
EigenSkin: Real Time Large Deformation Character Skinning in Hardware

Paul G. Kry, Doug L. James, and Dinesh K. Pai
University of British Columbia
{pgkry|djames|pai}@cs.ubc.ca

a) FEM simulated pose b) SSD only c) EigenSkin d) Real time hardware simulation

Figure 1: Comparison of EigenSkin and Skeletal-Subspace Deformation for an extreme pose not in the training data. Note significant dif-
ferences in the thumb between a) the new pose computed from our finite element hand model, b) skeletal-subspace deformation
only, and c) EigenSkin with one eigendisplacements and one normal correction per support. Figure d) shows our EigenSkin
hand example being animated using a CyberGlove. The hand model shown here consists of 55,904 triangles and is drawn using
display lists with a GeForce3 vertex program.

Abstract

We present a technique which allows subtle nonlinear quasi-static
deformations of articulated characters to be compactly approxi-
mated by data-dependent eigenbases which are optimized for real
time rendering on commodity graphics hardware. The method
extends the common Skeletal-Subspace Deformation (SSD) tech-
nique to provide efficient approximations of the complex deforma-
tion behaviours exhibited in simulated, measured, and artist-drawn
characters. Instead of storing displacements for key poses (which
may be numerous), we precompute principal components of the de-
formation influences for individual kinematic joints, and so con-
struct error-optimal eigenbases describing each joint’s deformation
subspace. Pose-dependent deformations are then expressed in terms
of these reduced eigenbases, allowing precomputed coefficients of
the eigenbasis to be interpolated at run time. Vertex program hard-
ware can then efficiently render nonlinear skin deformations using
a small number of eigendisplacements stored in graphics hardware.
We refer to the final resulting character skinning construct as the
model’s EigenSkin. Animation results are presented for a very large
nonlinear finite element model of a human hand rendered in real
time at minimal cost to the main CPU.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically-based modeling I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation, Virtual reality

Keywords: skeletal-subspace deformation, pose-space deforma-
tion, principal component analysis, hardware rendering

1 Introduction

Rendering of complex physical deformation models for charac-
ter animation remains a significant hurdle for interactive applica-
tions, but one that has been largely overcome for off-line anima-
tion. Currently, most real time character animation, e.g., for video
games, is done using a very common linear transform blending
technique called (among other things) Skeletal-Subspace Deforma-
tion (SSD) [Magnenat-Thalmann et al. 1988]. It is extremely pop-
ular for its simplicity and plausibility, and is also widely supported
by graphics hardware accelerators. Despite this, it is also widely
known to suffer from several key problems:

• buckling of skin near joints, e.g., elbows, in extreme poses;

• poor behaviour near more complicated joints, such as shoul-
ders and thumbs;

• restrictions on the range of deformations that can be easily
modeled and displayed for various character poses.

While methods have been proposed to address this and have been
effectively employed by the motion picture industry [Lewis et al.
2000], due to memory and graphics hardware constraints nearly all
video game character animation is still done using traditional SSD.

In this paper, we present a practical technique which overcomes
all aforementioned SSD problems, and can be achieved using a

memory-efficient linear correction to the traditional SSD method.
The resulting EigenSkin construct allows subtle character defor-
mations for skin and clothing, such as those derived from highly
realistic artist-drawn poses, measurements from the real world, or
laboriously computed anatomically and physically-based models.
The deformations can be compactly represented in an efficient data-
dependent basis and rendered in real time using vertex shaders in
commodity graphics hardware, e.g., see [Lindholm et al. 2001].

Our approach is to start with an artist’s SSD approximation of
the character in question, as well as with geometry corresponding
to particular key poses not well approximated by SSD. Vertex dis-
placements between a given pose and the SSD model are mapped
back to the neutral character pose, providing a displacement field
pose correction. Instead of storing these displacement fields for
each key pose and then interpolating between them at runtime,
as in Pose Space Deformation (PSD) [Lewis et al. 2000], we use
Principal Component Analysis (PCA) to construct an error-optimal
eigendisplacement basis for representing this potentially large set
of pose corrections. However, we do not simply use PCA on the
displacement field defined over the entire surface, since this would
lead to a large number of important basis functions and be inef-
ficient for hardware rendering. Instead, we decompose the model
into locally supported domains learned from the influence of in-
dividual joints on the displacement fields (described in detail in
Section 2.2). The resulting memory sensitive set of locally sup-
ported eigendisplacement basis functions constitutes the EigenSkin
approximation, and is well suited to rendering in graphics hardware.
Please see Figure 1 for an example of EigenSkin results.

1.1 Previous Work

Significant work has occurred in graphics for deforming articulated
characters using geometric methods [Magnenat-Thalmann et al.
1988; Singh and Kokkevis 2000; Lewis et al. 2000] and physically-
based methods [Wilhelms and van Gelder 1997; Scheepers et al.
1997; Gourret et al. 1989]. Despite this, most character animation
in interactive applications, such as video games, is based on a geo-
metric skeletal deformation technique commonly referred to as lin-
ear blending, or matrix palette skinning, or Skeletal-Subspace De-
formation (SSD), in which vertex locations are weighted averages
of points in several coordinate frames (see [Magnenat-Thalmann
et al. 1988; Magnenat-Thalmann and Thalmann 1991]).

One alternative is to store a large database of character poses, and
interpolate between them [Maestri 1999]. While these approaches
give animators great control over character deformation, they have
the disadvantage of requiring a potentially very large number of
poses for animation, and also lack an underlying kinematic model.
Nevertheless, such approaches are common, especially for facial
animation [Parke et al. 1996].

A hybrid approach which effectively combines SSD and morph-
ing, is the work of Lewis et al. who introduced “Pose Space De-
formations” (PSD) [Lewis et al. 2000] to overcome the limitations
of linear transform blending while retaining a kinematic approach.
Starting with a (simple) SSD model, they then store vertex dis-
placement offsets between the SSD surface and various character
poses. At run time, the character may be simulated by mapping in-
terpolated displacements onto the underlying SSD character model,
thereby providing a kinematic deformation model which also has
artist-drawn poses. While this is a big improvement over character
morphing, and sufficiently interactive for animators, storing surface
displacements for each pose in a large pose space is a memory in-
efficient approach for hardware applications.

Similar to PSD, Sloan et al. show a more efficient method of
interpolating an articulated figure using example shapes scattered
in an abstract space [Sloan et al. 2001]. The abstract space con-
sists of dimensions describing global properties of the shape, such

as age and gender, but also includes dimensions used to describe
configuration, such as the amount of bend at an elbow. Like our
method, interpolation occurs in the rest pose before SSD is applied,
however, the interpolation involves blending over all of the exam-
ple shapes for every vertex. This becomes inefficient and difficult
to map to hardware with the large number of examples required for
a highly articulated figure since the independence of abstract space
dimensions is not taken into account (e.g., bend in left elbow and
bend in right elbow).

In addition to character poses created by 3D artists, we also
wish to efficiently render deformation behaviour computed using
physically-based and reality-based deformable models. Such mod-
els have been widely used [Terzopoulos and Fleischer 1988; Ter-
zopoulos and Witkin 1988; Metaxas and Terzopoulos 1992; Cani-
Gascuel 1998; O’Brien and Hodgins 1999; Pai et al. 2001; Allen
et al. 2002], although most approaches are not intended for real time
(hardware) rendering. Recently, approaches for fast simulation of
physical dynamic volumetric deformations have appeared [Zhuang
and Canny 1999; Debunne et al. 2001; Picinbono et al. 2001] for
interactive applications, such as surgical simulation. Our interest
is more closely related to quasi-static deformation, for which fast
deformation techniques also exist [Cotin et al. 1999; James and Pai
1999] but are unfortunately restricted to small deformations unlike
those associated with articulated characters (although see [James
and Pai 2002b]). More closely related to character animation is
anatomically based modeling of physical deformable models [Wil-
helms and van Gelder 1997]; examples include musculature [Chen
and Zeltzer 1992; Scheepers et al. 1997] and faces [Lee et al. 1995].

We note that a large class of pose-dependent quasi-static defor-
mations can be described using the EigenSkin approach, largely
independent of their origin, whether artist-drawn, measured, or
anatomically based physical models. For example, pose-space pa-
rameterization of nonhysteretic cloth on articulated characters has
recently been considered [Herman 2001], and could be optimized
for hardware rendering using the techniques presented herein.

Finally, the use of reduced eigenbasis representations for high-
dimensional models has a long history in science, with founda-
tions on Principal Component Analysis and Karhunen-Loeve the-
ory [Jolliffe 1986; Hyvarinen et al. 2001]. Related deformation
topics include a morphable model for face synthesis [Blanz and
Vetter 1999], modal analysis for dynamic vibrations [Pentland and
Williams July 1989; James and Pai 2002a], decomposition of static
deformations [Bookstein 1989], and recognition applications in
computer vision, e.g., face recognition [Turk and Pentland 1991].

1.2 Our Contribution

We introduce a method for extending SSD that enhances its range
of modeling capabilities at very little cost, and in a manner opti-
mized for real time graphics hardware. EigenSkin constitutes an
error-optimal set of eigenbases for approximating the original de-
formation model, for a given amount of per-vertex displacement
memory. We illustrate our method by rendering a very large fi-
nite element model (which took several hundred hours to compute)
at interactive rates on a PC with negligible cost to the main CPU.
Using commodity graphics hardware, EigenSkin enables the sim-
ulation of subtle nonlinear surface deformations of geometrically
complex models at little more than the cost of rendering.

2 Method

In this section we describe the process of augmenting an existing
SSD model with EigenSkin. Although the process is shown for dis-
placements, it applies similarly to the construction of linear normal
corrections, allowing EigenSkin to correct SSD for both shape and
shading.

2.1 Notation: SSD and Bone Weights

Let B be the set of all bone indices, and denote the bones affect-
ing vertex i by the subset of indices Bi ⊂ B. For a given skeletal
configuration, with bone transforms {Tb}b∈B

, the position of the
ith vertex after SSD is

ṽi =
(

∑b∈Bi
wibTb

)

vi (1)

where vi is the position of vertex i in the neutral pose, and wib give
the affine combination of bone transforms for this vertex. In the
character’s neutral pose we assume that Tb = I,∀b ∈ B.

Starting with a reasonable set of bone weights is important be-
cause the added displacements only correct the SSD predicted mesh
shape near observed configurations. We compute our SSD bone
weights as a function of vertex bone distances in the neutral pose.
This yields reasonable bone weights which change smoothly over
the mesh. Filtering may be required to force each bone’s weights
to zero at the edges of its influence to prevent discontinuities. In
principle, the weights can be computed to optimize the quality of
the EigenSkin correction, and this is a topic of future research.

2.2 Locally Supported Joint Displacements

Let P be the set of indices of observed poses with 0∈P repre-
senting the rest pose and let the observed vertex positions and bone
transforms for pose p∈P be denoted as vp and T p, respectively.
The differences between the SSD vertex positions and the observed
pose positions mapped back into the rest pose yield displacements
(see Figure 2),

up
i =

(

∑b∈Bi
wibT p

b

)−1
vp

i − v0
i .

The observed mesh shapes result when these displacements are
added to the rest pose before applying the bone weighted trans-
formation. If the deformations vary smoothly over pose space, then
interpolated displacements provide a good approximation of defor-
mations at configurations between observations.

u

v 0

(wT)Σ
−1

v
v p

~

Figure 2: The displacement for vertex i and pose p, denoted up
i

,
is the difference between its observed position, vp

i
, and its position

under SSD, ṽp
i

, mapped back into the rest pose.

To make our hardware implementation possible, we exploit the
observation that localized changes to the configuration of an artic-
ulated character often result in local deformations. This indepen-
dence occurs in most articulated characters, and certainly exists in
realistic human hands. Bending a single joint in one finger, though
difficult without bending any other joints, does not cause noticeable
deformations in the other fingers. Likewise, bending one finger of
our finite element hand model does not cause noticeable deforma-
tions in the others (see Figure 4). Although the finite element model
deformations resulting from a change to a single joint are global, the
displacement magnitudes are imperceptible at vertices that are far
from the joint. We refer to the set of vertices significantly affected
by a joint motion as the joint support. Note that the joint supports

depend on the SSD weights and in general they do not correspond
to the sets of vertices influenced by bone transforms.

To find the support of a joint we compute the deformations that
result from moving the joint to different positions in its full range
of motion while keeping all other joints fixed to the rest pose posi-
tion. The set of vertices having a displacement larger than a given
threshold in any of these computed poses then becomes the support
of this joint. For example, in our case we used four percent of the
maximum observed displacement (we will see that memory con-
straints also play a large part). Several joint supports of our finite
element hand model are shown in Figure 3. Note that we consider
only single joint perturbations due to the high dimensionality of
our hand model’s configuration space. Nevertheless, we can still
approximate linear coupling effects since we let the joint supports
overlap.

thumb CM thumb MP thumb IP index MP

Figure 3: Joint supports for thumb carpal-metacarpal, metacarpo-
phalangeal, inter-phalangeal joints and index metacarpo-phalangeal
joint.

For notational convenience, suppose the articulated figure has
a tree structure, i.e., does not have loops, such as for humanoids,
and joints are denoted by the index of the adjacent bone furthest
from the root of the hierarchy. Denoting 0 ∈ B as the root, joints
have nonzero index. Let Pj ⊂ P be the set of pose indices used to
compute the support for joint j and let S j be the set of vertex indices
in the joint support. Furthermore, let Ji be the set of joints whose
supports contain vertex i. That is, Ji = { j|i ∈ S j} ⊂ B\{0}.

2.3 Eigendisplacements

Although the pose displacements computed for independently per-
turbed joints may be used as a basis for describing displacements
of new configurations, significant redundancy exists in the pose dis-
placements, e.g., skin bulging in similar directions. Principal Com-
ponent Analysis (PCA) of joint support displacements yields an or-
thogonal displacement basis, which we term eigendisplacements.
As guaranteed by PCA, adding successive corrections with the
eigendisplacement basis provides approximations which are better
in a formal, least squares, sense [Golub and van Loan 1996].

Computing principal components with the Euclidean norm is
equivalent to computing the singular value decomposition (in the
case of a square symmetric matrix it is equivalent to eigenanaly-
sis). For each joint j we construct a rectangular matrix, A j , of size
3|S j|× |Pj|, whose columns consist of the x,y, and z components of
the vertex displacements on the joint support. In the singular value
decomposition, A j = U jD jV

T
j , the matrix U j has the same size

as A j and consists of columns of eigendisplacements for support j
in the same block column format that was used to build A j . The
singular values, in the diagonal matrix D j , identify the importance
that each eigendisplacement has in reproducing the observed poses
(they relate to the proportion of variation explained by each prin-
cipal component). Note that the matrix V j and the singular values
combine to gives the coordinates of our observed displacements in

Figure 4: A subset of the training data showing some of the thumb and index finger poses.

the eigendisplacement basis. We denote û jk
i

the eigendisplacement
of vertex i in the basis of support j with importance k where k goes
from 1 (the principal component) up to |Pj|. Figure 5 shows the
first four eigendisplacements of the thumb carpal-metacarpal joint
support in our hand example.

At this point we can truncate each eigendisplacement basis ex-
pansion knowing that the error will be minimized in the least
squares sense. The hardware limits the size of each truncated ba-
sis set as there is a limited amount of per vertex data memory in
which we can send the eigendisplacements to the EigenSkin ver-
tex program (see Section 2.5). Letting n j < |Pj| be the size of the
truncated basis set of joint support j, this constraint can be written
as

max
i

n j|Ji| ≤ maximum possible displacements.

Instead of choosing each n j individually, we take an equal number
of eigendisplacements from each support.

The equation for computing the deformed mesh shape for an ar-
bitrary configuration with bone transforms {Tb}b∈B

can then be
written as

ṽi = ∑
b∈Bi

wibTb

(

v0
i + ∑

j∈Ji

n j

∑
k=1

α̃ jkû jk
i

)

(2)

where α̃ jk gives the coordinates of the displacement correction in
terms of the reduced eigendisplacement basis. These coordinates
are computed to interpolate between observed displacements, as
shown below. Note that Equation 2 provides a powerful model for
shape deformation (see, in particular, [James and Pai 2002a]).

2.4 Interpolating Eigendisplacement Coordinates

As an articulated character moves between observed configurations,
its shape should interpolate the observed poses. To do this we inter-
polate the eigendisplacement coordinates of the observed configu-
rations. For the truncated set of eigendisplacements at each support,
we need the coordinates in the truncated basis which give displace-
ments closest to the observed displacements. That is, we want to
solve for α p in

up
i = ∑

j∈Ji

n j

∑
k=1

α p
jk

û jk
i .

This is an over constrained linear system which we can solve us-
ing least squares to get the best fit to our observed displacements.

Conveniently, the least squares solution for any number of eigendis-
placements, n j , is available from the singular value decomposition

computed in Section 2.3. For joint support j, column p of D jV
T
j

contains α p
jk

for k = 1..|Pj|.

This leads us to the problem of computing the eigendisplace-
ment coordinates for arbitrary configurations. Radial basis func-
tions [Powell 1987] (RBF) are a common choice for interpolating
scattered data, and have been used by Lewis et al. [Lewis et al.
2000] for pose space deformation and by Sloan et al. [Sloan et al.
2001] for shape interpolation with articulated figures. Our interpo-
lation is one dimensional since all our observations involved per-
turbations of individual joints. Although we could use a simpler
interpolant, we also choose RBFs because they extend easily to the
higher dimensional domains needed to let EigenSkin capture non-
linear multi-joint coupling effects (a subject of future work).

We use Gaussian interpolation shape functions, φ(r) =
exp(−r/r0). In our one dimensional case, the α jk only depend
on the distance of joint j from its settings in poses Pj . For revo-
lute joints, we can easily compute the distance, r, by comparing the
joint angles directly. For joints with more than one rotational de-
gree of freedom, we compute distance as the angle in the axis-angle
representation of the joint’s rotation matrix.

Ideally, with a large number of observed joint perturbations per
support we would interpolate using fewer interpolation basis func-
tions (φ) than observations. In the case of our hand model, how-
ever, we only have approximately half a dozen pose perturbations
for each joint degree of freedom (for a total of approximately 120
poses). This justifies our use of interpolation basis functions since
the total cost of constructing and evaluating the RBF interpolant for
half a dozen poses is negligible. The interpolated eigendisplace-
ment coordinates for a new pose are computed as

α̃ jk = ∑
q∈Pj

λ jk
q φ(r jq)

where r jq is the distance of joint j in the new pose from its setting

in pose q, and the λ jk
q for q ∈ Pj are given by the solution to the

linear system,

α p
jk

= ∑
q∈Pj

λ jk
q φ(rp

jq), for p ∈ Pj.

Here rp
jq

is the distance between joint j’s position in pose p and

its position in pose q (and thus rp
jp

= 0). The system of equations

#0 (σ0 ≈ 0.093) #1 (σ1 ≈ 0.065) #2 (σ2 ≈ 0.023) #3 (σ3 ≈ 0.018)

Figure 5: Eigendisplacements and singular values, σ , for thumb carpal-metacarpal joint in left-right order of importance. XYZ compo-
nents of displacement are represented using an RGB colour correspondence.

is square, and invertible provided Pj does not contain two observa-
tions with identical joint settings.

2.5 EigenSkin Vertex Programming

Modern vertex programming hardware (e.g., [Lindholm et al.
2001]) is ideally suited to performing the per-vertex weighted lin-
ear superposition of eigendisplacements (contained in the large
brackets of Equation 2) performed prior to the SSD weighted
transformation. Depending on the number of eigendisplacements
used, the weighted eigendisplacement vector accumulations are
about as costly as the weighted transform matrix-vector multiply-
accumulate operations.

Current vertex programs limit per vertex data to 16 4-tuples of
floats. In our implementation we impose a limit of 10 eigendis-
placements per vertex (or 5 eigendisplacements and 5 normal cor-
rections), which still leaves room for texture coordinates after spec-
ifying the vertex position, normal, colour, and bone weights. Notice
that this limit is not hard since careful choices and packing of per
vertex data permit more than 10 of the 16 available tuples to be
allocated for EigenSkin data.

If a vertex is in many supports then the number of eigendis-
placements renderable by current hardware may be too severely
restricted. In this case it is useful to smoothly mask the sup-
port groups to smaller regions, otherwise fewer eigendisplacements
must be used.

3 Results

To illustrate our EigenSkin method, we have constructed a finite
element model of the human hand (see Figure 6) which exhibits
subtle nonlinear skin deformations. The surface skin model and
matching skeleton are based on Loop subdivision [Loop 1987] of a
hand mesh exported from Curious Labs Poser [Curious Labs Inc.].
A finite element mesh containing 11,171 high-order 10-node tetra-
hedral elements was generated using NETGEN [Schoberl 1997]
(and subsequent simplification). The hand was moved into various
poses by applying position constraints to vertices adjacent to the
rigid bones, and computing the resulting tissue deformation using
geometrically nonlinear static finite element analyses [Zienkiewicz
1977] with (a modified version of) the CalculiX program [Dhondt
and Wittig]. Approximately half a dozen poses were computed
for each joint degree of freedom to estimate the locally supported
joint eigendisplacements, and 25 additional poses were computed
for validation. Finite element analyses were performed on a cluster
of modern workstations and consumed several hundred CPU hours.

The model was not intended to reproduce detailed skin wrinkling
effects, and lacks anatomical details such as tendons, blood vessels,
and skin layers. Despite these limitations, the model reasonably de-
scribes bulk tissue deformations and was sufficient to illustrate our
method.

Figure 6: Skeleton used to drive finite element hand model.

As shown in Figure 7, the eigendisplacement approximations of
the hand model produce a clear improvement over the traditional
SSD algorithm. Even with only five leading eigendisplacements,
the EigenSkin approximation is essentially indistinguishable from
the original FEM model.

Our interactive simulation uses a CyberGlove [Immersion Cor-
poration] input device to interactively drive our EigenSkin hand
model, while graphical feedback is rendered using OpenGL and a
GeForce3 graphics card. Radial basis function interpolation of the
pose-space data is performed on the main CPU, with eigendisplace-
ment amplitudes and bone transforms set as input parameters to the
EigenSkin vertex programs which are compiled as static display
lists. Currently, our unoptimized implementation renders the Eigen-
Skinned hand model only slightly slower than the traditional SSD
model. A large 55,904 triangle hand model renders at 47 frames per
second (FPS), while a coarser 13,976 triangle model achieves 181
FPS. Please see our accompanying video for a demonstration of the
real time simulation.

4 Conclusions and Discussion

Our results confirm that the EigenSkin method is an effective tool
for character skinning when compressed hardware renderable ap-
proximations are required for an articulated character’s nonlinear
quasi-static deformations. EigenSkin works best when SSD correc-
tions are localized, providing independence between different parts
of the mesh, and are stable (i.e., corrections vary slowly over pose-
space), allowing accurate and efficient interpolation. Under these

Skeletal-Subspace Deformation Only 1 eigendisplacement 2 eigendisplacements
relErr=1.000 relErr=0.161 relErr=0.160

3 eigendisplacements 4 eigendisplacements 5 eigendisplacements
relErr=0.100 relErr=0.098 relErr=0.065

Figure 7: EigenSkin approximation for 0–5 eigendisplacements of the thumb’s carpal-metacarpal joint shown with the 13,976 triangle hand
model. The pose geometry (skin colour) is approximated by the EigenSkin model (green). The l2 relative displacement error (relErr) is also
printed below each image. Remarkably, the SSD model is substantially improved after the addition of only one eigendisplacement.

conditions, very practical results can be obtained in which only one
or two eigendisplacements per joint produce a visually dramatic
improvement over commonplace Skeletal-Subspace Deformation.

Limitations and Future Work: Despite the advantages of
EigenSkin, as presented there are several limitations to the method
which are topics of current research. We assume that an initial SSD
model is provided and then show how the EigenSkin corrections
are beneficial. However, an alternate approach involves optimizing
bone weights to allow better EigenSkin approximations of the dis-
placements and normals. While good eigendisplacement bases can
often be constructed using displacements resulting from single joint
motions, in practice it is desirable to allow general pose sets and to
recover nonlinear joint-joint coupling phenomena.

References

ALLEN, B., CURLESS, B., AND POPOVIC, Z. 2002. Articulated body deformation
from range scan data. In SIGGRAPH 02 Conference Proceedings, Addison Wesley,
Annual Conference Series, ACM SIGGRAPH.

BLANZ, V., AND VETTER, T. 1999. A morphable model for the synthesis of 3D faces.
In SIGGRAPH 99 Conference Proceedings, Addison Wesley, Annual Conference
Series, ACM SIGGRAPH.

BOOKSTEIN, F. L. 1989. Principal Warps: Thin-Plate Splines and the Decomposition
of Deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence
11, 6 (June).

CANI-GASCUEL, M.-P. 1998. Layered Deformable Models with Implicit Surfaces.
In Graphics Interface, 201–208.

CHEN, D. T., AND ZELTZER, D. 1992. Pump it up: Computer animation based model
of muscle using the finite element method. In Computer Graphics (SIGGRAPH 92
Conference Proceedings), Addison Wesley, vol. 26, 89–98.

COTIN, S., DELINGETTE, H., AND AYACHE, N. 1999. Realtime Elastic Deforma-
tions of Soft Tissues for Surgery Simulation. IEEE Transactions On Visualization
and Computer Graphics 5, 1, 62–73.

CURIOUS LABS INC. Poser 4, Santa Cruz, CA.,
http://www.curiouslabs.com/products/poser4.

DEBUNNE, G., DESBRUN, M., BARR, A., AND CANI, M.-P. 2001. Dynamic Real-
Time Deformations Using Space and Time Adaptive Sampling. In SIGGRAPH
01 Conference Proceedings, Addison Wesley, Annual Conference Series, ACM
SIGGRAPH.

DHONDT, G., AND WITTIG, K. CalculiX: A Free Software Three-Dimensional Struc-
tural Finite Element Program, http://www.calculix.de.

GOLUB, G. H., AND VAN LOAN, C. F. 1996. Matrix Computations, third ed. Johns
Hopkins University Press, Baltimore and London.

GOURRET, J., MAGNENAT-THALMANN, N., AND THALMANN, D. 1989. Simula-
tion of Object and Human Skin Deformations in a Grasping Task. In Computer
Graphics (SIGGRAPH 89 Conference Proceedings), Addison Wesley.

HERMAN, D. L. 2001. Using Precomputed Cloth Simulations for Interactive Ap-
plications. In SIGGRAPH 2001 Conference Abstracts and Applications, Addison
Wesley, Annual Conference Series, ACM SIGGRAPH.

HYVARINEN, A., OJA, E., AND KARHUNEN, J. 2001. Independent Component
Analysis. Wiley, Johns and Sons, Inc.

IMMERSION CORPORATION. CyberGlove,
http://www.immersion.com.

JAMES, D. L., AND PAI, D. K. 1999. ARTDEFO: Accurate Real Time Deformable
Objects. In SIGGRAPH 99 Conference Proceedings, Addison Wesley, Annual Con-
ference Series, ACM SIGGRAPH, 65–72.

JAMES, D. L., AND PAI, D. K. 2002. DYRT: Dynamic response textures for real time
deformation simulation with graphics hardware. In SIGGRAPH 02 Conference
Proceedings, Addison Wesley, Annual Conference Series, ACM SIGGRAPH.

JAMES, D. L., AND PAI, D. K. 2002. Real time simulation of elastokinematic models.
In ICRA2002: IEEE International Conference on Robotics and Automation.

JOLLIFFE, I. 1986. Principal Component Analysis. Springer Verlag.

LEE, Y., TERZOPOULOS, D., AND WALTERS, K. 1995. Realistic Modeling for Facial
Animation. In SIGGRAPH 95 Conference Proceedings, Addison Wesley, vol. 29
of Annual Conference Series, ACM SIGGRAPH, 55–62.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose Space Deformations:
A Unified Approach to Shape Interpolation a nd Skeleton-Driven Deformation.
In SIGGRAPH 00 Conference Proceedings, Addison Wesley, Annual Conference
Series, ACM SIGGRAPH.

LINDHOLM, E., J.KILGARD, M., AND MORETON, H. 2001. A User-Programmable
Vertex Engine. In SIGGRAPH 01 Conference Proceedings, Addison Wesley, An-
nual Conference Series, ACM SIGGRAPH.

LOOP, C. 1987. Smooth Subdivision Surfaces Based on Triangles. Master’s thesis,
University of Utah, Department of Mathematics.

MAESTRI, G. 1999. Digital Character Animation 2, Vol. 1. New Rider, Indianapolis.

MAGNENAT-THALMANN, N., AND THALMANN, D. 1991. Human Body Deforma-
tions Using Joint-dependent Local Operators and Finite Element Theory. In Making
Them Move: Mechanics, Control, and Animation of Articulated Figures. Morgan
Kaufmann, 243–262.

MAGNENAT-THALMANN, N., LAPERRIERE, R., AND THALMANN, D. 1988. Joint-
dependent Local Deformations for Hand Animation and Object Grasping. In Proc.
of Graphics Interface ’88, 26–33.

METAXAS, D., AND TERZOPOULOS, D. 1992. Dynamic Deformation of Solid Prim-
itives with Constraints. In Computer Graphics (SIGGRAPH 92 Conference Pro-
ceedings), Addison Wesley, vol. 26, 309–312.

O’BRIEN, J. F., AND HODGINS, J. K. 1999. Graphical Modeling and Animation
of Brittle Fracture. In SIGGRAPH 99 Conference Proceedings, Addison Wesley,
Annual Conference Series, ACM SIGGRAPH, 111–120.

PAI, D. K., VAN DEN DOEL, K., JAMES, D. L., LANG, J., LLOYD, J. E., RICH-
MOND, J. L., AND YAU, S. H. 2001. Scanning Physical Interaction Behavior of
3D Objects. In SIGGRAPH 01 Conference Proceedings, Addison Wesley, Annual
Conference Series, ACM SIGGRAPH.

PARKE, F. I., WATERS, K., AND PARKE, F. I. 1996. Computer Facial Animation. A.
K. Peters Ltd.

PENTLAND, A., AND WILLIAMS, J. July 1989. Good vibrations: Modal dynam-
ics for graphics and animation. Computer Graphics (SIGGRAPH 89 Conference
Proceedings) 23, 3, 215–222. Held in Boston, Massachusetts.

PICINBONO, G., DELINGETTE, H., AND AYACHE, N. 2001. Non-linear and
anisotropic elastic soft tissue models for medical simulation. In ICRA2001: IEEE
International Conference on Robotics and Automation.

POWELL, M. J. D. 1987. Radial basis functions for multivariate interpolation: A
review. In Algorithms for Approximation, J. C. Mason and M. G. Cox, Eds. Claren-
don Press, Oxford.

SCHEEPERS, F., PARENT, R. E., CARLSON, W. E., AND MAY, S. F. 1997.
Anatomy-Based Modeling of the Human Musculature. In SIGGRAPH 97 Con-
ference Proceedings, Addison Wesley, vol. 31 of Annual Conference Series, ACM
SIGGRAPH, 163–172.

SCHOBERL, J. 1997. NETGEN - An advancing front 2D/3D-mesh generator based on
abstract rules. Comput.Visual.Sci 1, 41–52.

SINGH, K., AND KOKKEVIS, E. 2000. Skinning Characters using Surface-Oriented
Free-Form Deformations. In Graphics Interface 2000, 35–42.

SLOAN, P.-P. J., ROSE, C. F., AND COHEN, M. F. 2001. Shape by example. In 2001
Symposium on Interactive 3D Graphics, 135–143.

TERZOPOULOS, D., AND FLEISCHER, K. 1988. Deformable Models. The Visual
Computer 4, 306–331.

TERZOPOULOS, D., AND WITKIN, A. 1988. Physically-based Models with Rigid and
Deformable Components. IEEE Computer Graphics and Applications 8, 6, 41–51.

TURK, M., AND PENTLAND, A. 1991. Eigen faces for recognition. Jrnl. Cognitive
Neuroscience 3, 71–86.

WILHELMS, J., AND VAN GELDER, A. 1997. Anatomically Based Modeling. In
SIGGRAPH 97 Conference Proceedings, Addison Wesley, vol. 31 of Annual Con-
ference Series, ACM SIGGRAPH, 173–180.

ZHUANG, Y., AND CANNY, J. 1999. Real-time Simulation of Physically Realistic
Global Deformation. In IEEE Vis’99 Late Breaking Hot Topics.

ZIENKIEWICZ, O. C. 1977. The Finite Element Method. McGraw-Hill Book Com-
pany (UK) Limited, Maidenhead, Berkshire, England.

