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Figure 1: Left: A stack of tori, with the intersection volumes and normals on the GPU. Right: intersection volume constraints allow us to
resolve frictional contact in challenging scenarios.

Abstract

We introduce a new method for simulating frictional contact be-
tween volumetric objects using interpenetration volume constraints.
When applied to complex geometries, our formulation results in
dramatically simpler systems of equations than those of traditional
mesh contact models. Contact between highly detailed meshes can
be simplified to a single unilateral constraint equation, or accurately
processed at arbitrary geometry-independent resolution with simul-
taneous sticking and sliding across contact patches. We exploit fast
GPU methods for computing layered depth images, which provides
us with the intersection volumes and gradients necessary to for-
mulate the contact equations as linear complementarity problems.
Straightforward and popular numerical methods, such as projected
Gauss-Seidel, can be used to solve the system. We demonstrate our
method in a number of scenarios and present results involving both
rigid and deformable objects at interactive rates.

CR Categories: I.3.5 [Computer Graphics]: Physically based
modeling— [I.3.7]: Computer Graphics—Animation

Keywords: physically based animation, contact forces, Coulomb
friction, constraints

1 Introduction

Dealing with contact is a fundamental problem in physically based
computer animation, and possibly one of the most challenging. Ac-
curate simulation of frictional contact is important for a wide va-
riety of natural phenomena and has numerous applications, from
video games, to robotics.
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by permission of ACM for your personal use. Not for redistribution. The
definitive version will be published in ACM Transactions on Graphics 29(3)
(SIGGRAPH 2010).

The computation of contact forces involves several important dif-
ficulties. One such problem is collision detection and modeling.
This requires not only detection of the intersection of two objects,
which is a complex problem on its own, but also computation of
the depth and direction. While the problem can be straightforward
when geometric meshes are in close proximity, or in point contact,
the solution is less clear in cases that involve deep interpenetration.
This imposes restrictions on the time step size, or obliges the use of
continuous collision detection methods that permit the processing
of collision at the exact time of contact. For interactive simulation,
however, it can be preferable to use methods that can handle inter-
penetrations gracefully, without additional computational cost.

Another difficulty in contact force computation is the solution of the
contact equations themselves. Solving contact with Coulomb fric-
tion involves Lagrange multipliers and coupled inequalities. With
the inclusion of dry friction, the problem is larger and particularly
complex because we must determine which constraints are active
and this can be a hard combinatorial problem. Furthermore, nu-
merous simultaneous contacts can lead to constraints that may be
redundant, or even inconsistent, which results in numerical prob-
lems. Processing contacts sequentially alleviates some difficulties
but may create artifacts and raises convergence issues. Despite
decades of research and significant progress, the computation of
contact forces between complex geometries remains a hard prob-
lem. Interactive applications use simplified collision geometries
such as spheres, cylinders, and cubes, which restricts the range of
simulated objects or leads to visible artifacts. The simulation of
contact between fine meshes is generally performed offline.

In this paper, we propose a completely new approach for contact
force computation, suitable for all objects bounded by triangular
meshes. The collision detection and modeling phase returns the
size of the intersection volume and its derivative with respect to the
vertices of the meshes. In contrast to traditional methods, this al-
lows the non-interpenetration constraint to be modeled using a sin-
gle scalar equation, i.e., the size of the intersection volume, rather
than a (potentially large) number of distance constraints between
geometric primitives. The result is a dramatically simpler system of
equations. Figure 1 shows a visualization of this and a preview of
our results. Effectively, this approach can be seen as using contact
volumes as opposed to contact points to formulate the problem. Ad-
ditionally, we show how to constrain the relative tangential motion,
allowing frictional contact between arbitrarily complex objects. To
allow simultaneous sticking and sliding behavior across the con-
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tacts between objects, we extend our geometric model by splitting
the single contact volume into several contacts. We use a regular
grid where the contact equations are generated from the cells that
contain parts of the intersection volume. Tuning the resolution of
the grid allows a trade off between accuracy and speed. To the best
of our knowledge, this is the first method where the complexity of
the contact model is completely independent from the complexity
of the surface model without pre-processing.

Our contact equations are purely geometric and can be applied to
arbitrary Lagrangian models including rigid and deformable solids.
They can be solved using the traditional numerical methods. More-
over, no precomputation is needed, which makes the method suit-
able for animations with topology changes such as cutting, frac-
turing, or adaptive levels of detail. See Figure 2 for an example
of this and other difficult scenarios that our method handles effi-
ciently. Finally, a major advantage of our method is that it is no
longer necessary to worry about collision proxies, signed distance
fields, or other adapted collision models; collision processing and
contact force computation can easily be done with the same highly
detailed geometry used for rendering.

The remainder of this paper is organized as follows. We review
related work in Section 2 and provide the necessary background
in Section 3. Our new constrained volume method is presented
in Section 4. This is extended to multiple volumes in Section 5.
Results are presented and discussed in Section 6.

2 Related Work

In most previous work, the problem of collision detection and re-
sponse are addressed separately. The amount of work done on
collision detection alone is quite vast. Collision detection typi-
cally involves hierarchical bounding volume data structures, such as
bounding boxes [Gottschalk et al. 1996] or spheres [Hubbard 1995].
In addition to rigid object collision, significant work has been done
to address deformable models [van den Bergen 1997; James and
Pai 2004], and self-contact [Volino and Magnenat-Thalmann 1995;
Provot 1997]. See the survey by Teschner et al. [2004] for an ex-
cellent overview of different methods. More recently, techniques
which exploit the GPU have been proposed as this can result in im-
portant speed improvements through parallelization [Vassilev et al.
2001; Heidelberger et al. 2003; Heidelberger et al. 2004; Baciu
and Wong 2004; Wong and Baciu 2005; Sud et al. 2006]. Most of
the techniques return pairs of primitives, between which distance
constraints can be formulated to resolve the contacts. Otaduy et
al. [2004] use the GPU to compute penetration depth in a given di-
rection. Our work builds on that of Heidelberger et al. extended
by Faure et al. [2008], where the GPU is used to return the vol-
ume of intersection and self-intersection between the objects, along
with the derivatives of these volumes. This new type of collision
data allows a new approach of collision response. Our work sig-
nificantly improves upon that of Faure et al. in that we show how
to formulate unilateral contact constraints instead of penalty forces,
Coulomb friction instead of viscous friction, and we introduce an
arbitrary-resolution formulation for resolving varying interaction
forces across contact patches.

While it is possible to solve for contact response using penalty
methods, it has long been recognized that there are advantages to
formulating contact with constraints. For contact, the constraints
are unilateral, which results in a linear complementarity problem
(LCP). The addition of Coulomb friction involves a non-linear con-
straint relating the tangential force to the normal force. Most work
in graphics uses a pyramid discretization of the friction cone to
formulate the problem as an LCP [Baraff 1991; Milenkovic and
Schmidl 2001], but it is also possible to use the exact cone (a non-

linear complementarity problem) and to compute the solution using
iterative methods [Duriez et al. 2006]. While natural to formulate
the frictional contact equations at the acceleration level, a veloc-
ity level formulation is preferred since it avoids the Painlevé para-
dox [Stewart 2000; Stewart and Trinkle 1996; Anitescu and Potra
1997]. However, the problem can still result in an NP-hard com-
binatorial problem to identify the active constraints [Baraff 1991].
While some recent work strives to find solutions which are as cor-
rect as possible [Harmon et al. 2009; Kaufman et al. 2008], we
instead focus on an approximate solution that is fast and interac-
tive. We exploit small interpenetrations to formulate constraints,
which also makes our approach naturally robust to larger interpene-
trations. Velocity level implicit integration is typical in many works
in graphics because it can also lead to stable simulations with large
time steps [Baraff and Witkin 1998]. Otaduy et al. [2009] use ve-
locity level implicit contact constraints in combination with itera-
tive methods to simulate combined elastic, rigid, and thin shells.
Velocity level LCPs have also been used for fluid-solid coupling
[Batty et al. 2007]. Other relevant work on friction includes fast
approximate models in video game systems [Parker and O’Brien
2009], and simulation of anisotoripic friction [Pabst et al. 2009].

In graphics, the methods used to solve contact equations can be
classified into two categories: iterative methods that repeatedly pro-
cess the contacts sequentially [Erleben 2007; Duriez et al. 2006;
Otaduy et al. 2009], and direct methods that build and solve a sin-
gle system of equations [Baraff 1991; Baraff 1994; Pauly et al.
2004]. Kaufmann et al. [2008] use a direct solver, but alternatively
solve nonpenetration and friction constraints to avoid scaling and
non-convexity problems associated with traditional direct methods,
while improving on the slow convergence that can be typical with
iterative methods. Alternatively, for frictional dynamics, Lemke’s
direct method can be modified to run faster by introducing frictional
complementary constraints only when necessary [Lloyd 2005]. But
much of the recent work in graphics has shifted to iterative meth-
ods because the implementation of such methods is less complex
and the computation time is easier to control. Our method can be
applied to both approaches. In this work we use iterative methods,
and our arbitrary-resolution frictional contact formulation helps ad-
dress the problem of slow convergence by decoupling the resolution
of the contact from that of the geometry.

Models at multiple resolutions have been exploited in graphics for
simulation of elastic materials and deformation of models [De-
bunne et al. 2001; Otaduy et al. 2007; Barbič and James 2007; Shi
et al. 2006; Müller 2008]. The main contributions in previous work
have been irregular nesting, haptic rates for frictionless contact, and
speed improvements through the use of multigrid. Our work takes
the unique approach of treating the contact constraints at an ad-
justable resolution, independent of the degrees of freedom. While
there has been vast amounts of work on physically based deforma-
tion (see Nealen et al. [Nealen et al. 2005] for a good survey), the
focus is typically deformation as opposed to contact.

Numerical integration of differential equations with position level
constraints requires stabilization to avoid numerical drift [Ascher
and Petzold 1998]. If small steps are taken then drift is not always a
significant problem and can be left as a separate problem [Kaufman
et al. 2005; Kaufman et al. 2008]. Gundleman et al. [] provide a
bottom up approach to deal with stacking. A related problem is the
robust treatment of contact resolution [Bridson et al. 2002; Harmon
et al. 2008]. Our work uses larger step sizes, and both allows and
exploits interpenetration, thus, we also include stabilization. Baum-
garte [1972] introduced a popular stabilization method, which is
widely used, but also widely criticized for the difficulty of tuning
parameters. Post stabilization is a preferable alternative [Ascher
and Petzold 1998] and is straightforward to implement as the con-
straint gradient is available from the formulation of the constrained
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(a) Complex collisions and self-collisions (b) Grasping with stable static friction (c) Cutting an object with dynamic collision surfaces

Figure 2: Demonstration of several difficult scenarios for contact modeling that are efficiently handled by the proposed method.

equations of motion. However, unilateral constraints should not be
stabilized in the same manner as bilateral constraints. A separate
LCP can be formed to solve the post step [Cline and Pai 2003], or
in some cases the time stepping and unilateral post step can be com-
bined into a single LCP [Anitescu and Hart 2004]. While our for-
mulation can accommodate any of these approaches to stabilization,
our solution most closely resembles that of Cline and Pai [2003] as
we solve an iterative LCP to perform the position correction step.

3 Background

In this section we introduce the necessary background material on
which we build our method. This consists of volume and volume-
gradient computation from layered depth images (LDIs), and a re-
view of constrained dynamics. We consider a physical system gov-
erned by the ordinary differential equation

Mq̈ = f(q, q̇) + fex (1)

where vector q is the independent degrees of freedom (DOFs), M
is the mass Matrix, f provides the internal forces, and fex are the
external forces (such as those due to contact and friction).

3.1 Numerical Integration and Contact Constraints

Overall, the methods that we describe here have also been used or
described in depth with small variations by many others [Baraff and
Witkin 1998; Erleben 2007; Duriez et al. 2006; Otaduy et al. 2009;
Kaufman et al. 2008; Pabst et al. 2009; Parker and O’Brien 2009].

Integration We use an implicit integration method to solve the
ODE in Equation 1 because our system may involve stiff elastic
deformation (the velocity level formulation will also be of benefit
for friction). To reduce computation time, we use a backward Eu-
ler scheme with one Newton iteration to solve for the state update
[Baraff and Witkin 1998]. This works well as the internal forces are
often smooth, but we note that other numerical integration methods
with multiple Newton iterations could also be used for better accu-
racy at additional cost.

Given a time step size h and the current state (q0, q̇0), we compute
an implicit velocity update ∆q̇ by solving the linearized system

A∆q̇ = b, (2)

where A = M−hB−h2K, and b = hf(q0, q̇0)+h2Kq̇0. Recall,
B= ∂f

∂q̇
and K= ∂f

∂q
are the damping and stiffness matrices. From

the solution, the velocities at the next time step are computed as

q̇0+h = q̇0 + ∆q̇. (3)

These new velocities are subsequently used to perform an implicit
update on the position, i.e., q0+h = q0 + hq̇0+h, or using the
exponential map for rigid motion.

Contact When point contacts exist in the system, the contacts
form separation distance constraints, g(q) ≥ 0. The transpose
of the constraint gradient J = ∂g/∂q provides the contact force
directions (i.e., contact normals), which we add to the system using
Lagrange multipliers λ. Thus, Equation 2 becomes

A∆q̇ = b + JTλ. (4)

The solution of this system must respect the Signorini condition.
That is, contacts do not produce attraction forces, λ ≥ 0, sepa-
ration distance at contacts must remain non-negative, g(q) ≥ 0,
and the constraint is active (λ nonzero) if and only if the separation
distance is zero. We write this as 0 ≤ g(q0+h) ⊥ λ ≥ 0, and
note that we must differentiate the constraint to produce comple-
mentarity conditions involving only the unknown velocity update
and Lagrange multipliers,

0 ≤ J(q̇0 + ∆q̇) ⊥ λ ≥ 0. (5)

The combination of Equations 4 and 5 produces a mixed LCP
(MLCP), which can be solved with either direct or iterative methods
(see discussion in Section 2).

Stabilization Discrete collision detection can not anticipate the
apparition of new contacts, and numerical integration errors can
produce drift. Thus, a post stabilization position update is com-
puted at the end of each numerical integration step. However, the
position update ∆q must also respect the complementarity condi-
tions. Either there is a separation at a contact, g(q0+h) > 0, or
the constraint provides a repulsive force, ζ > 0, but not both. This
produces the MLCP

A∆q = JT ζ, (6)
0 ≤ g(q0) + J∆q ⊥ ζ ≥ 0, (7)

which is solved for ζ and ∆q. When g is smooth, one iteration of
this linearized post step is sufficient to produce a good correction.

Friction Coulomb friction involves additional tangential forces at
the contact points. These are typically written in a symmetric basis
of 4 vectors at each contact point (negative and positive t1 and t2
directions for each contact coordinate frame {n, t1, t2}), which
lets the friction force be written as a combination involving only
positive weights. For contact i, let 0 ≤ βi ∈ R4 be the coordinates
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of the friction force and TT
i be the basis that applies the force on

the DOFs in equal and opposite directions. Equation 4 becomes

A∆q̇ = b + JTλ +
∑

TT
i βi, (8)

but it is now subject to additional complementarity conditions.
Specifically, there is either tangential sliding at the contact, or the
contact force is not on the boundary of the friction cone, but not
both. For contact i, the pyramidal friction cone conditions can be
written

0 ≤ σi ⊥ µλi − eβi ≥ 0, (9)

0 ≤ βi ⊥ TT
i (q̇0 + ∆q̇)− eTσi ≥ 0, (10)

where e = (1, 1, 1, 1), and the slack variable σi is nonzero when
there is sliding at the contact. One only needs the contact normals
to build a tangent space basis to set up these frictional contact equa-
tions. Note also that the friction constraint is not considered in the
post stabilization step.

3.2 Volume-Based Penalty Force

Let us briefly review the image-based collision response method
we extend in this work. The basic idea is to minimize the inter-
section volume between two polyhedra. The intersection volume is
computed on the GPU based on bounding pixels in the rasterization
of the object surfaces into Layered Depth Images (LDIs) [Heidel-
berger et al. 2003; Heidelberger et al. 2004]. This data structure
uses a stack of images to represent the object sufaces as discrete
height fields. The necessary number of images depends on the
number of surface layers in the chosen viewing direction. Each
pixel stores the surface depth in the viewing direction, as well as
additional data such as normal orientation or object index. By sort-
ing the depths stored in the different images at each pixel (i, j),
we obtain the ordered list of surface intersections with a ray paral-
lel to the viewing direction. Along the ray, each object volume is
represented by one or several depth intervals between entry points
and exit points. Collision detection is straightforward based on in-
terval intersections. One LDI in an arbitrary viewing direction is
sufficient to detect collisions between volumetric objects. Comput-
ing the gradient of the intersection volume requires three LDIs in
mutually orthogonal directions [Faure et al. 2008]. At left in Fig-
ure 1 is a depiction of LDI volume models using red, green, and
blue pixels to denote x, y, and z viewing directions, respectively.
The corresponding intersection volumes are shown in the second
image of the same figure. Figure 3 represents a slice of an intersec-
tion volume. The rasterization can be done in any direction, but
for simplicity we assume an orthogonal projection along one of the
primary axes. Thus, the volume computed using a z projection is

V = a
∑

(i,j)∈S+
z

z+ij − a
∑

(i,j)∈S−
z

z−ij , (11)

where a is the area of a pixel, z+ij and z−ij are the upper and lower
pixel depths, and the sets S+

z and S−z respectively contain the pixel
locations (i, j) of the upper and lower contact surfaces.

The derivative of the volume with respect to the depth of a given
triangle vertex k represents the variation of the volume size corre-
sponding to a unit displacement of the vertex in the viewing direc-
tion,

∂V
∂pz

k

= a
∑

(i,j)∈S+
z

∂z+ij
∂pz

k

− a
∑

(i,j)∈S−
z

∂z−ij
∂pz

k

. (12)

where pz
k is the z coordinate of vertex number k. Conveniently, the

scalar ∂zij(p)/∂pz
k at a given pixel corresponds to the barycentric

i

z

S+

S -

p3
p2

p
1

Figure 3: A 2D slice of an LDI showing the intersecting object vol-
umes of two objects. Here, the LDI viewing direction is the z axis.
Vertices are labeled p, while pixels are shown with horizontal lines
in different columns. The intersection volume appears in purple,
and is bounded by sets of surface pixels, S+ on top, and S− on
bottom (dotted lines).

coefficient used to interpolate the depth value from the depth at
vertex k (that is, the value is readily available in the GPU during
rasterization). If the vertex pk is not part of the triangle containing
the pixel then the partial derivative is zero. For most vertices, the
gradient receives a contribution from at most one contact surface,
either S+

z or S−z , but some vertices receive contributions of both,
such as p3 in Figure 3.

Given only a projection in z, it is not possible to use the barycentric
weights to accurately compute the other partials, ∂zij(p)/∂px

k and
∂zij(p)/∂py

k. Thus, we use LDIs with projections along the other
two axes to compute derivatives with respect to the other vertex
coordinates. For each axis, the sums over pixels for the volume
and gradient computation are done simultaneously. This is done
three times for the three LDIs. That is, the volume is accumulated
three times (and subsequently corrected by 1

3
), while its derivative

with respect to the coordinate of each vertex is accumulated into the
gradient vector,

∂V
∂p

=

(
∂V
∂p1

...
∂V
∂pn

)
, (13)

∂V
∂pk

=

(
∂V
∂px

k

∂V
∂py

k

∂V
∂pz

k

)
, (14)

where x, y, z are the three successive LDI viewing directions.

Faure et al. [2008] apply a repulsion force derived from a volume-
based potential, E = 1

2
kV2, i.e., a soft constraint. Thus, the force

on vertex pi is the transpose of

− ∂E

∂pi
= −kV ∂V

∂pi
(15)

In this paper, we exploit the volume and its gradient differently, but
they remain the only necessary geometric values.

When the independent DOFs q are not directly the vertex positions
p, as in the case of rigid bodies or detailed surfaces embedded in
coarse deformable models, we use the chain rule to differentiate the
intersection volume with respect to the DOFs: ∂V

∂q
= ∂V

∂p
∂p
∂q

.

4 Volume-Based Contact Constraints

In this section, we present a new way of handling contact and
friction by defining constraints based on the intersection volume
and volume derivative. We first reformulate the Signorini condi-
tion in order to obtain an equivalent complementarity problem be-
tween contact reaction pressures and interpenetration volume. This
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volume-based formulation can directly use the LDI collision out-
put to define a very efficient constraint-based collision response. In
Section 4.2 we address the subtleties of also adapting the Coulomb
friction complementarity conditions to the volume-based formu-
lation. In Section 4.3 we describe how these volume-based con-
straints are used in the main animation loop.

4.1 Signorini Condition for Volume Contacts

For simplicity, we consider a system consisting of two colliding ob-
jects, where the intersection volume V(q) is computed as described
in Section 3.2. As stated in the background, a common way of deal-
ing with contact between two objects is to build a complementarity
problem between separation distances g and reaction force magni-
tudes λ. If two deformable objects are in contact over an area, then
this involves using multiple contact constraints to track the separa-
tion distances across the contact patch.

Equivalence Recall that each unilateral point-contact constraint
has conditions 0 ≤ gi(q0+h) ⊥ λi ≥ 0. The solution of the
constrained system must respect the principle of virtual work. That
is, constraint satisfaction must not add or remove energy from the
system. Since we are solving the system at a velocity level, this can
be written λi ·Ji(q̇0 +∆q̇) = 0, where Ji = ∂gi

∂q
is the separation

distance gradient. However, we can associate a small area Ai with
each contact i, and observe that

λi
1

Ai
· AiJi(q̇0 + ∆q̇) = 0,

where ρi ≡ λi
1
Ai

is a pressure and ∂Vi
∂q
≡ AiJi is a volume gra-

dient. Because the inequalities of the separation distance constraint
still apply, we have equivalent complementarity conditions for the
pressure and volume-based constraint formulation,

0 ≤ ρi ⊥
∂Vi
∂q

(q̇0 + ∆q̇) ≥ 0.

Approximation Now, instead of using many point-contact con-
straints, we use the total intersection volume to constrain the system
and a single Lagrange multiplier ρ to compute the pressure acting
on the contact patch. The intersection volume V(q) identifies the
active constraints, its gradient can be seen as the sum of −AiJi of
active constraints, and the forces on the DOFs due to ρ act in the
direction of this volume gradient. We call this approximation the
mono-volume contact constraint.

Note that the mono-volume approach computes a uniform pressure
across the whole contact area, which is not always realistic. This
limitation is addressed in Section 5, which proposes a multi-volume
approach as the equivalence discussed above need not be reduced
to only a single volume. Nevertheless, when solving our volume-
based constraints, some important physical properties are guaran-
teed:

• the interpenetration volume cannot increase;

• the pressure can only act to push objects apart;

• the pressure acting on the contact surface is non-zero if and
only if the interpenetration volume is not decreasing.

Stabilization It is also important to note that LDI is a discrete
collision detection. In practice, we can only create our volume-
based constraints if there is a non-zero intersection volume. If the
intersection is zero, then there is simply no contact. While the in-
tersection volume should theoretically always be zero, it is instead

n

t

C+

C-

c

Figure 4: Two intersecting objects and the contact model. The
gradient of the intersection volume appears as red lines at each
vertex. The contact frame used for friction is built based on the
estimated normal direction n.

allowed to remain below some small amount of interpenetration
volume εV to permit continuous contact. Thus, we modify the com-
plementarity conditions in our volume-based formulation. For the
implicit velocity update, the MLCP of Equations 4 and 5 becomes

A∆q̇ = b + JT
Vρ, (16)

0 ≤ JV(q̇0 + ∆q̇) ⊥ ρ ≥ 0, (17)

where JV = ∂V
∂q

. For the post stabilization correction, the MLCP
of Equations 6 and 7 becomes

A∆q = JT
Vξ, (18)

−εV ≤ −V(q0) + JV∆q ⊥ ξ ≥ 0. (19)

The value of εV is discussed in section 4.3. Notice that we are effec-
tively using the equations given in Section 3 with g = −V , but with
modifications to the position correction (as given in Equation 19)
and the friction conditions (as described below in Section 4.2).

4.2 Friction

Friction forces counteract relative velocity in the tangent plane. In
the standard contact model, a friction force is applied at the contact
point. We need to modify this definition because our contact force
is actually a pressure applied to a contact surface. The sum of the
repulsion forces applied to the vertices of one object provides us
with the approximate direction of the contact normal vector n. We
then compute two orthogonal unit vectors t1 and t2 spanning the
tangent plane using Gram-Schmidt orthogonalization. To define
the equivalent of the point-contact relative velocity in our model,
we need to compute a weighted difference of the velocities on the
top and bottom contact surfaces C+ and C− as defined by the nor-
mal direction (see Figure 4). Specifically, the weight of each vertex
must take into account its associated contact surface area, which we
approximate by the volume gradient with respect to the vertex po-
sition projected onto the volume-contact normal. Thus, we define

vrel ≡
∑
k

Akṗk, with Ak = n · ∂V
∂pk

, (20)

where ṗk is the velocity at vertex k, and Ak is the area associ-
ated with vertex k projected to the tangent plane. The sign of Ak

depends on the orientation of the vertex’s associated surface with
respect to the contact normal n. This ensures that vrel will be zero
when the two intersecting objects have the same velocity. Note that
vrel has units of velocity times area, so the product of vrel with our
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contact pressure (force per unit area) gives power (velocity times
force), like in the standard contact model.

Viscous contact forces are straightforward, and can applied propor-
tionally to the velocity:

fk = −ν vrel Ak.

To enforce sticking in Coulomb friction, we must constrain the pro-
jections of the relative velocity to the basis vectors of the tangent
plane t1 and t2. At the velocity level, a no-slip constraint can be
written as

(
A1t1

T · · · Ant1
T

A1t2
T · · · Ant2

T

) ∆ṗ1

...
∆ṗn

 =

(
−t1Tvrel

−t2Tvrel

)
,

where the ∆ṗk are the velocity corrections necessary to cancel the
current sliding velocity. For Coulomb friction instead of using this
no-slip condition, we can use Equations 8, 9, and 10, where the ma-
trix T is now constructed by weighting the symmetric basis formed
by the contact frame tangent vectors t1 and t2,

T =


A1t1

T · · · Ant1
T

A1t2
T · · · Ant2

T

−A1t1
T · · · −Ant1

T

−A1t2
T · · · −Ant2

T

 ∂p

∂q
. (21)

This will let us compute the appropriate relative velocity for our
volume contact, as well as providing a basis for applying equal and
opposite friction forces on the DOFs.

Our net friction forces are centered on the barycenter of each colli-
sion surface C+ and C−. They are parallel with opposite directions
but, in contrast with the repulsion forces, they are not aligned and
this generates ghost torques. This is due to the non-physical situ-
ation where two objects intersect each other. We can compute the
contact center, at the origin of the contact frame shown in Figure 4,
as the barycenter of the contact surfaces: c =

∑
kAkpk/

∑
kAk.

When volumetric velocity fields are available, forces applied to c
can be propagated to the objects using the transpose of the veloc-
ity mapping. We can thus apply all the contact forces at this point
rather than the surface vertices, obtain perfectly aligned opposite
forces and avoid the ghost torque. We have not found this useful in
practice, because the offset between the force directions (and thus
the intensity of the ghost torque) is proportional to the intersection
depth, which is small in our experiments.

4.3 Animation Loop

Let us now consider the case where multiple objects are in the sys-
tem. We will use the vector V(q) to represent the interpenetration
volumes between each pair of objects, and we set up the MLCP
problems following the description in Sections 3.1 and 4.1. Our
animation algorithm starts with the velocity MLCP of Equations 16
and 17, and additionally includes the frictional constraints. We then
update the velocities and the positions. The velocities do not nec-
essarily produce a position that will meet the V(q0+h) ≤ εV con-
straint, thus we perform a post stabilization step. Due to the non-
linearity of the non-interpenetration constraint, we perform multi-
ple iterations and monitor the intersection volume using Newton-
Raphson’s algorithm.

The post step position correction can ensure non-penetration be-
tween colliding objects; however, we must maintain a small amount
of intersection rather than removing it completely. The volume
derivatives used for the contact and friction formulations can lack

precision if the interpenetration volume computed from the LDI in-
volves only a few pixels. In practice, for non-breaking contacts we
maintain an interpenetration layer that has a thickness of approxi-
mately half a pixel (except in the left of Figure 1, for a better view
of the intersection volumes). But this measure of the intersection
depth is not available in our contact model. Fortunately, we can
estimate the surface of the contact by summing the positive Ak of
Equation 20. From this we compute the average intersection depth
within a contact, and estimate the necessary volume variation to
preserve the average depth within the desired range. Thus, we au-
tomatically regulate the value of εV in the position MLCP of Equa-
tions 18 and 19 and we perform LDI collision detection to compute
the new intersection volume and its Jacobian. This loop is repeated
until the desired precision is obtained or a maximum number of iter-
ations is reached. Each position correction deals only with contact
volume correction because the friction constraints do not apply.

Algorithm 1 Animation Loop
Input: current state q0, q̇0

Output: next state q0+h, q̇0+h

1: ∆q̇←MLCPsolve velocity update with friction
2: q̇0+h ← q̇0 + ∆q̇
3: q0+h ← q0 + hq̇0+h

4: Compute LDI: intersection V(q0+h) and Jacobian
5: while V(q0+h) > εV do
6: ∆q←MLCPsolve position stabilization
7: q0+h ← q0+h + ∆q
8: Compute LDI: intersectionV(q0+h) and Jacobian
9: end while

We implement the velocity update in two steps. The first step,
prediction, performs an unconstrained implicit integration of the
body forces. The second step, correction, modifies the velocities
in order to meet the contact constraints. The position stabilization
is implemented as a correction of positions. To solve the ML-
CPs we use a Gauss-Seidel like method (see, e.g., [Duriez et al.
2006]), but a direct solver like Lemke’s algorithm could also be
used. We have good results with the integration scheme presented
here (linearized backward Euler and post stabilization) but other
time-stepping schemes could be used. The novelty lies in the use of
volume constraints that are computed using LDI collision detection.

5 Multi-Volume Geometric Model

In the previous section, we have shown that the minimization of the
intersection volume generates a single scalar equation for the repul-
sion between two objects. This is independent of their geometric
resolution, which results in dramatic simplifications with respect to
traditional distance-based methods. A limitation of this approach
is that the contact equation holds for the whole contact area, result-
ing in a single behavior. For Coulomb friction, the whole contact
is either sticking, or sliding, or the patch is breaking contact as a
whole. We often expect more detailed behaviors. An example of
this is shown in Figure 7, where a part of the snake is sliding while
the other is sticking. The solution is to split the intersection vol-
ume in several parts with independent contact equations. We call
this the multi-volume model, in contrast to the mono-volume model
presented in the previous section.

We divide the intersection volume using a regular grid aligned with
the LDI directions, as shown in the second image of Figure 1. This
makes it easy to tune the spatial resolution of the contact. Figure 5
represents a cell of the grid. To set up separate contact equations,
we need to compute the volume gradient of each cell. In the viewing
direction, the boundary of the intersection volume in a cell may be
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Figure 5: A slice of the intersection volume in a grid cell.

composed of up to four surfaces: an upper object surface S+, an
upper cell wall W+, a lower object surface S−and a lower cell
wallW−.

The contributions of the object surface pixels to the gradient are
given in Section 3.2. The remaining question is how to take into ac-
count the pixels of the cell walls. If the cell walls are considered
fixed, then their pixels do not contribute to the volume gradient
because their depth is independent of the object vertices. For ex-
ample, the cell highlighted in Figure 5 would only apply a force to
the red object, because it does not include the surface of the blue
object. Computing the pressures independently in each cell would
thus violate Newton’s law of equal and opposite forces between the
interacting objects. Physical soundness requires the pressure force
applied to the cell walls to be dispatched on the object surfaces.

For each pixel of the cell wall, we compute its barycentric coeffi-
cient inside the intersection volume in the viewing direction. We do
this such that the depth of a pixel of a top cell wallW+is given by

W+
ij = αijz+ij + (1− αij)z−ij , (22)

while the depth of a pixel of a bottom cell wallW−is given by

W−ij = βijz+ij + (1− βij)z−ij . (23)

An example of these barycentric coefficients is shown in Figure 5.
In each cell, the gradient of the intersection volume is thus

∂V
∂pz

k

= a
∑

(i,j)∈S+
z

∂z+ij
∂pz

k

− a
∑

(i,j)∈S−
z

∂z−ij
∂pz

k

+a
∑

(i,j)∈W+
z

αij

∂z+ij
∂pz

k

+ (1− αij)
∂z−ij
∂pz

k

−a
∑

(i,j)∈W−
z

βij
∂z+ij
∂pz

k

+ (1− βij)
∂z−ij
∂pz

k

(24)

Once the gradient is computed, the contact equations of the cell
are straightforward and can be set up the same way as presented in
Section 4.

Varying friction behaviors across the contact can greatly enhance
the simulation of large deformable objects, as illustrated in the ac-
companying video. Moreover, separation can also be improved, as

(a) Initial State (b) Mono-Volume (c) Coarse Grid (d) Fine Grid

Figure 6: Intersection after one LCP solution of volume constraint
stabilization for grids of different resolution. Increasing the multi-
volume precision provides a more accurate linearization of the in-
tersection volume gradients.

1 contact 4 contacts

12 contacts 40 contacts

Cell Size (pixels) Contacts Avg. Error Max Error
– 1 26.21 % 61.30 %

250 4 3.47 % 9.94 %
100 7 3.85 % 6.58 %
90 12 0.40 % 0.83 %
50 20 0.25 % 0.46 %
22 40 0.18 % 0.35 %

Figure 7: Multi-volume friction. Red, green, and blue arrows show
the contact frames, while the yellow arrows denote forces. The
table shows the measured difference (as fractions of the length of
the snake) between the classical penetration-based approach and
multi-volume constraints with varying cell sizes.

illustrated in Figure 6. The actual volume variation between convex
objects is smaller than anticipated using the gradient, due to the fact
that the area of the contact surface becomes smaller as the objects
move apart, as can be seen in Figure 6. As such, some intersection
will remain after the linear solve. A complete interpenetration po-
sition correction with the mono-volume approach requires several
iterations to converge. Using the multi-volume approach, the most
exterior contacts are progressively discarded during the MLCP so-
lution, and the final contact occurs only where the intersection was
initially the deepest.

We validated the multi-volume model on the example of a snake
pulled laterally illustrated in Figure 7. In the mono-volume model,
the snake spins around the contact center located approximately in
the middle of its body, while it gently evolves to a nice stable bent
shape using the multi-volume model. Additionally, when an object
is cut as shown in Figure 2c, the multi-volume model allows the
independent processing of each of the parts.

7
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(a) Detailed surfaces (b) Distance fields (c) LDI rasterization

(d) Contact volumes on the right arm of the green Armadillo

Figure 8: Comparison with distance fields. Our method is able to
handle highly detailed meshes, as visible in (d), without any pre-
computation.

6 Results

We have successfully applied our method to a variety of scenes in-
cluding complex rigid and deformable objects. The animation algo-
rithm presented in Section 4.3 is used in all cases. For deformable
objects, we use a co-rotational Finite Element Model [Nesme et al.
2005]. We implemented our method within the open-source SOFA
library [Allard et al. 2007]. When possible, we compare it with our
implementations of distance-based contact models. We performed
the simulations on a Intel Core i7 975 CPU with a Nvidia GeForce
GTX 285 GPU. Table 1 presents the complexity and measured per-
formance for several example simulations. The Collision Detection
and Contact Modeling columns represent the time taken to com-
pute the LDI and evaluate the intersection volumes and gradients
(steps 4 and 8 in Algorithm 1). The Mechanical Motion column
represents the unconstrained predictive motion due to internal me-
chanical forces, while the Constraint Solver column represents the
velocity and position corrections.

The two rigid armadillos in Figure 8 are made of 345 944 trian-
gles each and simulated at 41 fps (not including rendering), with
7 contacts on average, and at most 16 contacts. We also experi-
mented with precomputed distance fields on this scene, since they
are a popular and efficient tool for collision detection and response
between rigid bodies. The distance fields detect and model colli-
sions faster than our method, allowing refresh rates as high as 57
fps. However, they generate considerably more equations (typi-
cally 200 contacts in this example, hence 600 equations including
friction), which results in longer solve times. This is especially true
when a high resolution distance field is required to handle small ge-
ometric details. Our method does not suffer from this problem of
mesh resolution sensitivity.

The advantages of our method are clear when distance fields are
not available, for instance, when simulating deformable objects or
topology changes (Figure 2c). A interesting feature of LDI-based
methods is that self-intersections are no more costly to compute

Figure 9: Stacking of 40 soft toys with complex geometry such as
thin ears, sharp features, and a mixture of small and large triangles.

than inter-objects collisions. This is illustrated in Figure 2a, where
3 octopuses are simulated at interactive rates, while touching along
multiple and complex contact and self-contact areas. The hand
grasping the deformable object in Figure 2b is simulated at 54 fps,
with 10 contacts, while the proximity-based method runs only at 23
fps due to the complexity of the collision detection and the larger
number of contacts, up to 70 in this example.

The complex medical scene in Figure 1 is based on real data. Due
to unavoidable data noise and approximations in the reconstruction
process, the organs intersect each other at initialization time, and
the distance-based method fails to repell them, making the simu-
lation intractable. In contrast, our volume-based method is robust
to deep intersections and has no problems separating the organs on
the first time step. No spurious velocity is introduced for this cor-
rection since the position correction step does not modify the ve-
locities. This simulation is difficult because the grasping relies on
high pressure and friction forces. As expected, the tool eventually
slips and releases the organ when pulled too far. This is an excellent
example of the stability of static friction in our method; the contact
forces stay within the friction cone during the first part of the move-
ment, and then lie on the edge of the cone as the organ slips from
the grasp of the tool. Note that in this case the geometry of the
tool is thin with very fine teeth. It can be handled by our method
but requires very small pixels, which is very costly as the LDI is
currently rasterized with an uniform precision over the full scene.
While the method could be extended to locally adapt the resolution,
which is an interesting avenue for future work, we instead replaced
the collision mesh for this tool with a slightly simpler and thicker
version. The scene includes 550 000 triangles, 9 500 degrees of
freedom, and runs at 7 fps including rendering.

An obvious limitation of our approach is that interacting objects
must have a volume, so very thin objects such as cloth are not sup-
ported. Likewise, since our LDI computations provide intersections
at discrete time steps, it is also possible for small fast moving ob-
jects to tunnel through one another. For both of these cases, meth-
ods based on continuous collision detection are more suitable.

8
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Simulation Objects Triangles LDI Contacts Collision Contact Mechanical Constraint Iterations
Pixels Layers Detection Modeling Motion Solver Per Second

Medical (Figure 1) 9 550K 224×168 32 16 22.69 ms 1.35 ms 17.85 ms 32.45 ms 13.3
Octopuses (Figure 2a) 3 46K 392×352 28 110 5.67 ms 1.20 ms 43.43 ms 12.34 ms 15.6
Grasping (Figure 2b) 2 9K 112×112 14 10 2.73 ms 0.97 ms 7.36 ms 6.18 ms 54.0

Snake (Figure 7) 1 7K 560×336 10

1 3.45 ms 1.01 ms 2.72 ms 1.53 ms 109
6 3.41 ms 1.00 ms 2.87 ms 1.86 ms 104

18 3.45 ms 0.95 ms 2.98 ms 3.09 ms 91.9
41 3.46 ms 0.84 ms 2.99 ms 7.62 ms 65.3

Rigids 2 128×107×98 distance field 255 10.46 ms 0.16 ms 0.38 ms 6.68 ms 56.7
Armadillo 692K 280×240 22 16 18.48 ms 1.15 ms 0.48 ms 4.08 ms 41.1
(Figure 8) FEM 2 692K 208×192 26 28 18.47 ms 1.53 ms 13.54 ms 17.98 ms 19.3

Soft Toys (Figure 9)
10 205K 456×456 24 99 16.61 ms 1.64 ms 71.24 ms 34.82 ms 7.29
20 379K 1232×472 34 242 28.79 ms 2.37 ms 146.94 ms 207.02 ms 2.44
40 725K 1232×528 46 544 44.45 ms 3.43 ms 309.48 ms 723.83 ms 0.88

Table 1: Complexity and measured performance for example simulations. The Objects, Triangles, LDI and Contacts columns respectively
present the number of simulated objects, triangles, and upper limits on the LDI dimensions and generated contacts. The rest of the table
presents the average time spent in the four main computation steps, as well as the overall speed of the simulation (excluding rendering).

Note that we need to maintain a small intersection to model the
velocity constraints necessary for resting contacts with dry fric-
tion. For each contact volume, we are able to do this by controlling
the average intersection depth. This average depth could be much
smaller than the true maximum interpenetration depth, but we have
not observed any problems related to this in practice.

7 Conclusion

We have presented a new formulation for contact using a hard con-
straint on the intersection volume. As such, the number of equa-
tions is small and independent of geometric complexity. We have
extended the formulation to include Coulomb friction, and intro-
duced a multi-volume grid model to better accommodate complex
behavior across multiple contact patches. Our method is robust to
deep interpenetrations and allows us to simulate frictional contact
between complex deformable bodies at unprecedented rates.

Our results show examples that demonstrate that our method per-
forms well for simulations involving sliding, rolling, and resting
contact. In general, our multi-volume constraints can be used for
a variety of difficult simulation scenarios involving both rigid and
deformable objects in frictional contact, such as surgery simulation,
stacking, grasping and cutting.
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