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Figure 1: A heavy vehicle attached to a nearly inextensible cable is dropped from the end of a crane. The simulation involves very large mass
ratios, a heterogeneous collection of joints, and remains stable at a time step of 1/60 s. Cable dynamics are well preserved by our adaptive
damping method.

Abstract
This paper focuses on the stable and efficient simulation of articulated rigid body systems for real-time applications. Specifically,
we focus on the use of geometric stiffness, which can dramatically increase simulation stability. We examine several numerical
problems with the inclusion of geometric stiffness in the equations of motion, as proposed by previous work, and address these
issues by introducing a novel method for efficiently building the linear system. This offers improved tractability and numerical
efficiency. Furthermore, geometric stiffness tends to significantly dissipate kinetic energy. We propose an adaptive damping
scheme, inspired by the geometric stiffness, that uses a stability criterion based on the numerical integrator to determine the
amount of non-constitutive damping required to stabilize the simulation. With this approach, not only is the dynamical behavior
better preserved, but the simulation remains stable for mass ratios of 1,000,000-to-1 at time steps up to 0.1 s. We present a
number of challenging scenarios to demonstrate that our method improves efficiency, and that it increases stability by orders of
magnitude compared to previous work.

Categories and Subject Descriptors (according to ACM CCS): I.6.8 [Computer Graphics]: Simulation and Modeling/Types of
Simulation—Animation

1. Introduction

Physics simulation is a cornerstone of many real-time applications
such as video games, character animation tools, operator training,
and robotics control. Maintaining stable behavior and real-time
frame rates is a priority. Typically, this requires tuning physical pa-
rameters such as mass, stiffness, and damping in order to produce
stable behavior across a broad range of simulation states. A con-
sequence is that accuracy is often sacrificed (e.g., by introducing

non-constitutive damping or using unrealistic mass ratios) and the
tuning process requires a large amount of manual effort. Further-
more, users and application designers in these domains are often
not physics simulation experts, and there is strong motivation for
automatic methods that reduce the knowledge required to improve
stability.

The constraint stabilization technique proposed by Tournier et
al. [TNGF15] uses the geometric stiffness to reduce transverse vi-
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brations that occur when simulating dynamical systems with stiff
constraints. This allows for time steps and mass ratios that are sev-
eral orders of magnitude above the range supported by standard
single-step methods. However, applying this technique in a typi-
cal rigid body simulation introduces several numerical issues that
affect efficiency and can compromise real-time frame rates. Fur-
thermore, the intended physical behavior of the simulation can be
adversely affected by dissipative forces.

In this paper, we propose modifications to the stable constrained
dynamics approach of Tournier et al. [TNGF15], making it numeri-
cally appealing for the standard linear solvers used by many physics
engines. Furthermore, we reinterpret the geometric stiffness as a
transient spring, which briefly influences the simulation over a sin-
gle time step, and a stability criterion is used to determine how
much non-constitutive damping is required to stabilize the simula-
tion, if any. The contributions of our work are as follows:

• an efficient algorithm that uses low rank updates to construct
the linear system for the dynamical equations of motion, which
includes the geometric stiffness matrix;
• a diagonal approximation of the geometric stiffness matrix that

attempts to preserve mechanical work properties;
• an adaptive damping scheme that is derived from stability anal-

ysis and uses the approximate diagonal matrix;
• reinterpretation of the geometric stiffness as a transient spring

and applying its effects as a constraint damping term;
• derivation of the geometric stiffness matrix for a library of joints

commonly used in articulated rigid body simulations, as well as
their low rank decompositions.

The remainder of this section outlines the notation used in this
paper and provides more details about the motivation for this work.
Section 2 gives a summary of related work and background mate-
rial on stable physics simulation. In Section 3, an efficient method
is presented for computing the geometric stiffness matrix of con-
straints commonly used in articulated rigid body simulation. Sec-
tion 4 contains a stability analysis wherein the geometric stiffness is
reinterpreted as a spring, giving an undamped harmonic oscillator.
This results in an automatic method to compute damping coeffi-
cients that stabilize transverse oscillations. Simulation results and
comparisons of our method with previous work are presented in
Section 5. The paper concludes in Section 6. Finally, the geomet-
ric stiffness matrices for numerous articulated constraints and their
low rank decompositions are provided in the appendices.

1.1. Notation

Table 1 provides an overview of variables and notation used
throughout this paper. The diagram in Figure 2 shows the coordi-
nate frames and offsets used to specify the configuration of a joint.
The attachment basis and offsets are fixed to the bodies. The offset
relative to the center of mass of body i is specified by si, which
is represented in a global coordinate frame but specified by the
local vector s′i such that si = Ris′i . Similarly, the orthogonal basis
{ui,vi,ni} are vectors in the global coordinate frame, but specified
by the local basis {u′i ,v′i ,n′i} and transformed by Ri. This depen-
dence on the body orientation is relevant for deriving the geometric
stiffness matrices in Appendix A. Unless otherwise stated, all vec-
tor quantities are represented in a global coordinate frame.

ni

nj

uj

vj
dij

vi

ui
pi

pj

si

sj

Figure 2: Body i (light blue) and body j (light green) are cou-
pled by a joint with attachment offsets si, s j, coordinate frames
{ui,vi,ni} and {u j,v j,n j}, and displacement vector di j.

pi position of body i
θi orientation of body i
ṗi linear velocity of body i
ωi angular velocity of body i

xi spatial configuration of body i, such that xi =
(

pT
i θ

T
i
)T

x configuration of all bodies as
(
xT

0 xT
1 . . . xT

n
)T

v velocity of all bodies as
(

ṗT
0 ω

T
0 . . . ṗT

n ω
T
n
)T

Ri rotation matrix corresponding to the orientation θi
s′i joint attachment offset in local frame
si joint attachment offset in the global frame, si = Ris′i
φ a position level constraint equation
J a constraint Jacobian matrix, such that J = dφ

dx
J Jacobian matrix for all constraints
K̃ geometric stiffness matrix
·̂ skew-symmetric cross product matrix of a vector
2+ an implicit term or quantity

Table 1: Variables and notation used throughout this paper.

1.2. Geometric Stiffness

The geometric stiffness is a tensor encoding variations in the con-
straint force directions, and has the form

K̃ =
∂JT

∂x
λ. (1)

Here, J is the matrix of constraint Jacobians, λ are the constraint
forces, and x are the positions and orientations of bodies in the
simulation. Tournier et al. [TNGF15] introduce this term as an im-
plicit stiffness in the velocity-level discretization of the constrained
dynamical equations(

M̃ −JT

J 1
h2 C

)(
v+

hλ+

)
=

(
p+hf
− 1

h φ

)
, (2)

where M̃ = M− h2K̃. In this formulation, p = Mv is the current
momentum, f contains the external forces, the diagonal regulariza-
tion matrix C makes the constraints compliant, and h is the time
step size. Forming the Schur complement of the upper left block
gives the reduced system(

1
h2 C+JM̃−1JT

)
hλ+ =−1

h
φ−JM̃−1(p+hf). (3)
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This form is used by many open source and commercial rigid body
physics engines, and typically requires solving a mixed linear com-
plementarity problem (MLCP), since the system may include both
bilateral and unilateral constraints. Inclusion of the geometric stiff-
ness in Eq. 2 and Eq. 3 may seem trivial, but it leads to numerical
difficulties when solving the linear systems. These challenges relate
to symmetry, positive definiteness, and efficiency.

Symmetry and positive definiteness. Efficiently solving the dense
linear system in Eq. 3 involves using a Cholesky factorization. This
requires M̃ to be symmetric and positive definite; this is similarly
a requirement for the system in Eq. 2. However, the inclusion of K̃
can result in a non-symmetric matrix. Tournier et al. [TNGF15]
suggest that a symmetric approximation of the matrix may be
formed with little effect on the stabilizing properties. However, the
resulting matrix may still fail to meet the positive definite require-
ment of the numerical method. Teran et al. [TSIF05] describe a
technique for enforcing positive definiteness by clamping eigen-
values of a diagonalized elastic deformation gradient to be non-
negative. This leads to robust simulations but can be costly, making
it unsuitable for real-time or performance focused applications.

Efficiency. Solving the reduced system in Eq. 3 requires forming
the inverse of M̃. For a block diagonal mass matrix, which is typ-
ically the case, this is done efficiently by inverting the linear mass
and performing a fast 3x3 inversion of the inertia for each body.
However, with the inclusion of geometric stiffness, inverting the
full mass matrix is no longer straightforward due to nonzero terms
that appear outside the block diagonal.

To overcome these limitations, we examine alternate formula-
tions of the geometric stiffness and its inclusion in the multibody
equations. Specifically, we demonstrate that the inverse of M̃ may
be obtained efficiently using low rank updates in Section 3. Further-
more, in Section 4 the geometric stiffness matrix is diagonalized as
part of a stability analysis. This allows the reduced system in Eq. 3
to be solved without the previously described problems.

2. Related work

Simulation of constrained rigid body systems is an important prob-
lem in computer animation, and fast or approximate methods have
been a research topic since the early days of computer graphics.
In early work, Hahn [Hah88] presented an iterative technique for
dealing with contact constraints, while Barzel and Barr [BB88]
solve constraint forces for a variety of constraints. Subsequent
work focused on efficient solutions for constrained rigid body sys-
tems [SZ90, Bar96].

It can be desirable to formulate and solve articulated systems in a
minimal set of coordinates, such as joint coordinates [Fea14]. Nev-
ertheless, while a few physics engines implement joint coordinate
solvers, the more common case is that of constrained rigid body
solvers, perhaps because of its simplicity and modularity. Time
stepping a constrained full body formulation results in constraint
violations, and thus all solvers include either a Baumgarte feedback
term [Bau72], a post step [AP98, CP03], or fast iterative manifold
projection [GHF∗07]. Unfortunately, when time steps, velocities,
constraint forces, or mass ratios are large, simulations can exhibit
large constraint errors and become unstable.

Baraff and Witkin [BW98] use implicit integration in cloth sim-
ulation to address the stability issues with large time steps, and they
even suggest that a backward Euler step with a linearized version
of the system can be sufficient for good behavior. Goldenthal et
al. [GHF∗07], in contrast, take a step and project approach, which
they show to be equivalent to having implicit constraint forces,
making it possible to simulate effectively inextensible cloth sys-
tems with an iterative projection at each time step.

As an alternative to iterative methods, Tournier et al. [TNGF15]
present a formulation that requires only one linear solve, while pro-
viding a good approximation to the full non-linear solve in com-
parison to the traditional constrained multi-body formulation. They
achieve this by including the geometric stiffness, which informs
how the forces in the system change due to motion, such as the ro-
tation of links in a chain. The simple formulation relies on using
forces from the previous time step, and can work very well when
these forces change smoothly over time. One is likely to notice sim-
ilarities to sequential quadratic programming (SQP) [NW06] where
the second derivative of the constraint Lagrangian is typically used
to solve for the optimal step. However, Tournier et al. emphasize
that their focus is a single linear solve with compliant constraints.
This is our focus too, with additional objectives: efficiency of im-
plementation, stability at a wider range of mass ratios, and an adap-
tive approach to avoid excessive numerical damping.

With respect to adaptive simulation, Servin et al. [SLNB11]
present a stability criterion for simulation of cable systems. Links
are adaptively lengthened based on the tension in the cable in order
to reduce the harmonic frequency, bringing it within a stable range.
Our stability analysis is similar, but applied to a broader class of
systems. Furthermore, the adaptive damping scheme that we de-
scribe in this paper leaves the topology of mechanical structure un-
changed. Hewlett et al. [HKC∗17] observed that the geometric stiff-
ness introduces large mechanical dissipation and propose a control
parameter to modulate its effects by monitoring energy drift in the
system. Similarly, our approach uses an adaptive scheme to miti-
gate non-constitutive energy dissipation, but the criterion is based
on the stability properties of a numerical integrator and is applied
to individual degrees of freedom (DOF).

3. Inverse by low rank updates

In this section, we present an efficient method for constructing the
inverse of M̃ using low rank updates. The unmodified mass matrix
may be efficiently inverted due to the nearly diagonal form of M.
However, inverting the augmented mass matrix requires more com-
putational effort (e.g., an LU decomposition) due to off-diagonal
elements in the geometric stiffness matrix.

We observe that for many articulated rigid body constraints the
geometric stiffness matrix is sparse and low rank. These proper-
ties can be exploited to build the augmented mass matrix more
efficiently. The crux of this approach is based on the Sherman-
Morrison formula [SM50].
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3.1. Decomposition for a simple joint

Consider a simple articulated joint, the ball-and-socket. The geo-
metric stiffness matrix for this joint is

K̃bs =


0 0 0 0
0 λ̂ŝi 0 0
0 0 0 0
0 0 0 −λ̂ŝ j

 ∈ R12×12, (4)

where λ∈R3 are the Lagrange multipliers enforcing the constraint.
Obviously, this matrix is sparse and has a simple structure. To find
the rank decomposition of K̃bs, we examine one of the non-zero
blocks in Eq. 4 and notice that s is in the right null space of the
matrix λ̂ŝ (the body subscript is dropped for brevity). Starting with
the unit vector ~s = s

‖s‖ ∈ R3, we construct an orthonormal basis,
where

~s⊥~t, ~r ⊥~t, ~r ⊥~s,

‖~s‖= ‖~t‖= ‖~r‖= 1.

The column space of λ̂ŝ spans the subspace formed by vectors ~r
and ~t. The vector of Lagrange multipliers can be projected onto
this basis, giving the coefficients

λr = λ
T~r

λs = λ
T~s

λt = λ
T~t.

Notice also that ~r, ~s, and~t are in the row space of matrix λ̂ŝ. Its
decomposition is therefore

λ̂ŝ = ‖s‖
(

λr~s~rT −λs~r~rT +λt~s~tT −λs~t~tT
)
, (5)

which is a rank-2 matrix. This decomposition can be applied to both
non-zero 3× 3 blocks in Eq. 4, and finally used to reconstruct the
full matrix K̃bs.

Knowing the rank decomposition of the matrix K̃bs, and hav-
ing already computed the inverse mass matrix M−1 by efficient
methods, the inverse of M̃ is computed by sequentially applying
the Sherman-Morrison formula.

3.2. Sherman-Morrison formula

Given a rank-1 matrix abT , the Sherman-Morrison formula may be
used to update the inverse mass M−1 matrix by

(M+abT )−1 = M−1−M−1abT M−1

1+bT M−1a
.

The augmented mass matrix M̃−1 may therefore be obtained by
sequentially applying rank-1 updates using the geometric stiffness
decomposition of all joints in the system.

For example, consider an update to the block of body i using
λri~si~rT

i , which is the first term in Eq. 5. We define vectors ā, b̄∈R6n

with dimensionality matching an n body system. These vectors are
zero except entries

ā6i+3...6i+5 = λri~si

b̄6i+3...6i+5 =~ri.

These are the 3D basis vectors padded with zeros according to the
block’s location in the system matrix. A low rank update of the
inverse mass matrix M ∈ R6n×6n may then be performed by

M−1←M−1 +h2‖s‖M−1āb̄T M−1

1+ b̄T M−1ā
. (6)

Note the scaling factors −h2 and ‖s‖ which is based on the in-
clusion of the geometric stiffness in the dynamical equations and
length of the attachment offset s, respectively. Similar updates may
be performed using the rank-1 matrices ~s~tT ,~r~rT , and~t~tT , and for
both bodies. In our implementation, the matrix-vector products of
Eq. 6 are computed efficiently by exploiting the sparsity of the vec-
tors. The process to incrementally construct the inverse augmented
mass matrix is similar for other types of joints. The low rank de-
compositions for joints used by many articulated rigid body simu-
lators may be found in Appendix B.

However, there is still no guarantee that the linear systems in
Eq. 2 and Eq. 3 will be positive definite. In the next section, a
method for diagonalizing K̃ is proposed that results in a positive
definite matrix for the linear system. The diagonalized approxima-
tion is then used as part of a stability analysis where damping is
introduced only when there is an indication that forces related to
the geometric stiffness may cause instability

4. Geometric stiffness inspired damping

Recall that K̃ does not represent a material property of the physical
system, but that it is convenient to interpret the geometric stiffness
as a physical spring that is able to generate forces in directions
transverse to the constraints. This reinterpretation is useful, since
it facilitates analysis of the geometric stiffness as part of a mass-
spring system of undamped harmonic oscillators.

In this section, we examine the case of a simple harmonic os-
cillator. We consider the stability requirements for simulating this
system with a semi-implicit integration scheme, otherwise known
as symplectic Euler, and then ultimately apply these requirements
within the less strict approximately implicit setting. We derive a
stability criterion for stable simulation and extended it to the case
of a dynamical system where spring forces are generated by the ge-
ometric stiffness, with the K̃ matrix serving as an indicator of when
the system may become unstable. Thus, damping is introduced to
stabilize the system using an adaptive method, which estimates a
damping coefficient that is just large enough to stabilize the sys-
tem.

4.1. Stability analysis of harmonic oscillator

Consider the behavior a 1D Hookean mass-spring-damper attached
to a particle. The accelerations generated by the system are

ẍ = (−kx−bẋ)/m, (7)

where x is the displacement from rest length, ẋ is the particle ve-
locity, k is the stiffness, b is the damping, and m is the mass of the
particle. Simulating this system with a semi-implicit integrator and
time step h gives the velocity and position update

ẋ← ẋ+hẍ,

x← x+hẋ.
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Substituting Eq. 7 and representing the updates in matrix form gives
the phase space equation(

x
ẋ

)
←
(

1−h2 k
m h−h b

m
−h k

m 1−h b
m

)
︸ ︷︷ ︸

P

(
x
ẋ

)
(8)

with the eigenvalues of matrix P given by

−h2k+bh−2m±
√

h4k2 +2bh3k+b2h2−4h2km
2m

.

If the magnitude of either eigenvalue is greater than 1, the simu-
lation can become unstable. We note that Müller et al. [MHTG05]
arrived at similar stability conditions in their work, but for an ex-
plicit integrator.

Inspection of Eq. 8 indicates that multiple parameters affect sim-
ulation stability. The mass, stiffness, and time step are typically
fixed due to application or model requirements. Therefore we con-
sider the case that only damping may be used to stabilize the sys-
tem. Introducing non-constitutive damping is a common practice to
stabilize physical simulations. However, manual tuning of damp-
ing coefficients is a cumbersome task since values must be selected
that minimally affect the dynamics, yet leave the simulation stable
for a wide range of configurations. Rather, we devise an automatic
method for computing the damping based on the stability region of
a semi-implicit integrator.

As is popular in computer graphics applications, we are using
the single step backward Euler method with a linear approximation
of the constraint Jacobian and mass matrix. The backward Euler
method is well known to be very stable, with a region of stability
strictly containing that of the semi-implicit integrator used in the
analysis above. That is, semi-implicit Euler at best exhibits absolute
stability within the negative real half of the complex plane, while
backward Euler has absolute stability for all but a small region in
the positive real half of the complex plane [AP98]. Our strategy is
to develop a stability criterion based on an integrator with a smaller
region of stability, and then apply this to the implicit integrator used
in our experiments. This criterion comes in the form of a threshold
based on the behavior of simple 1D undamped oscillator.

Stability threshold. A stability threshold is determined by setting
b = 0 in the eigenvalue equations, giving an undamped oscillator.
This results in the inequality

h2k−
√

h4k2−4h2km
m

≤ 4, (9)

which is true if the eigenvalue magnitudes are less than 1. Servin
et al. [SLNB11] derive a similar threshold in their analysis of ca-
ble systems, although with a different approach. For an undamped
oscillator with Verlet integration, they propose a stability threshold
of h2

ω
2 ≤ 4, where ω

2 = k
m is the oscillation frequency of a cable.

Our analysis corroborates their finding, since the square root term
in Eq. 9 tends to be small.

Alpha parameter. The stability inequality used in our work is aug-
mented with a parameter α, which is a positive scalar value that
allows control over how close the system must be to the boundary

before damping is required, giving

h2k
m
≤ 4α. (10)

If the inequality in Eq. 10 is violated, then the damping required for
stability is found by solving for b at the boundary. This is computed
directly as

b =
h2k−4αm

2h
. (11)

For a spring system with constant mass and stiffness, the value of
b is also constant. However, if the spring parameters are estimated
from the geometric stiffness, the damping values will change at
each time step. The stability threshold also varies with the con-
straint forces. For the purposes of stabilizing a general class of
physics simulation, the stability threshold is evaluated at each time
step and damping values are computed according to Eq. 11, giving
an adaptive damping scheme.

Extending this analysis directly to the matrix K̃ is non-trivial.
The geometric stiffness is representative of a complex system of
transient springs. Modal analysis requires finding eigenvalues of
the matrix M−1K̃ which is computationally costly. Therefore, an
approximation of the matrix is preferred in which the stability anal-
ysis is computationally cheap. Conveniently, if K̃ is diagonal, the
damping scheme for stabilizing a simple harmonic oscillator is ap-
plicable. The next section gives details on how we compute a diag-
onal approximation to simplify the stability analysis.

4.2. Diagonalizing the K̃ matrix

Our goal is to compute a simplified matrix for use in the stability
criterion. Recall the interpretation of geometric stiffness as a tran-
sient spring. In building the diagonal approximation Kd, we there-
fore consider the mechanical work done by K̃. The instantaneous
transfer of mechanical energy occurring over a single time step, or
instantaneous work, done by the geometric stiffness is 0.5vT K̃v.

We propose that our diagonal approximation can represent a
spring that tends to do at least the same amount of mechanical
work, by providing a stiffer system in the directions of any typ-
ical v. That is, the damping calculated by the stability equation
could fail to stabilize the simulation if a less stiff system is con-
sidered. An approximation that tends to upper bound the work is
computed by assigning each diagonal element Kdi,i the norm of
the corresponding column vector in K̃, such that

Kdi,i = ‖K̃i‖. (12)

We observe that this approximation bounds the instantaneous work
in all of our experiments. Figure 3 demonstrates this observation.
For rotational joints, such as the hinge, the diagonal approximation
tends to match the instantaneous work closely, whereas for exam-
ples modeled using the flexible cable joint the instantaneous work
is usually overestimated, but achieves our goal of upper bounding
the work done by K̃.

With a diagonal stiffness matrix the stability analysis is now
straightforward. In an inertial coordinate frame, it becomes a matter
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Figure 3: Instantaneous work at each frame using the original geo-
metric stiffness matrix and the diagonal approximation to simulate
the heavy ball on cable example shown in Figure 8 using hinge
joints (top) and the flexible cable joint (bottom).

of assigning the mass and stiffness values

m = Mi,i

k = Kdi,i

and applying Eq. 11 to compute entry Bi,i of the diagonal damping
matrix. This is done for all inertial DOFs, although the damping co-
efficients corresponding to translational DOFs are sometimes dis-
carded (as discussed in Section 5.4). The augmented mass matrix
is then rebuilt as

M̃ = M+hB, (13)

which is positive definite since M is positive definite and B contains
only non-negative values along the diagonal. Here, B can be seen
as replacing the geometric stiffness matrix, and since the damping
coefficients augment the mass and inertia of bodies in the system
we refer to this as the inertial damping formulation.

4.3. Projection to constraint space

Alternatively, damping may be applied to the constraint rows of
the linear system. This stabilizes in directions that are aligned with
the constraint axes, and in some cases the simulations appear more
plausible when damping is applied to the the constraint equations.
This can be achieved by mapping the mass and diagonalized geo-
metric stiffness matrix to the constraint space and performing the
stability analysis there.

The mass M and diagonal approximation Kd are mapped onto
each constraint row by

m′ = (JM−1JT )−1

k′ = (JK−1
d JT )−1,

where J is the Jacobian for a single constraint equation, and m′

and k′ are the effective mass and stiffness, respectively, for the con-
straint. Coupling of constraints through the mass and stiffness ma-
trix is ignored here, and rather than form the effective stiffness and
mass using the full constraint matrix, J is simply a row vector. This
results in a single scalar value for m′ and k′. Stability analysis is
performed using m′ and k′ by applying Eq. 11 to compute a damp-
ing coefficient, b′, for the constraint. However, a constraint damp-
ing term is not considered by the dynamical equations in Eq. 2. We
therefore modify the formulation to support constraint damping.

4.4. Constraint space damping

The constraint equations are reorganized as a force equation for a
spring-damper system

λ+ =−C−1
φ+−B′φ̇+, (14)

where B′ is a diagonal matrix of non-negative damping coefficients,
which are assembled from the b′ computed for each constraint row.
Substituting Jv+ = φ̇+ and letting φ+ = φ + hφ̇+, the constraint
equations become

Jv++Σλ+ =−Γ
φ

h
, (15)

where non-zero entries of the diagonal matrices Σ and Γ are com-
puted as

Γi,i =
1

(1+h−1Ci,i)B′i,i
, (16)

Σi,i =
h−2Ci,i

(1+h−1Ci,i)B′i,i
. (17)

This is related to how constrained multibody simulators often allow
the combination of compliant constraints and Baumgarte stabiliza-
tion to be interpreted as an implicit stiff spring and damper.

5. Results and discussion

This section evaluates the methods proposed by this paper. We start
by examining the computational gains from using the low rank ma-
trix inversion technique described in Section 3. Challenging sce-
narios that demonstrate the robustness of our adaptive damping are
also presented. All results were obtained using an Intel Core i7
3.3 GHz CPU and a single thread. Unless otherwise stated, the time
step used for experiments is h = 0.01 s. Our methods have been im-
plemented as part of the Vortex [VOR16] physics engine. The linear
system in Eq. 3 is used for all simulations and solved using a stan-
dard Cholesky decomposition. For comparisons with [TNGF15],
the same linear system is solved by LU decomposition.

The examples shown in Figure 8 and Figure 9 use the constraint
space damping technique, whereas all other examples are stabilized
by inertial damping. The accompanying video shows interactive
simulations for the examples discussed in this section and indicates
which of the two damping techniques is used. All videos were cap-
tured in real-time. Where a mouse spring is used to interact with the
simulation, the spring stiffness is scaled proportional to the mass of
the selected object.
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Figure 4: The performance gain when using low rank updates to
compute M̃−1. For angular joints, the gain appears to scale lin-
early with the number of joints.

Number of joints

Method 10 50 100

Full rank 0.099 ms 6.795 ms 49.668 ms
Low rank 0.010 ms 0.517 ms 2.633 ms
Gain 9.81× 13.13× 18.87×

Table 2: The average time to compute M̃−1 for a cable using vari-
ous numbers of ball-and-socket joints .

5.1. Performance of low rank updates

We present three examples to evaluate the computational speedup
obtained by using our low rank updates.

Articulated chains. The computation time of the low rank updates
and the full rank matrix inversion is compared in Figure 4. Articu-
lated chains involving various numbers of joints and joint types are
simulated, and the computation time required to compute M̃−1 is
measured. As indicated by Table 2, the performance gain grows as
the number of joints in the system increases. Likewise, the gain is
consistent across hinge, universal, and ball-and-socket joints.

Strong robot. An example involving a heterogeneous collection of
joints is shown Figure 5. The robot character is modeled using com-
pliant constraints, including 5 ball-and-sockets, 11 universal, and
10 hinge joints. Each foot of the robot is anchored to the ground
using a hinge joint, and each fingertip is attached to the end of the
cable using a ball-and-socket joint. Masses range from 0.1 kg for
the finger bodies to 15,000 kg for the vehicle attached to the op-
posite end of the cable. The vehicle is driven by a motorized pris-
matic joint to move it away from the robot. The DOFs in the robot
are controlled using implicit PD servos with a set point matching
the original pose of the character. This scenario resembles a char-
acter animation sequence that might occur in a video game, with
many different types of joints and large mass ratios. Nevertheless,
the simulation remains stable and the motion of the character is
smooth.

Flexible cable joint. A special joint is used to model the cable
for the scene depicted in Figure 5. The joint uses several dot-2
constraints, for which the geometric stiffness matrix is relatively
dense (see Appendix A). Figure 6 shows that the performance gains
quickly diminish as the number of flexible joints is increased, and

Figure 5: A character with super strength prevents a tank from
driving away. This scene involves many different joints, including
hinges, ball-and-sockets, prismatic, and flexible cable joints.
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Figure 6: Performance gains using the low rank inverse for the
scene shown in Figure 5. The geometric stiffness matrix for the
cable joints is not sparse, and as a result performance gains are
diminished as the number of these joints is increased.

eventually result in longer computation times. Simulations involv-
ing only the special joint indicate that our low rank method never
improves performance for this type of joint. This is a limitation
of our approach. Performance results from these simulations are
shown in Figure 7.

5.2. Validation

To evaluate our adaptive dissipation method, we present experi-
ments that monitor the energy of the system, vibrations in chains,
and we explore the range of damping coefficients for systems with
various mass ratios.

Kinetic energy. Simulation of a pendulum swinging under grav-
ity exchanges potential energy and kinetic energy. If friction and
other dissipative elements in the simulation are nominal, the total
mechanical energy should be nearly constant. Figure 8 shows the
kinetic energy per time step of a cable with 100 kg load and pendu-
lum motion. The flexible cable joints have an axial stiffness of 1012

and bending and torsional stiffness of 10. Using the technique of
Tournier et al., dissipation caused by geometric stiffness causes the
peak kinetic energy to decrease by nearly 40% after 40 seconds of
simulation time. When the stability criterion with constraint damp-
ing is used, the peak kinetic energy drops by only 2% after the same
amount of time, indicating that the mechanical energy in the system
is better preserved.
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Figure 7: Performance gain and computation time for cables sim-
ulated using various numbers of flexible cable joints. The speedup
from the low rank updates is mitigated due to the non-sparse struc-
ture of the geometric stiffness matrix.
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Figure 8: A 100 kg load attached to a flexible cable is dropped
and begins swinging with a pendulum motion (top). The plot (bot-
tom) shows the kinetic energy when simulated using the technique
of Tournier et al. and our method.

Cable vibrations. In Figure 9 the vibrations of a cable are visual-
ized when an attached heavy load (in this case 5000 kg) is dropped
straight down and reaches its apex. The simulated behavior with
very small time steps and no geometric stiffness or damping is
provided for comparison. The vibrations seen when the adaptive
damping method from Section 4 is used better represent the ob-
served oscillations in the high fidelity simulation, and without the
dynamical behavior appears to be over damped.

Damping coefficients. The plot in Figure 10 shows the damping
coefficients of a selected cable link for the example shown in Fig-
ure 8. The mass is increased from 10 kg to 100 kg to 1000 kg. This
clearly demonstrates that our damping algorithm adapts to con-
straint forces at the current simulation frame. For smaller masses,
damping is only required when the load reaches its apex (around
frame 160) and constraint forces are largest. As the load increases,
damping is required more often to stabilize the system.

Figure 9: Vibrations in a cable when integrated with a small time
step and no damping h = 10−5 s (left), and large time step h =
0.01 s with the adaptive damping (middle) and without (right). Dy-
namical behavior is clearly much better preserved with the adap-
tive scheme.
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Figure 10: For the cable simulation in Figure 8 the damping co-
efficients of a selected link are shown at each time step. For less
massive objects (10 kg) the stabilization damping is zero for most
of the simulation. As the mass increases, more damping is required
as constraint forces increase.

5.3. Other results

Finally, we present a few challenging scenarios with large mass
ratios and large time steps, in which our approach is shown to be
effective by producing stable and interactive simulations.

Crane with heavy load. The teaser in Figure 1 shows a 15,000 kg
vehicle attached to a cable being dropped from a crane. The cable is
nearly inextensible, with the axial stiffness of 1010. The mass ratio
in the system is similarly large, ranging from 100,000 kg for the
boom to 0.2 kg for individual cable segments. Despite these chal-
lenging parameters, the simulation is stable when integrated using a
time step of 1/60 s. The adaptive damping method helps to preserve
the rich cable dynamics, and is applied to the angular velocities of
the simulation bodies with α = 1.0 . The articulated linkage of the
crane is modeled using hinge joints, whereas the cable uses relaxed
rigid joints.
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Figure 11: An overlay of selected frames from a crane simulation.
The 100,000 kg boom is elevated 20◦ and then dropped. The sim-
ulation remains stable for 0.1 s (top), 0.01 s (middle) and 0.001 s
time steps.

Varying time steps. The damping coefficient computed by our
method is dependent on the constraint forces and masses of bod-
ies in the simulation, as we have already shown. However, Eq. 11
suggests that the damping coefficient is also dependent on the time
step. Figure 11 visualizes motion of the crane boom shown in the
teaser when it is dropped from a 20◦ angle of elevation. Despite
large mass ratios and stiff constraints, the simulation remains sta-
ble at time steps of 0.1 s, 0.01 s, and 0.001 s. Also, the dynamical
behavior in each case is similar, although for the largest time step
value the simulation does appear to be more damped and exhibits
less high frequency dynamics.

Constraint space vs. inertial damping. For cable simulations,
we observe artifacts when using the inertial damping formulation.
Specifically, there is severe dissipation about the torsional axis. The

supplementary video shows a comparison of stabilizing a cable
simulation using the inertial and constraint space damping tech-
niques. A heavy ball is given an initial angular velocity about the
torsional axis and then dropped. The local coordinate frame of each
cable segment is drawn, and as the simulation progresses the twist
formed in the cable that uses constraint space stabilization is more
plausible.

5.4. Discussion and limitations

The constraint space damping technique described in Section 4.3
tends to work well for the 6D rigid and flexible cable joints. A
drawback of this technique is that the rank of JKdJT must equal
the rank of Kd. In other words, if stabilizing forces are in the null
space of the constraint Jacobian, the projection removes them and
damping cannot occur in certain directions. In this case, the con-
straint space may be augmented by additional constraint rows with
negligible compliance values. This may be done automatically at
each time step, or manually when the simulation model is being
designed. Experimented with the latter scenario have shown posi-
tive results.

An interesting observation is that many articulated simulations
are stabilized by damping only the rotational DOFs. Inspecting the
geometric stiffness matrices in Appendix A reveals that the stabi-
lization affects only the angular velocities of the constraint bod-
ies. For many applications, such as physics-based character anima-
tion, this is good news since typically only hinges, universal, and
ball-and-socket joints are used to model characters. However, we
observed that for mechanisms using the dot-2 constraint, such as
the prismatic and the flexible cable joint, applying damping to the
translational degrees of freedom results in a behavior where bodies
appear to move through a viscous fluid. In these cases, we simply
discard the translational damping coefficient and set Bi,i = 0 for
these DOFs. This helps to prevent viscosity artifacts, especially for
cable simulation, but has similar stabilizing properties. The accom-
panying video highlights this result.

6. Conclusion

This paper proposes several novel methods for improving the per-
formance and stability of articulated multi-body simulations with
stiff constraints. The geometric stiffness and augmented mass ma-
trices are formed efficiently using low rank updates. A diagonal-
ization scheme allows an approximation of the geometric stiffness
matrix to be computed that is convenient to analyze. Using the ge-
ometric stiffness in its diagonal form, a stability criterion is used
to adaptively introduce a minimal amount of damping a three fold
benefit: i) the system matrix remains positive definite, permitting
more efficient numerical solvers; ii) the effort of manually tun-
ing artificial damping coefficients is greatly reduced; and iii) stable
simulation systems with unprecedented stiffnesses and mass ratios
is possible at real-time frame rates.
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Appendix A: Constraint library

This section contains derivations of the geometric stiffness for a
basic set of constraints that are commonly used in articulated rigid
body simulation. Each derivation considers the case of a two body
system where the geometric stiffness is represented by a 12× 12
matrix. For succinctness, the 3×3 block structure of these matrices
is exploited.

Basic partial derivatives

The instantaneous angular velocity ω of a body and the time deriva-
tive of its rotation matrix Ṙ are related by

ω̂ = ṘR−1. (18)

We can reinterpret this lemma for small angular displacements ∂θ

such that

∂θ̂ = dRR−1,

and post-multiplying by R gives

∂θ̂R = dR. (19)

Furthermore, for a vector n ∈ R3 attached to a rotating body such
that n = Rn′, the spatial derivative of the vector is given by

∂n
∂θ

= n̂. (20)

Eq. 19 and Eq. 20 are the building blocks used to derive the geo-
metric stiffness equations for a basic constraint library.

For additional mathematical details of rigid body kinematics,
please see the comprehensive work by Murray et al. [MLSS94].

Ball-and-socket joint

A ball-and-socket, or spherical, joint connecting bodies i and j con-
strains two points on the bodies to have the same position while
allowing relative angular motion. The constraint equation can be
written as

φbs = pi + si− p j− s j = 0.

Rearranging Eq. 18 gives Ṙ = ω̂R, and so the time derivative of the
constraint equation can be written as

φ̇bs = ṗi− ŝiωi− ṗ j + ŝ jω j,

giving the constraint Jacobian matrix

Jbs =
(
I −ŝi −I ŝ j

)
.

In other words,

φ̇bs = Jbs


ṗi
ωi
ṗ j
ω j

 .

The constraint forces acting on the two bodies are

JT
bsλbs =


λbs

ŝiλbs
−λbs
−ŝ jλbs

 , (21)

where λbs ∈R3 are the Lagrange multipliers for the ball-and-socket
constraint. Differentiating Eq. 21 with respect to the spatial config-
uration of the bodies and applying the chain rule gives

∂JT
bsλbs
∂x

= JT
bs

∂λbs
∂x

+
∂JT

bs
∂x

λbs,

where the first term is zero and the second term is the geometric

stiffness matrix of the joint, or K̃bs =
∂JT

bs
∂x λbs. Expanding this into

3×3 blocks gives

K̃bs =


0 0 0 0
0 λ̂bsŝi 0 0
0 0 0 0
0 0 0 −λ̂bsŝ j

 . (22)

Noting that si = Ris′i and s j = R js′j, Eq. 22 matches the matrix
provided in Tournier et al. [TNGF15].

Axial lock

An axial lock constrains the angular motion about a single axis. The
constraint Jacobian matrix is the 12 component row vector

Jn =
(
0 nT

i 0 −nT
i
)

where the locked axis of rotation ni is fixed to body i. The geometric
stiffness for this constraint is

K̃ax,n =


0 0 0 0
0 −λaxn̂i 0 0
0 0 0 0
0 λaxn̂i 0 0

 . (23)

Universal joint

The universal, or Hooke, joint has similar behavior to the spherical
joint, but removes a rotational degree of freedom by keeping an
axis fixed to body i perpendicular fixed to body j. The constraint
equations for this joint can be written as

φbs = pi + si− p j− s j = 0

φd1,u = nT
i u j = 0

where ni is a unit vector in coordinate frame of body i which should
remain orthogonal to unit vector u j in coordinate frame of body j.
Since the derivation of φbs is the same as previously discussed, we
instead focus on the dot-1 constraint φd1. The Jacobian matrix of
the dot-1 constraint is

Jd1,u =
(
0 (n̂iu j)

T 0 −(n̂iu j)
T ) . (24)

Note that for vectors a,b∈R3 that âb=−b̂a and (âb)T =−bT â.
The geometric stiffness for the dot-1 constraint is

K̃d1,u =


0 0 0 0
0 η 0 −η

T

0 0 0 0
0 −η 0 η

T

 (25)

where η = λd1û j n̂i and the scalar value λd1 ∈ R is the Lagrange
multiplier of the dot-1 constraint at the previous time step. The ge-
ometric stiffness for the universal joint may be assembled as

K̃un = K̃bs + K̃d1,u.
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Hinge joint

The hinge, or revolute, joint allows a relative rotation of two bodies
about a single axis. The joint behaves much like a universal, but
with an additional dot-1 constraint equation

φbs = pi + si− p j− s j = 0

φd1,u = nT
i u j = 0

φd1,v = nT
i v j = 0

where v j is a unit vector in coordinate frame of body j which is
orthogonal to u j and is constrained to be perpendicular to ni. The
geometric stiffness K̃d1,v for the dot-1 constraint between vector v j
and ni is found by applying Eq. 25 and substituting v j for u j. The
hinge geometric stiffness is then assembled as

K̃hi = K̃bs + K̃d1,u + K̃d1,v.

Prismatic joint

A prismatic joint allows a relative translation between two bodies
along a single axis. The constraint equations for this joint can be
written as

φd1,u = nT
i u j = 0

φd1,v = nT
i v j = 0

φd1,n = uT
i n j = 0

φd2,u = dT
i jui = 0

φd2,v = dT
i jvi = 0,

where di j = pi + si− p j− s j. This joint consists of three dot-1 con-
straints (top rows), plus equations φd2,u and φd2,v, which are dot-2
constraints. A single Lagrange multiplier is used for each dot-2
constraint, which together eliminate relative translation of the bod-
ies along any axes perpendicular to ni.

Using φd2,u as an example, which constrains relative motion in
the direction ui, the Jacobian matrix is

Jd2,u =
(
uT

i uT
i (d̂i j− ŝi) −uT

i uT
i ŝ j
)

(26)

with the constraint Jacobian for φd2,v having a similar form. The
geometric stiffness matrix for Jd2,u is

K̃d2,u = λd2,u


0 ûT

i 0 0
ûi (d̂i j− ŝi)ûi ûT

i (ŝ jûi)
T

0 ûi 0 0
0 ŝ jûi 0 −(ŝ jûi)

T

 . (27)

The matrix K̃d2,v may be found by applying Eq. 27 and substituting
vi for ui. The geometric matrix for the prismatic joint is computed
as

K̃pr = K̃d1,u + K̃d1,v + K̃d1,n + K̃d2,u + K̃d2,v.

Rigid joint

The prismatic joint is augmented with a sixth constraint equation
that restricts the translational motion of the bodies, effectively con-
straining the rotational and translational motion of the two bodies

to be the same. This is done using an additional dot-2 constraint

φd2,n = dT
i jni = 0.

The geometric stiffness matrix of the rigid joint is then computed
as

K̃6D = K̃pr + K̃d2,n.

Flexible cable joint

By choosing small or moderate compliances for the rigid joint, the
constraint rows are relaxed and the joint becomes flexible. Com-
pliance and damping values are then selected for each of the three
rotational and three translational constrained degrees of freedom to
match the behavior of an extensible cable. For example, Eq. 16 and
Eq. 17 are tuned in this way for the cable results shown in Section 5.

Appendix B: Low rank decompositions

This section provides the low rank decompositions of the basic con-
straint library in Appendix A. All factorizations consider the case
of a two body system with 12× 12 geometric stiffness matrix, al-
though decompositions for larger systems are possible.

Ball-and-socket

The low rank factorization of K̃bs follows from the analysis in Sec-
tion 3.1. The vectors~r,~s,~t and the Lagrange multipliers λr,λs,λt are
used with subscripts to indicate the body index. Using this notation,
the decomposition is as follows:

s̄i =
(
0 ~sT

i 0 0
)T

r̄i =
(
0 ~rT

i 0 0
)T

t̄i =
(
0 ~tT

i 0 0
)T

s̄ j =
(

0 0 0 ~sT
j

)T

r̄ j =
(

0 0 0 ~rT
j

)T

t̄ j =
(

0 0 0 ~tT
j

)T

K̃bs = ‖si‖(λri s̄ir̄
T
i −λsi~ri~r

T
i +λti s̄it̄

T
i −λsi t̄it̄

T
i )

−‖s j‖(λr j s̄ j r̄
T
j −λs j~r j~r

T
j +λt j s̄ j t̄

T
j −λs j t̄ j t̄

T
j ).

Axial constraint

The axial constraint decomposition has the following form:

ūi =
(
0 uT

i 0 0
)T

v̄i =
(
0 vT

i 0 0
)T

ū′i =
(
0 0 0 uT

i
)T

v̄′i =
(
0 0 0 vT

i
)T

K̃ax = λ

(
−ūiv̄

T
i + v̄iū

T
i + ū′i v̄

T
i − v̄′i ū

T
i

)
.
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Dot-1 constraint

The decomposition for the dot-1 constraint follows the Jacobian
definition from Eq. 24, using vectors ni and u j, but the decomposi-
tion is valid for other vector pairings. The low rank decomposition
of the dot-1 geometric stiffness matrix is:

n̄ =
(
0 0 0 nT

i
)T

ū =
(

0 −uT
j 0 0

)T

n̄′ =
(
0 −nT

i 0 nT
i
)T

ū′ =
(

0 −uT
j 0 uT

j

)T

K̃d1,u = λ(ū′n̄T + n̄′ūT ).

Dot-2 constraint

Finally, for the dot-2 constraint we begin by forming an orthonor-
mal basis using the vector ~di j =

di j
‖di j‖ , such that

~di j ⊥ ~ei j, ~ei j ⊥ ~fi j, ~di j ⊥ ~fi j,

‖~di j‖= ‖~ei j‖= ‖~fi j‖= 1.

This basis, along with the orthonormal bases ~ri,~si,~ti and ~r j,~s j,~t j,
is projected onto the constraint coordinate vectors vi, and ni giving
the coefficients

ρi,n =~rT
i ni ρi,v =~rT

i vi τi,n =~tT
i ni τi,v =~tT

i vi

ρ j,n =~rT
j ni ρ j,v =~rT

j vi τ j,n =~tT
j ni τ j,v =~tT

j vi

υn = ~f T
i j ni υv = ~f T

i j vi κn =~eT
i jni κv =~eT

i jvi.

We also define the following vectors:

n̄2 =
(
0 nT

i 0 0
)T

v̄2 =
(
0 vT

i 0 0
)T

n̄31 =
(
−nT

i 0 nT
i 0

)T
v̄13 =

(
vT

i 0 −vT
i 0

)T

n̄42 =
(
0 −nT

i 0 nT
i
)T

v̄24 =
(
0 vT

i 0 −vT
i
)T

r̄i =
(
0 ~rT

i 0 0
)T

t̄i =
(
0 ~tT

i 0 0
)T

r̄ j =
(

0 0 0 ~rT
j

)T
t̄ j =

(
0 0 0 ~tT

j

)T

f̄i j =
(

0 ~f T
i j 0 0

)T
ēi j =

(
0 ~eT

i j 0 0
)T

c̄1 =−ρ j,n t̄ j + τ j,n r̄ j d̄1 =−ρ j,v t̄ j ++τ j,v r̄ j

c̄2 = ρ j,n v̄2−ρ j,v n̄2 d̄2 = τ j,n v̄2− τ j,v n̄2

c̄4 = υn v̄2−υv n̄2 d̄4 = κn v̄2−κv n̄2

c̄5 = ρi,n v̄2−ρi,v n̄2 d̄5 = τi,n v̄2− τi,v n̄2.

The low rank decomposition of K̃d2,u becomes

K̃d2,u = λ

(
v̄13n̄T

2 + n̄31v̄T
2 + n̄2v̄T

13 + v̄2n̄T
31

)
+λ‖s j‖

(
n̄42d̄T

1 + v̄24c̄T
1 + r̄ jd̄

T
2 − t̄ j c̄

T
2

)
+λ‖di j‖

(
f̄i j d̄

T
4 − ēi j c̄

T
4

)
−λ‖si‖

(
r̄id̄

T
5 − t̄ic̄

T
5

)
.

This decomposition is obviously the most complex of those we pro-
vide in this paper. We note the performance gain of the low rank
updates is diminished when the dot-2 constraint is used.
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