which
we want to draw stipples. First, we want to minimize the distance
traveled by the robot between stipples throughout a drawing ses-
sion. This will increase the rate at which stipples are drawn and
maximize the number that can be drawn on each flight with a fully
charged battery. Second, we want the sizes of a sequence of stipples
to be drawn to match as best as possible the ink usage model esti-
mated in Section 4.2. Thus each flight should start with large stip-
ples and end with the smallest ones before the battery is depleted.
Third, if dynamic updates are to have a benefit on the final result,
it is important that completed regions be grown progressively. For
instance, consider the process of drawing equally spaced stipples
to form a line. If we draw from left to right, then we can always
adjust the next point to the left or right to account for the error.
In contrast, if the order is random, then we will have stipples that
need to be placed between two others and we must compromise
on minimizing the error to both (see Section 5.2 for examples and
evaluation of our dynamic update in synthetic examples).

Originally, we implemented an approximate solution to the trav-
eling salesman problem using a generic algorithm. This was slow
and did not work well with the adjustment of point positions as
required for dynamic updates for errors. Furthermore, our robot
draws an unpredictable number of stipples before the battery is
drained (typically between 50 and 70) at which point the battery
is swapped and the ink reloaded. To handle the shifting stipple po-
sitions and irregular session length, we instead design a dynamic
greedy strategy for stipple ordering. At any given time, the next
optimal stipple is selected as closest using a metric that combines
distance and stipple area. This allows us to partition the stipples
into as many flights as necessary, with no prior knowledge, and can
easily accommodate our dynamic adjustment of stipple positions
and sizes. We adjust the weighting of distance to stipple area in the
metric by hand on a per image basis by observing synthetic results
(i.e., a simulation that takes into account canvas size, stipple sizes,
and placement error). A good weighting will produce regions that
grow relatively continuously while also matching stipple sizes.

5. Results and discussion

We have created a number of prints using our system, and we have
evaluated our method with synthetic tests. We present these results
in this section, along with details on the implementation of our sys-
tem, its limitations, and possible improvements.

5.1. Implementation details

We perform real time motion capture with Optitrack cameras and
Motive software. Motive tracks the position and orientation of ob-
jects tagged with retro-reflective markers, specifically, the canvas
and the robot. We use 12 cameras attached to the ceiling in a square
pattern and facing the middle of the room, providing a cube-shaped
capture volume of about 2 meters in each direction. A Python pro-
gram reads motion capture data and sends commands to the robot,
but also communicates to a second Python process which computes
and updates the planned stipple points. The software running on the

Parameter Value
Robot mass 35.4 g
Max thrust 41.0 g
Speed control α 3300
Speed control β 2.8
Horizontal PID gains (kP,kI ,kD) (0.36,0.03,0.11)
Vertical PID gains (kP,kI ,kD) (0.34,0.05,0.14)
P gain for yaw rate 3.0
Control rate 100 Hz
Ink model 1.033e−0.0263n

Max stipple area 0.8 cm2

Min stipple area 0.18 cm2

Canvas size 45 cm × 60 cm

Table 1: Values of parameters used in our aerial robot stippling
implementation.

Image n 3h 5h 10h 20h
Sphere 100 18.2% 20.7% 13.3% 23.7%
Teapot 250 22.2% 33.3% 38.0% 31.4%
Che 500 26.7% 28.6% 31.9% 16.6%
Turing 750 54.5% 31.3% 33.8% 26.8%
Grace 1000 45.2% 33.6% 26.8% 4.1%

Table 2: Percent difference between the mean inter-stipple distance
of the static versus dynamic case compared to ground truth, for
various images of different stipple counts n, and for different per-
mil error sizes.

Crazyflie is modified to improve control of the brushed motors and
improve radio communication in the presence of dropped packets.
Table 1 provides a list of parameters we use in our implementation.

5.2. Dynamic stipple adjustment evaluation

Dynamically updating points allows us to achieve better spacing
on stipples under a Gaussian error model. To measure how well
a given drawing performs, we plot histograms of the inter-stipple
distance (Figure 4). In the histograms, we can see that the dynamic
method give results which perform somewhere half way between
the ground truth stipple statistics, and the distribution produced for
a naive static stippling without dynamic correction for errors.

Table 2 shows how much the mean of the inter-stipple distance
shifts between the static and the dynamic case across different im-
ages and error sizes. We examined other summary statistics, such as
minimum, maximum, and standard deviation, but did not observe
any discernible patterns. The best mean improvements appear to
be achieved around the 5 to 10 h error range, which is what the
error on our quadrotor is on a 50 cm canvas. Note that the improve-
ment of the mean from dynamic corrections appears to become less
important when the errors are large, particularly for larger stipple
counts (see Grace at 20 h in Table 2). Figure 5 shows a synthetic
comparison of how the dynamic correction effects the final result
for a range of different placement error variances.
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Figure 4: Histogram of the inter-stipple distance for the original
output without errors (blue), the static stippling with error (red)
and the dynamic error adjusted stippling (green). The histogram is
for a stippling of a teapot with 200 points and 1% standard devia-
tion Gaussian error.

Image t µh µv σh σv n f n̄s

Che 6.7 1.70 -2.1 6.9 4.6 10 40
Turing 6.7 0.99 -4.1 6.6 3.8 8 62
Teapot 6.4 0.23 -3.1 7.9 4.2 10 50

Table 3: Print information for selected images, where t is the av-
erage time in seconds per stipple, µh and µv are the stipple error
means in the horizontal and vertical directions in mm, σh and σv
are stipple error standard deviations in the horizontal and vertical
directions in mm, n f is the number of flights, and n̄s is the average
number of stipples per flight.

5.3. Physical prints

Figure 6 shows examples of physical prints compared to their
source images and planned stipples (see also the result shown in
Figure 1). The accompanying video shows the process of creating
these prints, including high speed video of a single stipple, the pro-
cess of swapping batteries and reloading ink, and a time laps of
progress in making a complete print. Currently, on average it takes
several seconds to accurately place a single stipple. Flight time on
a single charge can be as long as 6 minutes, during which time we
can draw up to 70 stipples. Altogether, the time to create a print
varies from about 10 minutes for the sphere, to approximately an
hour for Che, Turing, and the teapot. Table 3 shows a summary of
statistics related to the creation of prints. Finally, Figure 7 shows
an example of a larger print in the process of stippled.

5.4. Discussion and limitations

Figure 8 shows a plot of position error over time. We measure an
average position error of just over 2 cm when controlling the robot
to hover at a point in space. We find the quality of the hover con-
troller to be acceptable, but the magnitude of the error is not ideal
for stippling. Fortunately our stipple controller can reliably pro-
duce stipples with a much lower error. As reported in Table 3, the
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Figure 5: Comparison of synthetic results showing stipples drawn
with and without dynamic stipple placement correction for different
amounts of error. Error standard deviation of stipple locations in
different columns is shown as a per-mil of the canvas size.

standard deviation in horizontal and vertical directions is typically
closer to half a centimeter. This is possible because the quadrotor
only proceeds to the stippling stage when the error in the hover
controller is below a certain threshold.

While we do not adjust stipple positions to better represent edges
or salient features as proposed by previous work [Mou07, LM11],
we briefly experimented with adjusting our robot control to im-
prove accuracy for certain stipples, such as those that make up the
eyes of a face or those that lie along a sharp edges. However, this
has little benefit because it involves a significant increase in flight
time to wait for the robot to match the necessary position and ve-
locity to initiate the placement of a high precision stipple.

All of our results are printed on flat surfaces, but we note that
it would be straightforward to stipple on curved surfaces. For the
robot to successfully draw stipples, the curvature of the surface
would need to be limited. The current position of the stippling brush
is best suited to vertical surfaces, so it would be necessary to change
the orientation of the brush to apply stipples on non-vertical sur-
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Figure 6: Example results, comparing original image, planned
stipple positions, and the result of stippling with the flying robot.
Stipple counts for the sphere, Che, teapot, and Grace are 100, 400,
500, and 2000 respectively.

faces (e.g., on an overhang or ceiling). Finally, computing stipple
positions on a manifold rather than a plane is an interesting problem
to explore in future work.

While the previous work on robot drawing and painting makes
use of visual feedback with cameras, we rely solely on motion cap-
ture and our ink model to estimate the position and size of stipples.
We expect that our results could be improved by using visual feed-
back. We also expect the results would improve by controlling the
orientation of the Crazyflie at the point of contact. Other obvious
improvements would be to perform a more sophisticated system
identification of the Crazyflie, as done in other work [Lan15]. Fi-
nally, note that some of our final results have artifacts from running
ink when too much is applied to a given area. Improvements to our
ink model, the shape of the brush, and velocity control could all
help better control stipple sizes and prevent these artifacts.

6. Conclusions and future work

We present a technique for creating stippled prints with a fly-
ing quadrotor robot. This involves commanding the under-actuated

Figure 7: A photo of our largest print with 2000 stipples in the
process of being drawn on a 100 cm × 70 cm canvas.

robot to fly to different positions, and control in the presence of a
contact. We describe in detail the low level details, including state
estimation, latency issues, PID control, radio communication, and
parameter tuning. We also describe the high level algorithmic as-
pects involved in creating a set of stipples for an image, adjusting
their positions in the presence of errors, and the issues in computing
a good order for stipple creation. We have presented printed results,
and evaluated errors produced by our technique for a collection of
synthetic results.

While the results section discusses limitations and some simple
extensions to our work, there are a variety of other exciting related
avenues for future work. Although we have eight robots in our fleet,
we only use one at a time for stippling. When creating a larger print
it would be advantageous to coordinate multiple robots to reduce
the total printing time. We would also like to modify these robots
to use inductive charging stations so that they can autonomously
recharge and refill their ink sponges, allowing print creation with-
out any human intervention. The acrylic ink we use is available in
dozens of colors, which opens up interesting computational chal-
lenges to adjust for color in addition to stipple positions. Moving
beyond stipples, for instance using an airbrush, would be very in-
teresting and could exploit existing work on optimizing ink transfer
in creating murals [PJJSH15].
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Figure 8: Error in the quadrotor’s position while trying to maintain a stable hover. From left to right, the error magnitude and the x, y
(vertical), and z errors. Solid and dotted red lines show the mean and standard deviation respectively.

Figure 9: Long exposure photo of light painting of wire frame cube.

Light painting with aerial robots also has a collection of unique
and interesting computational challenges. Figure 9 shows a prelim-
inary result where we directly apply the robot control algorithms
that we use for stippling to light painting. In this example, the cube
is drawn with a Neopixel, with the total flight path partially revealed
by the additional light trails left by the robot’s battery and commu-
nication status lights. Light painting with flying robots can benefit
form dynamic updates similar to those we present here, while new
control strategies can be designed to relax flight trajectories in di-
rections that project to the same point in the image.
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