
Stippling with aerial robots
Brendan Galea, Ehsan Kia, Nicholas Aird, Paul G. Kry
School of Computer Science, McGill University

Overview
We create stippled prints using a quadrotor flying robot. At a low level, we use motion
capture to measure the position of the robot and the canvas, and a robust control
algorithm to command the robot to fly to different stipple positions to make contact
with the canvas using an ink soaked sponge. Important details and challenges that must
be addressed for successful control in our implementation include robot model
estimation, Kalman filtering for state estimation, latency between motion capture and
control, radio communication interference, and control parameter tuning. We use a
centroidal Voronoi diagram to generate stipple drawings, and compute a greedy
approximation of the traveling salesman problem to draw as many stipples per flight as
possible, while accounting for desired stipple size and dynamically adjusting future
stipples based on past errors. An exponential function models the natural decay of
stipple sizes as ink is used in a flight. We evaluate our dynamic adjustment of stipple
locations with synthetic experiments. Stipples per second and variance of stipple
placement are presented to evaluate our physical prints and robot control
performance.

References and video
Galea, B., Kia, E., Aird, N., Kry, P.G.: Stippling with aerial robots. In: Computational
Aesthetics (Expressive 2016). 10 pages (2016)

https://goo.gl/PCF78w

Dynamic stipple adjustment evaluation
Below right shows synthetic results to compare stipples drawn with and without
dynamic stipple placement correction for different amounts of error. Error standard
deviation of stipple locations in different columns is shown as per-mil of the canvas
size. Below left shows a summary of percent difference between the mean inter-
stipple distance of the static verses dynamic case compared to ground truth, for
various images of different stipple counts, and for different per-mil error sizes. The
histogram at bottom left shows the distribution of inter-stipple distances for the
teapot image with 200 points and a 1% standard deviation Gaussian error. Comparing
the original ground truth output without errors (blue), with the static stippling with
error (red), and the dynamic error adjusted stippling (green).

Physical prints
Comparison of real images, planned stipple positions, and results of stippling with the flying
robot. Stipple counts for the sphere, teapot, Che, Turing, and Grace are 100, 500, 400, 500,
and 2000 respectively.

Evaluation of stippling process and prints
Print information from selected images, where t is the average time in seconds per
stipple, µh and µv are the stipple error means in the horizontal and vertical directions
in mm, σh and σv are stipple error standard deviations in the horizontal and vertical
directions in mm, 𝑛𝑓 is the number of flights, and 𝑛𝑠 is the average number of stipples
per flight.

Flight Control
We use a simplified model that represents the quadrotor as a point mass that can align
its pitch and roll instantly. Using position information from the motion capture system
that is processed with a predictive Kalman filter, a PID controller computes the desired
steering force. The desired pitch and roll are computed so that the 𝑦𝑏 (i.e., robot body
vertical) will be pointing in the same direction as the steering force. We control the yaw
of the quadrotor with a separate P controller that calculates the yaw-rate. All of theses
values are sent to the quadrotor, which uses an onboard PID controller to achieve the
desired orientation.

Stipple Generation
Stipple generation is the process that takes a selected image and converts it into a set
of stipples given a set of constraints such as the number of stipples and the range of
stipple sizes. This set of stipples updates dynamically throughout a flight, adjusting the
remaining stipple locations using feedback from the small errors the quadrotor makes
when placing stipples. Starting with a Voronoi diagram from random points, we
compute centroids for each region by integrating over the pixels of the target image
using the brightness as weights. We then shift each point to the centroid of its region
and repeat these steps until we reach a stable configuration.

The stipple size range is given by a maximum and minimum that we experimentally
determined for the ink decay model. A greedy strategy is used to determine stippling
order. At any given time, the next optimal stipple is selected as closest using a metric
that combines distance and stipple area.

Using a set of six sequences, we measure
the area of the stipples and build an
approximate ink decay model by fitting
an exponential function. This allows us to
predict the size of the next dot the robot
will draw and thus helps to determine the
ordering of stipple placement. Once a
stable configuration is reached, a stipple
is generated within each Voronoi region
where we linearly map the average pixel
brightness to a stipple size in the
available range.

