
Consistent Database Replication at the Middleware
Level

Marta Patiño-Martı́nez1,2, Ricardo Jiménez-Peris1,2

Facultad de Informática, Universidad Politécnica de Madrid (UPM), Madrid, Spain
{mpatino, rjimenez}@fi.upm.es
and
Bettina Kemme2

School of Computer Science, McGill University, Montreal, Canada
kemme@cs.mcgill.ca
and
Gustavo Alonso2

Department of Computer Science, Swiss Federal Institute of Technology (ETHZ)
Zürich, Switzerland
alonso@inf.ethz.ch

The widespread use of clusters and web farms has increased the importance of data replication. In
this paper, we show how to implement consistent and scalable data replication at the middleware
level. We do this by combining transactional concurrency control with group communication
primitives. The paper presents different replication protocols, argues their correctness, describes
their implementation as part of a generic middleware tool, and proves their feasibility with an

extensive performance evaluation. The solution proposed is well suited for a variety of applications
including web farms and distributed object platforms.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Distributed Databases; H.3.4
[Information Storage and Retrieval]: Systems and Software—Performance Evaluation; C.4 [Computer Sys-
tems Organization]: Performance of Systems—Fault Tolerance. Performance Attributes. Reliability and avail-
ability; C.2.4 [Computer Systems Organization]: Computer Communication Networks—Distributed Systems.
Distributed Databases

General Terms:
Additional Key Words and Phrases: database replication, eager data replication, scalability, mid-
dleware.

1This work has been partially funded by the Spanish National Science Foundation (MCYT), contract number
TIC2001-1586-C03-02,TIC2002-10376-E and by Microsoft Research under contract number MS-2003-193.
2This work has been partially funded by the European Commission under contract number ADAPT IST-2001-
37126.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2004 ACM 0000-0000/2004/0000-0001 $5.00

ACM Transactions on Computers, Vol. V, No. N, Month 2004, Pages 1–43.

2 ·
1. INTRODUCTION

Data replication is a key component of modern data management strategies in computer
clusters and web farms. Replication in these systems is used to spread the load across
several servers, mask failures of individual servers, and/or increase the processing capacity
of the system. In practice, however, replica control (i.e., keeping copies consistent despite
updates) is very complex. For instance, most text book replication protocols (e.g., [Bern-
stein et al. 1987; Weikum and Vossen 2001]) exhibit poor performance and are, therefore,
hardly ever used in practice [Gray et al. 1996]. Typical problems in these protocols are
lack of scalability, unacceptable response times, high deadlock probability, and very high
network traffic [Gray et al. 1996].

A way to avoid these limitations is to use a combination of database techniques and
group communication primitives [Pedone et al. 1998; Pedone and Frolund 2000; Kemme
and Alonso 2000a; 2000b; Patiño-Martı́nez et al. 2000; Jiménez-Peris et al. 2002; Stanoi
et al. 1998; Holliday et al. 1999; Amir and Tutu 2002; Amir et al. 2002; Rodrigues et al.
2002]. This basic idea can be implemented in different ways. At the database level, and as
demonstrated in Postgres-R [Kemme and Alonso 2000a], it is possible to exploit several
optimizations to produce a transparent and highly scalable solution that introduces very
little overhead. We refer to this as a white box approach because it takes advantage of
the database internals. Outside the database and treating the database as a black box, it
is possible to provide a solution that is completely database independent [Amir and Tutu
2002; Amir et al. 2002] at the cost of additional overhead when processing transactions
(e.g., serial execution and redundant work at all sites).

In this paper, we show how to combine the advantages of both approaches by using a
grey box approach. The goal is to achieve the generality of a replication engine external to
the database while still being able to exploit certain database specific optimizations. That
way, we combine the best of both approaches, generality and a wider flexibility in terms of
performance and applications.

For clarity and to illustrate all the design problems involved, the paper proceeds in a step-
wise manner. The system model is introduced in Section 2. The first protocol presented
(Section 3) aims at minimizing the amount of redundant work in the system. Transactions,
even those performing updates on replicated data, are executed at only one site. The other
sites in the system only receive and install the new values of changed data items. With this,
and unlike in many other data replication protocols, even in update intensive environments
the aggregated computing power of the system actually increases as more sites are added.
Such an approach has significant practical advantages. For instance, in a typical web-farm,
a transaction is written in SQL and results are returned in the form of web pages. Pro-
cessing the transaction involves parsing the SQL, executing the transaction, generating the
web pages and delivering them to the client. Obviously, if done at all sites, the amount of
redundant work can be very high. With this first protocol we show how to avoid redundant
work by using a primary copy approach while still maintaining consistency at all times.

A second protocol (Section 4) enhances the first one by minimizing the cost of using
group communication. This is done by exploiting an extreme form of optimistic multicast
[Kemme et al. 2003] that hides most of the communication overhead behind the transaction
execution. The only negative aspect of this protocol is that, like all optimistic protocols, it
may abort transactions under heavy load.

The final and main protocol (Section 5) resolves the problem of aborted transactions by

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 3

using a reordering technique that reduces to a minimum the probability of having to abort
a transaction even when the system is under heavy load. For all the protocols we argue
their correctness (Appendix A) and what happens when failures occur (Section 6).

For the second and third protocols, we discuss their implementation as part of a replica-
tion engine at the middleware level (Section 7). The approach taken is a grey box approach
since it requires from the database system an API which allows to retrieve the updates
of a given transaction in form of a write set, and to apply such write set at a remote site.
Otherwise, the database system only needs to provide the standard SQL interface. The mid-
dleware performs its own concurrency control mechanism to provide 1-copy-serializability
(all physical copies appear as one logical copy and although transactions are executed con-
currently it appears as if they were executed serially). Application programs containing
the SQL statements can be written as usual. They are embedded into the middleware as
it is typical for application server environments. The application programmer does not
need to be aware of replication. The only requirement is that it must be known in advance
which data partitions a particular application program accesses. This can be automatically
extracted (using database tables as partitions), and can even be partly determined dynami-
cally when the application is invoked with specific input parameters.

We also provide an extensive performance evaluation that demonstrates the feasibility of
the approach (Section 8). It shows that the approach works better than standard distributed
locking solutions. Compared to a black box approach, we are able to execute update trans-
actions at one site and only apply the changes at other sites. Our results show that with this,
scalability can be achieved even in update intensive environments. We further show that
using group communication primitives does not lead to a communication bottleneck, and
the implemented concurrency control component works well for a wide range of conflict
situations. As such, it does not seem to have a significant disadvantage over a white box
approach. A thorough abort analysis compares the performance of two of the algorithms.

Finally, related work is discussed in Section 9, and Section 10 concludes the paper.

2. SYSTEM MODEL AND PROBLEM STATEMENT

We assume an asynchronous system extended with (possible unreliable) failure detectors
in which reliable multicast with strong virtual synchrony can be implemented [Friedman
and van Renesse 1995]. The system consists of a group of sites N = {N 1, N2, ..., Nn},
also called nodes, which communicate by exchanging messages. Sites only fail by crash-
ing (Byzantine failures are excluded) and do not recover from crash (recovery is studied
in [Jiménez-Peris et al. 2002]). We assume there is at least one site that never crashes.
Each such site is denoted as an available site. Each site contains a middleware layer and
a database layer. The client submits its requests to the middleware layer which performs
according operations on the database. The middleware layer instances on the different sites
communicate with each other for replica control purposes. The database systems do not
perform any communication.

2.1 Communication Model

Sites are provided with a group communication system supporting strong virtual synchrony
[Friedman and van Renesse 1995]. Group communication systems provide reliable multi-
cast and group membership services [Birman 1996]. Group membership services provide
the notion of view (current connected and active sites). Changes in the composition of a
view are eventually delivered to the application. View composition might change due to

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

4 ·
site crashes. Every crashed site is eventually removed from the view. Sites might be falsely
suspected to have crashed and are removed from the view. These sites are then forced to
commit suicide. We assume a primary component membership [Chockler et al. 2001]. In
a primary component membership, views installed by all sites are totally ordered (there
are no concurrent views), and for every pair of consecutive views there is at least one pro-
cess that survives from the one view to the next one. We say a site is available in a given
view V if it delivers V , and also the view following V (or no further view change occurs).
Otherwise, the site crashes during V . Strong virtual synchrony ensures that messages are
delivered in the same view they were sent (sending view delivery [Chockler et al. 2001])
and that two sites transiting to a new view have delivered the same set of messages in the
previous view (virtual synchrony [Chockler et al. 2001]).

Group communication primitives can be classified according to the ordering and relia-
bility guarantees [Hadzilacos and Toueg 1993]. In regard to ordering, the typical primi-
tives are a simple multicast (does not provide any ordering guarantees), FIFO ordering (all
messages sent by a single site are delivered in the order they were sent), and Total order
(ensures that messages are delivered in the same order at all the sites). In regard to reliabil-
ity guarantees, reliable multicast ensures that all available sites in view V deliver the same
messages in V . Uniform reliable multicast ensures that a message that is delivered at any
site in V (even if it crashes immediately after delivery) will be delivered at all available
sites in V . We assume that a multicast message is also delivered to the sender (called self
delivery in [Chockler et al. 2001]). Usually, a group communication system also provides
support for point-to-point messages.

In the rest of the paper, we use the following primitives. Multicast(m)/Deliver(m) de-
notes the send/delivery of a simple, reliable multicast, FIFO-Multicast(m)/FIFO-Deliver(m)
the send/delivery of a FIFO, uniform reliable multicast, and UNI-Send(m)/UNI-Deliver(m)
the send/delivery of a reliable point-to-point message.

Additionally, we assume the existence of an optimistic total order multicast protocol spe-
cially tailored for transaction processing [Kemme et al. 2003]. Messages are optimistically
delivered as soon as they are received and before the definitive ordering is established. In
the traditional approaches (see Fig. 1 (a)), first the total order of a transaction is determined,
then the transaction is executed. In our approach, a message is OPT-delivered as soon as it
is received from the network and before the definitive ordering is established. Transaction
processing can start directly after the OPT-delivery. With this, the execution of a transac-
tion overlaps with the calculation of the total order (Fig. 1 (b)), and response times are only
then affected by the delay of the total order multicast if establishing the total order takes
longer than executing the transaction (what is usually never the case). If the initial order is
the same as the definitive order, the transactions can simply be committed. If the definitive
order is different, additional actions have to be taken to guarantee consistency.

This optimistic multicast is defined by three primitives [Kemme et al. 2003]. TO-
Multicast(m) multicasts the message m to all the sites in the system. OPT-deliver(m)
delivers message m optimistically to the application, with the same semantics as a sim-
ple, reliable multicast (no ordering guarantees). TO-deliver(m) delivers m definitively to
the application with the same semantics as a total order, uniform reliable multicast. That
is, messages can be OPT-delivered in a different order at each available site, but are TO-
delivered in the same total order at all available sites. Furthermore, this optimistic multicast
primitive ensures that no site TO-delivers a message before OPT-delivering it. A sequence

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 5

(a) Regular delivery (b) Optimistic delivery

Fig. 1. Reduced response time through optimistic message delivery

of OPT-delivered messages is a tentative order. A sequence of TO-delivered messages is
the definitive order or total order.

2.2 Transaction Model, Correctness Criteria, and Transaction Execution

Clients interact with the system middleware by issuing application-oriented functions (e.g.,
bookFlight, purchaseBook, etc.). Each of these functions is a pre-implemented application
program consisting of several database operations. At the time the request is submitted
with a given set of parameters, both the set of operations to be executed, and the data
items to be accessed within these operations is known. Such execution model reflects quite
well the current use of application servers. Each application program is executed within
the context of a transaction. From now on, we only use the term transaction instead of
application program. We define a transaction as a partially ordered set of read (r) and
write (w) operations on physical data item copies. A transaction can either be read-only
(only read operations), or an update transaction (at least one write operation).

For replicated databases, the correctness criterion is one-copy-serializability [Bernstein
et al. 1987]. Despite the existence of multiple copies, each data item must appear as one
logical-copy (1-copy-equivalence), and the execution of concurrent transactions is coordi-
nated so that it is equivalent to a serial execution over the logical copy (serializability). In
order to achieve 1-copy-serializability we have to guarantee that the global history describ-
ing the execution of transactions is equivalent to a history produced by a serial execution of
the same transactions. A history H of committed transactions indicates the order in which
operations on data copies are executed. It includes the partial execution order within trans-
actions. Furthermore, any two conflicting operations must be ordered. Two operations
conflict, if they are from different transactions, access the same data item, and at least one
is a write operation. Non-related operations can be executed in parallel, hence, a history is
a partial order. Each site has a local history indicating only operations on the local copies.
The global history of the system is the union of local histories. A history H of committed
transactions is serial if for any two transactions T 1 and T 2, either all operations of T 1 are
ordered before all operations of T 2 or vice versa. Two histories H 1 and H2 are conflict
equivalent if they have the same set of operations and order conflicting operations in the
same way. A history H is serializable if it is conflict equivalent to some serial history
[Bernstein et al. 1987].

In order to achieve a global, serializable history, the system applies concurrency con-
trol. In this paper, concurrency control for update transactions is based on conflict classes
[Bernstein et al. 1980; Skeen and Wright 1984]. A basic conflict class represents a par-
tition of the data. How to partition the data is application dependent. In a simple case,
there could be a class per table. If the application is well structured, other granularities are

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

6 ·
possible. For instance, by submitting a purchase order the system exactly knows the items
to be bought, and the client who performs the update. Hence, record-level conflict classes
can be implemented. If each application program accesses different parts of the database
(e.g. users that do not share data), then one can use one conflict class per application pro-
gram. That is, conflict classes have the same or a coarser granularity than the concurrency
component of the database system (which usually works on record-level). In summary,
transactions accessing the same conflict class have a high probability of conflicts, as they
can access the same data, while transactions in different partitions do not conflict and can
be executed concurrently. In the first algorithm, we propose each transaction must access
a single basic conflict class (e.g., Cx). For the rest of the algorithms we generalize this
model and allow a transaction to access a compound conflict class. A compound conflict
class is a non-empty set of basic conflict classes (e.g., {Cx, Cy}). We denote as CT T ’s
conflict class (either a basic or compound), and assume that CT is known in advance (as
mentioned above).

The middleware layer implements the above concurrency control. At each site there is a
queue CQx associated to each basic conflict class Cx. When a transaction is delivered to a
site, it is added to the queue(s) of the basic conflict class(es) it accesses. This concurrency
control mechanism is a simplified version of the lock table used in databases [Gray and
Reuter 1993]. In a lock table there is a queue for each data item and locks can be shared
or exclusive, whilst in our approach each queue corresponds to an arbitrary set of data
items (i.e., a basic conflict class), and access to a particular basic conflict class is always
exclusive. We assume the existence of a latch that allows a transaction to access several
basic conflict classes in an atomic step if necessary.

Our algorithms assume that each conflict class (basic or compound) has a master site.
Conflict classes are statically assigned to sites, but in case of failures, they are reassigned
to different sites. There are several mechanisms to assign conflict classes in an efficient
way. In Section 8.1, we will present an assignment based on hashing. We say a transaction
T is local to the master site of its conflict class CT , and is remote to the rest of the sites3.

Transaction execution for all algorithms is roughly as follows. The client submits a
transaction to any site using UNI-send. This site immediately forwards the message to all
sites. All sites append T to the queues of the basic conflict classes T accesses. Only the
master executes the transaction whenever it is the first in all queues. It executes both read
and write operations on the local database. Then, it multicasts the updates performed by T
to the remote sites. Remote sites only apply these updates instead of reexecuting the entire
transaction. In order for the middleware to send and apply writesets, we assume that the
underlying database provides two services. One to obtain the write set of a transaction and
another one to apply the write set. Executing local transactions and applying the updates
of remote transactions must be controlled such as to guarantee 1-copy-serializability. In
particular, transactions can execute concurrently if they do not have any common basic
conflict class, however, as soon as they share one basic conflict class the execution of the

3We would like to note that the algorithms do also work correctly if conflict classes do not have masters. The
only requirement for correctness is that each transaction is local at one site and remote at the other sites, and that
each site can decide independently whether an incoming transaction is local or remote. Having each conflict class
a master and letting a transaction T be local at the master of CT is just one option to decide who is going to
execute the transaction; this option is advantageous because by executing all transactions on a data partition on
one site we increase the probability that data to be accessed already resides in main memory, and hence, speed up
transaction processing.

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 7

Queue Management

CQx FIFO queue of transactions that want to access conflict class Cx

First(CQx) returns first transaction of queue CQx of conflict class Cx

(without removing the transaction)
Append(T, CQx) appends T to queue CQx of conflict class Cx

Remove(T, CQx) removes T from queue CQx of conflict class Cx

Transaction information (T)

exState describes the execution state of the transaction;
states differ for the different algorithms

delState describes which messages have been delivered;
states differ for the different algorithms

CT for the DISCOR algorithm: the basic conflict class T accesses;
for NODO and REORDERING: the set of basic conflict classes T accesses

WST write set of transaction T

Local(T) returns TRUE on the site that is master of CT , returns FALSE otherwise

Table I. Data structures and general methods

two transactions will be serial according to their order in the corresponding queue. Note
that deadlocks cannot occur since a transaction is appended to all basic conflict classes it
accesses at transaction start.

Read-only transactions are only executed at the site they are submitted to. We assume
that they read data from a snapshot, and hence, do not need to be isolated in regard to update
transactions. If the underlying database system does not support such semantics, our model
and algorithms are quite simple to extend to integrate local, serializable execution of read-
only transactions.

In the following, we present three algorithms (DISCOR, NODO, and REORDERING),
that provide 1-copy serializability using the transaction model and execution pattern as
described above. Basic data structures and methods used by all of the algorithms are
depicted in Table I. We assume that once a site receives the first message regarding a
transaction T , the information regarding T is stored in a hash table. Once all messages
regarding these transactions have been delivered and T is completely terminated, T is
removed from the hash table. The maintenance of this hash table is not further described
in the algorithms of the next sections.

3. INCREASING SCALABILITY

3.1 DISCOR Protocol

In the DISCOR (DISjoint COnflict classes and Reliable multicast) algorithm each transac-
tion T belongs to a single basic conflict class CT . In DISCOR, the execution and delivery
states of a local transaction are irrelevant. A remote transaction can have the execution
state executable, and the delivery state delivered. Before a state is explicitly assigned, it is
considered NIL.

Figure 2 depicts the DISCOR algorithm. It only considers update transactions since we
assume read-only transactions to read from a snapshot. The algorithm has been struc-
tured according to where execution takes place (master/remote), and according to different
events during the processing of a transaction. In this algorithm, we assume that queues are
protected objects, and at most one operation can be active on a queue at any given time.

An update transaction Ti can be submitted to any site (Figure 2(a)). This site will sim-

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

8 ·
ply multicast the transaction to all sites without any ordering requirement. Execution is
different at the master and the remote sites. The master (Figure 2(b)) adds the transac-
tion to the queue of the basic conflict class CT . Once T is at the head of its queue the
corresponding operations are executed. After the execution has completed, the master site
multicasts a commit message containing write set WST using FIFO ordering, and com-
mits the transaction. At the remote sites (Figure 2(c)), when the transaction is delivered,
it is marked delivered and added to the corresponding queue unless the commit message
arrived earlier. The execution order is determined by the order in which commit messages
are delivered. Since transactions only access one basic conflict class, conflicting transac-
tions have always the same master. Hence, all sites see the same FIFO order for commit
messages of conflicting transactions. Thus, to guarantee correctness, it suffices for a site to
ensure that conflicting transactions are ordered according to this FIFO order. Hence, upon
delivery of the commit message of transaction T , T is marked executable, and the queue of
T ’s conflict class is reordered, such that already executable transactions (commit message
delivered) are ordered before T and active transactions (commit message still missing) are
ordered after T . When a transaction is at the head of a queue and the commit message has
been delivered, the write set can be applied and the transaction can commit 4.

3.2 Example

Assume that there are two basic conflict classes Cx, Cy and two sites N and N ′. N is
master of conflict class {Cx}, and N ′ is master of {Cy}. Assume there are three update
transactions, CT1 = {Cx}, CT2 = {Cy}, and CT3 = {Cx}. That is, T1 and T3 are local
at N and T2 is local at N ′. The delivery order at N is: T1, T2, T3 and at N ′ is: T3, T1, T2.
When all the transactions have been delivered, the queues at each site are as shown in
Figure 3. In this figure and all successive examples, the head of the queues is on the left.

At site N , T1 can start executing its operations on Cx since it is local and it is at the
head of the corresponding queue. When T 1 has finished its execution, N will multicast
a commit message with all the corresponding updates. When this message is delivered at
N , T1 is committed and removed from the queue. The same will be done for T 3. Site N ′

performs the same steps for T2.
When N delivers the commit message for T2, the corresponding changes can be in-

stalled. Once this happens, T2 is committed and removed from CQy . When the commit
message of T1 is delivered at N ′, T1 is not at the front of the queue. At N ′ T3 was delivered
before T1. Since the commit message indicates the serialization order, T1 is moved to the
front of the queue. Then the updates of T1 are installed, and T1 is removed from CQx.

4. INCREASING FLEXIBILITY

The DISCOR algorithm requires transactions to be confined to a single conflict class. This
is a severe restriction since it assumes the replicated data and the workload are perfectly
partitionable. In this section we propose a new algorithm, NODO (NOn-Disjoint conflict
classes and Optimistic multicast), that extends the DISCOR algorithm by allowing transac-
tions to access compound conflict classes.

4An implementation of such algorithm does not necessarily need to use queues. To be more efficient, incoming
transactions could be stored in a hash table and only upon delivery of the commit message, transactions are
applied in FIFO order. We use the queues to use a similar structure for all the algorithms presented.

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 9

Upon UNI-deliver(Ti)
Multicast(Ti)

(a) Transaction Submission to any site

Upon deliver(Ti)
Append(Ti, CQCTi

)

Upon First(CQCTi
)= Ti

Submit execution of Ti

Upon complete execution of Ti

FIFO-Multicast(commit,WSTi
)

Upon FIFO-Deliver(commit,WSTi
)

Submit commit of Ti

Remove(Ti, CQCTi
)

(b) Master site

Upon deliver(Ti)
Ti.delState:= delivered
If Ti.exState = NIL then

Append(Ti, CQCTi
)

EndIf

Upon First(CQCTi
)= Ti

∧ Ti.exState = executable
Apply the updates of WSTi

Upon FIFO-Deliver(commit,WSTi
)

Ti.exState:= executable
If Ti.delState = NIL then

Append(Ti, CQCTi
)

EndIf
Reorder Ti within CQCTi

after the last executable transaction

Upon complete application of WSTi

Submit commit of Ti

Remove(Ti, CQCTi
)

(c) Remote site

Fig. 2. DISCOR

T2

T3T1 T3

T2

CQx

CQy

T1
CQx

CQy

Site N Site N’

Fig. 3. Example for the DISCOR algorithm

4.1 NODO Protocol

This time, when an update transaction T is submitted, the TO-multicast is used to forward
the transaction to all sites. The idea is to start transaction execution upon OPT-delivery, but
to use the total order established by the TO-delivery as a guideline to serialize transactions.
All sites see the same total order for update transactions. Thus, to guarantee correctness,
it suffices for a site to ensure that conflicting transactions are ordered according to the
definitive order. Since the execution order is not important for non-conflicting transactions,
they can be executed in different orders (or in parallel) at different sites.

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

10 ·

Upon UNI-deliver(Ti)
TO-multicast(Ti)

(a) Transaction Submission (to any site)

Upon OPT-deliver(Ti)
Ti.delState:= pending
Ti.exState:= executable
For each Cx ∈ CTi

: Append(Ti, CQx)

Upon ∀Cx ∈ CTi
, First(CQx)= Ti

∧ Ti.exState = executable
Submit Ti for execution

Upon complete execution of Ti

Ti.exState:= executed
If Ti.delState = committable then

Multicast(commit,WSTi
)

EndIf

Upon Deliver(commit, WSTi
)

Submit commit of Ti

For each Cx ∈ CTi
: Remove(Ti, CQx)

Upon TO-deliver(Ti)
Ti.delState:= committable
If Ti.exState = executed then

Multicast(commit,WSTi
)

Else (still executable)
For each Cx ∈ CTi

If ∃Tj | (First(CQx) = Tj ∧ Local(Tj)
∧ Tj .delState = pending) then

Submit abort of Tj

Tj .exState:= active
EndIf
Reorder Ti within CQx

before the first pending transaction
EndFor

EndIf

Upon complete abort of Ti

Ti.exState:= executable

(b) Master site

Upon OPT-deliver(Ti)
Ti.delState := pending
For each Cx ∈ CTi

: Append(Ti, CQx)

Upon Ti.delState = committable ∧
Ti.exState = executable
∧ ∀Cx ∈ CTi

First(CQx)= Ti

Apply the updates of WSTi

Upon complete application of WSTi

Submit commit of Ti

For each Cx ∈ CTi
: Remove(Ti, CQx)

Upon TO-deliver(Ti):
Ti.delState:= committable
For each Cx ∈ CTi

If ∃Tj | (First(CQx) = Tj ∧ Local(Tj)
∧ Tj .delState = pending) then

Submit abort of Tj

Tj .exState:= active
EndIf
Reorder Ti within CQx

before the first pending transaction
EndFor

Upon Deliver(commit, WSTi
)

Ti.exState:= executable

(c) Remote site

Fig. 4. NODO

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 11

Figure 4 presents the NODO algorithm. For NODO, the execution state exState of a
transaction can be active (cannot yet start execution), executable (may start execution)
or executed. The delivery state delState can be pending (a transaction is OPT-delivered
but not yet TO-delivered), or committable (a transaction is TO-delivered). Within this
algorithm we assume that all queue related operations triggered upon a certain event are
executed as an atomic step. This can be achieved, e.g., by acquiring a short lived lock
(mutex) on the entire queue table. When a transaction T is OPT-delivered at site N , it is
added to the queues of all basic conflict classes contained in CT . Only the master site of
CT executes T : whenever T is at the head of all of its queues the transaction is submitted
for execution. When a transaction T is TO-delivered at N , N checks that the definitive and
tentative orders agree. If they agree, T can be committed after its execution has completed.
If they do not agree, there are several cases to consider. The first one is when the lack of
agreement is with non-conflicting transactions. In that case, the ordering mismatch can be
ignored. If the mismatch is with conflicting transactions, there are two possible scenarios.
If no local transactions are involved, T can simply be rescheduled in the queues before
the transactions that are only OPT-delivered but not yet TO-delivered (that is the queue
is reordered to reflect the total order determined by TO-delivery). If local transactions are
involved, the procedure is similar but a local pending transaction T ′ that might already have
started execution (it is the first in its queue), must be aborted. Note that the algorithm does
not wait to reschedule until the abort is complete but schedules T immediately before T ′.
Hence, T might be submitted to the database before T ′ has completed the abort. However,
since the database has its own concurrency control, we have the guarantee that T cannot
access any data item T ′ has written before T ′ undoes the change. An aborted transaction
can only be resubmitted for execution once the abort is complete.

Once a transaction is TO-delivered and completely executed the local site multicasts the
commit message including the write set using simple, reliable multicast. Hence, the com-
mit message can arrive to other sites before the transaction has been TO-delivered at that
site. In that case, the definitive order is not yet known, and hence, the transaction cannot
commit at that site to prevent conflicting serialization orders. For this reason the process-
ing of the commit message at a remote site is delayed until the corresponding transaction
has been TO-delivered at that site. Later, when the transaction has been TO-delivered and
it is at the head of its queues, the write set is applied to the database and the transaction
committed.

4.2 Examples

Assume that there are two basic conflict classes Cx, Cy and two sites N and N ′. Site N
is the master of conflict classes {Cx}, and {Cx, Cy}, and N ′ is master of {Cy}. There are
three transactions, CT1 = {Cx, Cy}, CT2 = {Cy} and CT3 = {Cx}. That is, T1 and T3

are local at N and T2 is local at N ′. The tentative order at N is: T1, T2, T3 and at N ′ is:
T2, T3, T1. The definitive order is: T1, T2, T3. Fig. 5 shows the queues at each site just
after all transactions have been OPT-delivered.

At site N , T1 can start executing both its operations on Cx and Cy since it is at the
head of the corresponding queues. When T1 is TO-delivered the orders are compared. In
this case, the definitive order is the same as the tentative order and hence, T 1 can commit.
When T1 has finished its execution, N will multicast a commit message with all the corre-
sponding updates. N can then commit T1 and remove it from the queues. The same will
be done for T3 even if, in principle, T2 goes first in the final total order. However, since

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

12 ·

T2

T3T1 T3

T1 T2

CQx

CQy

T1

T1

CQx

CQy

Site N Site N’

Fig. 5. Example of NODO

these two transactions do not conflict, this mismatch can be ignored. Parallel to this, when
N delivers the commit message for T2, the corresponding changes can be installed since
T2 is at the head of the queue CQy . Once the changes are installed, T2 is committed and
removed from CQy .

At site N ′, T2 can start executing since it is local and at the head of its queue. However,
when T1 is TO-delivered, N ′ realizes that it has executed T2 out of order and will abort
T2, moving it back in the queue. T1 is moved to the head of both queues. Since T3 is not
executed at N ′, moving T1 to the head of the queue CQx does not require to abort T3. T1

is now the first transaction in all the queues, but it is a remote transaction. Therefore, no
transaction is executing at N ′. When the commit message of T1 arrives at N ′, T1 updates
are applied, and then T 1 is committed and removed from both queues. Then, T 2 will start
executing again. When T2 is TO-delivered and completely executed, a commit message
with its updates will be multicast, and T2 will be removed from CQy .

5. REDUCING TRANSACTION ABORTS

5.1 REORDERING Protocol

In the NODO algorithm, a mismatch between the local optimistic order and the total order
might lead to the abort of a local transaction (if the local transaction already started execu-
tion, and the disordered transactions conflict). The way to avoid aborting local transactions
is to take advantage of the fact that we follow a master copy approach (remote sites only
install updates in the proper order). With this, a local site can unilaterally decide to change
the serialization order of two local transactions (i.e., not following the definitive order but
follow the tentative order). This reduces the abort rate, and thus increases throughput and
decreases transaction latency. To guarantee correctness, the local site must inform the
rest of the sites about the new execution order. No extra messages are needed since this
information can be sent in the commit message.

Special care must be taken with transactions that access a compound conflict class (e.g.,
CTi = {Cx, Cy}). We will see that a site can only follow the tentative order T2, T1 instead
of the definitive order T1, T2 if T2’s conflict class CT2 is a subset of T1’s conflict class CT1

and both transactions are local. Otherwise, inconsistencies might occur. When reordering
can take place (i.e., CT2 ⊆ CT1), T1 becomes the serializer transaction of T2, and T2 is a
reordered transaction. We call this new algorithm REORDERING as the serialization order
imposed by the definitive order might be changed for the tentative one.

REORDERING has the same execution and delivery states as NODO. For the master
site, the REORDERING algorithm basically does the same as NODO except for the time a
transaction is TO-delivered. Figure 6 shows the actions for the master. It only provides the

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 13

Upon TO-deliver(Ti)
If Ti.delState = committable then

Ignore message (was reordered)
Else

If Ti.exState = executed then
Ti.delState:= committable
FIFO-Multicast(commit,WSTi

, Ti, {})
Else (still executable)

Reorder(Ti)
EndIf

EndIf

Upon complete execution of Ti

If Ti.delState = committable then
FIFO-Multicast(commit,WSTi

, Ser(Ti), BTTi
)

EndIf
Ti.exState:= executed

Upon FIFO-deliver(commit, WSTi
, Ser(Ti), BTTi

)
Submit commit of Ti

For each Cx ∈ CTi
: Remove(Ti, CQx)

Function Reorder(Ti)
AS = {Tj |CTj

∩ CTi
�= ∅ ∧ CTj

� CTi

∧ ∀Cx ∈ CTj
: Tj = First(CQx)

∧ Tj .delState = pending ∧ Local(Tj)}
For each Tj ∈ AS

Submit abort of Tj

Tj .exState:= active
EndFor
RS = {Tj |CTj

⊆ CTi
∧ Tj →opt Ti

∧ Tj .delState = pending ∧ Local(Tj)}
For each Tj ∈ RS ∪ {Ti}

in opt-delivery order
Tj .delState:= committable
Ser(Tj) := Ti (Ti is serializer of Tj)
For each Cx ∈ CTi

Reorder Ti within CQx

before the first pending transaction
EndFor
BTTj

= {Tk|CTk
∩ CTj

�= ∅ ∧ Tk ∈ RS

∧Tk →opt Tj }
If Tj .exState = executed then

FIFO-Multicast(commit,WSTj
, Ti, BTTj

)
EndIf

EndFor

Fig. 6. REORDERING for a master site

steps that are different from NODO. When a transaction T is TO-delivered we first check
whether it is already marked committable or not. In the latter case, T was reordered, and
nothing has to be done. Otherwise, if it is completely executed (also meaning it is the first
in all queues), we multicast the write set using FIFO order as in DISCOR. If T was not
the first in all queues we check for two sets of transactions. AS is the set of transactions
that must be aborted, and RS is the set that can be reordered and serialized before T . A
transaction in AS is local and pending was OPT-delivered before T , accesses at least one
basic conflict class also accessed by T , and at least one conflict class not accessed by T ,
and has already started execution. A transaction in RS is also local and pending, and was
OPT-delivered before T , but in contrast to AS, it accesses a subset of the conflict classes
accessed by T . For any two transactions T1 and T2 in RS that conflict (their conflict
classes intersect), we must make sure that they are executed in the same order at the master
and the remote sites. This order is the order they are OPT-delivered at the master (in the
algorithm, we denote T1 →OPT T2 if T1 is OPT-delivered before T2). Upon complete
execution of transaction T , the master multicasts a commit message as in NODO. This
time, the commit message also contains the identifier of the serializer transaction Ser(T)
of T (Ser(T) = T , if T was not reordered), and is multicast in FIFO order. Furthermore,
it contains the set BTT including the identifiers of all transactions that are also reordered
by Ser(T), and that conflict with T and must be executed before T (because they were
OPT-delivered before T). The rest of the algorithm for master is the same as in NODO.

For a remote site, the REORDERING algorithm is depicted in Figure 7. Care has to be
taken that conflicting transactions are applied in the same order as at the master. This

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

14 ·

Upon OPT-deliver(Ti)
If Ti.delState = NIL then

Ti.delState:= pending
EndIf
If Ti.exState = NIL then

For each Cx ∈ CTi
: Append(Ti, CQx)

EndIf

Upon TO-deliver(Ti)
If Ti.delState = committable then

Ignore the message (was reordered)
Else

Ti.delState:= committable
For each Cx ∈ CTi

If ∃Tj | (First(CQx) = Tj ∧ Local(Tj)
∧ Tj .delState = pending) then

Submit abort of Tj

Tj .exState := active
EndIf
Reorder Ti within CQx

before the first pending transaction
EndFor

EndIf

Upon FIFO-deliver(commit, WSTi
, Ser(Ti), BTTi

)
Ti.exState:= executable
If Ti.delState = NIL then

For each Cx ∈ CTi
: Append(Ti, CQx)

EndIf

Only for Ti with Ti �= Ser(Ti):
Upon Ti.exState = executable
∧ Ser(Ti).delState = committable
∧ ∀Tj ∈ BTTi

, Tj .delState = committable
Ti.delState := committable
For each Cx ∈ CTi

Reorder Ti just before Ser(Ti) in CQx

EndFor

Upon Ti.delState = committable
∧ Ti.exState = executable
∧ ∀Cx ∈ CTi

: First(CQx)= Ti

∧ ∀Tj ∈ BTTi
: Tj .exState = executed

Apply updates of WSTi

Upon complete application of WSTi

Submit commit of Ti

Ti.exState:= executed
For each Cx ∈ CTi

: Remove(Ti, CQx)

Fig. 7. REORDERING for a remote site

requires a bit more careful setting of execution and delivery states. In general, we set a
transaction T to be executable when the commit message arrives. We set T committable if
it is TO-delivered, or if it was reordered, and the serializer transaction and all transactions
that were reordered by the same serializer, and were OPT-delivered at the master before T ,
have been set committable. The write set of transaction T can be applied when T is exe-
cutable, committable, at the head of all its queues, and it is guaranteed that all transactions
reordered before T have already been reordered at the remote site, and have been commit-
ted. Since the execution order is now not necessarily determined by the definitive order,
and transactions at remote sites might commit before they are even OPT-delivered (it might
be enough that the commit message was delivered and the serializer was TO-delivered), we
have to be careful when to exactly set states, and to append the transaction to the queues
before applying the write set.

5.2 Example

Assume a database with two basic conflict classes Cx and Cy . Site N is the master of the
conflict classes {Cx} and {Cx, Cy}. N ′ is the master of conflict class {Cy}. To show how
reordering takes place, assume there are three transactions CT1 = CT3 = {Cx, Cy}, and
CT2 = {Cx}. All three transactions are local to N . The tentative order at both sites is
T2, T3, T1. The definitive order is T1, T2, T3. After opt-delivering all transactions they are
ordered as shown in Fig. 8(1).

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 15

T3

T2T2 T3

T3 T1

CQx

CQy

T3

T1

CQx

CQy

Site N Site N’

T1
T1

T1

T1T2 T3

T3 T1

CQx

CQy

T2

T3

CQx

CQy

Site N Site N’

T1
T3

(1) Example 1: After all transactions have been OPT-delivered (2) Example 1: After T1 TO-delivery

T2

T1T3 T1

T3 T2

CQx

CQy

T3

T3

CQx

CQy

Site N Site N’

T1

T1T3 T1

T3

CQx

CQy

T3
CQx

CQy

Site N Site N’

T1 T2
T2 T3

(3) Example 2: After all transactions have been OPT-delivered (4) Example 3: After T1 TO-delivery

Fig. 8. Examples of REORDERING

At site N , T2 can start execution (it is local and at the head of all its queues). Assume
that T1 is to-delivered at this stage. In the NODO algorithm, T1 would be put at the head of
both queues which can only be done by aborting T 2. This abort is, however, unnecessary
since N controls the execution of these transactions and the other sites are simply waiting
to be told what to do. Thus, N does not to follow the total order but the tentative order.
When such a reordering occurs, T1 becomes the serializer transaction of T2 and T3. Note
that this can only be done because the transactions are local at N and the conflict classes
of T2 and T3 are a subset of T1’s conflict class.

Site N ′ has no information about the reordering. Thus, not knowing better, when T 1

is to-delivered at N ′, N ′ will reschedule T1 before T2 and T3 as described in the NODO

algorithm. With this, the queues at both sites look as shown in Fig. 8(2).

In the meanwhile, at N , T2 does not need to wait to be to-delivered. Being at the head
of the queue and with its serializer transaction to-delivered, the commit message for T 2

can be multicast once T2 is completely executed (thereby reducing the latency for T 2). The
commit message of T2 also contains the identifier of the serializer transaction T1. With this,
when N ′ delivers the commit message, it realizes that a reordering took place. N ′ will then
reorder T2 ahead of T1 and mark it committable. N ′, however, only reschedules T2 when
T1 has been to-delivered in order to ensure one-copy serializability. The rescheduling of
T3 will take place when the commit message for T3 arrives, which will also contain T1

as the serializer transaction. In order to prevent that T2 and T3 are executed in the wrong
order at N ′, commit messages are FIFO-multicast, and BTT3 = {T2} indicating, that T2

must be executed before T3.
As this example suggests, there are restrictions to when reordering can take place. To

see this, consider three transactions CT1 = {Cx}, CT2 = {Cy} and CT3 = {Cx, Cy}. T1

and T3 are local to N , T2 is local to N ′. Now assume that the tentative order at N is T3,
T1, T2 and at N ′ it is T1, T2, T3. The definitive total order is T1, T2, T3. After all three

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

16 ·
transactions have been opt-delivered the queues at both sites look as shown in Fig. 8(3).

Since T3 is local and at the head of its queues, N starts executing T3. For the same
reasons, N ′ starts executing T2. When T1 is to-delivered at N , T3 cannot be reordered
before T1. Assume this would be done. T3 would commit and the commit message would
be multicast to N ′. Now assume the following scenario at N ′. Before N ′ delivers the
commit message for T3 both T1 and T2 are to-delivered. Since T2 is local, it can commit
when it is executed (and the commit is multicast to N). Hence, by the time the commit
message for T3 arrives, N ′ will produce the serialization order T2 → T3. At N , however,
when it delivers T2’s commit, it has already committed T3. Thus, N has the serialization
order T3 → T2, which contradicts the serialization order at N ′.

This situation arises because CT3 = {Cx, Cy} is not a subset of CT1 = {Cx} and,
therefore, T1 is not a serializer transaction for T3. In order to clarify why subclasses (i.e.,
the reordered transaction conflict class is a subset of the one of the serializer transaction)
are needed for reordering, assume that T1 also accesses Cy (with this, CT3 ⊆ CT1). In this
case, the queues look like shown in Fig. 8(4).

The subset property guarantees that T1 conflicts with any transaction with which T3

conflicts. Hence, T1 and T2 conflict and N ′ will delay the execution and commit of T2

until the commit message of T1 is delivered. As the commit message of the reordered
transaction T3 will arrive before the one of T1, T3 will be committed before T1 and thus
before T2 solving the previous problem. This means, that both N and N ′ will produce the
same serialization order T3 → T1 → T2.

6. VIEW CHANGES

So far, failures have not been considered. In our system a site acts as a primary copy for
the conflict classes it owns and as a backup for all other conflict classes. In the event of
site failures, and the delivery of a view change, it is just a matter of selecting the new
master site for the conflict classes residing in the failed site. A simple policy is to assign
the conflict classes of the failed site to the first site in the new view. That way all sites
have an easy way to know who is the new master for those conflict classes. Other, more
sophisticated reassignments are possible.

For each transaction T of the old master for which the new master had delivered the
transaction but not the commit message before the view change the new master will execute
and commit T . It will also multicast T ’s commit message. The old master might have
delivered a transaction and started its execution but no other site delivered the transaction.
However, in this case it is guaranteed that the old master has not committed this transaction.
This is due since at least one message is sent using uniform reliable multicast. Hence,
providing such simple master takeover in case of view changes, all available sites commit
the same transactions and failed sites commit a prefix of these transactions. As such, we
avoid having a 2-phase commit protocol (2PC) at the end of a transaction as traditional
solutions do. With this we do not only avoid the logging and communication overhead
of 2PC but also avoid the requirement that a site can only commit a transaction once it
is executed at all sites. In our system, it is enough that a site knows the other sites have
delivered the messages and hence, will eventually commit the transaction (unless they fail).
Please, refer to the proof section for details.

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 17

7. IMPLEMENTATION

In this section we describe the architecture of the middleware replication system. Both
the NODO and the REORDERING protocols are implemented. The middleware has been
implemented using the C programming language. Multithreading and multiprocessing are
heavily used along the different components of the system to provide an optimal degree of
concurrency. Communication among the threads of the same process takes place through
shared memory and semaphores, whilst communication between different processes is
based on Unix sockets.

7.1 Architecture

At each site there is an instance of the middleware and an instance of the database. The
middleware is located between the clients submitting transactions and the database (Fig. 9).
Clients submit requests to execute predefined application programs (the requests can con-
tain parameters). An application program can have several SQL statements to be executed
within the database. The middleware takes care of executing each application program
within the context of a transaction. There are three main components in the middleware,
the queue manager, the database interceptor, and the communication manager.

Fig. 9. Main components

The queue manager implements the core of the replication protocols. It maintains the
conflict class queues and controls the execution of the transactions. It coordinates with the
other sites and interacts with clients through the communication manager, and it submits
transactions to the database through the database interceptor.

The communication manager is the interface between the queue manager and the group
communication system (in our current implementation Ensemble [Hayden 1998]). The
communication manager establishes the connection with the group, and monitors the group

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

18 ·
membership. Sites that are not in the primary partition are forced to suicide. The commu-
nication manager also pipelines all messages into the network, and enforces the atomic-
ity needed to execute actions associated to communication events, such as optimistic and
definitive delivery of transaction and commit and view changes, by sequentially delivering
such events.

The queue manager interacts with the database through the database interceptor. The
database interceptor executes the application programs and controls the database trans-
actions. In our current implementation, we use PostgreSQL [PostgreSQL 1998], version
6.4.2, as underlying database system. The database interceptor keeps a pool of processes
available, each one of them with an open connection to the database. This acts as the con-
nection pooling mechanisms found in modern middleware tools. Using this pool, trans-
actions can be submitted and executed without having to pay the price of establishing a
connection for each of them. At the same time, the processes can be used concurrently,
thereby allowing the queue manager to submit to the database several transactions at the
same time (if they don’t conflict). The queue manager also limits the maximum number
of open connections preventing a degradation of the underlying database in a sudden re-
quest burst (PostgreSQL allows to open more connections that it can handle yielding to a
degradation of the service during peak loads).

7.2 Execution of Update Transactions

In what follows, we describe the implementation of NODO. The implementation of RE-
ORDERING is similar except for the fact that some transactions are reordered to prevent
aborts.

Upon receiving a request from a client, the queue manager checks whether the requested
transaction (application program) is a query or an update transaction. If it is a query, then
it is executed locally. Otherwise, the request is TO-multicast to all sites.

When the communication manager OPT-delivers an update transaction T , it forwards
the transaction to the queue manager. The queue manager inserts the transaction into the
queues of all the basic classes included in CT . If T is a local transaction and at the head
of all of its queues, the queue manager sends the transaction to the database interceptor.
The database interceptor issues a begin transaction (BOT), and executes T submitting
SQL statements to the database. Once execution is completed, the database interceptor
informs the queue manager (without committing the database transaction). The queue
manager will not submit T ’s commit until its definitive order is confirmed (the transaction
is TO-delivered). If the definitive (TO-delivery) and tentative order (OPT-delivery) agree,
the queue manager will request T ’s write set through the database interceptor. The queue
manager will send a commit message with the updates to all the sites through the com-
munication manager. Once the message is delivered locally, the queue manager submits
T ’s commit to the database interceptor, and removes T from the queues. The database
interceptor commits T at the database. If the definitive (TO-delivery) and tentative order
(OPT-delivery) do not agree, the queue manager establishes whether the ordering problem
affects transactions that conflict. If this is not the case, the ordering problem is ignored (the
transactions do not conflict; transitive closures for transactions accessing compound classes
that overlap are also captured by the TO-delivery). If the ordering mismatch affects trans-
actions that conflict, the serialization order obtained so far (following the OPT-delivery
order) is incorrect (it should have followed the TO-delivery order) and T must be aborted.
This is done by issuing an abort to the database interceptor and reordering T accordingly

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 19

in the queues. No communication with the rest of the sites is needed, since they will not
apply the transaction updates until the master site completes.

If the transaction is remote, the queue manager waits until the transaction is at the be-
ginning of all its queues, it is TO-delivered, and its commit message has been delivered.
Then, the queue manager submits the write set to the database through the database inter-
ceptor. We will see in Section 7.5 how the write set is generated and how it is applied to
the database. Once the transaction is completed, the queue manager will remove it from
all the queues.

Several transactions can be submitted concurrently to the system. If they do not conflict
they will be executed in parallel. Correct serialization is guaranteed as a combination of
the following mechanisms. The communication manager delivers messages serially to the
queue manager. The queue manager processes the actions on queues upon a certain event
atomically (e.g. upon OPT-delivery including a transaction in all its queues, upon TO-
delivery performing the reordering actions, etc.). At the same time, parallelism is achieved
since the database interceptor and its processes execute concurrently to the queue manager.
The queue manager takes care that for each conflict class only at most one transaction ac-
cessing this conflict class is submitted to the database interceptor, but transaction accessing
different conflict classes can be executed concurrently by the database interceptor.

7.3 Execution of Queries

Queries (read only transactions) are executed only at the site they are submitted. Queries
are executed using snapshot isolation so that they do not interfere with updates. However, if
the database system does not provide snapshot isolation, the system gives queries a prefer-
ential treatment. In this case, queries are sent to a single site, as long as this site makes sure
that the query does not reverse the serialization order of update transactions, it can execute
the query at any time. This can be easily enforced by queuing the query after transactions
that have been TO-delivered and before transactions that have not yet been TO-delivered.
By doing this, the site can be sure that, no matter what happens to the update transactions,
their serialization order will not be altered. This shortcut allows us to simulate snapshot
isolation in a straightforward way and can be used with any other database management
system that does not provide snapshot isolation (e.g., object oriented databases). It has the
advantage that queries do not affect updates and do not need to limit their access to a single
compound conflict class. This is an interesting option for monitoring and analysis purposes
since it allows queries to be run on a single site without any restrictions on the items they
can access. The proposed approach guarantees full serializability of queries since a query
Q sees the state of the database as of the time all transactions TO-delivered before Q have
committed and all transactions TO-delivered after Q have not yet started. The disadvan-
tage is that while queries are executed on a conflict class, update transactions are delayed.
This is the same problem as traditional strict 2-phase-locking has [Bernstein et al. 1987]. If
the application is willing to have a lower level of isolation than serializability for queries,
the queue manager can submit queries to the database interceptor without inserting them
in queues. The database interceptor submits them to the database immediately using a low
isolation level (e.g. read committed) in which read only transactions do not keep locks
until the end, and hence, might read non-serializable data.

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

20 ·
7.4 Optimistic Delivery

We have used Ensemble [Hayden 1998] as communication layer. Ensemble is a group
communication protocol stack providing virtual synchronous multicast with different reli-
ability and ordering properties.

In our replication protocol, update transactions use the total order multicast with opti-
mistic delivery. However, such a primitive is not available in any existing group commu-
nication system, including Ensemble. One way to implement this primitive is to modify
the group communication protocol stack. In the current prototype we have implemented
such a primitive on top of Ensemble. Although integrating the optimistic delivery into
the protocol stack would have been more efficient, implementing it on top has served our
purposes well.

In our implementation, each total order multicast is performed in two steps. First, the
sender sends the message using IP-multicast. Immediately after that, the message is sent
again using the Ensemble reliable total order multicast. The delivery of the first message
represents the OPT-delivery, the delivery of the second one represents the TO-delivery.
The IP-multicast message will either be received before the TO-multicast message or not
received at all (i.e., lost due to buffer overrun). In the latter case, before delivering the total
order message (TO-delivery), an OPT-delivery is automatically triggered. Note that the
IP-multicast cannot be delivered after the TO-multicast because both are sent physically
one after the other over the same Ethernet segment and there are no retransmissions of
IP-multicast messages (they are UDP messages).

7.5 Interaction between Middleware and Database System

The replication protocol in our implementation resides outside the database. In fact, the
management of conflict class queues (inserting/removing/submitting for execution) can be
considered a special form of a 2-Phase-Locking (2PL) [Bernstein et al. 1987]. In 2PL there
is queue per data item. When a transaction wants to access a data item an entry is appended
to the queue. The first entry is considered a granted lock and the transaction holding the
lock can access the data item. The others are waiting until the first entry is removed which
will be done only when the transaction holding the lock terminates. What is different in
our solution is that a transaction T is inserted in all conflict class queues it wants to access
at the begin of T (same as inserting locks in a lock table for all objects T wants to access
at the begin of T), and that reordering might take place. As such, our queue manager
basically replaces the concurrency control method implemented in the database system. In
fact, we only rely on the locking mechanism within the database for some special situations
(e.g., when an abort occurs).

In terms of direct interfaces to the database engine, our implementation requires two ser-
vices from the API of the database engine. The first is a service to obtain the write set of
a transaction (the new physical values of the modified tuples) used by the master site. The
second is a service that takes the write set as input and applies it (used by the remote sites).
With this, remote sites do not need to reexecute the original SQL statements of a trans-
action but only directly access and modify the tuples to be changed. These two services
are similar to the get update and set update methods available in FT-CORBA. In fact, they
exist in most commercial databases although they are not always directly accessible (for
example, similar services are used internally to write the redo log during normal process-
ing and apply the redo log at recovery after crash). We extended PostgreSQL to support

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 21

these services at the API (as functions, the way PostgreSQL might be extended). If such
services are not directly available it is still possible to use other mechanisms to emulate
these services. For instance, although this might lead to higher overhead, it is possible to
use triggers at master sites to track updates performed by transactions; these updates are
then recorded as simple update SQL statements only on the records to be changed, and
then applied at the remote sites. Thus, for all intents and purposes, the middleware we
propose can be used with most commercial database engines.

7.6 Interaction between the Replication Middleware and the Client

The client sees as its interface application programs. Invocations consist of the identifier
of the application program and its arguments. This API takes care of connecting to the
replication middleware and interacting with it. This guarantees transparent access to the
replicated database from existing applications.

Application programs are written by application programmers that do not need to know
about the replication middleware. The definition of an application program consists of its
signature (name, arguments and its type), the SQL statements, a boolean that determines
the kind of transaction (query or update), and a conflict class function. This function
determines the conflict classes the application program accesses based on its parameters
and SQL statements. The middleware keeps the definition of the programs and the conflict
class definition in a table that is loaded at initialization time.

In principle, the middleware could also provide a standard database access layer like
ODBC or JDBC. Those layers allow the use of replication the middleware on top of
databases from different vendors.

The definition of conflict classes is very flexible. One option, for transactions which
usually access only one table, consists in defining basic conflict classes as tables. Another
option is to define conflict classes with respect to attributes whose values partition the data
more or less evenly. For instance, let us consider a typical e-book-seller application. In
this application the book category is a good candidate for partitioning. Since customers
usually buy books from the same category, most of the times transactions will fall into
a single conflict class. For those cases in which the buyer buys books across different
categories the transactions will span through a compound conflict class. This is in fact the
optimal scenario for our middleware, that is, most transactions access a single partition and
some of them access multiple partitions.

8. EXPERIMENTAL RESULTS

In this section we analyze the scalability and overall performance of the algorithms and
the implementation we propose. It is important to emphasize that the absolute values of
the results are only meaningful to a certain degree. They could be improved by simply
using faster machines or by using a database other than PostgreSQL. The important aspect
of these results is the trends they show in terms of behavior as the number of sites and
the load in the system increases. We expect the relative behavior to be similar for higher
throughput ranges.

8.1 Experimental Setup

All the experiments have been run in a cluster of 15 SUN Ultra-5 10 (440MHz UltraSPARC-
IIi CPU, 2 MB cache, 256 MB main memory, 9GB IDE disk) connected through a 100Mbits

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

22 ·
Fast Ethernet network. PostgreSQL, version 6.4.2, has a rather inefficient buffer manage-
ment policy. To prevent PostgreSQL itself from becoming the bottleneck before we can
measure the limits of the replication protocol, we use the no-flush option offered by Post-
greSQL (nothing is flushed to disk at the end of the transactions).

The database used for the experiments consists of 10 tables, each with 10,000 tuples.
Each table has five attributes: two integers, t-id (which also acts as the primary key) and
attr1, one 50 character string (attr2), one float (attr3) and one date (attr4). The only index
that is maintained is an index on the primary key. The overall tuple size is slightly over
100 bytes, which yields a database size of more than 10 MB. We did not consider larger
databases since this will only reduce the conflict workload and, again, turn PostgreSQL
into the bottleneck.

The number of basic conflict classes varies for different experiments. The masters of
these basic conflict classes are evenly distributed among the sites. The compound conflict
class of a transaction is hashed and the resulting hash number is used to select one of the
masters of the basic conflict classes as master of the compound conflict class. It should
be noticed that it is not required that the master site of a compound conflict class is also
the master of one of the constituent basic conflict classes (this is just an optimization to
increase the chances of successful reordering). Clients are evenly distributed among the
machines and submit their requests to the local middleware layer with an exponentially
distributed submission interval. The transaction workload is chosen such that each server
has the same likelihood of being the master site of a transaction. The workload in the
database is divided among update transactions and queries. Since there is an infinite range
of possibilities in terms of how many read and write operations a transaction can have, we
have simplified the workload to make the results better understandable. We will consider
update transactions that do not perform any read operation (worst case). The percentage
variation between read and writes in the workload is controlled by varying the relative
number of update transactions vs. queries.

The structure of the transactions used in the experiments is as follows. Update transac-
tions have one or more update operations of the type:

UPDATE table-i SET attr1="randomtext", attr2=attr2+4

WHERE t-id=random(1-1000)

Queries are structured as operations that scan a whole table and perform aggregation oper-
ations over all the data they read:

SELECT AVG(attr3), SUM(attr3) FROM table-i

In most cases, update transactions perform 8 update operations and have been designed
to take about the same time as a query (to ease the comparison). The transactions do not
perform any other computation or application dependent tasks (e.g., generating web pages
with results). Using more “real life” transactions will improve the performance of the
system since such extra work is only performed on one site. However, since it is difficult
to predict how long such extra work will really take, we have not included application
dependent tasks in our experiments. As such, the transactions used in our experiment
stress test the system, and serve to illustrate the overhead of the replication layer and the
database system.

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 23

Parameters Distr. Locking Scale-out Resp. Time Communic. Compound Classes Aborts
servers 1-15 5
Database size 10 tables of 10,000 tuples each
Tuple size approx. 100 bytes
conf. classes 16/90/900 30/90/900
CC per txn 1 1-3
txn per second 10 max. 10-110 20-260 10-80 100
% update txn 100% 0-100% 100%
upd op. in txn 5 8 1 8
write set size 504 804 104 804

Table II. Experiment Parameters

We have conducted 6 sets of experiments. The parameters used for each of these exper-
iments are shown in Table II. In the first four experiments each transaction only accesses
a single basic conflict class and the experiments focus on issues like scalability, response
time behavior, and communication overhead. We have tested these experiments with 16, 90
and 900 conflict classes. 16 conflict classes represent a worst case scenario where – in or-
der to have each transaction only access a single data partition – there exist only few, rather
large conflict classes. A partitioning with 900 conflict classes represents a system where
application processes access well defined, rather specific data. Experiment five analyzes
the behavior of the system when transactions access more than one basic conflict class.
These first five experiments use the REORDERING algorithm. The last experiment com-
pares abort rates of NODO and REORDERING. Each test run submitted 2000 transactions
to the system. The result of the first and last 10% of submitted transactions was ignored.
The data points shown are calculated as the average of the remaining result values 5.

8.2 Comparison with traditional Distributed Locking

A first question that needs to be addressed is whether the middleware we propose really
solves the limitations of conventional replication algorithms (e.g., those described in [Bern-
stein et al. 1987]). Gray et al. [Gray et al. 1996] showed that these conventional algorithms
do not scale and, in particular, that increasing the number of replicas would increase the re-
sponse time of update transactions and produce higher abort rates. We have compared the
scalability in terms of response time of our solution with the standard distributed locking
implementation of a commercial product, Oracle. Figure 10(a)) shows the response time of
both approaches when the load is fixed to 10 update transactions per second and the number
of sites increases from 1 to 5. The results for Oracle were taken from [Kemme and Alonso
2000a]. A slightly different computing environment was used (cluster of 5 PCs, 266 MHz,
128MB RAM, two 4GB disks and a switched full duplex 100MBit Fast Ethernet). Hence,
only the form of the curves but not the absolute values should be considered.

The results for distributed locking reflect the behavior predicted by Gray et al. The

5Note, that it was not possible to use confidence interval calculations. PostgreSQL is a multiversion system, i.e.,
an update does not overwrite the old record but invalidates it and appends a new record. As such the number of
records (invalid and valid) increases continuously throughout the test run. As a result, response times continuously
increase (although only very slightly). Note that this also happens when using PostgreSQL in a centralized, not
replicated setup. Hence, we performed our tests only when we had exclusive access to the cluster to avoid any
disturbance. For each run, we only submitted a limited number of transactions, and made sure that there were no
unexplainable outliers in the result set. We reinitialized the database upon each test run.

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

24 ·

Standard Distributed Locking

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sites

R
e
s
p

o
n

s
e

T
im

e
(m

s
)

Standard Distributed Locking (5 upd)

Scalable replication (5 upd)

(a) Comparison with Distributed Locking (b) Scalability of the system

Fig. 10. (a) Comparison with Distributed Locking and (b) Scalability

behavior clearly corresponds to a system that does not scale: for a fixed load, the response
time increases as the number of sites increases. In this experiment the long response times
are mainly due to the fact that distributed locking has a significant amount of messages
all within the boundaries of the transaction. Our system, in comparison, was quite stable.
For the range of sites explored, the response time did not vary, showing that the message
overhead is not significant and that the system is easily able to handle the small extra load
when more sites are added.

8.3 Throughput Scale-out

The main motivation for this work is to provide a replication algorithm that can scale in
a cluster based system. Black box approaches have to execute all update transactions at
all sites since they do not have any additional knowledge about the database system. As a
result, adding new sites in an update intensive environment might help for fault-tolerance,
but cannot be used to scale up the system. Using a grey box approach we hope to achieve
both fault-tolerance and scalability.

Hence, this experiment analyzes how the throughput scales up when we increase the
number of sites. We have run three sets of tests to see how the system behaves when the
workload is read only, write only, and a mixture of both. Figure 10(b) shows the scale-out
factor when we increase the number of sites in the system from 1 to 15. The scale-out factor
for a given system size is calculated as the maximum throughput that can be achieved in
this setting divided by the maximum throughput in a single-site system. The results shown
are for a system with 16 basic conflict classes. For 90 or 900 conflict classes the results are
similar.

Read only workloads (0% updates) have obviously optimal scalability since queries are
executed completely locally. Hence, n sites can achieve an n-times higher throughput
than a single site. At the other extreme, for a write-only workload (100% updates) one
would expect that adding new sites does not increase the overall throughput (or might even
decrease it) since every site has to apply all updates. Still, in our approach, 5 sites perform
three times the throughput of a single-site system, and 15 sites have a scale-out close to
5. However, we can see that the scale-out is not linear and seems to reach a saturation
point. The reason for the good performance at low system sizes is the use of asymmetric

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 25

processing [Jiménez-Peris et al. 2003] in which update transactions are executed by one site
and the updated tuples propagated to the remaining sites. We have discussed the availability
of such functionality in Section 7.5. Since the application of updated tuples has a lower
overhead than executing the original update SQL statement at all sites, and hence, we can
achieve scale-out factors greater than 1. Still, the overhead is not negligible. Eventually,
adding new sites does not result in an increase in throughput. The results for a mixed
workload (50% updates) indicate how real life applications will perform: depending on
the percentage of queries, the scale-out will lie between the results of the two extreme
configurations.

8.4 Response Time Analysis

This experiment looks at the response time behavior, and determines at which throughput
the system saturates (i.e., response times deteriorate). As in the previous experiment, we
consider transaction workloads of 0%, 50%, and 100% updates. We conducted test suites
with 5, 10, and 15 sites. Within each test suite, we increased the load until the system
saturated. The results are shown in Figure 11 using two different representations. In each
of the Figures 11(a-c), the number of sites is fixed and the curves show the three different
transaction workloads. In Figures 11(d-f), the transaction workload is fixed and the three
curves show different system sizes.

In all figures, we can observe a relatively flat evolution of the response time until the
system is saturated and can no longer respond. The response time is nearly independent
of the transaction workload as can be best seen in Figures 11(a-c): at low transaction
rates, there is enough processing power to process write sets without affecting the response
times of the individual transactions. As the load increases, the spare time diminishes and
thus, the time devoted to process write sets starts to lightly affect the other transactions.
Interestingly, the response time is also independent of the number of sites in the system
(best seen in Figures 11(d-f)). This is true because in all configurations only two messages
per transaction are sent. In addition, the growth in response time when the saturation point
is reached is less explosive as the number of sites increases. This indicates that larger
systems have a more graceful degradation than smaller ones.

Regarding the saturation point, Figures 11(a-c) show that the higher the proportion of
read transactions the more transactions the system can process before becoming saturated.
Figures 11(d-f) indicate that the more sites are in the system the more transactions the
system can handle. And this, without a negative effect on response times. However, the
performance of any replication algorithm is strongly determined by the proportion of up-
dates in the workload, and adding new sites when there are 100% updates will only work
up to limited system sizes (see Figure 11(d)). This reflects the scalability results of the
previous experiment.

8.5 Communication Overhead

When using group communication primitives, the system built can only scale as much as
the underlying communication tool. One of the typical problems of conventional replica-
tion algorithms is that they easily overload the network by generating too many messages
(e.g., distributed locking generates one message per operation per transaction per site; a 10
site system running transactions of 10 operations at 50 transactions per second generates
5,000 messages per second).

In particular, our implementation requires two messages per transaction and it could be

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

26 ·

(a)
5

replicas
(d)

100%
updates

(b)
10

replicas
(e)

50%
updates

(c)
15

replicas
(f)

0%
updates

Fig.11.
R

esponse
tim

e
for

differenttransaction
w

orkloads
and

configurations

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 27

Fig. 12. Analyzing the communication overhead using small transactions

questionable whether the optimistic algorithm we use is feasible in practice. In order to
test this aspect of the system, we have performed a test with very small update transac-
tions (containing a single update) in order to execute as many transactions as possible and
hence, produce many messages. The response time was measured for increasing loads and
different configurations until the system was saturated. Fig. 12 shows a flat response time
up to quite high transaction loads (over 200 transactions per second). This indicates that
the communication does not become a bottleneck up to that point where the system sat-
urates. At that stage, it does not matter what happens to the communication layer since
the system is incapable of dealing with the load anyway. Thus, for the purposes of cluster
based systems, the use of group communication primitives does not seem to be the limiting
factor.

A last point to note regarding this experiment is the difference in scalability for short
transactions (Fig. 12) and medium transactions (Fig. 11(d)). The reason is that for short
transactions the constant overhead associated with processing a transaction remotely (start-
up, commit) is quite large in relative terms. Thus, there is not that much redundant work to
reduce. The longer the transaction the bigger the effect of reducing the writing overhead
and the higher the scalability.

8.6 Compound Conflict Classes

Our implementation of conflict classes at the middleware layer is a simplified version of the
concurrency control mechanism in the database, and conflict classes are typically coarser
than the locking granularity within the database. The reason for coarser granularity is that
the algorithms require knowing all conflict classes to be accessed at the beginning of the
transaction. This is often not possible on a fine level. We believe this might be the main
performance disadvantage of the grey box approach over a white box approach that imple-
ments replication within the database, and hence, can take advantage of the concurrency
control mechanisms within the database.

Hence, in this section we analyze transactions that have varying conflict behavior. In
particular, we consider transactions that access compound conflict classes (i.e., more than
one basic conflict class) and we consider systems with a different total number of basic

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

28 ·
conflict classes. By introducing compound conflict classes, it is easier to split the database
into smaller partitions since we do not have the restriction that each transaction may only
access one partition. With this, we have a higher potential of load balancing and con-
currency. On the other hand, given a fixed number of conflict classes, when transactions
access several conflict classes, transactions have a higher chance of conflict which might
lead to data contention and possibly suboptimal use of resources.

The first test analyzes how conflict class configurations influence conflict rates, and as
a result, the response times of transactions. Conflict classes influence conflict rates in
two ways: (1) the more conflict classes a transaction accesses, and (2) the smaller the total
number of conflict classes, the higher the conflict rate. Our test suite investigates the impact
of both of these dimensions.

Figure 13 shows the response time for an increasing load in the following configurations:
in column (a) the system has 30, in (b) 90, and in (c) 900 conflict classes. In each of the
columns, transactions access a single conflict class in the top figure, two conflict classes
in the middle figure, and three conflict classes in the bottom figure. The workload consists
exclusively of update transactions.

Looking at column (a) with only 30 conflict classes in the system, we can observe
that transactions with two or three conflict classes have a considerably smaller maximum
throughput than transactions accessing only one conflict class. This is due to the very high
conflict rates in such a scenario. For a load of 50 tps, there are on average 5 transactions
concurrently in the system. If each of them accesses 2 conflict classes, they access in total
10 conflict classes. With this, the probability that at least two transactions access the same
class is 80% (1−Π9

i=0
30−i
30), if transactions access 3 conflict classes, we can expect at least

one conflict with 99% chance. Such conflicts might occur between transactions executed at
different sites (although conflicting in one basic conflict class they still might access differ-
ent compound classes that have different masters). As a result, if transaction T i executed at
site Ni conflicts with transaction Tj executed at Nj , and Ti is ordered before Tj , then Nj

must wait and is possibly idle (if it only masters CTj) until Ti is executed. Hence, in such
a high conflict scenario we cannot take full advantage of the enhanced processing power.
Still, some degree of scalability is possible.

By introducing more conflict classes (columns (b) and (c)), we can alleviate this prob-
lem. With 90 classes, performance loss is already less than for 30 conflict classes, and with
900 conflict classes we have nearly eliminated the problem.

Another fact that can be observed in the graphs is that whilst the saturation point is not
reached, for a given load the response time is nearly the same independently of the total
number of conflict classes and the number of conflict classes accessed by a transaction.

In regard to scalability, Figure 14 shows that the scale-out factor is only slightly affected,
i.e., the scale-out for transactions accessing more than one basic conflict classes is only
slightly smaller than for transactions with one basic conflict class. The figure shows the
results for 900 conflict classes, but the results are similar for 30 and 90 conflict classes.
This means, that although transactions accessing several conflict classes achieve smaller
throughputs than transactions with one conflict class for a given system size, adding new
sites will increase the maximum throughput in all configurations.

We have not directly compared the approach with a white box approach. However, the
performance results in [Kemme and Alonso 2000a], showing a white box approach also
using PostgreSQL and Ensemble in a similar computing environment, indicate that in case

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 29

1
/3

0
c
o

n
fl

ic
t

c
la

s
s

p
e
r

tr
a
n

s
a
c
ti

o
n

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

lo
a

d
(t

p
s

)

responsetime(ms)
5

re
p

1
0

re
p

1
5

re
p

2
/3

0
c
o

n
fl

ic
t

c
la

s
s
e
s

p
e
r

tr
a
n

s
a
c
ti

o
n

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

lo
a

d
(t

p
s

)

responsetime(ms)

5
re

p

1
0

re
p

1
5

re
p

3
/3

0
c
o

n
fl

ic
t

c
la

s
s
e
s

p
e
r

tr
a
n

s
a
c
ti

o
n

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

lo
a

d
(t

p
s

)

responsetime(ms)

5
re

p

1
0

re
p

1
5

re
p

R
e

s
p

o
n

s
e

T
im

e

(a
c

c
e

s
s

p
a

tt
e

rn
1

o
u

t
o

f
9

0
c

c
)

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

lo
a
d

(t
p
s
)

responsetime(ms)

5
re

p

1
0

re
p

1
5

re
p

R
e

s
p

o
n

s
e

T
im

e

(a
c

c
e

s
s

p
a

tt
e

rn
2

o
u

t
o

f
9

0
)

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

lo
a
d

(t
p

s
)

responsetime(ms)

5
re

p

1
0

re
p

1
5

re
p

R
e

s
p

o
n

s
e

T
im

e

(a
c

c
e

s
s

p
a

tt
e

rn
3

o
u

t
o

f
9

0
)

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

lo
a
d

(t
p s

)

responsetime(ms)

5
re

p

1
0

re
p

1
5

re
p

R
e
s
p

o
n

s
e

ti
m

e

(a
c
c
e
s
s

p
a
tt

e
rn

1
o

u
t

o
f

9
0
0

c
c
)

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

lo
a

d
(t

p
s

)

responsetime(ms)

5
re

p

1
0

re
p

1
5

re
p

R
e
s
p

o
n

s
e

T
im

e

(a
c
c
e
s
s

p
a
tt

e
rn

3
o

u
t

f
9
0
0

c
c
)

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

lo
a

d
(t

ps
)

responsetime(ms)

5
re

p

1
0

re
p

1
5

re
p

R
e
s
p

o
n

s
e

ti
m

e

(a
c
c
e
s
s

p
a
tt

e
rn

2
o

u
t

o
f

9
0
0

c
c
)

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

lo
a

d
(t

p
s

)

responsetime(ms)

5
re

p

1
0

re
p

1
5

re
p

(a
)3

0
C

on
fli

ct
cl

as
se

s
(b

)
90

C
on

fli
ct

cl
as

se
s

(c
)9

00
C

on
fli

ct
cl

as
se

s

Fi
g.

13
.

R
es

po
ns

e
tim

e
fo

r
di

ff
er

en
tt

ra
ns

ac
tio

n
w

or
kl

oa
ds

an
d

co
nfi

gu
ra

tio
ns

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

30 ·

Scaleout for Compound Conflict Classes (900 cc)

1

2

3

4

5

1 5 10 15

sites

s
c
a
le

-o
u

t

1cc

2cc

3cc

Fig. 14. Scalability of Compound Conflict Classes

we are able to perform smart data partitioning, the middleware based grey approach does
not perform significantly worse than the white box approach.

The main result of this experiment is that in order to achieve efficient concurrency con-
trol in the middleware, we must be able to perform a smart data partitioning. A first ac-
ceptable solution is to partition the data into coarse data partitions in such a way that most
transactions only access one partition while only few span several conflict classes. Then,
we only have to distribute the partitions such that each site has more or less the same load.
Conflicts between sites will be very rare. An alternative solution, whenever possible, is to
split data into small partitions, yielding to a high number of conflict classes. Hence, it will
not matter anymore how many conflict classes are accessed by each transaction.

8.7 Aborts

In order to keep one-copy serializability, replica control algorithms abort transactions. In
the first four experiments the abort rate was virtually null. In the experiment of the previous
section the abort rate was never higher than 0.2%. The reason was mismatches between the
optimistic and definitive order of the TO-multicast were very rare. This was the case due
to we used a local area network, and neither message load nor message size were very big.
Also, the total order protocol used by Ensemble is sequencer-based. That is, it uses as total
order the order in which messages arrive at a specific site, the sequencer, and hence, the
messages received by the sequencer are broadcast on the network (and received by most
sites).

In this experiment we emulate an environment where mismatches occur more often.
This will be the case in extended or wide area networks, or if using a different total order
protocol than the one implemented by Ensemble is used. The NODO algorithm aborts
a local transaction when there is a mismatch between the optimistic and definitive order
for conflicting transactions. The REORDERING algorithm avoids some of these aborts.
Depending on the degree of mismatch, we study the proportion of aborted transactions
induced by NODO and REORDERING, and more concretely the amount of aborts prevented
by REORDERING with respect to NODO.

In the following we quantify the mismatch between the optimistic and definitive delivery
orders as the degree of disorder. In order to enable the comparison of the two algorithms
for different degrees of disorder, we have devised an experiment in which the degree of
disorder is generated in a synthetic way. In this way it becomes possible to observe the be-
havior of aborts for increasing degrees of disorder. The degree of disorder is determined by
two parameters, disorder rate and disorder distance, and it is modeled in the following way.

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 31

1 CC 2 CC 3 CC
100 % 0% 0 %
50 % 50 % 0 %
80 % 20 % 0 %
90 % 10 % 0 %
50 % 40 % 10 %
80 % 15 % 5 %

Table III. Composition of the workload in terms of percentage of transactions accessing 1 to 3 conflict classes

1 CC 2 CC 3 CC % Aborts saved 30 CC % Aborts saved 90 CC
100 % 0 % 0 % 100 100
50 % 50 % 0 % 25-45 30-50
80 % 20 % 0 % 65-80 60-70
90 % 10 % 0 % 70-95 85-100
50 % 40 % 10 % 20-35 20-25
80 % 15 % 5 % 60-80 55-65

Table IV. Aborts saved by REORDERING with respect to NODO for the different workloads

First, the sequence of messages to be submitted is built. Then, messages are exchanged ran-
domly as many times as indicated by the disorder rate. For instance, in a sequence of 1000
messages, a 10% disorder rate means that 100 messages picked randomly are exchanged.
The disorder distance determines the distance between the messages to be exchanged (e.g.,
1 means a message is exchanged with its direct neighbor). In our experiments, we fixed
the distance to be 3.

The experiments use different workloads in terms of number of conflict classes accessed
by each transaction. A transaction can access up to 3 basic conflict classes. Table III
shows the tested workloads. The first workload consists of 100% of transactions accessing
only one basic conflict class. The second workload consists of 50% transactions accessing
one basic conflict class and 50% transactions accessing two basic conflict classes, and so
on. In the last workload, an 80% of the transactions access a single basic conflict class,
a 15% access two conflict classes, and a 5% access three conflict classes. We conducted
experiments with a total number of 30, 90 and 900 basic conflict classes.

Fig.15.a-c shows the percentage of aborts in the different setups for NODO and Fig.15.d-
f for REORDERING. From left to right, the number of conflict classes increases. The
individual graphs in each figure show the different workloads. When looking at the fig-
ures from left to right we see that the higher the number of conflict classes, the lower the
conflict rate, and hence, the smaller the number of aborts. When looking at the different
graphs within a figure we can observe that the more transactions access only one conflict
class, the smaller the number of aborts. If we compare the same settings for NODO and
REORDERING, we see that REORDERING exhibits much smaller abort rates than NODO.

Table IV summarizes the improvement in the abort rate of REORDERING with respect to
NODO 6. The rates of prevented aborts range from 20-100%. The 100% saving only
happens when the workload is composed exclusively of transactions accessing a basic
conflict class. In this case, it is always possible to apply reordering. The highest rates

6Results for 900 CC not included because they were either 0% or 100% due to the low number of aborts.

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

32 ·

0 2 4 6 8

1
0

1
2

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

%
M

e
s

s
a

g
e

d
is

o
rd

e
r

% Aborts

1
0
0
%

1
C

C
5
0
%

1
C

C
,

5
0
%

2
C

C
8
0
%

1
C

C
,

2
0
%

2
C

C
9
0
%

1
C

C
1
0
%

2
C

C
5
0
%

1
C

C
4
0
%

2
C

C
1
0
%

3
C

C
8
0
%

1
C

C
1
5
%

2
C

C
5
%

3
C

C

5
0
%

1
C

C
4
0
%

2
C

C
1
0
%

3
C

C

5
0
%

1
C

C
5
0
%

2
C

C

8
0
%

1
C

C
1
5
%

2
C

C
5
%

3
C

C

8
0
%

1
C

C
2
0
%

2
C

C

9
0
%

1
C

C
1
0
%

2
C

C

1
0
0
%

1
C

C

0 2 4 6 8

1
0

1
2

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
%

M
e

s
s

a
g

e
d

is
o

rd
e

r
% Aborts

1
0
0
%

1
C

C
5
0
%

1
C

C
,

5
0
%

2
C

C
8
0
%

1
C

C
,

2
0
%

2
C

C
9
0
%

1
C

C
1
0
%

2
C

C
5
0
%

1
C

C
4
0
%

2
C

C
1
0
%

3
C

C
8
0
%

1
C

C
1
5
%

2
C

C
5
%

3
C

C

5
0
%

1
C

C
4
0
%

2
C

C
1
0
%

3
C

C

5
0
%

1
C

C
5
0
%

2
C

C

8
0
%

1
C

C
1
5
%

2
C

C
5
%

3
C

C

0 2 4 6 8

1
0

1
2

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

%
M

e
s

s
a

g
e

d
is

o
rd

e
r

% Aborts

1
0
0
%

1
C

C
5
0
%

1
C

C
,

5
0
%

2
C

C
8
0
%

1
C

C
,

2
0
%

2
C

C
9
0
%

1
C

C
1
0
%

2
C

C
5
0
%

1
C

C
4
0
%

2
C

C
1
0
%

3
C

C
8
0
%

1
C

C
1
5
%

2
C

C
5
%

3
C

C

(a)
N

O
D

O
30

C
onflictclasses

(b)
N

O
D

O
90

C
onflictclasses

(c)
N

O
D

O
900

C
onflictclasses

0 2 4 6 8

1
0

1
2

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

%
M

e
s

s
a

g
e

d
is

o
rd

e
r

% Aborts

1
0
0
%

1
C

C
5
0
%

1
C

C
,

5
0
%

2
C

C
8
0
%

1
C

C
,

2
0
%

2
C

C
9
0
%

1
C

C
1
0
%

2
C

C
5
0
%

1
C

C
4
0
%

2
C

C
1
0
%

3
C

C
8
0
%

1
C

C
1
5
%

2
C

C
5
%

3
C

C
5
0
%

1
C

C
4
0
%

2
C

C
1
0
%

3
C

C

5
0
%

1
C

C
5
0
%

2
C

C

8
0
%

1
C

C
1
5
%

2
C

C
5
%

3
C

C

8
0
%

1
C

C
2
0
%

2
C

C

9
0
%

1
C

C
1
0
%

2
C

C

1
0
0
%

1
C

C

0 2 4 6 8

1
0

1
2

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

%
M

e
s

s
a

g
e

d
is

o
rd

e
r

% Aborts

1
0
0
%

1
C

C
5
0
%

1
C

C
,

5
0
%

2
C

C
8
0
%

1
C

C
,

2
0
%

2
C

C
9
0
%

1
C

C
1
0
%

2
C

C
5
0
%

1
C

C
4
0
%

2
C

C
1
0
%

3
C

C
8
0
%

1
C

C
1
5
%

2
C

C
5
%

3
C

C

5
0
%

1
C

C
4
0
%

2
C

C
1
0
%

3
C

C

5
0
%

1
C

C
5
0
%

2
C

C

8
0
%

1
C

C
1
5
%

2
C

C
5
%

3
C

C

8
0
%

1
C

C
2
0
%

2
C

C

0 2 4 6 8

1
0

1
2

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

%
M

e
s

s
a

g
e

d
is

o
rd

e
r

% Aborts

1
0
0
%

1
C

C
5
0
%

1
C

C
,

5
0
%

2
C

C
8
0
%

1
C

C
,

2
0
%

2
C

C
9
0
%

1
C

C
1
0
%

2
C

C
5
0
%

1
C

C
4
0
%

2
C

C
1
0
%

3
C

C
8
0
%

1
C

C
1
5
%

2
C

C
5
%

3
C

C

(d)
R

E
O

R
D

E
R

IN
G

30
C

onflictclasses
(e)

R
E

O
R

D
E

R
IN

G
90

C
onflictclasses

(f)
R

E
O

R
D

E
R

IN
G

900
C

onflictclasses

Fig.15.
A

bortrates
in

N
O

D
O

and
R

E
O

R
D

E
R

IN
G

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 33

of prevented aborts (above 60%) are exhibited when at least 80% of transactions access
a single basic conflict class. The lowest rates of saved aborts occur when the fraction of
transactions accessing a single basic conflict class is only at 50%. The rational behind these
results is that transactions accessing only one basic conflict class can be reordered in regard
to other transactions only accessing this class or to transactions with a larger number of
conflict classes. In contrast, the probability of being able to reorder a transaction accessing
more than one basic conflict class is lower.

Finally, we would like to highlight that in the case a single site observes a high abort
rate due to message disorder, it is quite simple to deactivate the optimistic transaction
processing by delaying the actions upon OPT-delivery to the time of TO-delivery. If all
sites observe a high degree of disorder, OPT-delivery can be completely deactivated in an
adaptive fashion. This would eliminate the aborts in those scenarios in which the abort rate
increases beyond an acceptable threshold.

9. RELATED WORK

Conventional database replication protocols are well known and their correctness is studied
in much detail [Bernstein et al. 1987]. Being of an eager nature (coordination among the
replicas takes place before transaction commit) they have been mainly designed for fault-
tolerance. Unfortunately, these protocols suffer from severe limitations that render them
impractical [Gray et al. 1996]. As a result, commercial systems mainly use lazy approaches
(updates are only propagated after the transaction commits) favoring performance over
fault-tolerance and correctness.

Over the last years several research groups have attempted to address these limitations by
using a combination of database techniques and group communication primitives. The ba-
sic idea is to use total order message delivery to guarantee that all replicas see a consistent
order of the transactions to execute. As long as a replica produces a serialization order that
does not contradict the imposed total order, consistency is guaranteed across the system.
In most of the proposed algorithms, an eager propagation mechanism guarantees fault-
tolerance. Several protocols have been proposed along these lines, exploiting different
degrees of isolation [Kemme and Alonso 2000b], analyzing the problems of conventional
replication protocols [Stanoi et al. 1998; Holliday et al. 1999; 2000], and exploring alterna-
tive protocol designs [Pedone and Frolund 2000]. [Pacitti and Simon 2000] combines the
total order concept with a lazy replication strategy. In [Pedone et al. 1997] an optimistic
replication protocol is presented. This protocol presents a complementary approach for
transaction reordering to the one presented in this paper. The protocol of [Pedone et al.
1997] is aimed to reduce aborts in an optimistic concurrency control protocol by delaying
transaction certification, what results in an increase of response times. This contrasts with
the REORDERING algorithm in which transaction processing is not delayed but performed
in advance, therefore reducing response times.

In terms of implemented systems using group communication primitives, Postgres-R is
a replicated database implemented as an extension of PostgreSQL [Kemme and Alonso
2000a]. In Postgres-R, replication is implemented within the database engine (i.e., take a
white box approach). This allows a close and very efficient interaction between commu-
nication and transaction management and includes important optimizations that minimize
the overhead of replication. Transactions are processed at a single site, and updates are
forwarded to the other sites. A similar approach is also used in commercial replicated

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

34 ·
databases based on lazy replication protocols. [Rodrigues et al. 2002] implement a sim-
ilar replication strategy within an object oriented database. Outside the database, [Amir
and Tutu 2002; Amir et al. 2002] implement replication at the middleware layer using a
black-box approach that has been tested both in a LAN and in a WAN.

There is an intrinsic tradeoff between black and grey box approaches. The principal ad-
vantage of the black box approach is that it does not require any service from the database.
This solution can scale by introducing queries in the workload. The scalability is more
limited than in the grey box approach, since all sites fully process all update transactions
[Jiménez-Peris et al. 2003]. On the other hand, the grey box approach requires some ser-
vices from the database and some knowledge about the application semantics (the data
partitions) thereby reducing the generality of the solution. In return, it enhances scalability
even for workloads with a high percentage of write operations [Jiménez-Peris et al. 2003].

Since the proposal of conflict-aware transaction scheduling at the middleware level
[Patiño-Martı́nez et al. 2000; Jiménez-Peris et al. 2002], new projects have built on this
approach for different purposes, for instance, to improve the performance of web dynamic
contents [Amza et al. 2003] and to build clustered JDBC drivers [Kistijantoro et al. 2003].

Wool [Wool 1998] argues that quorums may become an alternate to the read-one write-
all (ROWA) approach for database replication. Wool argues that reading locally might not
be faster than on another site due to the increasing speed of the networks compared to
disks, and some quorum systems incur in less work than ROWA even for a low proportion
of update transactions in the workload. This result holds for symmetric systems, where
all sites do the same work for each transaction. However, our system is asymmetric, a
site executes the whole update transaction, while the rest just apply the resulting updates.
[Jiménez-Peris et al. 2003] shows that asymmetric processing favors ROWA. Also, when
considering database systems, it is not clear how to perform version comparison needed to
read the latest version of a data item if complex SQL query statements are involved.

The recovery of failed replicas is a complex issue that is described elsewhere. In [Amir
and Tutu 2002], it is discussed how to guarantee the consistency of a database in the advent
of partitioning and recovery of replicas by making use of uniform multicast [Chockler et al.
2001] and extended virtual synchrony [Moser et al. 1996]. Online recovery has also been
studied in two different contexts: in protocols implemented within the database [Kemme
et al. 2001], and at the middleware level [Jiménez-Peris et al. 2002]. In particular, the latter
focuses on a provably correct online recovery algorithm for the DISCOR algorithm.

Another area where a lot of attention has been devoted to replication is fault tolerant
object containers, and more concretely, FT-CORBA [OMG 2000]. Eternal [Narasimhan
et al. 2002] follows a black box approach to replication of CORBA servers. This system
supports active and passive replication for different multithreading models. Consistency is
achieved by using the group communication system Totem [Agarwal et al. 1998]. On the
other extreme of the spectrum, Electra [Maffeis 1995] provides fault-tolerance following
a white box approach. In this work a CORBA implementation is modified and enhanced
with group communication to implement replication. A different approach was taken in
OGS [Felber et al. 1998] by providing replication through a set of CORBA services. This
approach is more oriented towards providing facilities to build fault-tolerant applications
contrasting with the other approaches where transparent fault-tolerance was the main goal.
A similar approach providing services for fault-tolerance in CORBA is described in [Mor-
gan et al. 1999]. The Friends system [Fabre and Perennou 1998] uses a reflective approach

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 35

to add fault tolerance at the application level. This approach is based on a combination of
metaobjects, group communication and security. Some others approaches for fault-tolerant
CORBA include AQuA [Ren et al. 2003] and DOORS [Natarajan et al. 2000].

Over the last years, there has also been a wide range of proposals for efficient and con-
sistent database replication that is not based on group communication. [Chundi et al. 1996;
Pacitti and Simon 2000; Breitbart et al. 1999] look at lazy replication solutions that guaran-
tee serializability by restricting the placement of copies and controlling the order in which
updates are applied at remote sites. Another approach combines eager and lazy replication
techniques [Breitbart and Korth 1997; Anderson et al. 1998]. Sites coordinate before com-
mitting transactions to guarantee serializability but the updates are only sent and applied
after the commit. All of these approaches follow a primary copy approach where updates
to a certain object may only be performed by the primary copy. Transactions are not al-
lowed to update primary copies residing on different sites. Our approach, although being
primary copy, does not have this restriction.

10. CONCLUSIONS

Replication has become a key technique in web farms and database clusters. Unfortunately,
there is a big gap between known replication protocols and practical solutions. In this pa-
per, we have extended previous work by ourselves and other authors in order to provide a
middleware tool that supports consistent and scalable data replication. The protocol im-
plemented includes several important optimizations needed to achieve good performance.
One of the contributions of the paper is precisely this: to combine the generality of a mid-
dleware based tool with the optimizations typical of solutions implemented at the database
level. The experimental results presented prove the feasibility of the approach and indicate
how the design parameters can be varied to tune the behavior of the system.

We are currently using this middleware platform to implement a large web farm and ex-
ploring a number of interesting features that can be combined with the replication protocol
here presented. Some of these features include load balancing, on-line recovery, and auto-
nomic behavior by increasing the number of replicas in the system in response to changes
in the overall load.

REFERENCES

AGARWAL, D., MOSER, L., MELLIAR-SMITH, P. M., AND BUDHIA, R. 1998. The Totem Multiple-Ring
Ordering and Topology Maintenance Protocol. ACM Transactions on Computer Systems 16, 2, 93–132.

AMIR, Y., DANILOV, C., MISKIN-AMIR, M., STANTON, J., AND TUTU, C. 2002. Practical Wide Area
Database Replication. Tech. Rep. CNDS-2002-1, Johns Hopkins University.

AMIR, Y. AND TUTU, C. 2002. From Total Order to Database Replication. In Proc. of Int. Conf. on Distr. Comp.
Systems (ICDCS).

AMZA, C., COX, A. L., AND ZWAENEPOEL, W. 2003. Distributed Versioning Consistent Replication for
Scaling Back-end Databases for Dynamic Content Web Sites. In Proc. of Int. Middleware Conf. LNCS-2672.
Springer.

ANDERSON, T., BREITBART, Y., KORTH, H. F., AND WOOL, A. 1998. Replication, Consistency, and Practi-
cality: Are These Mutually Exclusive? In ACM SIGMOD Conference.

BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN, N. 1987. Concurrency Control and Recovery in
Database Systems. Addison Wesley, Reading, MA.

BERNSTEIN, P. A., SHIPMAN, D., AND ROTHNIE, J. B. 1980. Concurrency Control in a System for Distributed
Databases (SDD-1). ACM Trans. on Database Systems 5, 1, 18–51.

BIRMAN, K. 1996. Building Secure and Reliable Network Applications. Prentice Hall, NJ.

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

36 ·
BREITBART, Y., KOMONDOOR, R., RASTOGI, R., SESHADRI, S., AND SILBERSCHATZ, A. 1999. Update

propagation protocols for replicated databases. In Proc. of the ACM SIGMOD Int. Conf. on Management of
Data. Philadephia, Pennsylvania.

BREITBART, Y. AND KORTH, H. F. 1997. Replication and Consistency: Being Lazy Helps Sometimes. In Proc.
of the Principles of Database Systems Conf. 173–184.

CHOCKLER, G. V., KEIDAR, I., AND VITENBERG, R. 2001. Group Communication Specifications: A Com-
prehensive Study. ACM Computing Surveys 33, 4 (Dec.), 427–469.

CHUNDI, P., ROSENKRANTZ, D. J., AND RAVI, S. S. 1996. Deferred updates and data placement in distributed
databases. In Proc. of the IEEE Int. Conf. on Data Engineering (ICDE). New Orleans, Louisiana.

FABRE, J. C. AND PERENNOU, T. 1998. A Metaobject Architecture for Fault-Tolerant Distributed Systems.
IEEE Transactions on Computer Systems 47, 1, 78–95.

FELBER, P., GUERRAOUI, R., AND SCHIPER, A. 1998. The Implementation of a CORBA Object Group Service.
Theory and Practice of Object Systems 4, 2, 93–105.

FRIEDMAN, R. AND VAN RENESSE, R. 1995. Strong and Weak Virtual Synchrony in Horus. Tech. Rep.
TR95-1537, CS Dep., Cornell Univ.

GRAY, J., HELLAND, P., O’NEIL, P., AND SHASHA, D. 1996. The Dangers of Replication and a Solution. In
Proc. of the SIGMOD. Montreal, 173–182.

GRAY, J. AND REUTER, A. 1993. Transaction Processing: Concepts and Techniques. Morgan Kaufmann
Publishers.

HADZILACOS, V. AND TOUEG, S. 1993. Fault-Tolerant Broadcasts and Related Problems. In Distributed
Systems. Addison Wesley, 97–145.

HAYDEN, M. 1998. The Ensemble System. Tech. Rep. TR-98-1662, Department of Computer Science. Cornell
University. Jan.

HOLLIDAY, J., AGRAWAL, D., AND ABBADI, A. E. 1999. The Performance of Database Replication with
Group Communication. In 29th Int. Symp. on Fault-tolerant Computing, Wisconsin.

HOLLIDAY, J., AGRAWAL, D., AND ABBADI, A. E. 2000. Using Multicast Communication to Reduce Deadlock
in Replicated Databases. In Proc. of the Int. Symp. on Reliable Distributed Systems (SRDS). 196–205.

JIMÉNEZ-PERIS, R., PATIÑO-MARTÍNEZ, M., AND ALONSO, G. 2002. Non-Intrusive, Parallel Recovery of
Replicated Data. In IEEE Symp. on Reliable Distributed Systems (SRDS). Osaka, Japan.

JIMÉNEZ-PERIS, R., PATIÑO-MARTÍNEZ, M., ALONSO, G., AND KEMME, B. 2002. Scalable Database Repli-
cation Middleware. In Proc. of 22nd IEEE Int. Conf. on Distributed Computing Systems, 2002. Vienna, Aus-
tria.

JIMÉNEZ-PERIS, R., PATIÑO-MARTÍNEZ, M., ALONSO, G., AND KEMME, B. 2003. Are quorums an alterna-
tive for data replication? ACM Transactions on Database Systems 28, 3, 257–294.

KEMME, B. AND ALONSO, G. 2000a. Don’t be lazy, be consistent: Postgres-R, A new way to implement
Database Replication. In Proc. of the Int. Conf. on Very Large Databases (VLDB). Cairo, Egypt.

KEMME, B. AND ALONSO, G. 2000b. A new approach to developing and implementing eager database repli-
cation protocols. ACM TODS 25, 3 (Sept.), 333–379.

KEMME, B., BARTOLI, A., AND BABAOGLU, O. 2001. Online Reconfiguration in Replicated Databases Based
on Group Communication. In Proc. of the Int. Conf. on Dependable Systems and Networks (DSN 2001).
Goteborg, Sweden.

KEMME, B., PEDONE, F., ALONSO, G., SCHIPER, A., AND WIESMANN, M. 2003. Using Optimistic Atomic
Broadcast in Transaction Processing Systems. IEEE Trans. on Knowledge and Data Engineering 15, 4.

KISTIJANTORO, A. I., MORGAN, G., SHRIVASTAVA, S. K., AND LITTLE, M. C. 2003. Component Replication
in Distributed Systems: a Case Study using Enterprise Java Beans. In IEEE Symp. on Reliable Distributed
Systems (SRDS). Florence (Italy).

MAFFEIS, S. 1995. Adding Group Communication and Fault-Tolerance to CORBA. In Proc. of 1995 USENIX
Conf. on Object-Oriented Technologies.

MORGAN, G., SHRIVASTAVA, S., EZHILCHELVAN, P., AND LITTLE, M. 1999. Design and Implementation of
a CORBA Fault-tolerant Object Group Service. In Proc. of the Second IFIP WG 6.1 International Working
Conference on Distributed Applications and Interoperable Systems, DAIS’99.

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 37

MOSER, L., MELLIAR-SMITH, P., AGARWAL, D., BUDHIA, R., AND LINGLEY-PAPADOPOULOS, C. 1996.
Totem: A Fault-Tolerant Multicast Group Communication System. Communications of the ACM 39, 4 (Apr.),
54–63.

NARASIMHAN, P., MOSER, L. E., AND MELLIAR-SMITH, P. M. 2002. Eternal - a component-based framework
for transparent fault-tolerant CORBA. Software: Practice and Experience 32, 8, 771–788.

NATARAJAN, B., GOKHALE, A., YAJNIK, S., AND SCHMIDT, D. C. 2000. DOORS: Towards high-performance
fault-tolerant CORBA. In Proc. of the Int. Symp. on Distributed Objects and Applications.

OMG. 2000. Fault Tolerant CORBA. Object Management Group.

PACITTI, E. AND SIMON, E. 2000. Update Propagation Strategies to Improve Freshness in Lazy Master Repli-
cated Databases. VLDB Journal 8, 3, 305–318.

PATIÑO-MARTÍNEZ, M., JIMÉNEZ-PERIS, R., KEMME, B., AND ALONSO, G. 2000. Scalable Replication
in Database Clusters. In Proc. of Distributed Computing Conf., DISC’00. Toledo, Spain. Vol. LNCS 1914.
315–329.

PEDONE, F. AND FROLUND, S. 2000. Pronto: A Fast Failover Protocol for Off-the-shelf Commercial Databases.
In Proc. of 19th Symposium on Reliable Distributed Systems. IEEE Computer Society Press, Nuremberg,
Germany, 176–185.

PEDONE, F., GUERRAOUI, R., AND SCHIPER, A. 1997. Transaction Reordering in Replicated Databases. In
Proc. of 16th Symposium on Reliable Distributed Systems (SRDS). IEEE Computer Society Press, Durham,
NC, 175–182.

PEDONE, F., GUERRAOUI, R., AND SCHIPER, A. 1998. Exploiting Atomic Broadcast in Replicated Databases.
In Proc. of 4th International Euro-Par Conference, D. J. Pritchard and J. Reeve, Eds. Vol. LNCS 1470.
Springer, 513–520.

POSTGRESQL. 1998. v6.4.2. http://www.postgresql.com.

REN, J., BAKKEN, D. E., COURTNEY, T., CUKIER, M., KARR, D. A., RUBEL, P., SABNIS, C., SANDERS,
W. H., SCHANTZ, R. E., AND MOUNA, S. 2003. AQuA: An Adaptive Architecture that Provides Dependable
Distributed Objects. IEEE Transactions on Computers 52, 1, 31–50.

RODRIGUES, L., MIRANDA, H., ALMEIDA, R., MARTINS, J., AND VICENTE, P. 2002. Strong Replication
in the GlobData Middleware. In Proc. of the Int. Workshop on Middleware-Based Systems (part of DSN).
G96–G104.

SKEEN, D. AND WRIGHT, D. D. 1984. Increasing the availability in Partitioned Database Systems. In Proc. of
the Principles of Database Systems Conf. 290–299.

STANOI, I., AGRAWAL, D., AND EL ABBADI, A. 1998. Using broadcast primitives in replicated databases. In
Proc. of the IEEE Int. Conf. on Distributed Computing Systems (ICDCS). Amsterdam, The Netherlands.

WEIKUM, G. AND VOSSEN, G. 2001. Transactional Information Systems: Theory, Algorithms, and the Practice
of Concurrency Control and Recovery. Morgan Kaufmann Publishers.

WOOL, A. 1998. Quorum systems in replicated databases: Science or fiction? Data Engineering Bulletin 21, 4,
3–11.

A. CORRECTNESS

In this section we prove the correctness (i.e., 1-copy-serializability), liveness, and consis-
tency of the protocols. The proofs assume histories encompassing several group views.
Important for all protocols is the fact that transactions are enqueued (respectively resched-
uled) in one atomic step. Hence, there is no interleaving between conflicting transactions,
and all sites produce automatically serializable histories. As a result, in order to prove
1-copy-serializability, it suffices to show that all histories are conflict equivalent.

In the following, we denote for a given site, N , T1 −→N T2 if T1 and T2 conflict, and
T1 was executed, and hence serialized, before T2 at N. It denotes that all operations of T1

appear before all operations of T2 in N ’s history HN .

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

38 ·
A.1 Correctness of DISCOR

We will show that all sites serialize conflict transactions according to the order they are
delivered at the master site. In here, we only look at sites that do not fail.

LEMMA 1 SERIALIZABILITY (DISCOR). Let N be the master site of transactions T1

and T2. If T1 was delivered at N before T2 (T1 −→DELN T2), and T1 and T2 conflict,
then T1 −→N T2.

Proof (lemma 1): Since T1 and T2 conflict, they belong to the same conflict class. Since
DISCOR enqueues transactions into the conflict class queues in the order they are delivered,
and transactions are executed in the order in which they appear in the queues, DISCOR

executes T1 before T2, and hence, T1 −→N T2. �

LEMMA 2 CONFLICT EQUIVALENCE (DISCOR). For any two sites, N, N ′, running
the DISCOR algorithm, history HN produced by N is conflict equivalent to history HN ′

produced by N ′.

Proof: (lemma 2) Only transactions within the same conflict class conflict. From Lemma
1, if N is the master of a conflict class, all transactions in that class are ordered in HN

according to the delivery order at N . N FIFO-multicasts commit messages in the order
these transactions are executed, and N ′ applies the updates of these transactions accord-
ing to that order, and hence, they appear in HN ′ in the same order as in HN . Similar
reasoning applies for conflicting transactions whose master is N ′ according to the order
N ′ executes and FIFO-multicasts them. For those remote conflicting transactions whose
master is neither N nor N ′, both sites will apply their updates in the same order the master
FIFO-multicasts them. Thus, HN and HN ′ are conflict equivalent since they are over the
same set of transactions and order conflicting transactions in the same way. �

THEOREM 1 1CPSR (DISCOR). The history produced by the DISCOR algorithm is
one copy serializable.

Proof: (theorem 1) From Lemma 2, the histories of all available sites are conflict equiva-
lent. Moreover, they are all serializable. Thus, the global history is one copy serializable.
�

A.2 Liveness of DISCOR

THEOREM 2 LIVENESS (DISCOR). The DISCOR algorithm ensures that a transaction
Ti delivered at an available site eventually commits.

Proof: (theorem 2) Assume for contradiction that a transaction T i is delivered at an avail-
able site but never committed in the absence of catastrophic failures. This can only be
possible if either (a) the transaction is never executed by an available master site, or if (b)
there is an infinite chain of master site failures before committing the transaction. Since
delivery is reliable, if Ti is delivered in view V by a site available in V , then T i is delivered
by all available sites in V . Either the master of Ti in V is available, delivers Ti, append
Ti to its conflict class, and eventually execute and commit it, or it fails before doing so.
If it fails, a view change occurs, another site will become master for T i. It is guaranteed
that this site has delivered Ti, and hence, eventually commit T i or fail. Unless all sites fail,
eventually one master will be up long enough to execute and commit the transaction. �.

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 39

A.3 Consistency of DISCOR

Failed sites obviously do not deliver the same transactions as available sites. Let T be the
subset of transactions committed at a site N before it failed.

THEOREM 3 CONSISTENCY OF FAILED SITES (DISCOR). All transactions, Ti, Ti ∈
T are committed at all available sites. Moreover, the committed projection of the history
in N is conflict equivalent to the committed projection of the history of any of the available
sites when this history is restricted to the transactions in T .

Proof: (theorem 3) For a transaction to be committed anywhere, its commit message must
have been delivered. Due to uniform reliable delivery, if any site delivers a commit mes-
sage, all available sites will deliver the commit message. Thus, all commit messages of
transactions in T have been delivered at all available sites. Since we are assuming there
are no catastrophic failures, there is at least one available site that will also commit the
transaction. The equivalence of histories follows directly from Lemma 1. �

A.4 Correctness of NODO

Again, we first only look at available sites. Since each site produces serializable histories,
it suffices to show that the histories of all sites are conflict equivalent. This can be done by
using the total order as a guideline. In the following, we indicate with T 1 −→OPT T2 that
T1 was OPT-delivered before T2, and with T1 −→TO T2 that T1 was TO-delivered before
T2.

DEFINITION 1 DIRECT CONFLICT. Two transactions T1 and T2 are in direct conflict
at site N if T1 −→N T2 and there is no transaction T3 such that T1 −→N T3 −→N T2.

LEMMA 3 TOTAL ORDER AND SERIALIZABILITY (NODO). Let HN be the history at
site N , let T1, T2 be two directly conflicting transactions in HN . If T1 −→TO T2 then
T1 −→N T2.

Proof (lemma 3): Assume the lemma does not hold, i.e., there is a pair of transactions
T1, T2 such that T1 −→N T2 but T2 −→TO T1. The fact that T2 precedes T1 in the total
order means that T2 was TO-delivered before T1. Since T1 and T2 are in direct conflict,
they must have at least one conflict class in common. In other words, there was at least one
queue where both transactions had entries. If T1 −→N T2, then the entry for T1 must have
been ahead in the queue. Upon T2’s TO-delivery, however, NODO would have reordered
T2 before T1 (and aborted T1 if it was the first in the queue. This results in T2 −→N T1

which contradicts the initial assumption. �

LEMMA 4 CONFLICT EQUIVALENCE (NODO). For any two sites, N, N ′, running the
NODO algorithm, HN is conflict equivalent to HN ′ .

Proof: (lemma 4) From Lemma 3, all pairs of directly conflicting transactions in both
HN and HN ′ are ordered according to the total order. Thus, HN and HN ′ are conflict
equivalent since they are over the same set of transactions and order conflicting transactions
in the same way. �

THEOREM 4 1CPSR (NODO). The history produced by the NODO algorithm is one
copy serializable.

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

40 ·
Proof: (theorem 4) From Lemma 4, the histories of all available sites are conflict equiva-
lent. Moreover, they are all serializable. Thus, the global history is one copy serializable.
�

A.5 Liveness of NODO

THEOREM 5 LIVENESS (NODO). The NODO algorithm ensures that each transaction
Ti, TO-delivered at an available site, eventually commits in the absence of catastrophic
failures.

Proof: (theorem 5) The theorem is proved by induction on the position n of T i in the total
order.

Induction Basis: Let Ti be the first TO-delivered transaction. Upon TO-delivery, each site
would place Ti at the head of all its queues. Thus, Ti’s master can execute and commit Ti,
and then send the commit message to the remote sites. Remote sites will apply the updates
and also commit Ti.

Induction Hypothesis: The theorem holds for the TO-delivered transactions with positions
n ≤ k, for some k ≥ 1, in the definitive total order, i.e., all transactions that have at most
k − 1 preceding transactions will eventually commit.

Induction Step: Assume that transaction T i is at position n = k + 1 in the definitive
total order when it is TO-delivered. Each site places T i in the corresponding queues after
any committable transaction (TO-delivered before T i) and before any pending transaction
(not yet TO-delivered). All committable transactions that are now ordered before T i have
lower positions in the definitive total order. Hence, they will all commit according to the
induction hypothesis and be removed from the queues. With this, T i will eventually be the
first in each of its queues and, from the induction basis, eventually commit.

For the induction basis and the induction step, if the master fails before the other sites
have delivered the commit (note that the commit is not sent with uniform-reliable delivery),
a new master will reexecute the transaction and resend the commit message. �

A.6 Consistency of NODO

Let T be the subset of transactions committed a site N before it failed.

THEOREM 6 CONSISTENCY OF FAILED SITES (NODO). All transactions, Ti, Ti ∈ T
are committed at all available sites. Moreover, the committed projection of the history in
N is conflict equivalent to the committed projection of the history of any of the available
sites when this history is restricted to the transactions in T .

Proof: (theorem 6) We have to show that committed transactions at N are also committed
at the available sites: For a transaction to be committed anywhere, it must have been TO-
delivered. Thus, all transactions in T have been TO-delivered and all available sites know
about them (due to uniformity). N only commits a transaction after having received the
commit message (independently of whether N is the master or not). If the available sites
have received the commit message they also commit. If they have not received it because
the master failed (commit is not sent with uniform reliable delivery), a new master takes
over, executes the transactions again (in the same order as before), and sends the commit
message. Again if the new master fails before sending the commit, another master will

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 41

take over and repeat the procedure. Since we assume that there are some available sites,
eventually one of these sites will become the master and the transaction will commit. The
equivalence of histories follows directly from Lemma 3. �

A.7 Correctness of REORDERING

In the REORDERING algorithm it is not possible to use the total order as a guideline since
a site might decide to reorder transactions. Nevertheless, each site still produces serial-
izable histories. If we can prove that all these histories are conflict equivalent, then the
REORDERING algorithm produces one copy serializable histories. Again, we first assume
no failures.

We start by proving that transactions not involved in a reordering can not get in between
the serializer and the transaction being reordered. Let T s be the serializer transaction of
the transactions in the set TTs .

LEMMA 5 REORDERED. A reordered transaction Ti is always serialized before its se-
rializer transaction Ts, that is, if Ti ∈ TTs then at each site N , Ti −→N Ts.

Proof (lemma 5):
It follows trivially from the algorithm. �

LEMMA 6 SERIALIZER. In the REORDERING algorithm, and for all transactions T i, Ti ∈
TTs there is no transaction Tj , Tj �∈ TTs , such that Ti −→ Tj −→ Ts.

Proof (lemma 6): Assume that N is the master site where the reordering takes place. Since
Ts is the serializer of Ti, Ti −→OPT Ts, and Ts −→TO Ti. Additionally, from Lemma 5
Ti −→ Ts. There are two cases to consider: (a) Tj −→TO Ts and (b) Ts −→TO Tj .

Case (a): since Tj is TO-delivered before Ts, N will reorder the queues so that Tj is before
Ti, and Ti is before Ts. With Tj ahead of their queues, Ti and Ts cannot be committed
until Tj commits. Thus, Tj cannot be serialized in between Ti and Ts.

Case (b): since Ts is TO-delivered before Tj and Tj �∈ TTs , all sites will put Ts ahead of
Tj in the queues (Tj cannot have committed because it has not yet been TO-delivered), if
it was not the case. Since CTi ⊆ CTs , this effectively prevents transactions from getting
in between Ti and Ts. Any transaction Tj trying to do so will conflict with Ts and since
Ts has been TO-delivered before Tj , Tj has to wait until Ts commits. By that time, Ti

will have committed at its master site and its commit message will have been delivered and
processed at all sites before the one of Ts. Therefore, the final serialization order will be
Ti −→ Ts −→ Tj . �

LEMMA 7 CONFLICT EQUIVALENCE (REORDERING). For any two sites, N, N ′, run-
ning the REORDERING algorithm, HN is conflict equivalent to HN ′ .

Proof: (lemma 7) For two histories to be equivalent, they must have the same transactions
and order conflicting transactions in the same way. Since we assume both N and N ′

to be available, they both see the same transactions. To see that conflicting operations
are ordered in the same way, there are four cases to consider. Let T 1 and T2 be two
transactions involved in a direct conflict and let CT1 and CT2 be their conflict classes. We
can distinguish several cases:
• CT1 ⊆ CT2 and T1 and T2 have the same master N ′′. Assume first T2 −→TO T1:

(a) If N ′′ reorders T1 and T2 with respect to the total order (T1 −→OPT T2), then, from
Lemma 6, no transaction Ti �∈ TT2 can be serialized in between. The commit for T1 will

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

42 ·
be sent before the commit for T2 and in FIFO order. Hence, all sites will then execute T1

before T2.
(b) If N ′′ follows the total order to commit T1 and T2 (no reordering), then other sites

cannot change this order. The argument is similar to that in Lemma 3 and revolves about
the order in which transactions are committed at all sites.

Assume now T1 −→TO T2:
(c) If CT1 = CT2 then cases (a) and (b) apply exchanging T1 and T2.
(d) Otherwise CT1 ⊂ CT2 . In this case, N ′′ has no choice but to commit T1 and T2 in

TO-delivery order (the rules for reordering do not apply). From here, and using the same
type of reasoning as in Lemma 3, it follows that all sites must commit T1 and T2 in the
same order.

• CT1 ⊆ CT2 and T1 and T2 do not have the same master, or CT1 ∩ CT2 �= ∅ and neither
CT1 � CT2 nor CT2 � CT1 .

(e) If T1 or T2 are involved in any type of reordering at their sites, Lemma 6 guarantees
that there will be no interleavings between the transactions involved in the reordering and
the other transaction. Thus, one transaction will be committed before the other at all sites
and, therefore, all sites will produce the same serialization order.

(f) If T1 and T2 are not involved in any reordering, then upon TO-delivery, both of them
will be rescheduled in the same (total) order at all sites and then committed. From here it
follows that all sites will produce the same serialization order.

• CT1 ∩ CT2 = ∅.

(g) If there is no serialization order between T1 and T2 then they do not need to be
considered for equivalence.

(h) If there is a serialization order between T1 and T2, it can only be indirect. Assume
that in N : T1 . . . −→N Ti −→N Ti+1 −→N . . . T2, where each pair of transactions in
that sequence is in direct conflict. Thus, for each pair, the above cases apply and all sites
order the pair in the same way. From here it follows that T1 and T2 are also ordered in the
same way at all sites. �

THEOREM 7 1CPSR (REORDERING). The history produced by the REORDERING al-
gorithm is one copy serializable.

Proof: (theorem 7) From Lemma 7, all histories are conflict equivalent. Moreover, they
are all serializable. Thus, the global history is one copy serializable. �

A.8 Liveness of REORDERING

THEOREM 8 LIVENESS (REORDERING). The REORDERING algorithm ensures that
each transaction TO-delivered at an available site T i eventually commits in the absence of
catastrophic failures.

Proof: (theorem 8) The proof is similar to the liveness proof of the NODO algorithm and
is an induction on the position n of Ti in the definitive total order.
Induction Basis: Let Ti be the first TO-delivered transaction. Upon TO-delivery, each
remote site will place Ti at the head of all its queues. At the local site, there might be
some reordered transactions ordered before T i and Ti is their serializer. All these can be
executed and committed, so that Ti will eventually be executed and committed. Remote

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

· 43

sites will apply the updates of the reordered transactions and T i in FIFO order and hence,
they will also commit Ti.

Induction Hypothesis: The theorem holds for the TO-delivered transactions with positions
n ≤ k, for some k ≥ 1, in the definitive total order, i.e., all transactions that have at most
k − 1 preceding transactions will eventually commit.

Induction Step: Assume that transaction T i is at position n = k + 1 in the definitive total
order when it is TO-delivered. There are two cases:

a) Ti is reordered. This means there is a serializer transaction Tj with a position n ≤ k in
the total order and Ti is ordered before Tj . Since Tj , according to the induction hypothesis,
commits and Ti is executed and committed before Tj at all sites, the theorem holds.

b) Ti is not a reordered transaction. Ti will be rescheduled after any committable trans-
action and before any pending transaction. There exist two types of committable transac-
tions.

i. Not reordered transactions: They have a position n ≤ k and will therefore commit
and be removed from the queues according to the induction hypothesis.

ii. Reordered transactions: Each reordered transaction T j that is serialized by transac-
tion Tk, Tk �= Ti will commit before Tk and Tk will commit according to the induction
hypothesis. All transactions Tj ∈ TTi (i.e., Ti is the serializer) are ordered directly before
Ti in the queues (Lemma 3). Let Tk be the first not reordered transaction before this set of
reordered transactions. Tk will eventually commit according to the induction hypothesis,
and therefore also all transactions in TTi and Ti itself.

If a transaction is TO-delivered at one site, it is TO-delivered at all available sites. Fail-
ures lead to masters reassignment but do not introduce different cases to the above ones.
�

A.9 Consistency of REORDERING

Again, let T be the subset of transactions TO-delivered to a site before it failed.

THEOREM 9 CONSISTENCY OF FAILED SITES (REORDERING). All transactions, Ti,
Ti ∈ T , that are committed at a failed site N are committed at all available sites. More-
over, the committed projection of the history in N , is conflict equivalent to the committed
projection of the history of any of the available sites when this history is restricted to the
transactions in T .

Proof: (theorem 9) Since both transaction and commit messages are sent with uniform
reliable multicast, if any site commits a transaction (after receiving the commit message),
all available sites will receive the commit message, and hence, commit the transaction.
This guarantees that when any site commits a reordered transaction in a different order
than the TO-delivery, all available sites will do so. If a master fails after having executed a
reordered transaction but before sending the commit message, another site will take over as
master. This site might not reorder the transaction or reorder it differently (because OPT-
delivery was different at the new master). But this is fine because no site has yet committed
the transaction (not even the old master).
To prove the equivalence of histories, the theorem follows directly from Lemma 7. �

ACM Transactions on Computers, Vol. V, No. N, Month 2004.

