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Figure 1: The Matchstick model allows for control of frictional behaviour in situations such as tire ground contact, a hopper, and soft robotic
gripping, where each example shown here also uses different simulators with different contact solvers (Vortex, PROX, and Flex).

Abstract
Inspired by frictional behaviour that is observed when sliding matchsticks against one another at different angles, we propose a
phenomenological anisotropic friction model for structured surfaces. Our model interpolates isotropic and anisotropic elliptical
Coulomb friction parameters for a pair of surfaces with perpendicular and parallel structure directions (e.g., the wood grain
direction). We view our model as a special case of an abstract friction model that produces a cone based on state information,
specifically the relationship between structure directions. We show how our model can be integrated into LCP and NCP based
simulators using different solvers with both explicit and fully implicit time-integration. The focus of our work is on symmetric
friction cones, and we therefore demonstrate a variety of simulation scenarios where the friction structure directions play an
important part in the resulting motions. Consequently, authoring of friction using our model is intuitive and we demonstrate
that our model is compatible with standard authoring practices, such as texture mapping.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

The isotropic Coulomb friction model is used by many rigid body
simulations in the field of computer graphics [BET14]. Most of the
work in this area has focused on the difficult problem of formulat-
ing and solving Coulomb frictional contact and its approximations.
However, there has been comparatively less attention in computer
graphics on more expressive anisotropic models of frictional con-
tact. In this work, we focus on anisotropic Coulomb friction where
the friction cone takes on an elliptical shape. This model is conve-
nient for several reasons: it is intuitive for non-expert users, simple
to compute, characterises the frictional behaviour for a variety of
materials, and the mathematical description fits easily into existing
numerical frameworks for computing contact forces.

We are missing a tool that allows realistic macroscopic descrip-
tions of surfaces and frictional phenomena to be used in simulators.
That is, we do not yet have the tools that can allow us to explore
the suitability or accuracy of the usual friction model choices, or
new models such as the one we present here. As such, our moti-
vation for pursuing a friction modeling framework with additional
degrees of freedom is to provide artistic control; the goal is not to
match reality, but to gain a desired and plausible motion behaviour.
Our model provides animators with artistic control over the friction
behaviour so as to promote motions with the desired traits during
simulation.

Many rigid body simulators use friction models expressed as
cones, or as generic sets of feasible friction forces. Combining fea-
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sible set descriptions with extra constraints, such as the principle of
maximum dissipation, allows us to compute the friction forces at a
given instant in time. The benefit of such friction descriptions is that
they permit an easy implementation within a simulator. One can de-
fine a projection operator, and iteratively project the friction force
onto the closest feasible friction force. This property is the govern-
ing principle about which many friction models can be defined. In
this paper we design a friction model that we call the Matchstick
model, which produces a cone based on the directions of surface
structure on each object at the point of contact. Furthermore, we
present a mathematical framework that supports the necessary op-
erations for straightforward implementation of our model.

The main contributions of our work are as follows. We present
a model with intuitive authoring and control that allows a range of
frictional behaviours to be rapidly defined. Our phenomenological
model has simulation state dependent friction cones and supports
both semi-implicit and fully implicit time-integration schemes. Fi-
nally, we describe methods for including our model in any simu-
lator that supports non-smooth cones, such as PROX schemes and
variants.

2. Related Work

Friction measurements in mechanical engineering have for a long
time demonstrated the shortcomings of the standard isotropic
Coulomb model used in Computer Graphics: Liley et al. [LGS*98]
prove asymmetric anisotropic friction due to molecular tilt of
a mica surface. Umbanhowar et al. [UVM*12] demonstrate
direction-dependent surface friction properties to help design
friction-induced velocity fields on a vibrating plate. Their exper-
iments clearly show anisotropic behaviour due to microscale or-
thographic rough geometric features. Yu and Wang [YW12] show
that very rough microscale geometry gives rise to anisotropic fric-
tion strongly correlated to the microscale structure. Further, fine
roughness appears to give near isotropic behaviour. Hence, a cer-
tain sufficient roughness scale and directional structure is needed
to get strong anisotropic response. This fits our scope of material
modeling exactly. Walker and Leine [WL17] demonstrate the be-
haviour of non-convex cones and they propose a replacement ap-
proach for the principle of maximum dissipation based on a two-
cone approach. One convex cone is used to pick the direction of
the friction, and the other (possibly non-convex) cone is used to de-
termine the magnitude. The Matchstick model produces elliptical
cones, and the simulation method and modifications in our work
are currently limited to convex cones obeying principle of maxi-
mum dissipation.

Table 1 presents a brief overview and comparison of relevant
work on related friction models used in the field of computer graph-
ics. In graphics, a wide collection of work has looked at different
formulations and different methods for solving the frictional con-
tact problem, largely using isotropic static Coulomb cones. Baraff’s
seminal work introduced linear complementarity problems to com-
puter graphics [Bar94]. Fast frictional dynamics [KEP05] effi-
ciently computes responses by merging cones across different con-
tacts, while staggered projections [KSJP08] alternates between nor-
mal and tangent impulse solves for friction between elastic objects.
Implicit contact models are likewise useful for thin models such as

cloth [OTSG09]. Exact Coulomb friction cones have been used for
hair [DBB11], and alternatives to Coulomb friction prove useful
in the simulation of cloth at the thread level [CLO17]. Aggregate
contact models to approximate frictional contact patches have been
proposed for rigid bodies [BNT*15], elastic models [TMDO15],
and at arbitrary resolution through voxelisation of volume con-
tacts [AFC*10].

The work addressing anisotropic friction modeling is sparse
[BET14]. Among the exceptions is the use of the friction tensors
by Pabst et al. [PTS09], which uses an additive model and has
9 parameters to describe the material for planar dynamic friction.
Our Matchstick model uses the angle between structure directions
(much like the tensor eigenvectors) to interpolate the physics in a
common frame, and only uses a small number of intuitive parame-
ters. The friction tensors do not provide an immediate cone descrip-
tion, but give a direct equation for the dynamic friction force that
does not rely on maximum dissipation. Since we express our model
in terms of cones, it supports the principle of maximum dissipation.

Limit surfaces [GRP89] are a general concept that describe any
cone shape that scales linearly with the normal force. Our model
uses the same scaling concept, which means that our cones belong
to an elliptical family of limit shapes. However, in comparison with
limit surfaces, the “shape” is dynamically dependent on the simula-
tion state. Furthermore, we provide a method to determine the ori-
entation of the cone in the world frame, whereas the limit surfaces
concept does not provide a direct solution to this aspect. A prag-
matic solution to this is to align the first axis of the contact frame
with the relative sliding direction, as done in many physics engines
and past work [BET14]. Instead, the Matchstick model uses the
mean of the material structure directions to estimate the direction
of least resistance and the friction cone intrinsically lives in this
contact frame. In comparison with Pabst et al. [PTS09], their affine
map is defined by a linear function, i.e., addition of tensors in a
common frame to give the intrinsic representation of the friction
model. See Appendix A for more details.

Data driven nonlinear friction models have been demonstrated
for cloth animation Chen et al. [CFW13]. The data shows struc-
tural state dependence on relative orientation and nonlinear normal
force scaling. The model is similar to Pabst et al. [PTS09] except
that three nonlinear functions are used to form a symmetric tensor,
which is then used to determine the magnitude of the friction force
using a quadratic form dependent on sliding velocity. The model
can be seen as a specialised version of the earlier work by reducing
the choice of parameter selection to fitting functions to data.

A link between frictional behaviour and the simulation solver al-
gorithm has been observed, particularly for long kinematic chains
and ill-conditioned linear systems [EATK18]. This indicates that in
order to be useful, our friction model should be agnostic to the un-
derlying solver algorithm. Whereas the approach proposed by Pabst
et al. [PTS09] is tied to the semi-implicit time-stepping method
of Bridson et al. [BFA02], we demonstrate the compatibility of
our Matchstick model using several solver types using both semi-
implicit or fully implicit time-stepping methods. These include a
pivoting algorithm with direct solver, a nonlinear implicit Newton
type solver [MEM*19], and a PROX-based iterative Gauss-Seidel
scheme.
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Table 1: Overview of common planar dynamic friction models used in computer graphics. ANISO denotes aniosotropic, PMD denotes Prin-
ciple of Maximum Dissipation, INT denotes intrinsicly defined in the contact frame, λn is the normal force, and v is the contact velocity.

Model Name Shape #Params Contact Frame Orientation Scaling ANISO PMD INT

Isotropic Coulomb [Bar89] Circle 1 None Linear in λn No Yes Yes(1)

Anisotropic Coulomb(2) Ellipse 2 Fixed on one object or by
sliding velocity

Linear in λn Yes Yes Yes(1)

Limit Surfaces [GRP89] Any Cone ∞ Not specified Linear in λn Yes Yes(3) Yes

Friction Tensors [PTS09] Affine Map 9 Fixed to one of the struc-
ture fields

Linear in λn Yes No(4) No(5)

Cloth Friction [CFW13] Load force curve > 6(6) Fixed to material space Nonlinear in λn,
quadratic in v

No Yes Yes

Matchstick Ellipse 3 Mean of both structure
field directions

Linear in λn Yes Yes Yes

1. Many game engines either average friction coefficients assigned to objects, use use a material-pair look-up table.
2. Anisotropic Coulomb friction is used in many game engines, where the sliding direction is used to determine the first major principal axis of

the contact coordinate system. However, the sliding and least direction of friction are not always parallel in reality.
3. Supports non-convex cones giving rise to non-uniqueness even when the principle of maximum dissipation is applied.
4. Only under restriction of symmetric positive definite friction tensors is the principle of maximum dissipation fulfilled.
5. Two separate friction tensors combine to give the intrinsic friction map.
6. Three nonlinear function are fit to data using linear regression. Hence, more than 6 parameters seems reasonable as otherwise the 3 nonlinear

functions would be no better than a linear fitting.

Daviet et al. [DBB11] solve isotropic Coloumb friction for hair
dynamics with a Gauss-Seidel scheme which is efficient due to a
scaling that makes impulse and velocity cones self-dual. The slid-
ing direction is an unknown and solved at each time step with
a fully-implicit treatment. Our model can likewise be solved in
a fully-implicit manner given that our anisotropic cones depend
on structure directions rather than sliding velocity. However, it
is less obvious how the scaling approach of Daviet et al. can be
adapted to work for anisotropic friction without distorting space
and not preserving “angles”. A somewhat similar distortion of an-
gles is observed for blocked r-factors [Erl17]. In contrast, Macklin
et al. [MEM*19] shows similarity between r-factors and precon-
ditioners that create self-dual isotropic cones, however, adaptive r-
factors can adapt locally to the anisotropy and rescale cones just
in the direction needed. For certain specific conditions, a cone de-
scription of the friction tensor model can be recovered at added
computational cost as we prove in Appendix A, and with additional
restrictions the maximum principle of dissipation can be fulfilled.

Modeling restitution for rigid body impact using bounce maps
[WSJP17] shares some similarity to using structure maps. We too
consider the structural dependency of friction behaviour as mapped
to surfaces of objects. However, unlike bounce maps, which con-
sider the restitution as a two body function, we treat the physical
coefficients depending on the pair-wise material types and separate
only the structure (micro geometry) into our maps. Given these
similarities, we speculate that restitution could be modelled in a
similar fashion. Recently, Costes et al. [CDA*18] propose a holis-
tic approach using texture maps to represent surface properties for
haptic simulation. Their material format includes friction, and our
proposed friction model is compatible with their format since we
demonstrate that it can be represented by a texture.

We consider the use of an active measurement facility by Pai
et al. [PDJ*01] to be an excellent early effort to capture and
model friction behaviour. Contact friction textures are recorded
with a robotic probe under the assumption of a symmetric isotropic
Coulomb model. Recent work by Dreßel et al. [DEKA19] revis-
its this idea by dropping these assumptions, and provides an open
data set that clearly demonstrates curved trajectories and rotational
alignment of cubed rigid bodies while sliding on inclined wood
planes. Our work reproduces these behaviours, which is only pos-
sible if state dependency and anisotropy are included in the models.

3. Friction Cone Modeling

The idea is to define a friction cone generator that we initially re-
quire to be able to generate a convex pointed cone. The cone will
be generated on the fly within a typical solver allowing the cone to
change shape depending on the kinematic state.

Without loss of generality, we will study two objects that we la-
bel A and B. We assume they have materials assigned such that the
materials can be characterised by a single material structure direc-
tion associated with any surface point on the objects. The directions
can be interpreted as fiber directions or as micro-scale geometry
features, such as grooves. While some materials, e.g., cloth with
warp and weft directions, can be seen as having multiple structure
directions, we limit our investigation to the case of a single struc-
ture direction.

Let p ∈ R3 be a single point of contact between A and B, with
unit normal n pointing from A to B, and with relative contact ve-
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locity v, given by,

v≡ J


uA

ωA

uB

ωB

 , (1)

where uA, uB ∈ R3 are linear velocities of the bodies and ωA,
ωB ∈ R3 are the angular velocities. The contact constraint Jaco-
bian matrix is given by J. The relative velocity can include both a
normal and tangential component, vn ∈ R and vt ∈ R2.

The contact point frame at position p has orientation with respect
to the world coordinate frame given by

C≡
[
n t b

]
. (2)

Here, t and b span the tangent plane of the contact point and are
given in the world coordinate system. The choice of t determines
the friction cone orientation and we use the mean of the structure
field directions for this, as explained in detail later.

A contact frame is needed for assembling the Jacobian matrix J
properly. For a one point contact with planar friction the Jacobian
will be,

J≡ CT [−I3×3 −r×A I3×3 r×B
]

(3)

where I3×3 is the identify matrix, rA and rB are the contact arms
from the respective object centers to the contact position, and r× is
the skew symmetric matrix that computes the r cross product.

In above definitions, we have by convention chosen to order nor-
mal components before frictional components. The reason for this
is that most iterative solves tend to solve normal constraints before
friction constraints. This is done because the friction part depends
strongly on the normal part, while strong dependence in the oppo-
site order is rare. This is merely a convention and our model works
with any ordering and is independent of solving normal force be-
fore friction forces.

For any given contact frame, we can write the material structure
direction of each surface in coordinates of the tangent plane of the
common frame as unit vectors sA and sB. These structure directions
depend on the point of contact on each surface, and in a typical im-
plementation can be stored in a texture or generated procedurally.

We can then consider a simple parameterised friction cone gen-
erator, GA↔B, specific to a pair of materials A and B. The generator
computes a friction cone that describes the set of allowable friction
forces based on a set of local parameters. We denote the cone by
the symbol FA↔B. We will ease notation and not explicitly write
the material pairs. The generator in general abstract notion can be
defined as

F ≡ G (λn,v,sA(p),sB(p)) . (4)

The normal force magnitude is given by λn. The above parameteri-
sation could be extended with even more parameters to account for
many other dependencies, which is an interesting avenue for future
work. We will abuse notation and simply write F to indicate any
parametric friction cone model to enhance readability of equations.

Figure 2: We use the angle between matchsticks to determine the
friction cone. The Matchstick model interpolates between isotropic
CI and anisotropic CA extremes (see Equations 6, 9, and 12).

3.1. The Matchstick Model

We derive the Matchstick model from several observations and pro-
pose a novel model that interpolates between isotropic and extreme
anisotropic Coulomb behaviours using the minimum angle between
the structure directions (see Figure 2).

1. Some materials have a visually noticeable simple structure, for
instance, a matchstick has a directional material structure (fiber)
direction. Probing with a fingertip, sliding along the structure
has less resistance than sliding orthogonal to the structure di-
rection. Hence, the structure direction describes the direction of
least resistance of the material.

2. Friction (resistance) appears to be isotropic for a pair of match-
sticks when moving in different direction but keeping structure
directions orthogonal.

3. Friction (resistance) appears to be an extremely anisotropic for
a pair of matchsticks when sliding in different directions while
keeping structure directions parallel. In general, one observes
very low resistance in common structure directions and very
large resistance in orthogonal direction.

4. Friction (resistance) appears to be anisotropic, but not as ex-
treme, for a pair of matchsticks when sliding in different di-
rections while keeping structure directions at oblique angles.
As the angle approaches orthogonality, the behaviour becomes
isotropic, while the behaviour becomes maximally anisotropic
as the angle goes to zero.

With the simplifying assumption that we can ignore the sign of
the structure vector (i.e., if the friction only depends on the orienta-
tion and not the direction), then the Matchstick model interpolation
parameter is based on the angle θ and is defined as

d ≡ 1− 2
π

cos−1 |sA · sB|︸ ︷︷ ︸
≡θ

. (5)

Let the friction force in the world frame be given by f and let the
coefficient of friction for a planar isotropic Coulomb friction cone
be µ, equal to the tangent and binormal direction coefficients for
the isotropic cone, i.e., µI

t = µI
b = µ, then the isotropic cone can be

written as

fT RT

 1
µ

2
0

0 1
µ

2


︸ ︷︷ ︸
≡CI

Rf = λ
2
n, (6)

Here, R can be any rotation matrix for an isotropic cone, but for
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consistency we define R as the 2D rotation of (sA + sB) onto the
t axis, assuming that sA · sB is positive (again, given that we only
need the orientation, we can swap the sign of one of the vectors to
ensure positive dot product). This implies that

t≡ sA+ sB
‖ sA+ sB ‖

, (7)

b≡ n× t. (8)

We only need a 2D rotation matrix R to explain the model. How-
ever, the t and b column vectors for the contact coordinate frame
are needed when assembling the Jacobian matrix as shown in Equa-
tion 3. By construction, t and b are the major and minor axis of the
anisotropic ellipse cone, respectively.

We define the coefficients of friction for a planar anisotropic
Coulomb friction cone as µA

t ≤ µA
b , where the A superscript denotes

anisotropic, and can define the anisotropic cone by

fT RT

 1
µA

t

2
0

0 1
µA

b

2


︸ ︷︷ ︸

≡CA

Rf = λ
2
n. (9)

In our model, the friction cone generator computes actual coeffi-
cients through spherical linear interpolation,

µt ≡ d µA
t +(1−d) µ, (10)

µb ≡ d µA
b +(1−d) µ, (11)

and thus, the actual Coulomb cone will be given by

fT RT

 1
µt

2
0

0 1
µb

2


︸ ︷︷ ︸
≡CM

Rf = λ
2
n. (12)

We give an outline of the Matchstick friction model generator in
Algorithm 1. Finally, note that the Matchstick friction cone can be
written as

FM ≡

{
λ f

∣∣∣∣∣
(

λ
2
t

µ2
t
+

λ
2
b

µ2
b

)
≤ λ

2
n

}
. (13)

The model has small memory footprint and fast computational
complexity for both generating the cone but also for using the
cone at run time. Immediate benefits of our model is that it al-
lows artistic modeling of the isotropic and extreme anisotropic be-
haviours, and automatically determines the orientation and shape
of the anisotropic friction cone.

4. Simulator Integration

Iterative methods for contact force computations are the natural
choice for arbitrary friction cones. We will first consider the class
of methods based on proximal operators [Erl17]. In methods based
on proximal operators, the next feasible friction force iterate λ

k+1
f

is given by projecting the current friction force guess λ
k
f onto the

friction cone, F ,

λ
k+1
f ← proxF

(
λ

k
f − r vk

f

)
. (14)

ALGORITHM 1: MATCHSTICKFRICTIONGENERATOR

The generator gives both the world orientation of the friction cone as
well as the coefficients of friction, which is an advantage when working
with an analytic cone that is fully described by these parameters.

Data: Structure directions sA, sB, contact normal n, isotropic friction
µ, extreme friction coefficients µA

t , µA
b .

Result: Contact plane vectors t, b, and coefficients of friction µt , µb.
1 if sA · sB < 0 then
2 sB←−sB
3 end
4 θ← cos−1 (sA · sB)
5 d← 1− 2 θ

π

6 µt ← d µA
t +(1−d)µ

7 µb← d µA
b +(1−d)µ

8 t← sA+sB
‖sA+sB‖

9 b← n× t

ALGORITHM 2: PROXGAUSSSEIDEL

The PROX Gauss-Seidel variant with an adaptive r-Factor strategy and
parametric friction cones. The product M−1JT may be precomputed.

Data: Indices of all contacts K, indices of all bodies B, and J, M, b, r,
λ0, ν.

Result: λk

1
(
k,λk,εk

)
←
(
0,λ0,∞

)
2 while not converged do
3 w←M−1 JT λk

4 foreach i ∈ K do
5 I ≡ {n, f}← indices of block Ni,Fi
6 zI ← λk

I − r
(
JI,B w+bI

)
7 λk+1

n ← proxNi
(zn)

8 F ← G(λk+1
n , . . .)

9 λ
k+1
f ← proxF

(
z f
)

10 w← w+
(
M−1JT

)
B,I

(
λ

k+1
I −λk

I

)
11 end
12 εk+1 =‖ λk+1−λk ‖∞
13 if εk+1 > εk then
14 r← νr
15 else
16

(
λk,εk,k

)
←
(
λk+1, εk+1, k+1

)
17 end
18 end

Here, k is the iteration index and r is a scalar relaxation parameter
known as the r-factor. This is how our parametric model can be
used in a typical sweeping process. First, Equation 4 is used to
instantiate the current friction cone, F , and then that cone is used
in the proximal point update given by Equation 14.

Algorithm 2 illustrates how a PROX-based block Gauss-Seidel
variant is modified to accommodate our friction models. Observe
that the only change is the addition of line 8 in the algorithm, before
the friction proximal step. This line instantiates the friction model
using Equation 4.
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4.1. LCP-based Simulators

For LCP based approaches, one may discretise a parameterised
cone by shooting rays from the origin of the limit surface in var-
ious directions and use the limit surface points to build a polygonal
approximation to the generated cone. Each facet of the polyhedral
cone will match one complementary constraint in the LCP model.
While it is trivial to generate the polygonal facets, the main draw-
back is that one may need many facets to obtain a good approxima-
tion. The memory footprint of the LCP has quadratic scaling with
the number of constraints and the solver time will suffer accord-
ingly. Hence, nonlinear complementary formulations can be more
attractive for parametric cones.

4.2. NCP-based Simulators

We will now outline how to use a parameterised F in a Newton
type framework using non-smooth functions such as the Fischer-
Burmeister function [MEM*19]. Without loss of generality, as-
sume we have any type of complementary function, ψ(a,b) : R×
R 7→ R such that

0≤ a⊥ b≥ 0 ⇔ ψ(a,b) = 0 . (15)

Using an implicit limit surface models of the cone we let φF be the
corresponding implicit function of F ,

φF ≡ fT RT CMRf−λ
2
n. (16)

Then by the principle of maximal dissipation we can write

∇φF (f) =−βvt , (17)

where β≥ 0 is an auxiliary scalar variable. We can now restate the
model with the help of the complementary function,

ψ(β,−φF (f)) = 0 , (18)

ψ(vT
t vt ,wT w) = 0 , (19)

where we now introduce w = ∇φF (f) + βvt . The above model
gives us a root search problem and can be solved with a Newton
type of method. For this purpose we must obtain the generalised
Jacobian of these equations. The differential becomes

dψ(β,−φ(f)) = ∂aψdβ−∂bψ∇T
φ df , (20)

dψ(vT
t vt ,wT w) = 2∂aψvT

t dvt +2∂bψwT dw , (21)

where

dw = vt dβ+∇2
φdf+βdvt . (22)

Here we use ∇2 to denotes the Hessian of φ. Assembling all parts
we can write [

dψ(β,−φ(f))
dψ(vT

t vt ,wT w)

]
= Jψ

dβ

df
dvt

 (23)

where Jψ is the Jacobian one will need for implementing a Newton
method, and is computed as

Jψ ≡

[
∂aψ −∂bψ∇T

φ 0

2
(

∂bψwTvt

)
2
(

∂bψwT∇2
φ

)
2
(

∂aψvT
t +∂bψwT

β

)].

4.3. Pivoting solver

Pivoting methods for solving frictional contact attempt to find a
partitioning of the system into active and inactive variables. These
labels indicate whether a variable is within bounds, and thus un-
known, or if boundary conditions are violated by its current value,
and hence it is determined by a projection onto the limit surface, or
a linear approximation of it, and the variable is treated as a known
entity.

The pivoting method used in our experiments initializes the limit
surfaces using an estimate of the non-interpenetration forces, λn,
by a preliminary step that finds a solution to the multibody system
excluding friction. The friction cones are then updated according
to Equation 13, and a direct solver is used to find a solution of the
system combining normal forces and friction forces. The labeling
of active and inactive variables is revised, and subsequent iterations
can be used to refine the limit surfaces. Further details on the block
Bard-type algorithm used in our experiments can be found in the
Vortex Dynamics documentation [CM 17].

4.4. Implementation Details

Notice that the friction cone generator G returns both a friction
cone FM and a cone orientation C ≡

[
n t b

]
as indicated in

Algorithm 1. However, C is needed for the assembly of the contact
Jacobian, as is evident from Equation 3. Hence, one may wish to
invoke the generator when assembling the contact Jacobian or split
the generator implementation into two sub-routines. The choice is
intimately related to how the time-discretisation of the friction cone
is implemented. Imagine that the cone generator parametrically de-
pends on the sliding velocity vt and that a full implicit scheme is
wanted, in which case, the generator truly needs to be invoked ev-
ery time before calling a proximal operator. However, in most cases
the positions and orientations are not updated inside an algorithm
as shown in Algorithm 2. In this case both the cone orientation
and limit surface can be computed outside the solver for improved
computational efficiency. For the Newton type solver we outlined
one must update cone orientations continuously as positions and
velocities are solved in a fully coupled way in a full implicit time-
integration method.

We note that in our implementation, an additional drilling torque
is included in the friction model that introduces an angular moment
about the contact normal based on an additional friction coefficient,
µτ. The value of this coefficient is computed similarly to µt and µb.
Inclusion of this torque is optional from a modeling perspective, but
does result in a higher order limit surface and thus requires a third
diagonal term in C as 1

µτ

2
and promoting R to a 3D rotation matrix.

The proximal operator for this surface can then be solved numeri-
cally, as outlined in [Erl17], whereas omitting this additional term
gives a planar surface and the projection can be solved analytically.

5. Results

To demonstrate the agility of the new model and its ability to be
included in very different simulation paradigms we decided to im-
plement the Matchstick model into three existing simulators: Vor-
tex Dynamics, NVIDIA Flex, and PROX [Ken19]. Respectively,
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Figure 3: Procedurally generated structural directions provide in-
tuitive interactive control. These didactic examples demonstrate
channeling (top), spreading (middle), and slaloming (bottom).

Figure 4: A structure field on a ravine slope can be used to steer a
log slide towards (top) or around (bottom) a cube-shaped building.

Figure 5: Visualisation of the ravine example structure fields. Logs
collide with the box (top), and spread prior to collision (bottom).

these frameworks use an LCP based formulation with direct solver,
NCP based formulation with fully implicit Newton solver, and it-
erative Gauss-Seidel type scheme [Erl17]. Figures 3-6 use Flex
[MEM*19], Figures 7-11 use PROX, and Figure 12 and 13 use Vor-
tex. This choice of solvers show examples of semi-implicit time-
integration and fully implicitly time-integration, as well as global
versus local coupled schemes, and fully coupled normal and fric-
tion forces too.

Using the Flex solver, Figure 3 shows simple cases where the be-

Figure 6: Grasping with a robotic gripper demonstrates how our
model affects the friction behaviour during interaction with a de-
formable object.

Figure 7: A box on an inclined plane shows how oblique structure
directions allow control of the sliding trajectory.

Figure 8: Structure directions of a cylinder and inclined plank are
visualized on the left. These produce different rolling and slid-
ing behaviours (top to bottom): cylinder-concentric with plank-
aligned produces stable rolling; cylinder-concentric with plank-
oblique causes the cylinder to skid off the plank; orthogonal cylin-
der and plank directions yield isotropic friction cone behaviour; and
cylinder-axial with plank-oblique also produces skidding.

haviour of sliding boxes can be altered easily by generating a vary-
ing structure field for the plane. On a sloped plane, Figures 4 and 5
show control of a log slide in a ravine. We also demonstrate chang-
ing structure directions on a soft object with the robotic grasping
example shown in Figure 6. As seen in the supplementary movie,
interactive changes to the structure fields immediately change the
behaviour as the Allegro gripper strokes the soft gel-like material.
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Figure 9: Pills in a hopper flow or jam depending on structure
directions. Top left shows concentric structure directions (pro-
motes jamming), while top right shows radial/axial structure di-
rections (promotes flowing). Middle and bottom rows show result-
ing simulations of jamming and flowing, respectively. Note that the
anisotropic simulations results in different orientations of the cap-
sules. This kind of behaviour difference cannot be created using
only isotropic friction to cause the jam.

Using the PROX solver, Figure 7 shows a didactic example of
a box on an inclined plane. Likewise, Figure 8 illustrates cases of
a rolling cylinder that changes behaviour when sliding occurs on
an inclined plane. Structure fields can be used for flow rate control
or jamming effects, as shown in Figure 9. Artistic structure direc-
tions may be used to control the desired behaviour for destruction
of masonry structures, as demonstrated in Figure 10 and 11.

Using the Vortex solver, Figures 12 shows a variation of the
controlled channeling behaviour seen in Figure 3, and Figure 13
shows an example of ground structure directions used to influence
the skidding behaviour of a vehicle.

In our work, we either procedurally generate structure fields for
mesh vertices and interpolated these values for contact points, or
we use texture maps to store the structure fields. The texture maps
allow for a traditional artistic way of modeling structure directions
with an imaging inspired approach.

5.1. Structure Field Direction Textures

The structure directions used by the
Matchstick model can be conve-
niently stored as a texture map. The
inline figure on the right shows an
example of one such texture map
used in our experiments, along with
structure directions shown in grey.
Here, the red and green channels of
the image are used to store the di-
rection information. The process we
use to compute the structure direction from a texture is similar to

Figure 10: A zero-structure field sphere projectile causes a tower
to fall or break depending on structure directions. Top, structure
directions orthogonal to impact permit large friction forces, and the
impact causes the tower to tip and fall. Bottom, structure directions
parallel to impact permit only small friction forces, and the sphere
impact only knocks the top blocks off the stack.

Figure 11: Structure directions for the the destruction of an arch.
Top left, the design provides only weak radial friction. Top right,
the directions provide strong radial friction. Middle row, with
strong radial friction the arch breaks with the pillars being pushed
outward. Bottom row, with weak radial friction the arch falls faster
due to sliding between the upper stones.

normal mapping, which is a common computer graphics technique,
and we briefly explain this process below.

Each vertex in the object’s polygonal mesh stores a normal and
a tangent vector that are used to define surface characteristics at the
vertex. These are specified during the modeling process. When a
collision is detected between two objects, the barycentric coordi-
nates at the contact point are used to interpolate between the nor-
mal and tangent vectors at each vertex in the colliding triangle. This
gives a normal n and tangent t vector at the contact point, and this is
done for both objects. We compute the binormal vector as b = n× t
which gives an orthogonal set of basis vectors. The barycentric co-
ordinates are also used to interpolate the UV texture coordinates,
which are likewise specified at each vertex. Using the interpolated
texture coordinates u,v, we perform a lookup in the friction texture
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Figure 12: Three boxes with different starting orientations slide down an inclined plane with a Matchstick friction texture. The path of the
boxes is determined by the principal structure direction, which has lower friction compared to the lateral direction. As a result, all boxes exit
the plane near the same location.

Figure 13: A moving vehicle brakes hard on a terrain with a friction texture. The region of the terrain with the orange texture has a high
friction coefficient in the direction lateral to the tires. However, when the vehicle skids onto the green region, the structure direction changes
suddenly and the vehicle begins to fishtail due to friction anisotropy.

I such that

c = I(u,v)

where c = r,g,b is a tuple with red, green, and blue color values in
the range [0,1]. The structural direction si at the surface of body i
may then be computed using the red and green channels, such that

si = (2r−1)t+(2g−1)b.

Figure 12 and Figure 13 show examples of friction textures being
used to encode the structure directions. The textures were created
using a typical image editing software application.

6. Discussion and Limitations

We note that there is a need for accurate normal force distributions.
Most stationary point method solvers just pick one out of multiple
solutions, however, we want the solution that is closest to the real
contact force distribution. Iterative methods such as the one out-
line in Algorithm 2 tend to average out force distributions when no
friction is present. But there are no guarantee on which of multiple
solutions this type of method will choose once converged. Adding
compliance and friction to the dynamics is one solution that can
help, and we note that Newton type methods may ultimately be
more appropriate due to improved convergence behaviors.

Inaccuracy in solving proximal operators can produce imprecise
frictional forces, generating torque effects even when no torque ef-
fects should be present. This is not a problem specific for our model
but shared by any simulator that uses a projection onto an elliptical
cone with a large aspect ratio.

The Matchstick model is limited to classes of materials that can
be described by a structural direction with low frictional resistance.

Our new model includes all the behaviours that can be obtained
with the usual Coulomb friction modeling done in rigid body sim-
ulations. However, in the extension of a simulation to an anistropic
friction model, our Matchstick model offers an intuitive solution
to defining highly anisotropic friction cones. Note that our model
supports setting one of the structural directions to zero, in which
case only the object with the non-zero structure determines the
anisotropy. This will make the object with the zero structural field
appear isotropic, and the non-zero object anisotropic.

Surface descriptions in simulators using our Matchstick friction
model must be extended with information about structure direc-
tions such that these can be extracted at points of contacts. From an
implementation perspective this is no more complicated than apply-
ing textures to surfaces. This is straightforward in computer graph-
ics applications, and also allows artistic modelling, where artists
can paint structure directions on surfaces, or directions can be ob-
tained through image processing of photographs of real materials.
Material descriptions are no longer simple coefficients of friction.
Instead, friction cones are instantiated and evaluated during simu-
lation as they depend on the kinematic state of the system.

7. Conclusion and Future Work

We have presented a new phenomenological anisotropic friction
model for structured surfaces. We proved that our novel friction
modeling can be incorporated into simulators that support convex
cones. We note that our model is particularly convenient for PROX
schemes and variants thereof. Our results include a wide range of
examples using different simulators and scenes ranging from small
didactic cases illustrating the intuitive nature of the Matchstick
model to more complex scenarios of digital prototyping, jamming,
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destruction physics, masonry structures, ravines, skidding cars and
more. This provides evidence that using the Matchstick model to
control friction behaviour is intuitive. The behaviours we obtain
throughout these examples were designed with minimal effort in
tuning structure fields. Even for robot hand grasping scenario we
can interactively play with structure fields generated on the fly to
explore the consequences of stroking a gel object with robotic fin-
gers. Furthermore, we have shown how normal mapping techniques
are a convenient way to generate the material structure fields of dif-
ferent objects.

The novelty of considering cones as state dependent high dimen-
sional parametric functions that can change dynamically opens up
a doorway for a multitude of modeling possibilities not yet seen in
the field of computer graphics. We believe it will be straightforward
to extend our work to address friction models with other dependen-
cies, such as sliding velocity (Stribeck effect) or nonlinear scaling
with normal forces as employed in recent work on cloth simulation
[CFW13]. We note that anisotropic friction is generally in demand
for cloth simulation [LDN*18].

Our car skidding example is highly motivating from an anima-
tion system viewpoint. We note that Berry et al. [BBM*17] demon-
strates usability improvement in a driving system by using splines
to sketch trajectories of cars. We speculate that it may be possible
to produce similar trajectories using our friction model.
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Appendix A: Friction Tensors

This appendix contains a detailed analysis of the friction tensors
model. Pabst et al. [PTS09] defines dynamic friction by a direct
evaluation of

f =−λn κ

(
QA+RQBRT

)
v̂t , (24)

where

v̂t ≡
vt

‖ vt ‖
, (25)

φ≡ cos−1 (sA · sB), (26)

R≡ R(n,φ) (27)

where R(n,φ) is the rotation around n with angle φ. Material pa-
rameters are described by one scalar and two tensors: κ ∈ R+ and
QA,QB ∈ R2×2. For planar friction this gives a total of 9 parame-
ters to describe.

We will now examine if a cone description can be extracted from
the model by Pabst et al. We define the linear operator L as follows

f =−λn κ

(
QA+RQBRT

)
︸ ︷︷ ︸

≡L

v̂t , (28)

=−λn Lv̂t . (29)

Under the assumption that L is non-singular we may now write

f =−λn Lv̂t , (30)

L−1f =−λn v̂t , (31)

‖ L−1f ‖2 = λ
2
n , (32)

fT
(

L−T L−1
)

︸ ︷︷ ︸
≡CP

f = λ
2
n . (33)

We observe that this is the same as an elliptical-cone Coulomb fric-
tion model. An eigenvalue decomposition will recover the usual

cone description.

CP ≡ RT

[ 1
µ2

t
0

0 1
µ2

b

]
R . (34)

Next we will investigate dissipation of the model. We start by
writing up the instantaneous power

vt · f =−λ
vT

t Lvt

‖ vt ‖
. (35)

We observe that if QA and QB are symmetric positive definite then
we have sufficient conditions to state that L will always be sym-
metric and positive definite. In this case friction force is always
dissipating.

Recall that principle of maximum dissipation is equivalent with
−v̂t ∈ NCP(f) that is the negative sliding velocity must be in the
normal cone of the friction cone if f is the maximal dissipate force.
We will use an implicit function to express the friction cone of
Pabst et al,

ψ(f)≡ fT
(

L−T L−1
)

f−λ
2
n . (36)

To prove if f is maximal dissipating we wish to show that there
exists some value β > 0 such that

−β v̂t =∇f ψ(f) . (37)

We find

df ψ = dfT
(

L−T L−1
)

f+ fT
(

L−T L−1
)

df (38)

= 2fT
(

L−T L−1
)

︸ ︷︷ ︸
≡(∇f ψ)T

df . (39)

Hence

−β v̂t = 2
(

L−T L−1
)

f (40)

We redefine β← β

2λn
and recall f =−λnLv̂t then we have

β v̂t = L−T v̂t . (41)

This shows that Pabst et al. model is only maximal dissipating when
the direction of sliding is an eigenvector of L−T . This proves that
there can be single cases (two for planar sliding) where the model is
maximal dissipating but in general vt can have any direction. Hence
there are infinitely many cases where the principle of maximum
dissipation will not hold.

In conclusion the model by Pabst et al. can not efficiently
plugged into an existing simulator based on the concept of cones as
it requires L to be non-singular and needs the computation of Cp
and its eigenvalue decomposition. Further, when L is symmetric
positive definite the model is always dissipating but not necessarily
maximal dissipating.
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