
FORK-1S: Interactive compliant mechanisms with parallel state computation

Sheldon Andrews∗

McGill University
Marek Teichmann†

CM Labs Simulations
Paul G. Kry‡

McGill University

Figure 1: Example simulations that we use to demonstrate our technique include a multi-legged robot on uneven terrain, two firemen catching
a bunny, and humanoid robot grasping. The reduced model for the firemen involves only one body, the trampoline, while the reduced models
for the legged robot and hand involve multiple coupled end effectors.

Abstract

We present a method for the simulation of compliant, articulated
structures using a plausible approximate model that focuses on
modeling endpoint interaction. We approximate the structure’s be-
havior about a reference configuration, resulting in a first order re-
duced compliant system, or FORK-1S. Several levels of approxima-
tion are available depending on which parts and surfaces we would
like to have interactive contact forces, allowing various levels of
detail to be selected. Our approach is fast and computation of the
full structure’s state may be parallelized. Our approach is suitable
for stiff, articulate grippers, such as those used in robotic simula-
tion, or physics based characters under static proportional deriva-
tive control. We demonstrate that simulations with our method can
deal with kinematic chains and loops with non-uniform stiffness
across joints, and that it produces plausible effects due to stiffness,
damping, and inertia.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: character animation, physics simulation, constraints

1 Introduction

Real-time physics simulation has emerged as a fundamental compo-
nent of interactive immersive virtual environments. There are many

∗e-mail:sheldon.andrews@mail.mcgill.ca
†e-mail:marek@cm-labs.com
‡e-mail:kry@cs.mcgill.ca

important applications, for example, in training operators of robots
and heavy equipment, design of robots and mission planning, and
simulation of virtual humans in video games.

In this paper, we describe a technique that can improve interac-
tive simulations of scenarios involving complex multi-body mech-
anisms with contact. For instance, the simulation of human or
robotic hands during grasping involves complicated chains of com-
pliant joints and distributed contacts. Collaborative grasping and
manipulation with multiple people, multi-legged robots, and ve-
hicle suspension systems can produce similarly difficult computa-
tional scenarios. Simulating these kinds of systems is tricky be-
cause they result in large over-constrained systems of equations that
may require considerable computational effort to solve. Further-
more, special attention must be paid to the parameters of both the
system and simulation to ensure stability. Our technique simplifies
these kinds of systems, allowing for complex interactive mecha-
nisms to be simulated while meeting real-time requirements.

Our approach is based on two main assumptions. The first assump-
tion is that there are a limited number of surfaces at which our ar-
ticulated systems experience contact. Thus, we can focus on the
effective mechanical properties of a small collection of bodies in
the system. This is a reasonable assumption for many scenarios,
such as the wheel ground contact for a vehicle, the fingertips of a
hand during grasping, or simulated tool-use by virtual humans and
robots. The second assumption is that the multi-body system has a
reference pose, which is held due to linear springs at the joints. This
is certainly true for systems that have passive linear elastic joints,
but also reasonable for virtual humans following the equilibrium
point hypothesis of motor control, and in simulated robots using
proportional derivative (PD) control.

In the case of a single interaction surface, our approach simplifies
an entire system to a single 6D mass-spring system. When there
are multiple bodies with surfaces experiencing contact, we use a
collection of compliantly coupled 6D bodies. We present an incre-
mental algorithm for computing the dynamics model, which walks
the body connectivity graph. The result is a system that is much
simpler than the original, and is also stable and fast to compute.
Note that we do not assume that the structure has the topological
structure of a tree, as is necessary for fast computation in many
alternative multi-body algorithms.

At simulation time, external forces produce a dynamic transient be-
havior for the bodies that we include in the model. The position
of all the remaining bodies is visualized by computing a compati-
ble state. Rather than using inverse kinematics, we compute linear
maps that provide twists for each body as a function of the reduced
system state and use the exponential map to compute the body posi-
tions. Thus, non-interacting body positions can be computed inde-
pendently and in a parallel fashion. Although the twists only model
the linear response, we observe that the exponential map gives good
behavior with little separation at joints for an adequate range of in-
teraction forces, and we discuss the size of the errors produced. Be-
cause the position updates can all happen in parallel, our method is
well suited to parallel implementation on modern CPUs and GPUs.
With new hardware from smart phones to desktop computers pri-
marily gaining additional computation power through increasing
core counts, we believe it is important for future algorithms to ex-
ploit parallelism, and we identify this separable computation of the
internal state as one of the important contributions of our work.

Another important aspect in our work is that we have control over
the fidelity of the physics simulation, and can dial it up or down as
necessary. For instance, we can simplify a grasping system to be
the finger tips of a hand in frictional contact with a grasped object.
Alternatively, assuming no sliding or rolling at contacts, we can re-
duce the system to model the grasped body alone, which may be of
interest in the simulation of a peg-in-hole insertion task. Likewise,
if we know that additional contacts will occur at other bodies in the
multi-body system, then we can include those interaction surfaces
in our model.

We demonstrate various important scenarios that show the utility of
our approach and the models that we can produce, such as simula-
tion of human grasping and multi-legged robots, as shown in Fig-
ure 1. We provide computation time comparisons, discuss approx-
imation errors and limitations of the model. Finally, we identify a
few interesting opportunities for future work.

2 Related work

Modeling and animating physical systems at different levels of fi-
delity is a common objective in many aspects of physics based an-
imation, for instance, in simulating deformation, friction, contact,
and collision. For deformation, there has been a vast amount of
work in computer graphics exploiting modal vibration models for
reduction. A good survey can be found in a state of the art re-
port by Nealen et al. [2006], while other alternative elastic simula-
tion reduction techniques continue to be an active area of research
[Nesme et al. 2009; Barbič and Zhao 2011; Kim and James 2012;
Harmon and Zorin 2013]. Frictional contact computations can also
be simplified in a variety of ways, such as exact Coulomb fric-
tion cones, discretized friction pyramids, box constraints, or penalty
based methods [Duriez et al. 2006; Parker and O’Brien 2009; Ya-
mane and Nakamura 2006]. With respect to the contact equations,
the contact patches can be discretized at arbitrary resolutions [Al-
lard et al. 2010]. Finally, collision detection and response can be
modified to produce various plausible animations with different fi-
delity levels [O’Sullivan and Dingliana 2001].

One approach for the simulation of multi-body mechanical systems
is to use a constrained full-coordinate formulation. Such systems
can be solved quickly with sparse methods, and linear time solu-
tions are possible when the structure has the connectivity of a tree
[Baraff 1996]. Constrained multi-body simulations are popular for
their simplicity, and available in a number of different libraries in-
cluding Vortex, PhysX, Havok, Box2D, and the Open Dynamics
Engine. Numerical drift must be addressed in this case using stabi-
lization techniques [Ascher and Petzold 1998], and loops result in

redundant constraints that require additional attention in the solu-
tion of such systems [Ascher and Lin 1999; Faure 1999].

The alternative to full-coordinates is to formulate the system in min-
imal coordinates, i.e., the joint angles [Featherstone and Orin 2000].
Straightforward linear time solvers have been used for decades,
while divide and conquer approaches permit parallel algorithms
with log time complexity [Featherstone 2008; Mukherjee and An-
derson 2006]. Mechanical structures with loops likewise require
special treatment and modified solvers. Various libraries based on
minimal coordinates exist, such as SD/FAST which is commonly
used in mechanical engineering applications, and RTQL8 which is
designed specifically for character animation and simulated robots.

Our approach resembles neither a minimal coordinate or redundant
coordinate constrained multi-body system. Instead, our first order
reduced compliant systems more closely resembles a coupled elas-
tic mass-spring system. We note that other approaches have been
proposed for reducing multi-body dynamics. For example, adap-
tive dynamics is possible in reduced coordinates through rigidifi-
cation of selected joints [Redon et al. 2005]. In contrast, with a
constrained redundant coordinate formulation, modal reduction of
rigid articulated structures is possible and has been used to animate
animal locomotion [Kry et al. 2009].

We observe that inverse kinematics techniques would also be a so-
lution for determining the positions of internal parts of the mech-
anism. There are a variety of fast methods for solving over-
constrained inverse kinematics problems using singularity-robust
inverse computations [Yamane and Nakamura 2003] or damped
least squares [Buss and Kim 2004]. Instead, we opt for the com-
putation of each body individually with a twist because each can be
updated in parallel, providing a constant time solution. While typ-
ically unnoticeable for small motions, we evaluate how joint con-
straint violations grow and discuss options to minimize or avoid
visible errors during larger interaction forces.

End effector equations of motion are important in robot control and
analysis, and projections of system dynamics are a central part of
the operational space formulation of Khatib [1987]. Our incremen-
tal projection of the dynamics produces a similar model. In con-
trast, effective end-point dynamics can also be estimated from data.
For instance, model fitting has been applied to human fingertips and
hands [Hajian and Howe 1997; Hasser and Cutkosky 2002]. In our
case, a dynamics projection approach is preferable because the fit-
ting process can become difficult when data is complex. Fitting a
simple 6D linear mass-spring is undesirable when the force to dis-
placement relationship in the full model exhibits non-linearities and
bifurcation behavior. Furthermore, sampling the system behavior
can be expensive and does not fit the desired work flow of interac-
tive simulators. However, it is not unreasonable to impose such a
simple model, and to identify its behavior based on a projection of
linear compliant or PD controlled behavior of joints. Ultimately,
our simplification produces an inexpensive first order model with a
plausible response corresponding to a slightly modified set of non-
linear joint controllers.

We use concepts of 6D rigid motion in this paper. The book by
Murray et al. [1994] includes a good overview of the mathemat-
ics of rigid motion, twists, wrenches, and adjoint transformations
between different coordinate systems. We also provide a brief in-
troduction to screw theory and related definitions in the Appendix.

3 Dynamics projection and notation

Our method targets mechanisms made up of articulate chains of
compliant joints where external interaction occurs only with a small
collection of bodies at the interface. We call these bodies the end

effectors, following the terminology used in robotics literature. For
simplicity, we will initially present our approach for the case where
the base, or root, of the mechanical system is fixed in the world (the
case of a free-body base link is discussed in Section 6). There are
numerous simulation and animation applications where this type of
configuration occurs, such as the grasping and manipulation exam-
ples described in Section 1.

In this section, we first explore the simple case of dynamics pro-
jection for a single body with one rotational joint, and provide a
preliminary discussion of how we can incrementally build a projec-
tion for a complex mechanical system.

3.1 Projection for a single link

q
x

Figure 2: A single
rigid body link ro-
tating about a com-
pliant joint.

Consider the behavior of a rigid body
link x rotating about a hinge joint, as il-
lustrated by Figure 2. For simplicity, we
assume the hinge constraint is fixed in
the global coordinate frame. The hinge
constrains the motion of the body to a
single degree of freedom and the admis-
sible twists are rotations about the joint
axis. Therefore, the twist of the rigid
body ξ ∈ R6 is a function of the joint angle θ ∈ R, or ξ = f(θ).
The Taylor expansion of f(θ) gives the approximation

ξ ≈ f(0) +
δf

δθ
∆θ, (1)

where J = δf
δθ

is the Jacobian of the kinematic configuration of the
body. Without loss of generality, let f(0) = 0, giving the first-order
kinematic relationship ξ ≈ J∆θ.

Assuming a stiff joint, any displacement of the hinge from its rest
or initial configuration will generate a torque about the joint axis.
The torque τ and joint displacement ∆θ of the hinge are related by

K−1
θ τ = ∆θ, (2)

where K−1
θ is the compliance, or inverse stiffness, of the joint.

Body wrenches w ∈ R6 corresponding to joint torques are com-
puted by the transpose of the Jacobian,

τ = JTw. (3)

Combining Equations 2 and 3 and multiplying on the left through-
out by J gives

JK−1
θ JTw = ξ. (4)

Here, K−1
x = JK−1

θ JT is the effective compliance of the body
x in spatial coordinates. The twist of the body ξ resulting from an
applied external wrench wext is computed as

K−1
x wext = ξ (5)

and the homogeneous transformation of the body’s displacement is
computed by the exponential map.

It is convenient to use compliance to model the behavior of the body
in full coordinates because this compliance will be zero for motions
not permitted by the joint. As such, K−1

x is rank deficient, and
a robust method for computing the matrix inverse is necessary to
compute the stiffnessKx. Our work uses a truncated singular value
decomposition (SVD) [Hansen 1990] to compute the inverse when
needed.

= revolute joint

= end effector

c

a
b

c
d

e

f

g

b

d e

a

f g

h i

i

h

Figure 3: An image visualizing the connectivity of bodies used in
constructing the effective coupled stiffness, damping, and mass of
end effectors.

We can perform a very similar projection of the rotational mass
matrix Mθ . From the equation of motion M−1

θ τ = θ̈, and assum-
ing the body acceleration φ̇ ∈ R6 is approximately Jθ̈, we find
JM−1

θ JTw = φ̇, thus, M−1
x = JM−1

θ JT . We follow the same
projection for the damping matrix to produce the second order sys-
tem

Mxφ̇+Dxφ+Kxξ = w. (6)

Note that the static solution of this system exactly matches that of
the original. Also notice that this example is more instructional
than useful given that Equation 6 has 6 dimensions while it was
constructed from a 1D joint. Nevertheless, these projections are
useful and a central part of the approach we describe in Section 4.
Specifically, the end effector will be part of a complex system of
joints and rigid bodies. The effective compliance at the end effector
x is due not only to the compliant behavior of the directly attached
joint, but also depends on the compliance of its parent (and the rest
of the system). As such, we will describe an incremental approach
for computing the effective stiffness, damping, and mass, at each
link in an articulated system.

3.2 Notation

Throughout the rest of the paper, we will be using different coordi-
nate frames. Preceding superscripts are used to denote the coordi-
nate frame in which a vector is expressed, for instance, the velocity
φ ∈ R6 of body i in frame j is denoted by jφi. Likewise, a wrench
acting on body i in frame j is denoted by jwi. The adjoint matrix
k
jAd maps the twist of a body in frame j to frame k, while its inverse
transpose is used to change the coordinates of a wrench from frame
j to frame k.

The joint structure of the mechanism has a dual representation as
a directed acyclic graph (DAG), as seen in Figure 3. The graph’s
nodes are links (i.e., rigid bodies), and the edges correspond to joint
constraints, with the direction denoting the parent-child relation-
ship. Specifically, the terms parent link and child link refer to the
rigid bodies associated with the outgoing and incoming vertex of
the edge, respectively. We use Pi and Ci to denote the set of par-
ents and children of link i. Also, Aj is the set of ancestors of link j
where branching occurs, e.g., from Figure 3, Af contains c and b.
Finally, let E denote the set of end effectors.

4 Incremental FORK-1S construction

We incrementally build our approximated model by starting at the
base link and working towards the end effectors. The process is

Procedure 1 Recursive algorithm for computation of K−1. Initiate
recursion with RECURSECOMPLIANCE(base).

function RECURSECOMPLIANCE(i)
if |PARENTS(i)| == 1 then
K−1
i,i ← CHAIN(i) // apply Equation 7

else if |PARENTS(i)| > 1 then
K−1
i,i ←MERGE(i) // apply Equation 11

end if
for j ∈ CHILDREN(i) do

RECURSECOMPLIANCE(j)
end for
if |CHILDREN(i)| > 1 then

SPLIT(i) // apply Equation 9
end if

end function

simplified by examining three fundamental cases: chaining, split-
ting, and merging. In Figure 3 we can observe the three cases. Body
b is a chained extension from body a. There exists a split at body b
because both c and h are children. Finally, the only merge exists at
body e, which has the two parents c and i. It is interesting to note
that the parent child relationship between bodies c and e can be set
in either direction without affecting the final projection.

4.1 Chaining

The effective compliance of body b in the chaining case is the sum
of the compliance of the parent link a and the compliance due to
the stiffness of the joint between the two bodies, Kθ . Assuming
the effective compliance of the parent link has already been con-
structed, it is straightforward to compute the effective compliance
of the child link k. The twist-wrench relationship at link k is

K−1
b,b = JK−1

θ JT + b
aAdK

−1
a,a

b
aAd

T , (7)

where K−1
a,a is the effective compliance of the parent link, J and

K−1
θ are respectively the kinematic Jacobian and compliance of the

common joint. Multiplying the compliance K−1
b,b by a wrench bwb

produces a twist, where the total twist is the sum of two parts: the
twist due to the parent’s motion and the twist due to the common
joint motion.

Note that we use two identical subscripts to denote the compliance
K−1
b,b because we want the motion of body b due to wrenches on

body b. In the sections that follow, we will also need to capture
the motion of one body due to a wrench on another body in the
system. Also notice that the compliance matrix could be written
b
bK
−1
b,b to denote that it provides twists expressed in the coordinate

frame of body b and must be given wrenches expressed in the same
coordinate frame. We will drop these preceding scripts when the
coordinate frames are clear due to context.

4.2 Splitting

In the case where two or more links share a common parent, their
motion is coupled through their common parent. For a link with m
children, the linear system determining the twist-wrench relation-
ship of the child links is Φ = K−1w where

K−1 =

K
−1
1,1 . . . K−1

1,m

...
. . .

...
K−1
m,1 . . . K−1

m,m

 (8)

and Φ = (1φT1 · · ·mφTm)T , w = (1wT1 · · ·mwTm)T . In block ma-
trix K−1 the diagonal block K−1

i,i is the compliance of child link i
computed as described for the chaining case, while the off-diagonal
blocks provide the coupling. That is, K−1

i,j determines the twist at
link i due to a wrench applied to link j. To create these off diagonal
blocks, an adjoint transform is used to first map wrenches in link j
to the common parent k. The resulting twist is determined by the
compliance of the parent, which is then mapped from frame k into
the local coordinate frame of link i:

K−1
i,j = i

kAdK
−1
k,k

j
kAd

T . (9)

Chaining additional links after a split is very similar. The diagonal
blocks are updated as per Equation 7, while the off diagonal blocks
are updated using Equation 9, where k is the lowest common ances-
tor of the two links i and j.

4.3 Merging

Unlike the cases of serial chain and splitting which work with com-
pliances, merging uses the effective stiffness of the parent links.
The effective stiffness is a parallel combination of the effective stiff-
ness of the parent links, and includes the coupled stiffness due to a
common ancestor.

The compliant behavior of link k results from multiple coupled
chains attached to a single rigid body. For a link with m parents,
we consider that the motion of k is the result of multiple superim-
posed versions of the link, with virtual link labels 1, . . . ,m, and
coupled compliance matrix K−1 computed with Equation 8. Let us
now write the linear system describing the wrench-twist relation-
ship using the stiffness as

w = KΦ (10)

where Φ = (kφT1 · · · kφTm)T and w = (kwT1 · · · kwTm)T . Note that
we use coordinate frame k for all blocks, and observe that kφ1 =
kφ2 = · · · = kφm because the twist motion of all the virtual links
must be identical. Also, the accumulation of wrenches equals the
total wrench at link k, that is, kwk =

∑
i=1...m

kwi. Therefore, the
effective stiffness at link k is

Kk,k = I K IT (11)

where I = (I · · · I), and I is the 6× 6 identity matrix. That is, the
stiffness is the sum of all the blocks of the inverted coupled com-
pliance matrix. The effective compliance at link k is computed by
inverting Kk,k using the truncated SVD method. As an aside, per-
forming matrix inversion by a truncated SVD is used extensively in
our work. The tolerance parameter for inclusion of singular values
is tuned according to the stiffnesses of mechanism joints, and this
is done by inspection.

Instead of creating the coupled compliance incrementally, start-
ing from the base and moving out to the end effectors, we
use the recursive approach outlined in Procedure 1, which com-
bines the chaining, merging, and splitting techniques described
in this section. This process is initiated by a single call
RECURSECOMPLIANCE(a), where parameter a is the base link of
the mechanism.

5 Wrench and twist maps

With the method described in the previous section, we can con-
struct the coupled compliance, damping, and mass matrix of the
end effectors. This allows us to simulate a reduced system consist-
ing only of the end effectors. However, we still need to visualize

the positions of all links in the structure. For this, we use the static
pose twist of internal links as computed from a set of end effectors
wrenches, and we call this the twist map. At a given time step of the
reduced simulation, we compute wrenches that explain the current
state, i.e., current twists, thus producing a compatible pose for the
internal links.

In order to compute the twist map, we first describe the construc-
tion of a wrench map that distributes wrenches applied at the end
effectors to the internal links. These maps are built incrementally.
Our algorithm starts at each end effector and traverses the DAG of
the mechanism in reverse order. First, a local wrench map is found
that distributes wrenches from child links to their parents. Then, a
global wrench map is computed by a compound matrix transform
along the kinematic chain.

5.1 Local wrench map

Given the wrench at link k, the local wrench map may be used to
compute the wrenches distributed amongst its parent links. Naively,
we could simply divide the wrench by the number of parent links
and compute the wrench to transfer to the parent links using the ap-
propriate adjoint transforms. However, this division of force will
not be correct because the wrenches transmitted down different
chains will depend on the effective compliance of each chain. Thus
we construct a linear system to ensure that wrenches are distributed
in a plausible manner that respects the internal joint constraints and
compliances.

Note that the sum of the wrenches at the parent links must equal the
wrench applied at the child link k. That is,

kwk =
∑
i∈Pk

i
kAd

T iwi. (12)

Consider the case of m superimposed virtual links that was pre-
sented in Section 4.3. We can write the following constrained lin-
ear system to determine the distribution of wrenches on the different
chains: [

K−1 IT

I 0

] [
w
λ

]
=

[
0

kwk

]
. (13)

The constraint here is the same as Equation 12, except that all quan-
tities are represented in frame k, and thus the adjoints are 6 × 6
identity matrices, i.e., I w = kwk. To compute a local wrench
map that takes the wrench from k and divides it among its parents
1, . . . ,m, we invert the system above, replacing the right hand side
by a block column matrix that will provide the desired vector when
right multiplied by kwk. That is,

1Wk

...
mWk

∗

 =

[
K−1 IT

I 0

]−1 [
0
I

]
. (14)

This gives us a block column vector containing the wrench map for
each parent link, with a block ∗ due to the Lagrange multipliers that
we can ignore. Note that forming left hand side blocks iWk requires
computing the inverse of a system that may be rank deficient due
to the coupled compliance. Again, we use a truncated SVD in its
computation.

Finally, while these wrench maps only consider the difficult case
of merging (multiple parents) by using superimposed virtual parent
links, the transmission of wrenches along simple serial chains is
easy. It simply involves a change of coordinates with an adjoint

Procedure 2 Recursive algorithm to compute all wrench maps
iWe. Here, i is a mechanism link. Initiate recursion by calling
RECURSEWRENCHMAP(e, e, I) for every end effector e, where I
is the identity matrix.

function RECURSEWRENCHMAP(i, e, iWe)
for j ∈ PARENTS(i) do

jWi ← LOCALWRENCHMAP(i) // apply Equation 14 or 15
jWe ← jWi

iWe // apply Equation 16
RECURSEWRENCHMAP(j, e, jWe)

end for
end function

inverse transpose. For parent link a and child link b in a serial
chain, the wrench map is simply

aWb = b
aAd

T . (15)

5.2 Global wrench map

The matrix iWk gives a local mapping for wrench distribution be-
tween child link k and parent link i. Since the local wrench map
only needs to be computed once, this makes it possible to construct
a global wrench map for computing the wrench at internal links due
to applied wrenches at the end effectors. Keeping with our scheme
of incremental model building, we use the local map to compute
the wrenches distributed to internal links due to wrenches applied
at the end effectors.

Let jWi be the matrix mapping wrenches from link i to its parent
link j. The matrix mapping wrenches from end effector e to link
j is simply the compound matrix transform of the wrench map for
each body in the path 1, . . . , n between e and j,

jWe = jW1

(
n−1∏
i=1

iWi+1

)
nWe. (16)

By accumulating the wrenches due to all end effectors, the wrench
affecting an internal link is

iwi =
∑
e∈E

iWe
ewe. (17)

We use a recursive algorithm to explore the DAG while computing
the global wrench map for each link. Procedure 2 gives an overview
of how the equations described in this section are used to build the
maps.

5.3 Global twist map

The twist map provides the static solution of the compliant joint
chain due to wrenches applied at the end effectors. For a serial
chain of compliant joints, the twist at an internal link i is computed
as

iφi =
∑
e∈E

iK−1
i,i

iWe
ewe. (18)

However, for more complex mechanisms, special consideration
must be given to the coupled motion due to splitting and merging
of the kinematic chain. The contributed motion of links that share
a common ancestor with link i must also be considered, and the
general version of the twist map in Equation 18 is

∑
e∈E

(
iK−1

i,i
iWe +

∑
a∈A

i
aAdK

−1
a,a

(
aWe − i

aAd
T iWe

))
. (19)

The twist has a component due to the wrench arriving from each
ancestor, but also experiences motion due to that of its ancestors in-
fluenced by end effector wrenches. The subtraction in the last term
ensures that we do not include the motion of the ancestor induced
by the wrench transmitted through the chain containing link i, be-
cause it is already accounted for in the first term (Equation 18).

6 Dynamic simulation

We simulate the reduced dynamic system using a backward Euler
formulation [Baraff and Witkin 1998]. As such, we have a system
matrix of the form A = M − h2K − hD. To solve this system
with frictional contacts, we use an iterative projected Gauss-Seidel
solver similar to that described by Erleben [2007]. This involves a
Schur complement of the form GTA−1G, where G is the Jacobian
for the contact and friction constraints. We note that it is only nec-
essary to invert the system matrix once, and reuse this small dense
inverse system for the duration of the simulation.

The solution to the reduced dynamic system only provides the po-
sitions (twists, ξ) and velocities of the end effectors links. Internal
links are updated using the twists of the end effectors. Specifically,
we compute equivalent static end effector wrenches as w = Kξ, and
then from these, compute the configuration of internal links using
the twist map in Equation 19.

6.1 Free-body base link

For simplicity, the discussion above has let the body frame of the
base link be fixed in the world. To extend the reduced model to
allow for motion at the base, we integrate a second equation of mo-
tion for a rigid body representing the base. We set the base mass
and inertia matrix to be that of the entire structure in the rest pose.
The motion of the base is driven by gravity, but also by the net
external wrenches applied at the end effectors. While the coupled
equations of motion could be derived from the Lagrangian, we only
couple the base and end-effector models through external forces,
and assume that the omitted terms such as Coriolis forces are neg-
ligible when the base has large mass and is moving slowly. In this
case, the contact and frictional constraints must be modified to use
the combined velocity of the base link bφb and velocity of the end
effector link kφk in contact frame c, cφk+b = c

kAd
kφk + c

bAd
bφb.

7 Results

We have integrated our approach with the Vortex simulator of CM
Labs. In this section we demonstrate the utility of our approach
and the models we can produce in various scenarios of importance,
such as simulation of amphibious robot walking, and simulation of
human grasping, as seen in Figure 1 and in the accompanying video.
Note that all video results were obtained by FORK-1S simulation,
unless otherwise stated.

Figure 4 shows a comparison between simulations with our method
versus a commercial physics engine. In each case, a constant force
is applied at an end effector and simulated until a static equilibrium
is reached. The final configurations are perceptually very similar
between simulation with FORK-1S and the full body physics en-
gine.

Additionally, we have performed a number of experiments to ex-
plore how joint constraint violation errors grow as external forces
are applied. The error at each joint is measured as the Euclidean
distance between constraint attachment points of the body pairs,
which are accumulated over all joints and scaled by the bounding
sphere radius of the mechanism.

Example # links Vortex FORK-1S
N=1 N=4 N=8

Helix 50 240 20 12 15
Helix 100 470 32 16 21
Helix 400 2150 112 84 76
Ladder 48 334 22 14 18
Robot arm 20 121 24 18 21

Table 1: The mean computation time in µs per simulation step for
various examples. Our method withN threads is compared against
performing a full constrained rigid body simulation using the Vor-
tex physics engine.

Figure 5 shows error plots for the “Y” mechanism and robotic arm
as a single end effector is pulled in various directions. The relative
error is computed as the position violation of the constraint, accu-
mulated over all joints and scaled by the bounding sphere radius
r of the mechanism. This is plotted versus the relative displace-
ment of the end effector, which is computed as the Euclidean norm
of the twist with the linear component scaled by r and the angular
component scaled by 2π. The rate of increase in the error is depen-
dent on the direction of the applied force, but even for significant
displacements of the end-effector, the proportional constraint error
remains low. Perceptually there is often no constraint violation, as
demonstrated in the accompanying video. However, although the
error remains relatively low, our method is based on a low order ap-
proximation, and once the mechanism is sufficiently displaced from
its initial configuration the error increases sharply.

7.1 Performance

Here, we compare the overhead of simulating a mechanism with a
constrained rigid body physics engine versus the method outlined
in this paper. The computation times for solving the dynamical
system in Section 6 and performing numerical integration is given
in Table 1. Each mechanism listed in the table was simulated using
a single threaded version of the Vortex physics engine, as well as
our FORK-1S implementation using different numbers of threads
for the parallel update of internal links. Note that only moderate
efforts were made to optimize our implementation.

The FORK-1S method performed better in all cases, with the most
drastic speedups observed when simulating long serial chains. No-
tably, there is a 28 times performance increase for the 400 link helix
example. Also, as Table 1 suggests, there is a “sweet spot” in choos-
ing the thread count for simulating a particular mechanism, with an
increase of threads not necessarily giving better performance.

One practical consideration that impacts performance significantly
is grouping the internal links so that updates are performed in
batches per thread. This avoid unnecessary context switching. Ad-
ditionally, the associated data structures are stored contiguously in
memory in order to minimize memory thrashing issues.

7.2 Discussion and limitations

Constraint errors result in our interior body reconstruction when we
apply large external forces. As previously discussed, these errors
can be fixed by allowing rigid bodies to stretch, but there is a limit to
how large external forces can grow before geometry modifications
are visible. As such, we have imagined the addition of a model
to reduce compliance as the system is pulled from its rest state.
This would help address the fact that the structure should become
stiffer as singular configurations are approached, and would help
us approximately model geometric limits of the internal joints. We
plan to implement such a non-linear compliance scaling method in
future work.

FORK-1S

FORK-1S

FORK-1S

Vortex

undeformed

Vortex
Vortex undeformed

undeformed

Figure 4: Deforming a helix (left), spring ladder (middle), and “Y” mechanism (right). The rest configuration is shown, as well as a
comparison between the static solution reach by simulation with FORK-1S vs. a constrained rigid body simulator (Vortex). In each case, a
100N force is applied (yellow arrow);all joints use a stiffness of K = 1000.

0

0.01

0.02

0.03

0.04

0 0.1 0.2 0.3 0.4

re
la

ti
v
e

 c
o

n
s
tr

a
in

t
e

rr
o

r

relative displacement |K-1wext|

"Y"-mechanism Up

"Y"-mechanism Right

"Y"-mechanism Left

"Y"-mechanism Down

Robot arm Down

Robot arm toward wrist

Figure 5: The relative constraint error is measured for the “Y”
shaped mechanism and the robotic arm as a single end effector is
pulled is various directions. The vertical axis gives the constraint
violation error, which is relative to the mechanism size. The hori-
zontal axis gives the relative displacement of the end effector, which
is also represented in proportion to the mechanism.

Adaptively stiffening the system would help keep the state closer to
the rest configuration, avoiding states where joint constraint viola-
tions would be visible. Nevertheless, we also note that it is possible
to make small modifications to the geometry to correct the error at
the expense of letting rigid links deform. Such a strategy has been
used in repairing foot skate [Kovar et al. 2002], and such length
changes are often not perceived [Harrison et al. 2004].

We note that the behavior of our reduced model can differ from
the full model. In general, we observe the reduced systems to be
slightly stiffer than their fully simulated systems. This is not sur-
prising, and we believe this occurs naturally due to the lower num-
ber of degrees of freedom and the linearization we impose. Higher
levels of damping seen in the reduced system can be explained by
our implicit integration, while Vortex uses a symplectic integration
scheme.

Finally, the construction process assumes that we can walk from a
base node in the graph to all end effectors. When there are loop
closures between two end effectors that are on the far side of the
graph from the base, the incremental algorithm will not find them.
An alternative projection technique is necessary in this case.

8 Conclusion

First order reduced models of compliant mechanisms provide a fast
alternative to simulating virtual humans and robots. By focusing

only on the end effectors, the simulation only needs to solve a small
dense system while the full state of the non-reduced mechanism can
be computed in parallel. Using the exponential map to compute the
state of the internal links produces good behavior with little sepa-
ration at joints for a good range of interaction forces. Our method
deals with loops in the constraints, and permits different levels of
physics fidelity by adjusting the number of end effectors included in
the reduced model. FORK-1S provide an important new approach
among a large spectrum of techniques important for the creation
of interactive and immerse virtual environments, and we believe it
will be a useful tool in improving training simulations once fully
integrated into Vortex simulation software.

8.1 Future Work

A number of avenues of future work are discussed in Section 7.2.
We also intend to investigate various methods for controlling end
effector motion. This is useful for many applications, such as ma-
nipulation tasks for character animation and robotics simulation.
Rather than assuming a static joint configuration with PD servo
control, it may be possible to linearize the compliant behavior at
multiple configurations across pose space. By blending across these
models, the compliant behavior of the mechanism could be simu-
lated for the entire motion trajectory. Additionally, for applications
that require gain scheduling, the state space for the linearization can
include the combined joint pose and stiffness parameters.

Appendix - Rigid Body Kinematics

Any rigid motion from one position to another may be described as
a screw motion. That is, there exists a coordinate frame in which
the motion consists of a translation along an axis combined with a
rotation about the same axis. The time derivative of a screw mo-
tion is a twist consisting of the linear velocity v ∈ R3 and angular
velocity ω ∈ R3. Since much of this paper concerns statics, and be-
cause it is convenient to write rigid displacements (screws) in body
frames, we abuse the term twist for these small displacements ξ.
We use φ and the term velocity to write the equations of motion
and specifically use the body velocity as defined by Murray et al.
[1994]. Analogous to a twist, a wrench w ∈ R6 is a generalized
force consisting of a linear force f ∈ R3 and a rotational torque
τ ∈ R3. Following Murray et al., we pack twist and wrench vec-
tors with linear parts on top and angular parts on the bottom, i.e.,
φ = (vTωT)T and w = (fT τT)T .

Twists and wrenches transform to different coordinate frames using

the adjoint matrix Ad ∈ R6×6. To transform twists from coordinate
frame a to coordinate frame b, we directly use

b
aAd =

[
b
aR

bp̂a
b
aR

0 b
aR

]
, (20)

where b
aR ∈ SO(3) is the rotation matrix from frame a to b, the

origin of coordinate frame a in coordinates of frame b is bpa, and
ˆ is the cross product operator. That is, aφ in frame b is computed
as bφ = b

aAd
aφ. The inverse transpose of the adjoint is used to

transform a wrench between coordinate frames, bw = b
aAd

−T aw.
Finally, we use the exponential map eφ̂ : R6 → SE(3) on a twist to
compute the relative rigid motion as a homogeneous transformation
matrix using formulas given by Murray et al. [1994].

Acknowledgements

We thank the anonymous reviewers for their suggestions for im-
proving the paper. This work was supported by funding from
NSERC, CFI, MITACS, CINQ, and GRAND NCE.

References

ALLARD, J., FAURE, F., COURTECUISSE, H., FALIPOU, F.,
DURIEZ, C., AND KRY, P. G. 2010. Volume contact constraints
at arbitrary resolution. ACM Trans. on Graphics 29, 4, 82.

ASCHER, U., AND LIN, P. 1999. Sequential regularization meth-
ods for simulating mechanical systems with many closed loops.
SIAM Journal on Scientific Computing 21, 4, 1244–1262.

ASCHER, U. M., AND PETZOLD, L. R. 1998. Computer Methods
for Ordinary Differential Equations and Differential-Algebraic
Equations, 1st ed. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, USA.

BARAFF, D., AND WITKIN, A. 1998. Large steps in cloth sim-
ulation. In Proc. of the 25th annual conference on Computer
graphics and interactive techniques, 43–54.

BARAFF, D. 1996. Linear-time dynamics using lagrange mul-
tipliers. In Proc. of the 23rd annual conference on Computer
graphics and interactive techniques, 137–146.

BARBIČ, J., AND ZHAO, Y. 2011. Real-time large-deformation
substructuring. ACM Trans. on Graphics 30, 4 (July), 91:1–91:8.

BUSS, S. R., AND KIM, J.-S. 2004. Selectively damped least
squares for inverse kinematics. Journal of Graphics Tools 10.

DURIEZ, C., DUBOIS, F., KHEDDAR, A., AND ANDRIOT, C.
2006. Realistic haptic rendering of interacting deformable ob-
jects in virtual environments. IEEE Trans. on Visualization and
Computer Graphics 12, 1, 36–47.

ERLEBEN, K. 2007. Velocity-based shock propagation for multi-
body dynamics animation. ACM Trans. on Graphics 26, 2.

FAURE, F. 1999. Fast iterative refinement of articulated solid dy-
namics. IEEE Trans. on Visualization and Computer Graphics
5, 3, 268–276.

FEATHERSTONE, R., AND ORIN, D. 2000. Robot dynamics: equa-
tions and algorithms. Proc. of IEEE International Conference on
Robotics and Automation 1, 826–834.

FEATHERSTONE, R. 2008. Rigid Body Dynamics Algorithms.
Springer, New York.

HAJIAN, A. Z., AND HOWE, R. D. 1997. Identification of the me-
chanical impedance at the human finger tip. Journal of biome-
chanical engineering 119, 1, 109–114.

HANSEN, P. 1990. Truncated singular value decomposition solu-
tions to discrete ill-posed problems with ill-determined numeri-
cal rank. SIAM Journal on Scientific and Statistical Computing
11, 3, 503–518.

HARMON, D., AND ZORIN, D. 2013. Subspace integration with
local deformations. ACM Trans. on Graphics 32, 4, 107:1–
107:10.

HARRISON, J., RENSINK, R. A., AND VAN DE PANNE, M. 2004.
Obscuring length changes during animated motion. ACM Trans.
on Graphics 23, 3, 569–573.

HASSER, C. J., AND CUTKOSKY, M. R. 2002. System identifica-
tion of the human hand grasping a haptic knob. In Proc. of the
10th Symp. on Haptic Interfaces for Virtual Environments and
Teleoperator Systems.

KHATIB, O. 1987. A unified approach for motion and force control
of robot manipulators: The operational space formulation. IEEE
Journal of Robotics and Automation 3, 1, 43–53.

KIM, T., AND JAMES, D. 2012. Physics-based character skin-
ning using multidomain subspace deformations. IEEE Trans. on
Visualization and Computer Graphics 18, 8, 1228–1240.

KOVAR, L., SCHREINER, J., AND GLEICHER, M. 2002. Foot-
skate cleanup for motion capture editing. In Proc. of the ACM
SIGGRAPH/Eurographics Symp. on Comp. Anim., 97–104.

KRY, P. G., REVERET, L., FAURE, F., AND CANI, M. P. 2009.
Modal locomotion: Animating virtual characters with natural vi-
brations. Computer Graphics Forum 28, 2, 289–298.

MUKHERJEE, R. M., AND ANDERSON, K. S. 2006. A logarith-
mic complexity divide-and-conquer algorithm for multi-flexible
articulated body dynamics. Journal of Computational and Non-
linear Dynamics 2, 1, 10–21.

MURRAY, R., LI, Z., AND SASTRY, S. S. 1994. A mathematical
introduction to robotic manipulation. CRC Press.

NEALEN, A., MÜLLER, M., KEISER, R., BOXERMAN, E., AND
CARLSON, M. 2006. Physically based deformable models in
computer graphics. Computer Graphics Forum 25, 4, 809–836.

NESME, M., KRY, P. G., JEŘÁBKOVÁ, L., AND FAURE, F. 2009.
Preserving topology and elasticity for embedded deformable
models. ACM Trans. on Graphics 28, 3, 52.

O’SULLIVAN, C., AND DINGLIANA, J. 2001. Collisions and per-
ception. ACM Trans. on Graphics 20, 3, 151–168.

PARKER, E. G., AND O’BRIEN, J. F. 2009. Real-time deforma-
tion and fracture in a game environment. In Proc. of the ACM
SIGGRAPH/Eurographics Symp. on Comp. Anim., 165–175.

REDON, S., GALOPPO, N., AND LIN, M. C. 2005. Adaptive
dynamics of articulated bodies. ACM Trans. on Graphics 24, 3,
936–945.

YAMANE, K., AND NAKAMURA, Y. 2003. Natural motion an-
imation through constraining and deconstraining at will. IEEE
Trans. on Visualization and Computer Graphics 9, 3, 352–360.

YAMANE, K., AND NAKAMURA, Y. 2006. Stable penalty-based
model of frictional contacts. In Proc. of IEEE International Con-
ference on Robotics and Automation, 1904–1909.

