
comp362: honours algorithm design 1

Winter 2022

Instructors: Vetta, Adrian Roshan

Honours
Algorithm Design

Contents

Network Flow 3

Maximum Flow Problem 3

Bipartite Matching Problem 7

Extensions to Maximum Flow 9

Flow Decomposition Theorem 12

Fast Flow Algorithms 13

Linear Programming 16

Formulating Linear Programming Problems 16

The Simplex Algorithm: Method 18

The Simplex Algorithm: Termination 20

The Simplex Algorithm: Initialization 21

Efficiency 22

Linear Programming Duality 22

Applications of Linear Programming 25

Computational Complexity 29

Polynomial-Time Reductions 29

NP Completeness 32

PSpace and Complexity Classes 36

Search and Decision Problems 39

Heuristic Algorithms 40

Backtracking and Branch-and-Bound 40

Local Search 44

Approximation Algorithms 46

Bounding the Optimum 46

Application 1: Travelling Salesman Problem 46

Application 2: Multiway Cut 50

Application 3: Weighted Vertex Cover 51

Application 4: Set Cover 55

Application 5: Hitting Set 57

Application 6: Maximum Satisfiability 59

Application 7: Steiner-Tree Problem 61

Application 8: Knapsack Problem 63

Parameterized Complexity 65

comp362: honours algorithm design 3

Network Flow

Maximum Flow Problem

Definition 1 (Directed Graph). A directed graph is an ordered pair with
a set of vertices V(G) and an arc set A(G) ⊆ (V

2) containing directed edges. Let G = (V, A) be a directed graph,

• |V(G)| = n

• |A(G)| = mDefinition 2 (Directed Path). A directed path in a directed graph is a
path in which every edge is traversed from tail to head.

Definition 3 (Directed Neighborhood). δ+(X) is the set of arcs with a
tail in X and a head in V(G)− X. In contrast, δ−(X) = δ+(V(G)− X).

Definition 4 (Capacity). Every arc a = (i, j) in A(G) has an integral1 1 ua > 0 for all arcs a ∈ A(G). If an arc
does not exist, we can assume that it
has capacity zero.

capacity ua = uij, which is the maximum amount that flows through it.

Definition 5 (Flow). Let G = (V, A) be a directed graph. A flow f from a
source s to a sink t is a function f : A(G)→ R+ that satisfies,

• 0 ≤ fa ≤ ua for all a ∈ A(G)

• ∑a∈δ−(v) fa = ∑a∈δ+(v) fa for all v ∈ V(G)− {s, t}

The first condition, capacity constraints, states that the flow on an arc a ∈
A(G) is non-negative and at most its capacity. The second condition, flow
conservation, states that the inflow of a vertex v 6∈ {s, t} equals its outflow.

Definition 6 (Flow Value). Assume that δ+(t) = δ−(s) = ∅. Then the
value of a flow f is the quantity of flow that reaches the sink,

| f | = ∑
a∈δ−(t)

fa = ∑
a∈δ+(s)

fa

Definition 7 (Maximum Flow). Let G = (V, A) be a directed graph. The
maximum flow problem is the problem of finding f ∗, where,

f ∗ = max

 ∑
a∈δ−(t)

fa

∣∣∣∣∣∣ ∑a∈δ−(v) fa = ∑a∈δ+(v) fa ∀v ∈ V(G)− {s, t}
0 ≤ fa ≤ ua ∀a ∈ A(G)

Definition 8 (Augmenting Path). An (s− t) path P is augmenting if2, 2

• f (a) ≤ ua − 1 for every arc a used in the forward direction of P

• f (a) ≥ 1 if a ∈ A(P) is traversed in the backwards direction

Equivalently, P is a directed path from s to t in the residual network G f .

Definition 9 (Bottleneck Capacity). The bottleneck capacity of an
augmenting path P with respect to a flow f is the maximum amount b(P, f)
that we can increase the flow along P by,

b(P, f) = min

 min
(i, j) ∈ A

i→ j

uij − fij, min
(i, j) ∈ A

i← j

fij

comp362: honours algorithm design 4

Definition 10 (Residual Graph). Let G = (V, A) be a directed graph, and
suppose that f is a flow on G. The residual graph G f satisfies,

• ∃a1 ∈ A(G f) such that ua1 = ua − fa

• ∃a2 ∈ A(G f) such that ua2 = fa

for all a ∈ A(G).

Remark 11. The bottleneck capacity of a path is the minimum capacity of
an arc in the corresponding directed path in the residual graph.

Definition 12 (Ford-Fulkerson). Let G = (V, A) be a directed graph. The
following algorithm produces a maximum flow f ∗,

Algorithm 1: Ford-Fulkerson

// f is globally given, and initially set to 0.
1 function Augment(P, f)
2 b← bottleneck capacity b(P, c)
3 foreach a ∈ A(P) do

// |A(P)| is at most |V(G)| because P is acyclic.

4 if a = (i, j) is a forward arc then

// Increase f (a) in G by b.
5 f (a)← f (a) + δ

6 else

// Decrease f (a′) in G by b, where a′ = (j, i).
7 f (areverse)← f (areverse) + δ

8 return f

9 function Ford-Fulkerson(G)

10 foreach a ∈ A(G) do

11 f (a)← 0
12 G f ← residual network of G with respect to f ;

13 while ∃(s− t) path P in G f do

14 f ← Augment(P, f)
15 Update G f ;

16 return f

Definition 13 (Cut). (S, V(G)− S) is an (s− t) cut if s ∈ S and t /∈ S.

Remark 14. Let G = (V, A) be a directed graph, and suppose that f ∗ is
the maximum (s− t) flow on G. If S∗ is the set of vertices that are reachable
from s in the residual graph G f ∗ , that is,

S∗ = {v | ∃ directed (s− v) path in G f ∗}

then (S∗, V(G)− S∗) is an (s− t) cut3 of G and δ+G f ∗
(S∗) = ∅. 3 Trivially, s ∈ S∗. By the termination

condition in Ford-Fulkerson, t 6∈ S∗. If
it was, then there would be an (s− t)
path in G f ∗ and the algorithm would
continue for another iteration.

comp362: honours algorithm design 5

Example 1: Example of the Cut Lemma

Lemma 15 (Cut Lemma). Let G = (V, A) be a directed graph, and
suppose that f is an (s− t) flow on G. For any (s− t) cut (S, V − S),

| f | = ∑
a∈δ+(S)

fa − ∑
a∈δ−(S)

fa

Proof. The value of f is the amount of flow leaving s,

| f | = ∑
a∈δ+(s)

fa

Since δ−({s}) = ∅,

= ∑
a∈δ+(s)

fa − ∑
a∈δ−(s)

fa

By Flow Conservation,

=
(

∑
a∈δ+(s)

fa − ∑
a∈δ−(s)

fa
)
+ ∑

v∈S−{s}

(
∑

a∈δ+(v)
fa − ∑

a∈δ−(v)
fa
)

Combining the terms to include s,

= ∑
v∈S

(
∑

a∈δ+(v)
fa − ∑

a∈δ−(v)
fa
)

Let a = (i, j) ∈ A. There are four cases,

1. (i, j) ∈ δ+(S) =⇒ fa appears once with coefficient +1.

2. (i, j) ∈ δ−(S) =⇒ fa appears once with coefficient −1.

3. (i, j) 6∈ S =⇒ fa does not appear in the sum.

4. (i, j) ∈ S =⇒ fa appears twice with coefficients +1,−1.

Consequently,

= ∑
a∈δ+(S)

fa − ∑
a∈δ−(S)

fa

Definition 16 (Cut Capacity). Capacity of an (s− t) cut (S, V − S) is,

cap(S) = ∑
a∈δ+(S)

ua

comp362: honours algorithm design 6

Lemma 17. Let G = (V, A) be a directed graph, and suppose that f is an
(s− t) flow on G. | f | ≤ cap(S) for any (s− t) cut (S, V − S).

Proof. By the Cut Lemma,

| f | = ∑
a∈δ+(S)

fa − ∑
a∈δ−(S)

fa

≤ ∑
a∈δ+(S)

fa

= cap(S)

Theorem 18 (Maxflow-Mincut). The maximum value of an (s− t) flow is
equal to the minimum capacity of an (s− t) cut.

Proof. Let f ∗ be the flow output by Ford-Fulkerson. Recall that,

S∗ = {v | ∃ directed (s− v) path in G f ∗}

We showed in Lemma 17 that | f ∗| ≤ cap(S∗), but we can show that
| f ∗| = cap(S∗). We saw that δ+G f ∗

(S∗) = ∅ because we could other-

wise grow S∗. Now, any arc a ∈ δ+(S∗) is not in the residual graph
because Ford-Fulkerson requires it to have reached its capacity:
f ∗a = ua. Similarly, the reverse of any arc a ∈ δ−(S∗) is not in the
residual graph because Ford-Fulkerson requires that f ∗a = 0. Now,

| f ∗| = ∑
a∈δ+(S∗)

fa − ∑
a∈δ−(S∗)

fa by the Cut Lemma

= ∑
a∈δ+(S∗)

ua − ∑
a∈δ−(S∗)

fa by Observation 1 above

= ∑
a∈δ+(S∗)

ua − ∑
a∈δ−(S∗)

0 by Observation 2 above

= cap(S∗)

f "saturates" the edge e if f (e) =
c(e), i.e., f maximizes the flow on e.
Moreover, if e is not saturated in some
maximum (s− t) flow, then e does not
occur in any min cut.

Remark 19 (Running Time). Ford-Fulkerson (see Algorithm 1) runs in
pseudo-polynomial time. Its running time is polynomial in the numeric
value of the input, but not in the number of bits required to represent it.

Proof. A single iteration of Ford-Fulkerson runs in O(m) because G f

can be found in O(m), an (s− t) path P can be found in O(m) with
Breadth-First Search, and Augment runs in O(n).

However, the number of iterations is at most n ·U, where U can
be exponential in the input size. The algorithm terminates when

comp362: honours algorithm design 7

b(P, f) = 0 for every (s− t) path P. Since arc capacities are integral,
b(P, f) ≥ 1. This means that in the worst case, flow is increased by
1 at every iteration. Consequently, the minimum value of any (s− t)
cut C satisfies C ≤ n ·maxa∈A(G) ua. The bound is in terms of n, not
m, because an (s − t) cut separates V(G). Since the flow is at most
n ·U, the number of iterations is bounded by n ·U.

Example 2: Ford-Fulkerson Running Time Analysis

Ford-Fulkerson can take 2U iterations on this example,

Bipartite Matching Problem

Definition 20 (Independent Set). An independent set is a set of pairwise
non-adjacent vertices. The independence number α(G) is the maximal size
of an independent set in G.

Definition 21 (Vertex Cover). A vertex cover X ⊂ V(G) is a set so
that every edge of G has an end in X. The vertex cover number τ(G) is the
minimum size of a vertex cover in G.

Definition 22 (Matching). A matching M ⊂ E(G) is a set so that every
vertex of G is incident to at most one edge of M. The matching number
ν(G) is the maximum size of a matching in G.

Definition 23 (Perfect Matching). A perfect matching covers V(G).

Definition 24 (Bipartition). A bipartition of a graph G is a pair of
subsets (A, B) of V(G) so that A ∩ B = ∅, A ∪ B = V(G), and every edge
of G has one end in A and another in B.

comp362: honours algorithm design 8

Definition 25 (Bipartite Matching). Let G = (V, E) be an undirected
bipartite graph. The bipartite matching problem is the problem of finding
ν(G), the maximum cardinality matching in G.

The Ford-Fulkerson Algorithm can be used to solve the bipartite
matching problem. To see this, construct an auxiliary network G =

(V, E) with bipartition (X, Y) by doing the following,

1. Direct each edge (xi, yi) from xi → yi

2. Add a source vertex s with an outgoing arc to each vertex in X

3. Add a sink vertex t with an incoming arc from each vertex in Y

4. Give internal and external arcs capacities of ∞ and 1, respectively4 4 This is the same as giving every arc
a capacity of 1 because the unique arc
into each X-vertex still has capacity 1Example 3: Constructing the Auxiliary Network

The auxiliary network for the following bipartite graph is,

Theorem 26 (Ford-Fulkerson for Matching). There is a polynomial time
algorithm to find a maximum cardinality matching in a bipartite graph.

Proof. A maximum flow on the auxiliary network is a maximum
matching in the original graph. This is because a flow of value k in
the auxiliary network consists of k arc-disjoint5 paths, each of which 5 Each arc has capacity 1.

gives an edge in a matching in G. Now, since the maximum cardi-
nality of a matching is max{|X|, |Y|} ≤ n

2 , the number of iterations
required to run Ford-Fulkerson is at most n.

Lemma 27. Let S∗ be a minimum capacity cut in the auxiliary network of
an undirected graph G. Every arc in δ+(S∗) is of the form (s, xi) or (yj, t).

Proof. Suppose not. Then δ+(S∗) would contain an infinite capacity
arc, and so the minimum capacity of a cut in G would be infinite. But
the maximum value of a flow on the auxiliary network is n since s
has n outgoing arcs, a contradiction.

Theorem 28 (Bipartite Vertex Cover). If a vertex cover C and a matching
M in a bipartite graph G have the same cardinality, then they are optimal,

• C is a minimum vertex cover

comp362: honours algorithm design 9

• M is a maximum matching

Proof. Let X∗ = X ∩ S∗. Then N(X∗) ⊆ S∗ ∩Y. Otherwise,

cap(S∗) = ∑
a∈δ+(S∗)

ua = ∞

X∗ ∪ N(X∗) ∪ (X − X∗) ∪ (N(X − X∗)) is a partition of V(G). This
means that there are three types of edges in G,

• Edges from X∗ to N(X∗)

• Edges from X− X∗ to N(X∗)

• Edges from X− X∗ to Y− N(X∗)

We saw above that the fourth type of edge, X − X∗ to N(X∗) cannot
occur. But then X− X∗ ∪ N(X∗) is a vertex cover and its cardinality is
the capacity of the (s− t) cut.

Corollary 29. There is a polynomial time algorithm to find a minimum
cardinality vertex cover in a bipartite graph.

Extensions to Maximum Flow

Definition 30 (Circulations with Demands). Let G = (V, A) be a
directed graph. We associate a demand dv for flow with each node6, 6 If dv < 0, this indicates that v has

supply of −dv. If dv = 0, then the node
is neither a source nor a sink.• S = {s1, . . . , sk} is the set of sink nodes with positive demand

• T = {t1, . . . , tl} is the set of source nodes with negative demand

• s is a super-source with arcs (s, si) and capacities dsi for all si ∈ S

• t is a super-sink with arcs (tj, t) and capacities −dtj for all tj ∈ T

A circulation with demands f : A(G)→ {0} ∪R+ satisfies,

• 0 ≤ fa ≤ ua for all a ∈ A(G)

• ∑a∈δ−(v) fa −∑a∈δ+(v) fa = dv for all v ∈ V(G)− {s, t}

There exists a feasible circulation to the multi-source supply and demand
problem if and only if there is a flow from s to t of value ∑v:dv>0 dv = 0.

Definition 31 (Circulations with Demands and Lower Bounds). Let
G = (V, A) be a directed graph. We associate a lower bound la = lij on
each arc a = (i, j), where 0 ≤ la ≤ ua. A circulation with demands and
lower bounds can be reduced to one without lower bounds,

• le ≤ fa ≤ ua ⇐⇒ 0 ≤ fa ≤ ua − la for all a ∈ A(G)

• d∗v = dv + ∑(k,v)∈A lkv −∑(v,k)∈A lvk for all v ∈ V(G)

comp362: honours algorithm design 10

Example 4: Airline Scheduling

Origin and Destination Time

Boston - San Francisco 7am - 9am

Toronto - Boston 7am - 8am

We create a network flow as follows,

• oi is a vertex representing the origin of flight i

• di is a vertex representing the destination of flight i

• s is a source vertex with supply k

• t is a sink vertex with demand k

• (di, t) has capacity 1 for every flight i

• (di, oj) has capacity 1 if flight i can be serviced after flight j

• (oi, di) has a lower bound of 1

There is a way to perform all flights using at most k planes
⇐⇒ There is a feasible circulation in our network.

Example 5: Open-Pit Mining

We are given that,

• V is a set of blocks, each of which generates a profit πi

• 3 upper neighbors must be removed to dig block i

We create a network flow as follows,

• vi ∈ V represents block i in our pit

• s and t are the source and sink vertices

• (s, vi) has capacity πi if and only if πi > 0

• (vi, t) has capacity |πi| if and only if πi < 0

• Infinite capacity arcs exist between i and its 3 neighbors

We know that cap(S∗) is finite because,

cap({s}) = ∑
i:πi>0

πi

comp362: honours algorithm design 11

is finite by construction. The capacity of the an (s− t) cut S is,

cap(S) = ∑
a∈δ+(S)

ua

= ∑
i 6∈S:πi>0

πi + ∑
i∈S:πi>0

|πi|

=

(
∑

i∈V:πi>0
πi − ∑

i∈S:πi>0
πi

)
+ ∑

i∈S:πi>0
|πi|

=

(
∑

i∈V:πi>0
πi − ∑

i∈S:πi>0
πi

)
− ∑

i∈S:πi>0
πi

= ∑
i∈V:πi>0

πi︸ ︷︷ ︸
constant

−∑
i∈S

πi

Minimizing cap(S) solves the open-pit mining problem, since
it requires us to maximize the profit associated with S.

Example 6: Image Segmentation

We create a network flow as follows,

• vi is a vertex representing the pixel i

• s is a source vertex representing the foreground

• t is a sink vertex representing the background

• fi is the likelihood that the pixel i is in the foreground

• bi is the likelihood that the pixel i is in the background

• ρij is a penalty for separating adjacent pixels i and j

• (s, vi) has capacity fi

• (vj, t) has capacity bj

• (vi, vj) and (vj, vi) have capacity ρij

The capacity of the an (s− t) cut S is,

cap(S) = ∑
a∈δ+(S)

ua

= ∑
i 6∈S

fi + ∑
j∈S

bj + ∑
(i,j)∈δ+(S)

ρij

=
(

∑
i∈V

fi −∑
i∈S

fi
)
+
(

∑
j∈V

bj −∑
j 6∈S

bj
)
+ ∑

(i,j)∈δ+(S)
ρij

= ∑
i∈V

(fi + bi)︸ ︷︷ ︸
constant

−∑
i∈S

fi −∑
j 6∈S

bj + ∑
(i,j)∈δ+(S)

ρij

comp362: honours algorithm design 12

Minimizing cap(S) is solves the segmentation problem,

max
S

∑
i∈S

fi + ∑
j 6∈S

bj − ∑
(i,j)∈δ+(S)

ρij

• There is a bonus fi if pixel i is placed in the foreground

• There is a bonus bj if pixel j is placed in the background

• There is a penalty ρij for separating pixels i and j

Flow Decomposition Theorem

Recap on Flow Decomposition:
Let G = (V, A) be a directed graph
and suppose that f is an (s− t) flow of
value k. Then there exist directed paths
P1, . . . , Pk (possibly repeated) from s to t
in G, and every edge belongs to at most
f (e) paths.

Lemma 32. Let G = (V, A) be a directed graph and suppose that f is an
(s− t) flow of value k > 0 Then f contains a path or a cycle.

Proof. If f contains a directed cycle C, then we are done. Assume that
this is not the case. Since k > 0,

∑
a∈δ+({s})

fa ≥ 1

so there is at least one arc a1 = (s, v1) with fa1 ≥ 1. By flow con-
servation, there exists an arc a2 = (v1, v2) (v2 6= s since the flow is
acyclic). Repeating inductively, we can construct an (s− t) path with
mina∈P fa ≥ 1.

Theorem 33 (Flow Decomposition Theorem). Let G = (V, A) be a
directed graph and suppose that f is an (s− t) flow of value k > 0. Then f
can be decomposed into at most m (s− t) paths and directed cycles.

Proof. We proceed by induction on the number of arcs in the graph.

• (Base Case) If m = 0, then f is empty and trivially consists of zero
paths and cycles. If m = 1, then f is a single arc (s, t) and thus can
be decomposed into one (s, t) path.

• (Induction Hypothesis) Assume that any flow with k < m arcs
can be decomposed into a collection of at most k cycles and (s− t)
paths. Consider a flow f with m arcs. By Lemma 32, f contains a
path or a cycle. There are two cases,

1. If f contains a cycle C, then let f ∗ be the flow obtained by re-
moving mina∈C fa units of flow from each arc in C. Then f ∗

has at least one fewer arc than f . By the induction hypothesis,
f ∗ decomposes into at most m − 1 paths and cycles. Thus, f
decomposes into at most m paths and cycles.

comp362: honours algorithm design 13

2. If f contains a path P, then let f ∗ be the flow obtained by re-
moving mina∈C fa units of flow from each arc in P. Proceed as
in Case 1 to decompose f ∗ into m− 1 paths and cycles.

Corollary 34. The Ford-Fulkerson algorithm can terminate in m iterations.

Fast Flow Algorithms

Remark 35. Let G = (V, A) be a directed graph and suppose that f ∗ is an
maximum (s− t) flow on G. Then there is a path P in G with,

uP ≥
1
m
| f ∗|

Proof. By the Flow Decomposition Theorem, f ∗ consists of at most m
paths. Thus, at least one of these paths carries 1

m | f ∗| flow.

Remark 36. Let G = (V, A) be a directed graph and suppose that f ∗ is an
maximum (s− t) flow on G. Let f be any other (s− t) flow on G. Then,

b(P, f) ≥ | f
∗| − | f |

m

for some path in the residual graph G f .

Proof. f ∗ − f satisfies the flow conservation constraints. By the Flow
Decomposition Theorem, f ∗ − f can be decomposed into at most 2m
paths and cycles. Only one direction of each arc is used, so we can
assume that (f ∗ − f) can be decomposed into at most m paths. Thus,
at least one of these paths carries | f

∗ |−| f |
m .

Definition 37 (Maximum Capacity). The maximum capacity aug-
menting path algorithm chooses augmenting paths greedily by capacity.

(Recap) 1− x < e−x for all x 6= 0.

Theorem 38. The maximum capacity augmenting path algorithm termi-
nates in at most m · (ln n + ln U) iterations7, where U = maxa∈A ua. 7 Weakly polynomial algorithms depend

on the size of the input.
Proof. Suppose that the algorithm finds paths {P1, P2, . . . , PT}. We
need to show that T ≤ m · (ln n + ln U). Denote by ft the flow after t
iterations. By Remark 36, the path Pt+1 satisfies,

b(Pt+1, ft) ≥
| f ∗| − | ft|

m
:=
4t+1

m

4t+1 is the flow quantity that remains to be found at step t + 1. In
particular, 4t+1 ≤ 4t − 1

m · 4t since we fall by 1
m at each iteration.

Continuing inductively, we get that 4t+1 ≤ (1− 1
m)t · 41 = (1− 1

m)t ·
| f ∗|. But then, 4t+1 ≤ e−

t
m · | f ∗|. Setting t = m · ln| f ∗|,

4t+1 < e−
m·ln| f ∗|

m | f ∗| = 1

comp362: honours algorithm design 14

After T = m · ln | f ∗| steps, the quantity of flow remaining to be found
is less than one. Flows are integral, so we have found | f ∗|. Since the
maximum cut in G has value n ·U, ln | f ∗| ≤ ln u ·U = ln u + ln U.
Thus, the number of iterations is at most m · (ln u + ln U).

Algorithm 2: Maximum Capacity Augmenting Paths

// f is globally given, and initially set to 0.
// Augment(P, f) is globally given

1 function Ford-Fulkerson(G)

2 foreach a ∈ A(G) do

3 f (a)← 0
4 G f ← residual network of G with respect to f ;

5 while ∃(s− t) path P in G f do

6 P∗ ← maximum capacity augmenting path
f ← Augment(P∗, f)

7 Update G f ;

8 return f

Theorem 39. The maximum capacity augmenting path algorithm takes
O(m2) time per iteration. Binary search reduces it to O(m · log m).

Proof. Label the arcs in G f by {1, 2, . . . , 2m} in decreasing order of
residual capacity. We can test if there is an (s − t) path that uses
arcs {1, . . . k} in O(m) time by Breadth-First Search. Repeating this
process for all k gives a total time in O(m2).

Corollary 40. It total, the algorithm runs in O(m3 · (ln u + ln U)) time.

Definition 41 (Shortest Length). The shortest length residual path
algorithm chooses augmenting path greedily by length8. 8 The length of a path is the number of

arcs comprising it.

The Potential Function Argument:
If φ satisfies,

• φ decreases at a rate of δ

• φ is lower bounded by `

Then φ becomes fixed at time T. Given
the starting value φ0 and `, we know
that φ becomes fixed at −φ0 ∗ |δ| = φ.

Remark 42. An iteration of the shortest length augmenting path algorithm
is in O(m) if the shortest (s− t) paths are found with Breadth-First Search.

Theorem 43. The shortest length augmenting path algorithm terminates in
at most m · n iterations. This puts its runtime in O(m2 · n).

Proof. Suppose that the algorithm finds paths {P1, P2, . . . , PT}. We
need to show that T ≤ m · n. Let ft be the flow after t iterations,
and consider its residual graph G ft . Define dt(v) as the distance of a
vertex v from the source s in G ft , and consider φt = ∑v∈V dt(v). We
will use a potential energy function argument to show that,

dt(u) ≤ dt+1(u) for all t

comp362: honours algorithm design 15

If t = 0, then φ0 = ∑v∈V d0(v) ≥ 0 since d0 is a distance. Moreover,
dt(v) ≤ n− 1 since G has n vertices. This means that,

φt = ∑
v∈V

dt(v) ≤ n2

To apply the argument, we need to prove that φt is non-decreasing.
It suffices to show that dt(v) is non-decreasing for each vertex v.
Suppose not. Then there exists t ∈ N and a vertex v ∈ V(G) such
that dt(v) > dt+1(v). Consider the closest such vertex to s. Let u be
the vertex preceding it on the shortest path from s to v in G ft+1 . Then
dt+1(v) = dt+1(u) + 1 and dt(u) ≤ dt+1(u).

• If (u, v) ∈ G ft , then,

dt(v) ≤ dt(u) + 1

≤ dt+1(u) + 1 since dt(u) ≤ dt+1(u)

= dt+1(v) since dt+1(v) = dt+1(u) + 1

< dt+1(v) since dt(v) > dt+1(v)

a contradiction.

• If (u, v) 6∈ G ft , (v, u) ∈ Pt since (u, v) ∈ G ft+1 . But,

dt(u) = dt(v) + 1 since Pt is the shortest path in G ft

> dt+1(v) + 1

= dt+1(u) + 2 since dt+1(v) = dt+1(u) + 1

≥ dt(u) + 2

a contradiction.

Pt is augmented by its bottleneck capacity, and there is at least one
arc at with that capacity. It suffices to prove that each arc can be the
bottleneck arc at most n

2 times9, because this means that the number 9 This argument works because we have
proven that φ is a bounded function.of iterations is at most 2m · n

2 = mn.

Lemma 44. Each arc can be the bottleneck arc at most n
2 times.

Proof. Let (u, v) ∈ A(G ft) be the bottleneck arc in the augment-
ing path Pt. Since Pt is the shortest (s − t) path in G ft , we have that
dt(v) = dt(u) + 1. Now, (u, v) 6∈ G ft+1 since (u, v) is the bottleneck
arc in iteration t. Suppose that (u, v) is a bottleneck in iteration10 10 (u, v) cannot be a bottleneck at

iteration t + 1 because it is not in the
residual graph G ft+1 .

t + 1 + k > t + 1 (k > 0). Then (u, v) must have been added back
into the residual graph G ft+1+k

. This means that the reverse arc (v, u)
must have been used at some time t + 1 ≤ t′ < t + 1 + k. As Pt′ is the
shortest (s− t) path in G ft′

, we have:

dt′(u) = dt′(v) + 1

≥ dt(v) + 1

= dt(u) + 2

comp362: honours algorithm design 16

Since the distance label of u must have increased by at least 2, this
can happen at most n

2 times. Otherwise, we get that dt(u) > n.

Algorithm 3: Shortest Length Augmenting Paths

// f is globally given, and initially set to 0.
// Augment(P, f) is globally given

1 function Ford-Fulkerson(G)

2 foreach a ∈ A(G) do

3 f (a)← 0
4 G f ← residual network of G with respect to f ;

5 while ∃(s− t) path P in G f do

6 P∗ ← shortest length augmenting path
f ← Augment(P∗, f)

7 Update G f ;

8 return f

Linear Programming

Formulating Linear Programming Problems

Example 7: The Diet Problem

A student is subject to the following dietary requirements,

Food Energy Protein Calcium Price Servings
Porridge 110 4 2 10 4

Chicken 205 32 12 200 3

Eggs 160 13 54 40 4

Milk 160 8 285 35 8

Apple Pie 420 4 22 190 3

Pork and Beans 260 14 80 90 2

Requirement 2000 55 800 None None

The goal is to find,

min 10x1 + 200x2 + 40x3 + 35x4 + 190x5 + 90x6

comp362: honours algorithm design 17

subject to the constraints,

xi ≥ 0 for all i ∈ [6]

x1 ≤ 4, x2 ≤ 3, x3 ≤ 4, x4 ≤ 8, x5 ≤ 3, x6 ≤ 2

110x1 + 205x2 + 160x3 + 160x4 + 420x5 + 260x6 = 2000

4x1 + 32x2 + 13x3 + 8x4 + 4x5 + 14x6 = 55

2x1 + 12x2 + 54x3 + 285x4 + 22x5 + 80x6 = 800

Any linear equation in n variables
defines a hyperplane in Rn, and the
intersection of a finite number of
hyperplanes is called a polyhedron. By
rotating the space so that the objective
function points downward, any linear
program is the problem of finding the
lowest point in a given polyhedron.

Definition 45 (Linear Program). A linear program minimizes or maxi-
mizes a linear objective function subject to a set of linear constraints.

Definition 46 (Feasibility). A point x ∈ Rn is feasible with respect to
some linear program if it satisfies all of the linear constraints.

Definition 47 (Primal Linear Program). A primal linear program is,

max

{
n

∑
j=1

cj · xj

∣∣∣∣∣ ∑n
j=1 aij · xj ≤ bj for all i ∈ [m]

xj ≥ 0 for all j ∈ [n]

}

Remark 48. The matrix encoding of a linear program in standard form is,

max

{
cT · x

∣∣∣∣∣ Ax ≤ b
x ≥ 0

}

Example 8: Standard Form

Any linear program can be converted into standard form,

maximise ∑n
j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi ∀i ∈ [m]

xj ≥ 0 ∀j ∈ [n]

• For each variable xj, add:

– Two new variables x+i , x−i
– Recover xj by taking, xj = x+j − x−j
– Inequalities, x+j ≥ 0 and x−j ≥ 0

• Replace any equality constraint ∑j aijxj = bi with:

– An inequality constraint, ∑j aijxj ≥ bi

– An inequality constraint ∑j aijxj ≤ bi

• Replace any upper bound constraint ∑j aijxj ≥ bi with,

– The equivalent lower bound, ∑j−aijxj ≤ −bi

comp362: honours algorithm design 18

Definition 49 (Dual Linear Program). For every primal linear program,

maximize ∑n
j=1 cj · xj

subject to ∑n
j=1 aij · xj ≤ bi ∀i ∈ [m]

xj ≥ 0 ∀j ∈ [n]

there is a corresponding dual linear program,

minimize ∑m
i=1 bi · yi

subject to ∑m
i=1 aij · yi ≥ cj ∀j ∈ [n]

yi ≥ 0 ∀i ∈ [m]

that can be obtained by swapping the constraints and the variables.

Remark 50. The matrix encoding of the dual linear program is,

min

{
bTy

∣∣∣∣∣ ATy ≥ c
y ≥ 0

}
︸ ︷︷ ︸

Dual

⇐⇒ max

{
cTx

∣∣∣∣∣ Ax ≤ b
x ≥ 0

}
︸ ︷︷ ︸

Primal

Definition 51 (Dictionaries). Given a linear program in standard form,

max

{
n

∑
j=1

cj · xj

∣∣∣∣∣ ∑n
j=1 aij · xj ≤ bj for all i ∈ [m]

xj ≥ 0 for all j ∈ [n]

}

we introduce slack variables11 xn+1, xn+2, · · · , xn+m, 11 Slack variables are variables that has
been introduced to turn an inequality
constraint into an equality constraint.

xn+i = bi −
n

∑
j=1

aij · xj for i ∈ [m] and z =
n

∑
j=1

cj · xj

and denote the objective function by z.

Definition 52 (Basic Variable). Basic variables are the variables that
appear on the left-hand side of a dictionary, and they constitute a basis.

Definition 53 (Nonbasic Variable). Nonbasic variables are the variables
that appear on the right-hand side of a dictionary.

Remark 54. Dictionaries define basic variables in terms of non-basic ones.

The Simplex Algorithm: Method

Definition 55 (Simplex Algorithm). The simplex algorithm works as
the Gauss-Jordan elimination method on inequalities and constraints,

• Represent the linear program in slack form

• Convert one slack form into an equivalent slack form, ensuring that the
value of the objective function does not decrease while likely increasing it

• Repeat until the optimal solution becomes apparent

comp362: honours algorithm design 19

Example 9: Slack Variables

Take the linear program,

maximize 5x1 + 4x2 + 3x3

subject to 2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8
x1, x2, x3 ≥ 0

Write it in dictionary form,

z = 5x1 + 4x2 + 3x3

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

and restate our problem as,

maximize z
subject to x1, x2, x3, x4, x5, x6 ≥ 0

Example 10: The Simplex Algorithm

The feasible solution that is implicit in our dictionary is,

(x1, x2, x3, x4, x5, x6) = (0, 0, 0, 5, 11, 8)

This gives an objective value of,

z = 5x1 + 4x2 + 3x3 = 0

In the first iteration, we attempt to increase the value of z by
making one of the right-hand side variables positive.

Linear Programming Algorithms:

• Simplex Algorithm. In the feasible
region, x moves from vertex to
vertex in the direction of c. The
algorithm is simple, but runs in
exponential time in the worst case.

• Ellipsoid Algorithm. The algorithm
begins with an ellipsoid that in-
cludes the optimal solution, and
continues to shrink the ellipsoid
until the optimal solution is found.

• Interior Point Method. x moves inside
the polytope following c.

Definition 56 (Entering Variable). The entering variable at each itera-
tion is the nonbasic variable that enters the basis to increase z12.

12 We may choose any nonbasic variable
with a positive coefficient in the top
row of the dictionary.

Definition 57 (Leaving Variable). The leaving variable at each iteration
is the variable that is removed from the basis for the entering variable13.

13 We may choose any basic variable
whose non-negativity imposes the most
stringent upper bound on the increment
of the entering variable.

Example 11: The Simplex Algorithm

The entering variable in the first iteration is x1. Since x1, x2, x3

are all positive, we choose the variable with the largest coeffi-
cient in order to increase z at the fastest rate.

comp362: honours algorithm design 20

z = 25
2 − 7

2 x2 + 1
2 x3 − 5

2 x4

x1 = 5
2 − 3

2 x2 − 1
2 x3 − 1

2 x4

x5 = 1 + 5x2 + 2x4

x6 = 1
2 x2 + 1

2 x3 − 1
2 x3 + 3

2 x4

This completes the first iteration of the simplex method, and,

(x1, x2, x3, x4, x5, x6) =

(
5
2

, 0, 0, 0, 1,
1
2

)

The Simplex Algorithm: Termination

Definition 58 (Cycling). The simplex algorithm cycles if one dictionary
appears in two or more iterations. Cycling prevents termination.

Definition 59 (Smallest Subscript Rule). The smallest-subscript rule is
a rule for breaking ties in the choice of the entering and leaving variables. It
always chooses the candidate xk by the smallest subscript k.

Theorem 60 (Bland’s Rule). The simplex method terminates as long as the
entering and leaving variables are selected by the smallest-subscript rule.

Proof. Assume not. Then there exists a sequence of degenerate iter-
ations that produces dictinaries D1, D2, · · ·Dk such that Dk = D0. A
variable is called fickle if it is nonbasic in some dictionaries, but basic
in others. Let xt be the fickle variable with the largest subscript. Then
there is a dictionary D in the sequence D0, · · · , Dk such that xt leaves
and some other fickle variable xs enters. Further along,

D0︸︷︷︸
=Dk

, D1, · · · , Dk, D1, · · · , Dk

there is another dictionary D∗ with xt entering,

xi = bi −∑
j/∈B

aijxj

z = v + ∑
j/∈B

cjxj.

where i ∈ B. Since all iterations from D to D∗ are degenerate, the
objective function z has the same value v in both dictionaries.

z = v +
n+m

∑
j=1

c∗j xj is the last row

with c∗j = 0 whenever xj is basic in D∗. This equation has been
obtained from D by algebraic manipulations, so it must satisfy every
solution of the linear program14. In particular, it must be satisfied by, 14 Moreover, the simplex algorithm

remains on the boundary of the feasible
region at every iteration.

comp362: honours algorithm design 21

xs = y

xj = 0 (j 6∈ B, j 6= s)

xi = bi − aisy (i ∈ B)

z = v + csy ∀y

Thus, for every choice of y,

v + csy = v + c∗s y + ∑
i∈B

c∗i (bi − aisy)

and then, (
cs − c∗s + ∑

i∈B
c∗i ais

)
︸ ︷︷ ︸

constant

y = ∑
i∈B

c∗i bi︸ ︷︷ ︸
constant

We have an equation λ1 · y = λ2 with y variable. Thus,

(?) cs − c∗s + ∑
i∈B

c∗i ais = 0

∑
i∈B

c∗i bi = 0

Since xs is entering in D, cs > 0. Since xs is not entering in D∗ and
s < t (by assumption), c∗ ≤ 0. If not, then by the Smallest-Subscript
Rule xi would be entering. Hence, by (?),

c∗r ars < 0 for r ∈ B

Since r ∈ B, xr is basic in D. Since c∗r 6= 0, xr is nonbasic in D∗.
Hence, xr is fickle and r ≤ t. More simply, r 6= t or else c∗t ats > 0
because ats > 0. Now, c∗r > 0 since xr is not entering in D∗ (xt is
entering). Therefore,

ars > 0

to satisfy c∗r ars < 0. All iterations from D to D∗ are degenerate, so
both dictionaries satisfy the same solution. In particular xr is zero
since it is non-basic D∗. Therefore, br = 0 and xr was a candidate for
leaving the basis of D. This is a contradiction because r < t.

Example of Degeneracy:
In the example below, x2, x3 are fickle.

The Simplex Algorithm: Initialization

Definition 61 (Auxiliary Problem). Given a linear program,

maximize ∑n
j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi (i ∈ [m])

xj ≥ 0 (j ∈ [n])

the auxiliary problem is defined as,

minimize x0

subject to ∑n
j=1 aijxj − x0 ≤ bi (i ∈ [m])

xj ≥ 0 (j ∈ [n])

comp362: honours algorithm design 22

Example 12: Initialization

The all-zero solution is not always feasible,

maximize x1 − x2 + x3

subject to 2x1 − x2 + 2x3 ≤ 4
2x1 − 3x2 + x3 ≤ −5
−x1 + x2 − 2x3 ≤ −1

x1, x2, x3 ≥ 0

Remark 62. The original problem has a feasible solution if and only if the
optimum value of the auxiliary problem is zero15. 15 We solve the auxiliary problem first.

The Simplex Algorithm: Efficiency (Conjecture) The simplex algorithm is
polynomial time if, given a choice, it
chooses the pivot variables at random.Theorem 63. With Bland’s Rule, the simplex algorithm terminates in,(

m + n
m

)
>> 2m+n iterations.

Proof. This follows from the fact that there are (m+n
m) bases cases, and

the dictionary corresponding to each basis can only appear once.

Remark 64. The simplex algorithm typically makes O(m) pivots, where m
is the number of constraints16. Each pivot takes O(mn) with dictionaries. 16 Since the number of constraints in

the dual is the number of variables in
the primal, O(n) pivots are typically
needed to solve the dual. If n < m,
taking the dual gives a quicker solution.

Linear Programming Duality

Theorem 65 (Weak Duality Theorem). For any primal feasible solution x
and any dual feasible solution y, we have cTx ≤ bTy.

Proof. Using the matrix encodings17 of the linear programs x and y, 17≥ applies to all entries.

cT · x ≤ (ATy)T · x since ATy ≥ c and taking the transpose

= (yT A) · x
= yT · (Ax)

≤ yT · b by the dual feasibility of x

comp362: honours algorithm design 23

Example 13: Duality

Consider the primal,

maximise 4x1 + x2 + 5x3 + 3x4

subject to x1 − x2 − x3 + 3x4 ≤ 1
5x1 + x2 + 3x3 + 8x4 ≤ 55
−x1 + 2x2 + 3x3 − 5x4 ≤ 3

x1, x2, x3 , x4 ≥ 0

and its dual,

minimize y1 + 55y2 + 3y3

subject to y1 + 5y2 − y3 ≥ 4
−y1 + y2 + 2y3 ≥ 1
−y1 + 3y2 + 3y3 ≥ 5
3y1 + 8y2 − 5y3 ≥ 3

y1, y2 y3 ≥ 0

The primal has optimal solution,

(x1, x2, x3, x4) = (0, 14, 0, 5) = 29

The dual has optimal solution,

(y1, y2, y3) = (11, 0, 6) = 29

Theorem 66 (Strong Duality Theorem). Let x be an optimal primal
solution and y be an optimal dual solution18. Then cTx = bTy. 18 An optimal solution might not exist:

• The feasible region is empty

– x1 ≤ 1

– x2 ≥ 2

• The optimal value is infinite

– max x1 + x2

– x1, x2 ≥ 0

Proof. The simplex algorithm finds the optimal primal solution. It
has decision variables (x∗1 , · · · , x∗n) and slack variables (x∗n+1 · · · , x∗n+m).
The top row of the final dictionary is,

z = OPT−
n+m

∑
k=1

γkxk

where γk ≥ 0, with equality for basis variables. Define dual variables
y∗i = γn+i for i ∈ [m]. We need to show that,

1. (y∗1 , · · · , y∗m) is a feasible solution for the dual,

m

∑
i=1

aijy∗i ≥ cj ∀j ∈ [n]

2. The value of (y∗1 , · · · , y∗m) is equal to the optimal primal value,

n

∑
j=1

cj · x∗j =
m

∑
i=1

bi · y∗i

comp362: honours algorithm design 24

Let z∗ = OPT(primal) = ∑n
j=1 cj · x∗j . The final dictionary states that,

z =
n

∑
j=1

cj · x∗j −
n+m

∑
k=1

γk · xk

= z∗ −
n+m

∑
k=1

γk · xk

= OPT(primal)−
n+m

∑
k=1

γk · xk

= OPT(primal)−
n

∑
k=1

γk · xk −
n+m

∑
k=n+1

γk · xk

Re-indexing the sum to work with the dual variables,

= OPT(primal)−
n

∑
j=1

γj · xj −
m

∑
i=1

γn+i · xn+1

Since y∗i = γn+i for i ∈ [m] by definition of the optimal dual solution,

= OPT(primal)−
n

∑
j=1

γj · xj −
m

∑
i=1

y∗i · xn+1

But xn+i are our slack variables,

= OPT(primal)−
n

∑
j=1

γj · xj −
m

∑
i=1

y∗i ·
(

bi −
n

∑
j=1

aij · xj

)
Re-arranging,

=

(
OPT(primal)−

m

∑
i=1

bi · y∗i
)
+

n

∑
j=1

(m

∑
i=1

aijy∗i − γj

)
· xj

Since this equality holds for all choices of {x1, · · · xn},

cj =
m

∑
i=1

aij · y∗i − γj

But γj ≥ 0, so we have feasibility,

m

∑
i=1

aij · y∗i ≥ cj

and it must be that,

OPT(primal)−
m

∑
i=1

bi · y∗i = 0

so we have strong duality,

m

∑
i=1

bi · y∗i = 0 = OPT(primal) =
n

∑
j=1

cj · x∗j

comp362: honours algorithm design 25

Remark 67. The primal is infeasible if the optimal of the dual is −∞ or ∞.

Theorem 68 (Completemenary Slackness Theorem). TFAE,

• x and y are optimal solutions

• c · x = y · b

• c · x = yAx

• yAx = y · b

• x and y satisfy the complementary slackness conditions

Proof. This is a result of strong duality.

Applications of Linear Programming

Linear programs can model Boolean
combinatorial circuits. For each gate g,
there is a variable 0 ≤ xg ≤ 1. Then,

• INPUT gates are set to their input

• NOT gates are set to the opposite

• OR gates are set max{xh1 , xh2}

• AND gates are set to min{xh1 , xh2}

Example 14: Matching as a Motivating Example

Let G = (V, E) be an undirected graph. The integer formula-
tion of the matching problem is,

• An edge e in the graph is picked if xe = 1,

xe ∈ {0, 1} ∀e ∈ E

• We want to maximize the number of edges in the matching,

max ∑
e∈E

xe

• One edge is incident to each vertex,

∑
e∈δ(v)

xe ≤ 1 ∀e ∈ E

In summary,

maximize ∑e∈E xe

subject to ∑e∈δ(v) xe ≤ 1 ∀v ∈ V
xe ∈ {0, 1} ∀e ∈ E

We do not have a polynomial time algorithm for solving inte-
ger programs. If we relax the integrality constraints,

maximize ∑e∈E xe

subject to ∑e∈δ(v) xe ≤ 1 ∀v ∈ V
xe ≥ 0 ∀e ∈ E

we may obtain a fractional solution,

comp362: honours algorithm design 26

Recall the following,

• The simplex algorithm outputs a
basic solution, which is an extreme
point of the feasible region.

• The feasible region is the convex
hull of the extreme points.

• A basic solution is not a convex
combination of two feasible ones.

where a convex combination is a
linear combination of points where all
coefficients are non-negative and sum
to 1.

Theorem 69 (Bipartite Matching). Bipartite graphs have an optimal
integral solution to the following linear program,

maximize ∑e∈E xe

subject to ∑e∈δ(v) xe ≤ 1 ∀v ∈ V
xe ≥ 0 ∀e ∈ E

Proof. Let x be a basic solution to our linear program. We need to
show that xe ∈ {0, 1} for all e ∈ E. Suppose not. Then, xe ∈ (0, 1)
for all e ∈ E. If xe = 0, then we can recurse on G − {e} to produce
a strictly fractional collection of xe values. Similarly, if xe = 1, then
we can recurse on G − e since no edge adjacent to e will produce a
matching on this subgraph.

• Case 1. G contains a cycle C.

– C contains an even number of edges, and therefore we can
partition C into two equal sized matchings M1, M2

– Define two linear programs y, z as follows,

ye =

xe + ε if e ∈ M1

xe − ε if e ∈ M2

xe if e /∈ C
ze =

xe − ε if e ∈ M1

xe + ε if e ∈ M2

xe if e /∈ C

– Observe that x is a convex combination of y and z,

x =
1
2
· (y + z)

– Furthermore, x is fractional,

0 < xe < 1 ∀e ∈ E

– Thus, we can pick ε such that both y and z are fractional,

0 < ye < 1 ∀e ∈ E 0 < ze < 1 ∀e ∈ E

– Adding and subtracting ε along the red, we see that,

∀v ∈ V ∑
e∈δ(v)

xe = ∑
e∈δ(v)

ye = ∑
e∈δ(v)

ze ≤ 1

– This implies that x is a convex combination of two feasible
solutions. Thus, x is not a basic solution.

• Case 2. G is acyclic, i.e., G is a forest.

comp362: honours algorithm design 27

– Let P be a maximal path in G. We can partition P into two
matchings P1, P2 and define two linear programs y, z,

ye =

xe + ε if e ∈ P1

xe − ε if e ∈ P2

xe if e /∈ P
ze =

xe − ε if e ∈ P1

xe + ε if e ∈ P2

xe if e /∈ P

– Repeating the same argument from Case 1 with x = 1
2 · (y + z),

0 < ye < 1 ∀e ∈ E 0 < ze < 1 ∀e ∈ E

– For any vertex v ∈ V{v1, v2},

∀v ∈ V\ {v1, v2} ∑
e∈δ(v)

xe = ∑
e∈δ(v)

ye = ∑
e∈δ(v)

ze ≤ 1

– v1 is necessarily a leaf, meaning that it is incident to one edge,

∑
e∈δ(v1)

ye < 1 ∑
e∈δ(v1)

ze < 1

– Since the same holds for v2, x is a convex combination of two
feasible solutions. Thus, x is not a basic solution.

Hence, the optimal solution to the program is integral.

Corollary 70. A similar argument shows that we can solve the maximum
weight matching problem for bipartite graphs in polynomial time,

maximize ∑e∈E we · xe

subject to ∑e∈δ(v) xe ≤ 1 ∀v ∈ V
xe ≥ 0 ∀e ∈ E

A is the incidence matrix,

Remark 71. The matrix encoding of the dual linear program is,

min

{
1Ty

∣∣∣∣∣ ATy ≥ c
y ≥ 0

}
︸ ︷︷ ︸

Dual

⇐⇒ max

{
1Tx

∣∣∣∣∣ Ax ≤ 1
x ≥ 0

}
︸ ︷︷ ︸

Primal

allowing us to re-interpret the dual as the vertex cover problem,

minimize ∑v∈V yv

subject to yu + yv ≥ 1 ∀(u, v) ∈ E
yv ≥ 0 ∀v ∈ V

comp362: honours algorithm design 28

Example 15: The Shortest Path Problem

Given a directed graph G = (V, A) with a source vertex s and
a sink vertex t, we can set up the shortest path problem,

• Let each arc a ∈ A have non-negative length la

• The length of a path P is,

l(P) = ∑
a∈P

la

We can formulate this as an integer program,

minimize ∑a∈A `a · xa

subject to xa ∈ {0, 1} ∀a ∈ A

∑a∈δ−(v) xa −∑a∈δ+(v) xa =

−1 v = s

0 v 6= {s, t}
1 v = t

and do a constraint relaxation.

Theorem 72 (Shortest Path). The shortest path problem has an optimal
integral solution to the following linear program,

minimize ∑a∈A `a · xa

subject to xa ≥ 0 ∀a ∈ A

∑a∈δ−(v) xa −∑a∈δ+(v) xa =

−1 v = s

0 v 6= {s, t}
1 v = t

Proof. Any basic solution x represents an (s− t) flow of value 1. By
the Flow Decomposition Theorem, x decomposes into (s, t) paths,

x = α1 · P1 + α2 · P2 + · · ·+ αk · Pk

where
k

∑
i=1

αi = 1 and αi ≥ 0 ∀i

but each Pi is a feasible solution to the linear program. Either we
have a contradiction, or k = 1. If k = 1, then x is an (s− t) path itself
and is an integral solution.

Aij is negative if vi is the tail of aj,

Remark 73. The matrix encoding of the dual linear program, even though
the primal is not in standard form, is,

max

{
yt − ys

∣∣∣∣∣ yv unrestricted ∀v ∈ V
ATy ≤ l

}

comp362: honours algorithm design 29

Changing labels of y to d to represent distances,

max

{
dt − ds

∣∣∣∣∣ dv unrestricted ∀v ∈ V
dv − du ≤ luv ∀a = (u, v) ∈ A

}
setting ds = 0, we see that dv is the distance from v to s.

Example 16: Maximum Flow Problem

Recalling our formulation of maximum flow,

maximize ∑a∈δ−(t) fa

subject to 0 ≤ fa ≤ ua ∀a ∈ A
∑a∈δ−(v) fa = ∑a∈δ+(v) fa ∀v ∈ V − {s, t}

Example 17: Zero-Sum Games

The Minimax Theorem is a result of the linear programming
duality. It states that for any matrix A,

max
x

[
min

y
xT Ay

]
= min

y

[
max

x
xT Ay

]

Computational Complexity

Polynomial-Time Reductions

A reduction Q R from a problem Q to another problem R repre-
sents Q as a case of R, which we already know how to solve. Exam-
ples of reductions that we have seen are,

Bipartite Matching Maximum Flow

Bipartite Vertex Cover Minimum Cut

Maximum Flow Linear Programming

Definition 74 (Karp Reductions). A Karp reduction Q R from Q
to R is an algorithm that produces an instance I’ of R given an instance I
of R. The algorithm runs in polynomial time in the size of I and I’ is a YES

instance of R if and only if I is a YES instance of Q19. 19 We write Q ≤p R, which can be read
as "Q is polynomial-time reducible to
R" or "R is at least as hard as Q."Remark 75. Let Q R.

• If R is easy to solve, then Q is easy to solve

Reasy =⇒ Qeasy

• If Q is hard to solve, then R is hard to solve

Qhard =⇒ Rhard

comp362: honours algorithm design 30

• If Q is easy to solve, then this tells us nothing about R

Qhard =⇒ Nothing

Definition 76 (Vertex Cover Problem). We are given a graph G = (V, E)
and an integer c. We want to know if G contains a set of at most c vertices
that are incident to each edge.

Definition 77 (Independent Set Problem). We are given a graph G =

(V, E) and an integer k. We want to know if G contains a set of at least k
vertices that are mutually non-adjacent.

Example 18: Independent Set Vertex Cover

If S ⊆ V is an independent set, then V − S is a vertex cover.
A polynomial time algorithm for Vertex Cover can be used to
give a polynomial time algorithm for Independent Set.

There is an independent set of size at least k

⇐⇒

There is a vertex cover of size at most n− k

Similarly, Vertex Cover Independent Set.

Definition 78 (Set Cover Problem). We are given sets S1, S2, · · · , Sn ⊆
W and an integer k. We want to know if there is a collection of at most k
sets that cover every element of W.

Example 19: Vertex Cover Set Cover

Suppose that we are given a graph G = (V, E). Define,

Sv := {e | v is an endpoint of e}

for each v ∈ V. Set W = {e | e ∈ E}. Then a set cover of size k
corresponds to a vertex cover of size k, and a polynomial time
algorithm for Set Cover can be used to give a polynomial time
algorithm for Vertex Cover.

Definition 79 (Satisfiability Problem). Suppose that we have,

• Boolean variables x1, · · · , xn

• Clauses C1, · · · , Cm which are disjunctions of literals,

Cj = x2 ∨ x̄5 ∨ x̄6 ∨ x8 ∨ x̄9

comp362: honours algorithm design 31

• Literals xi and x̄i ∈ {True, False} for each variable xi

We want to know if there is an assignment that satisfies every clause.

Definition 80 (3-Satisfiability). 3-satisfiability is a special case of the
satisfiability problem, where every clause has exactly three literals.

e.g., (x1 ∨ x̄2 ∨ x5) ∧ (x2 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x3 ∨ x4) ∧ (x̄3 ∨ x̄4 ∨ x̄5)

Example 20: SAT 3-SAT

Clearly SAT 3-SAT. We can also show that SAT 3-SAT.

Remark 81. A variable assignment satisfies `1 ∨ `2 ∨ · · · ∨ `k if and
only if the same variable assignment satisfies,(

`1 ∨ · · · ∨ `p ∨ y
)
∧
(
ȳ ∨ `p+1 ∨ · · · ∨ `k

)
for some True / False assignment of y.

• We need to convert an instance I of SAT into an instance I’

of 3-SAT. To do this, take each clause C in I and mimic it
via a set of clauses of size 3 with additional variables

• Take a clause C = `1 ∨ `2 ∨ · · · `k. There are three cases,

– If k = 2, we can pick y and ȳ as follows:

`1 ∨ `2 =⇒ (`1 ∨ `2 ∨ y) ∧ (`1 ∨ `2 ∨ ȳ)

– If k = 1, we can pick y1, y2 and ȳ1, ȳ2 as follows:

`1 =⇒ (`1 ∨ y1 ∨ y2) ∧ (`1 ∨ y1 ∨ ȳ2) ∧ (`1 ∨ ȳ1 ∨ y2) ∧ (`1 ∨ ȳ1 ∨ ȳ2)

– If k ≥ 3, we apply Remark 81 recursively.

. Thus, for C = `1 ∨ `2 ∨ · · · `k, we have:

• k− 2 clauses in I’

• k− 3 new variables in I’

so a polynomial time algorithm for 3-SAT can be used to give
a polynomial time algorithm for SAT.

Example 21: 3-SAT Independent Set

• We need to convert an instance I of 3-SAT,

C = x1 ∨ x̄2 ∨ x5

into an instance G of Independent Set. For each clause C in
I, we have a triangle in G,

comp362: honours algorithm design 32

• We add an edge between each copy of xi and x̄i,

There is a satisfying assignment for I if and only if there is
an independent set in G whose size is equal to the number of
clauses. To see this, note that,

• There are m triangles in G and an independent set S uses at
most one vertex per triangle. This means that,

|S| ≤ m

• If S selects xi, then xi is set to True. We cannot also select a
vertex for xi, so S induces a valid assignment

• If S selects xi ∈ Cj, then Cj is satisfied

• Thus, an independent set of size m in G gives a satisfy-
ing assignment for I and any satisfying assignment for I
induces an independent set of size m in G

NP Completeness

Equivalently, NP is,

• The set of decision problems whose
YES instances can be verified in
polynomial time

• The set of decision problems that
can be solved in exponential time by
Brute-Force Search

These definitions are equivalent because
any YES instance has a certificate of size
poly(n), and there are an exponential,
i.e., 2poly(n) number of such certificates.

Definition 82 (P). The class P is the set of decision problems which can be
solved in polynomial time by a deterministic computer.

Definition 83 (NP). The class NP is the set of decision problems which can
always be solved in polynomial time by a non-deterministic computer.

Remark 84 (P 6= NP). The conjecture that P 6= NP states that com-
putation is harder than verification. We know that P ⊆ NP since we can
compute and verify a solution to a problem R ∈ P in polynomial time.

Definition 85 (NP Complete). A problem R is NP Complete if for every
Q ∈ NP, there is a polynomial time reduction20 from Q to R. 20 The reduction maps YES instances of

Q into YES instances of R, and it maps
NO instances of Q into NO instances of R

comp362: honours algorithm design 33

Definition 86 (coNP). The class coNP is the set of decision problems
whose NO instances can be verified in polynomial time.

Definition 87 (coNP Complete). A problem R is coNP Complete if for
every Q ∈ coNP, there is a polynomial time reduction from Q to R.

Definition 88 (Good Characterization). A problem R ∈ NP ∩ coNP has
a good characterization if has a polynomial YES and NO certificate.

Example 22: Good Characterizations

The following problems have a good characterization,

Problem YES Instance NO Instance
Maximum Flow Flow Minimum Cut
Bipartite Matching Matching Vertex Cover
Linear Programming Feasible Primal Feasible Dual

Remark 89. The complement of an NP Complete problem is in coNP.

Remark 90. P = NP =⇒ NP = coNP

Proof. Problems in P have a YES and NO certificate. If P = NP then
every problem in NP has a short YES and NO. This implies,

P ⊆ coNP

Any problem R ∈ coNP has Rc ∈ NP = P =⇒ R ∈ P = NP.

Example 23: Cliques

The problem of determining if a set S of vertices is a clique
is in NP. We can check if the vertices are pairwise adjacent,
which is polynomial in the size of S.

Definition 91 (Cook’s Theorem). Satisfiability is NP Complete.

3− SAT, Independent Set, Vertex Cover,
and Set Cover are NP Complete.

Remark 92 (Proving NP Completeness). Do the following,

1. For your new problem R, show that R ∈ NP

2. Find an NP-complete problem Q such that Q R

Definition 93 (Graph-Coloring Problem). A vertex coloring of a graph
G = (V, E) is an assignment of colors to vertices such that adjacent vertices
recieve different colors. The chromatic number χ(G) is the minimum num-
ber of colors required for a valid coloring to exist. We want to know if there
exists a 3-coloring of G.

comp362: honours algorithm design 34

Example 24: 3-SAT 3-Coloring

First, we can show that 3-coloring is in NP by checking,

• ≤ 3 colors are used

• Every vertex recieves a color c

• c(u) 6= c(v) for all (u, v) ∈ E

Second, we reduce from 3− SAT to 3-Coloring:

• We need to convert an instance I of 3-SAT into an instance
I’ of 3-Coloring. To do this, we build a graph G as follows,

– There is a vertex for each literal x1, x̄1, x2, · · · , xn, x̄n

– There are three vertices, T, F, B

– The vertices are connected as follows,

• Define the following,

– Green = True

– Red = False

– White = BLANK

so that the colors of x1, x̄1, x2, · · · , xn, x̄n give a valid True

and False assignment of variables.

• Design a gadget for each clause which can be 3-colored
if and only if the clause is satisfied. Each gadget clause
contains 6 new vertices which we connect to the assignment

comp362: honours algorithm design 35

• The clause for C is `1 ∨ `2 ∨ `3. We can check coloring for,

Case 1. (`1 = F, `2 = F, `3 = T)

Case 2. (`1 = F, `2 = T, `3 = F)

· · ·
Case 8. (`1 = F, `2 = F, `3 = F)

• We discover that Case 8 cannot be colored validly, so G can
be 3-coloured if and only if I is satisfiable. This completes
the polynomial reduction 3-SAT 3-Colouring

Definition 94 (Prime Factorization Problem). Given integers N and k,
we want to determine if N has a prime factor ≤ k. The YES instance for prime factorization

works because even if p is not prime, it
has some prime factorization.

Example 25: Prime Factorization

We believe that prime factorization is in NP ∩ coNP− P.

• Prime factorization is in NP

– (YES Instance) Give an integer p ≤ k such that p|N.

• Prime factorization is in coNP

– (NO Instance) Given the unique prime factorization N =

p1 p2 · · · pn, we verify that each pi > k and confirm that pi

is prime in polynomial time

Well-Known NP Complete Problems:

• (Hamiltonial Cycle Problem) Given
G = (V, E), we want to determine
if G contains a cycle that uses every
vertex exactly once

• (Hamiltonian Path Problem) Given
G = (V, E), we want to determine
if G contains a path that uses every
vertex exactly once

• (Partition Problem) Given inte-
gers x1, · · · , xn ≥ 0, we want to
determine if ∃ a subset S ⊆ [n] s.t.,

∑
i∈S

xi = ∑
i 6∈S

xi

• (Maximum Cut Problem) Given
G = (V, E) and an integer k, we
want to determine if G contains a
cut δ(S) containing at least k edges

comp362: honours algorithm design 36

Example 26: Taxonomy of Easy and Hard Problems

Easy Problems Hard Problems
Minimum Cut Maximum Cut
Euler Circuit Hamiltonian Cycle
2-SAT 3-SAT
2-Coloring 3-Coloring
Shortest Path Longest Path
Shortest Even (s− t) Path Shortest Even (s− t) Dipath
Linear Programming Integer Programming

Example 27: Taxonomy of Hard Problems

Group Example
Packing Problems • Independent Set

• Clique
• Set Packing

Covering Problems • Vertex Cover
• Set Cover

Partitioning Problems • 3-Coloring
• 3D-Matching
• Maximum Cut

Sequencing Problems • Hamiltonian Path
• Travelling Salesman

Numerical Problems • Partition
• Knapsack

Example 28: Integer Programming

We are given an integer problem and an integer k. We want to
determine if there is a feasible solution with value at least k.
The minimization case is analogous.

PSpace and Complexity Classes

Definition 95 (Exp). The class Exp is the set of decision problems that can
be solved in exponential time by a deterministic computer.

Definition 96 (NExp). The class NExp is the set of decision problems that
can be solved in exponential time by a non-deterministic computer21. 21 Equivalently, this is the set of decision

problems whose YES instances can be
verified in exponential time.Definition 97 (PSpace). The class PSpace is the set of decision problems

that can be solved by an algorithm using polynomial space22. 22 P ⊆ PSpace since a problem that
requires polynomial time uses a poly-
nomial amount of space.

comp362: honours algorithm design 37

Definition 98 (PSpace Complete). A problem R is PSpace Complete if
for every Q ∈ PSpace, there is a polynomial space reduction from Q to R.

Definition 99 (ExpSpace). The class ExpSpace is the set of decision
problems that can be solved by an algorithm using exponential space.

Theorem 100. NP ⊆ PSpace.

Proof. It suffices to show that 3-SAT ∈ PSpace since there exists a
polynomial reduction for any problem Q ∈ NP such that Q 3-SAT.
This reduction necessarily uses a polynomial amount of space. Take
an instance I of 3-SAT. Let each binary string b1b2 · · · bn of length n
encode a True/False assignment of the variables.

bi =

1 xi = True

0 x̄i = True

Algorithm 4: 3SAT ∈ PSpace

// Initialize b to be the 0 vector.

1 function 3SAT(b, I)
2 foreach b ∈ C(I) do
3 if b does not satisfy I then

// Increase bn by 1.
4 b← b + 1

5 else

6 return b

Algorithm 6 either finds a satisfying assignment, or it confirms that I
is not satisfiable. It runs in exponential time by counting to 2n, but it
only uses a polynomial amount of space.

Remark 101. If Q ∈ PSpace, then Qc ∈ PSpace. Thus, coNP ⊆ PSpace.

Remark 102. It has been conjectured that,

P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE

Definition 103 (Q-Satisfiability). Q-satisfiability is a special case of the
satisfiability problem, where every clause alternates between ∀ and ∃.

e.g., ∃x1∀x2∃x3∀x4 · · · C1 ∧ C2 ∧ · · · ∧ Cm

The mix of universal and existential
quantifiers arises commonly in games,

∃ a move such that,

∀ moves by the opponent,

etc.

comp362: honours algorithm design 38

Example 29: QSat ∈ PSpace

Let φ(x1, x2, · · · , xn) = C1 ∧ C2 ∧ · · ·Cm and consider,

∃x1∀x2∃x3∀x4 · · ·Φ (x1, x2, . . . , xn)

We want to solve the assignment recursively. At step i,

x1 = `1, x2 = `2 · · · xi−1 = `i−1

Case 1. i is odd. xi is associated with ∃. We want,

Φ (`1, . . . , `i−1, xi, xi+1, . . . , xn) = 1

for `1, . . . , `i−1 fixed. This is true if and only if,

Φ (`1, . . . , `i−1, 0, xi+1, . . . , xn) = 1

or

Φ (`1, . . . , `i−1, 1, xi+1, . . . , xn) = 1

Case 2. i is even. xi is associated with ∀. We want,

Φ (`1, . . . , `i−1, xi, xi+1, . . . , xn) = 1

for `1, . . . , `i−1 fixed. This is true if and only if,

Φ (`1, . . . , `i−1, 0, xi+1, . . . , xn) = 1

and

Φ (`1, . . . , `i−1, 1, xi+1, . . . , xn) = 1

Time Complexity:
To solve φ(x1, x2, · · · , xn), we solve 2 subproblems,

T(n) ≤ 2 · T(n− 1)︸ ︷︷ ︸
xn is fixed

+poly(n, m)

for n variables and m clauses.

Space Complexity:
We can re-use space for each subproblem.

• Solve the case x1 = 0

• Save the solution φ(0, x2, · · · , xn) = 0 or φ(0, x2, · · · , xn) = 1

• Delete all other memory and reuse the space to solve x1 = 1

This gives the space complexity,

S(n) ≤ S(n− 1) + poly(n, m)

comp362: honours algorithm design 39

Definition 104 (2Exp). The class 2Exp is the set of decision problems
that can be solved in double exponential time, 22poly(n)

by a deterministic
computer. Similar definitions exist for 2NExp and 2ExpSpace.

Theorem 105 (Time and Space Hierarchy). We know that,

• Time Hierarchy Theorem I

P ⊂ EXP ⊂ 2EXP ⊂ 3EXP ⊂ · · ·

• Time Hierarchy Theorem II

NP ⊂ NEXP ⊂ 2NEXP ⊂ 3NEXP ⊂ · · ·

• Space Hierarchy Theorem

PSPACE ⊂ EXPSPACE ⊂ 2EXPSPACE ⊂ · · ·

Search and Decision Problems

Definition 106 (NP Hard). A problem R is NP Hard23 if for every Q ∈ 23 An NP Hard problem may not be in
NP. For example QSAT is NP Hard.
In fact, it may not even be a decision
problem, e.g., "Satisfy as many clauses
as possible" is an optimization problem.

NP, there is a polynomial time reduction from Q to R.

The optimization version of an NP
Complete problem is NP Hard.

Definition 107 (Max-SAT). Given a set of clauses,

C1, · · · , Cm

we need to find a True/False assignment of the variables x1, · · · , xn that
maximizes the number of satisfied clauses.

Definition 108 (FNP). Unlike a decision problem, a search problem
requires a solution. The search analogue of NP is FNP (Functional Nonde-
terministic Polynomial Time). Given x and a polynomial predicate f (x, y),
output y such that f (x, y) is True if y exists.

Definition 109 (TFNP). The class TFNP is the subset of problems (called
"total") in FNP for which a solution is known to exist.

Definition 110 (PLS). The class PLS is the set of total search problems that
can be solved in exponential time by best-response dynamics.

Definition 111 (PPAD). The class PPAD is the set of total search problems
that can be solved in exponential time by path traversal. Note: No PPAD problem is FNP

Complete unless NP = coNP.

Definition 112 (GD). The class GD is the set of total search problems that
can be solved approximately in exponential time by gradient descent.

Note: GD = PLS ∩ PPAD.

comp362: honours algorithm design 40

Heuristic Algorithms

Backtracking and Branch-and-Bound

Backtracking algorithms search the exponential state space of solu-
tions using a depth-first search tree. Within this tree, interior nodes
correspond to partial solutions, and leaf nodes correspond to com-
plete solutions. Every node of the tree is labelled,

1. Success, if the partial solution can be extended to a YES solution

2. Failure, if the partial solution cannot be extended to a YES solution

3. Active, if the partial solution is indeterminate

In the case of a success, the algorithm outputs the solution. In the
case of a failure, the algorithm backtracks. In the case of an active
label, the algorithm continues searching and pruning the tree.

2-SAT is solvable in polynomial time
by the backtracking heuristic, but
backtracking can take exponential time
to solve an instance of SAT.

Definition 113 (Backtracking). The backtracking procedure is,

Algorithm 5: Backtracking Procedure

// Start with some problem P0

1 function Backtrack(P0)

// Initialize the set of active problems

2 S← {P0}
3 while S 6= ∅ do

// Choose a subproblem P ∈ S, expand it into

smaller subproblems, and remove P from S
4 P← P = {P1, P2, · · · Pk} ∈ S
5 foreach Pi ∈ P do

6 if (Pi) = Success then

7 return Pi

8 if (Pi) = Failure then

// Discard Pi

9 P← P− Pi

10 else

// Pi is indeterminate

11 S← S + Pi

The basic approach of backtracking can be extended to optimiza-
tion problems via the branch-and-bound method. A node is either,

1. Infeasible, if there are no feasible completions of a partial solution

comp362: honours algorithm design 41

2. Sub-Optimal, if there are feasible completions of the partial solu-
tion but they are worse than the optimal solution24 24 To show that a subtree is sup-optimal,

we need a feasible solution to compare
it against. Typically, Branch-and-Bound
will use Depth-First Search to find an
initial feasible solution.

3. Feasible, if there are feasible completions to the partial solution
and we know the value of the best completion

4. Active, if the partial solution is indeterminate25 25 Example: Typically, we branch on the
variable that is the most fractional in
the linear programming relaxation.Definition 114 (Branch-and-Bound). Suppose that we have a minimiza-

tion problem. Each subproblem will be eliminated if the lower bound on its
cost exceeds that of some other solution that we have already encountered.
The branch-and-bound procedure is,

Algorithm 6: Branch-and-Bound Procedure

// Start with some problem P0

1 function BranchBound(P0)

// Initialize the set of active problems

2 S← {P0}
3 bestSoFar← ∞
4 while S 6= ∅ do

// Choose a subproblem P ∈ S, expand it into

smaller subproblems, and remove P from S
5 P← P = {P1, P2, · · · Pk} ∈ S
6 foreach Pi ∈ P do

7 if (Pi) = Success then

// Update best_so_far

8 bestSoFar← C(Pi)

9 if L(Pi) < bestSoFar then

// Lower bound of Pi is less than bestSoFar

10 S← S + Pi

We will see an example of the Branch-and-Bound Procedure ap-
plied to the Knapsack Problem. First, we will use three facts that
were proven in the context of linear programming. These are,

Remark 115. The inear programming relaxation of an integer program-
ming problem removes the integrality constraint of each variable,

max ∑n
i=1 vi · xi

s.t. ∑n
i=1 wi · xi ≤W

xi ∈ {0, 1}︸ ︷︷ ︸
xi∈Z+

∀i ∈ [n]

max ∑n
i=1 vi · xi

s.t. ∑n
i=1 wi · xi ≤W

0 ≤ xi ≤ 1︸ ︷︷ ︸
xi∈R+

∀i ∈ [n]

Corollary 116. The feasible region of the relaxed linear program is larger
than the feasible region of the original integer linear program26. 26 The feasible region of the linear

program allows for fractional solutions.

comp362: honours algorithm design 42

Corollary 117. If the linear program is infeasible, then the integer program
is infeasible. Conversely, if the linear program is feasible, then its value is at
least as large as the value of the integer program by the previous corollary.

Example 30: Branch-and-Bound with Knapsack

Suppose that a thief has a bag with capacity W. There are n
items to steal, and each item has an associated value vi and
weight wi. The thief wants to steal the subset of items of maxi-
mum total value that fit into the knapsack,

maximize ∑n
i=1 vi · xi

subject to ∑n
i=1 wi · xi ≤W

xi ∈ {0, 1} ∀i ∈ [n]

We can solve this via exhaustive search using a search tree T,

but each subtree may be of exponential size to solve. Thus,
we require a method for determining if a subtree is either
infeasible or worse than the optimal solution. Consider both
possibilities for an assignment of x1. Each decision node in the
binary search tree T corresponds to a partial solution,

{x1, x2, x3, x4} = {0, ∗, ∗, ∗} {x1, x2, x3, x4} = {1, ∗, ∗, ∗}

In particular, at the root of the search tree no variables have
been assigned so the corresponding partial solution is empty,

{x1, x2, x3, x4} = {∗, ∗, ∗, ∗}

This is useful for two reasons,

1. If the partial solution is infeasible, then every completion of
the partial solution to a full solution will be infeasible.

2. If the partial solution leads to low quality solutions, then
every completion of the partial solution to a full solution
will have a sub-optimal value.

We can use integer program relaxation to,

comp362: honours algorithm design 43

1. Test if every completion of the partial solution is infeasible

2. Obtain an upper bound on the value of any completion of
the partial solution, which bounds the complete solution

at the root of every subtree in T.

Solving the Knapsack Problem:
The Knapsack Problem can be solved
quickly using a greedy algorithm:

1. Compute the value per weight
Vi := vi/wi for each item

2. Determine the object with the
maximum ratio, x∗ = arg maxi Vi

3. Assign the knapsack as much of the
item x∗ as the weight W allows

4. If the knapsack is not full, recurse
on the remaining objects

Example 31: Bad Estimators with Maximum Independent Set

Linear programs may lead to bad estimators for integer solu-
tions. Consider the problem of finding the maximum size of
an independent set on the graph K5,

The optimal value of the linear program is |V(G)|
2 , while the

optimal value of the integer program is 1. This becomes in-
creasingly inaccurate as |V(G)| grows.

One possible solution is to use combinatorial estimators27. 27 See Dasgupta, Chapter 9 (p. 273)

Example 32: Combinatorial Estimators with Salesman

Suppose that we are given a graph G = (V, E) with non-
negative edge costs ce. The goal is to design a tour T that
starts and ends at A, includes all other vertices exactly once,
and has minimum total cost c(T) = ∑e ce. A partial solution
Q is a simple path P with endpoints a and b passing through
S ⊆ V ∪ {a, b}. The corresponding subproblem is to find the
best completion of the tour, that is, the cheapest complemen-
tary path from b to a with intermediate nodes V − S.

The cost of a completion is at least the sum of,

comp362: honours algorithm design 44

1. The lightest edge from a to V − S

2. The lightest edge from b to V − S

3. The minimum spanning tree of V − S

Local Search

Definition 118 (Local Search). Local search attempts to find a solution
S∗ to a problem by making local improvements to the current solution S.

Algorithm 7: Local Search (Minimization)

// Start with some initial solution s
1 function LocalSearch(s)

// Search the neighborhood Γ of s for an alternate

solution s′ with a lower cost

2 while ∃s′ ∈ Γ(s) do
3 if cost(s′) < cost(s) then
4 s← s′

Theorem 119. Local search produces a locally optimal solution.

Proof. We cannot return to a solution that was found previously.

The neighborhood structure is imposed upon the problem, and it
is a central design decision in local search. For example, an algorithm
based on Local Search will run quickly with a small neighborhood.
Conversely, bigger neighborhoods enable us to find a better solution.

Example 33: Local Search with Maximum Cut

In the Maximum Cut Problem, we are given an undirected
graph G = (V, E) and a weight w(e) on each edge. We want
to separate V(G) into two sets S and V − S so that the to-
tal weight of the edges between the two sets is as large as
possible. A local improvement is a move of one vertex that

comp362: honours algorithm design 45

produces an increase in the weight of the cut.

Let L = ∅ and R = V

Repeat:

If ∃v ∈ V such that cap(L ∪ v) > cap(L) :

Set L ←− L∪ v

Else, If ∃v ∈ V such that cap(L\v) > cap(L) :

Set L ← L\v

Theorem 120. Any local maximum cut δ(L) has capacity at least
half the capacity of the global maximum cut δ(L∗).

Proof. Let δ(L) be a local maximum cut, and let δ(L∗) be the
global maximum cut. For any vertex v, let Ev be the set of
vertices incident to v. There are no local improvements for L,

∑
e∈Ev∩δ(L)

ue ≥ ∑
e∈Ev∩δ(L)c

ue

In particular, what this means is,

∑
e∈Ev∩δ(L)

ue ≥
1
2
· ∑

e∈Ev

ue

Therefore,

cap(L) = 1
2
· ∑

v∈V
∑

e∈Ev∩δ(L)
ue

≥ 1
4
· ∑

v∈V
∑

e∈Ev

ue plugging in the inequality

≥ 1
2
· cap(L)

Cut Property of Minimum Spanning
Trees: Assume that edge costs are
distinct. If e is the cheapest edge in
some cut δ(S), then e must be in the
minimum spanning tree.

Proof. Let T ∗ be a minimum spanning
tree. Assume that there exists a cut δ(S)
whose cheapest edge e = (u, v) is not in
T ∗. Since T ∗ is a spanning tree, there
exists a unique path P ⊆ T ∗ from u to
v. If ê ∈ P then (T ∗\ê) ∪ e is a spanning
tree. Moreover, ê ∈ P ∩ δ(S) since
|P ∩ δ(S)| is odd and consequently ≥ 1.
Swapping e for ê results in a cheapter
spanning tree than T ∗.

Example 34: Minimum Spanning Tree Problem

The Local Search Algorithm can be used to construct an op-
timal solution to the Minimum Spanning Tree Problem. We
say that a spanning tree T̂ is in the neighborhood of a span-
ning tree T if they differ in exactly one edge,

Γ(T) = {T̂ : T = (T̂ ∪ e)− ê where e ∈ T and ê ∈ T̂ }

We will search for an improving swap that reduces the total

comp362: honours algorithm design 46

cost of the spanning tree.

Let T be a spanning tree.

While ∃T̂ ∈ Γ(T) s.t. c(T̂) < c(T) :

Set T̂ ← T

This outputs a locally minimum spanning tree T , but we can
show that it is in fact the globally minimum spanning tree
T ∗. Assume not. If T 6= T ∗, then ∃e ∈ T ∗ − T . By the Cut
Property, e is the cheapest edge in some cut δ(S). Since T
is a spanning tree, there is a unique path P in T from u to
v. Thus, there is an edge ê ∈ P ∩ δ(S) with ê 6= e. But then
T̂ = (T ∪ e)− ê is a cheaper spanning tree than T .

Example 35: Local Search with Salesman

A tour T̂ is said to be in the neighborhood of T if they differ
in exactly two edges. The Local Search Algorithm looks for an
improving 2-swap that reduces the cost of the tour. However,
there might be an exponential number of iterations needed to
solve the Travelling Salesman Problem in this way. Moreover,
the final tour is only guaranteed to be locally optimal.

Approximation Algorithms

Bounding the Optimum

Definition 121 (Approximation Algorithm). An algorithm A is an α-
approximation (α ≥ 1) for a problem Q if for every instance I,

1. A outputs a feasible solution S

2. A runs in polynomial time

3. If Q is a minimization problem, then cost(S) ≤ α· cost(OPT)

4. If Q is a maximization problem, then val(S) ≥ 1/α· val(OPT)

Application 1: Travelling Salesman Problem

Suppose that we are given a complete, undirected graph Kn with
non-negative integer costs c for each edge. The goal is to find the
cheapest Hamiltonian cycle of G.

comp362: honours algorithm design 47

Definition 122 (Triangle Inequality). The edge-cost function c : V(Kn)×
V(Kn)→ R+ satisfies the triangle inequality if the following holds,

c (v1, v2)︸ ︷︷ ︸
e1

≤ c (v1, v3)︸ ︷︷ ︸
e2

−c (v3, v2)︸ ︷︷ ︸
e3

∀e1, e2, e3 ∈ E(Kn)

Figure 1: Illustration of metric costs.

Definition 123 (Walk). A walk is a sequence of vertices,

v1, · · · , vn such that (vi, vj) ∈ E(G) for all i, j ∈ [n]

Definition 124 (Eulerian Graph). Let G = (V, E) be a multigraph. G is
Eulerian if it has a closed walk that uses every edge exactly once. 1. A path is a walk with no vertex

repeated, while a trail is a walk with
no edge repeated.

2. An Euler trail is a trail that uses
every edge, and an Euler tour is a
closed Euler trail.

Theorem 125 (2-Approximation TSP). The TreeDoubling algorithm is a
2-approximation algorithm for the Metric TSP.

Algorithm 8: 2-Approximation Travelling Salesman

// Prim(G, c) uses Prim’s Algorithm to find a minimum

spanning tree in G, given the weight function c
1 function TreeDoubling(Kn, c)

// Find a minimum spanning tree T of Kn

2 T ← Prim(Kn, c)
// Duplicate each edge in T to obtain a Eulerian

multigraph T′ (all vertex degrees in T′ are even)

3 T′ ← (V(Kn), 2 · E(T))
// Compute a Eulerian tour H of T′. Whenever a

vertex v is visited in H that was already

visited, skip v and proceed with the next

unvisited node along the cycle

4 H ← PreOrder(T∗)
// Return resulting Hamiltonian tour H

5 return H

Proof. TreeDoubling is a 2-approximation algorithm if,

1. It outputs a feasible tour H

2. It runs in polynomial time

3. Its cost is at most 2 · c(OPT)

Polynomial running time is guaranteed since Prim runs in O(|V(Kn)|2)
and PreOrder is a form of Depth First Search, which is in O(|V(Kn)|+
|E(Kn)|). Moreover, the TreeDoubling algorithm clearly outputs a
feasible solution since H is a Eulerian tour by construction.

comp362: honours algorithm design 48

It remains to prove that c(H) ≤ 2 · OPT, where OPT is the optimal
tour in Kn. Let T be a minimum spanning tree of Kn with respect to
c. We know that c(T) ≤ c(OPT) since deleting any edge of a Hamilto-
nian tour gives a spanning tree. Therefore,

c(H) ≤ c(2 · T) by short-cutting

= 2 · c(T)
≤ 2 · (OPT)

Thus, we have an approximation algorithm with α = 2.

Figure 2: Illustration of the
TreeDoubling algorithm.

Suppose that H′ is a lower bound for
OPT. We can ask four questions,

1. Is the analysis tight with respect to
the lower bound for OPT? Find an
example where c(H) = α · H′

2. Is the lower bound for OPT closer
to OPT than a factor of 2? Find an
example where OPT = α · H′

3. Is the analysis tight with respect
to OPT? Find an example where
c(H) = α · OPT

4. Is there a better approximation
algorithm for our problem?

The natural question that arises is whether an approximation
guarantee of α = 2 is sufficient. There are four questions to ask,

1. Is our analysis tight with respect to the lower bound T? Yes.

2. Is the lower bound closer to OPT than a factor of 2? No.

3. Is the analysis tight with respect to OPT? Yes.

4. Is there a better approximation algorithm? Yes. there is a 3
2 -

approximation algorithm for the metric TSP.

comp362: honours algorithm design 49

See the following paper for more
information on the Metric TSP.

Definition 126 (Matching on a Set). A matching M of G is called a
matching on U ⊆ V(G) if all edges of M consist of two vertices from U28. 28 Recall that the matching is called

"perfect" if every vertex of U is incident
with an edge of M.Theorem 127 (3/2-Approximation TSP). The Christofides algorithm

is a 3/2-approximation algorithm for the Metric TSP29. 29 Instead of doubling the number of
edges, we can add edges between odd
degree vertices. The graph will still
have even degree vertices and therefore
an Euler tour.

Algorithm 9: 3/2-Approximation Travelling Salesman

// Prim(G, c) uses Prim’s Algorithm to find a minimum

spanning tree in G, given the weight function c
1 function Christofides(Kn, c)

// Find a minimum spanning tree T of Kn

2 T ← Prim(Kn, c)
// Let U ⊆ V(T) be the odd degree vertices in T

3 U ← {v | v ∈ V(T) and deg(v) = 2k + 1}
// Compute a minimum weight perfect matching M on

the subgraph induced by U
4 M← Ford-Fulkerson(Kn, U, c)

// Compute a Eulerian tour H of T ∪M, taking

shortcuts to obtain a Hamiltonian tour

5 H ← PreOrder(T∗)
6 return H

Proof. Christofides is a 3/2-approximation algorithm if,

1. It outputs a feasible tour H

2. It runs in polynomial time

3. Its cost is at most 3/2 · c(OPT)

First observe that the number of odd degree vertices of the spanning
tree T is even, since the sum of the degrees of all vertices is 2(n− 1)
by the Handshaking Lemma. Thus, a perfect matching on U exists.
Moreover, it can be found using maximum flows in O(n3). Hence,
the algorithm is polynomial. Moreover, the Christofides algorithm
outputs a feasible solution since H is a Eulerian tour by construction.

The weight of the Eulerian tour H is at most c(T) + c(M), and
it was proven earlier that c(T) ≤ OPT30. It suffices to show that 30 c(H) < c(T) + c(M) by shortcutting

and applying the triangle inequality.c(M) ≤ 1
2 · OPT, where OPT is the optimal tour in Kn.

Since OPT is a Hamiltonian Cycle, we can shortcut to obtain a cycle
Ĉ on the set of odd degree vertices. Clearly |Ĉ| = |U|, so Ĉ can be
partitioned into two matchings M1, M2. In particular,

1
2
(OPT) =

1
2
(c(M1) + c(M2))

≥ c(M)

https://link.springer.com/content/pdf/10.1007%2F978-0-387-30162-4_230.pdf

comp362: honours algorithm design 50

since M was computed to be the minimum weight perfect matching.

Figure 3: Illustration of the
Christofides algorithm.

Theorem 128. There is no polynomial-time α-approximation algorithm for
the traveling salesman problem on general weighted graphs, unless P = NP.

Proof. Construct a cost function for Kn as follows,

c(e) :=

1 e ∈ E(G)

α · n otherwise

Suppose not. If G has a Hamiltonian cycle, then its cost in Kn is n.
Any other Hamiltonian cycle has cost ≥ α · n + (n− 1) > αn. Thus,
if G has a Hamiltonian cycle, then the α-approximation algorithm for
the traveling salesman problem must find a tour in Kn of cost ≤ α · n.
The only such tours have cost n, and they are Hamiltonian cycles in
G. This means that the α-approximation algorithm can distinguish
between YES and NO instances of the Hamiltonian Cycle Problem,
which is known to be an NP-complete decision problem.

Application 2: Multiway Cut

Suppose that we are given an undirected graph G = (V, E, c) with
non-negative edge weights c, and a set of terminals,

X = {x1, · · · , xk} ⊆ V(G)

Definition 129 (Multiway Cut). A multiway cut is a set of edges that
leaves each of the terminals in a separate component31. 31 The Multiway Cut Problem is NP-

complete for k ≥ 3. When k = 2, this is
precisely finding the minimum (s− t)
cut, which can be computed efficiently
using Ford-Fulkerson.

Definition 130 (Multiway Cut Problem). The Multiway Cut Problem
is the problem of finding a minimum weight set of edges F ⊆ E(G) such
that removing F from G separates all terminals32. 32 No connected component of G(V, E−

F) contains two terminals from S.
Theorem 131 (2-Approximation Multiway Cut). The MultiApprox
algorithm is a 2-approximation algorithm for Multiway Cut.

Proof. MultiApprox is a 2-approximation algorithm if,

1. It outputs a feasible cut C

2. It runs in polynomial time

3. Its cost is at most 2 · OPT

The cut Ci can be computed efficiently at each iteration by running
the Ford-Fulkerson algorithm to find maximum flow. We call a poly-
nomial algorithm a constant number of times, so MultiApprox is
polynomial. Moreover, C =

⋃k
i=1 δ(Ci) is a feasible multiway cut33. 33 To see this, note that for any pair

xi , xj, δ(Si) and δ(Sj) separate xi and xj.

comp362: honours algorithm design 51

Algorithm 10: 2-Approximation Multiway Cut

1 function MultiApprox(G, c)
2 foreach i ∈ [k] do

// Find a minimum weight cut δ(Si) separating xi

from a super-vertex Xi := X− {xi}
3 Xi ← X− {xi}
4 Ci ← Ford-Fulkerson(G, c, xi, Xi)

// Return the union of each cut Ci

5 C ← ⋃k
i=1 δ(Ci)

6 return C

Let OPT denote the optimal multiway cut in G. Then G − OPT has
components T1, · · · , Tk, where xi ∈ Ti. Thus, OPT =

⋃k
i=1 δ(Ti) and

c(OPT) = 1
2 ·∑i c(δ(Ti)) since e ∈ OPT appears in two of the δ(Ti),

c(OPT) =
1
2
·∑

i
c(δ(Ti))

≥ 1
2
·∑

i
c(δ(Ci))

=
1
2
· c(C)

where the second last line follows by the minimality of the cut re-
turned by Ford-Fulkerson, and the last line follows by the union
bound. That is, an edge e ∈ C can appear in only one δ(Ci) since
C1 ∪ · · · ∪ Ck need not equal V(G).

Application 3: Weighted Vertex Cover

Given a graph G = (V, E, c) and non-negative costs c, the goal is to
find a minimum cost vertex cover S ⊆ V(G).

Theorem 132. The GMatching algorithm is a 2-approximation algo-
rithm for the Unweighted Vertex Cover Problem34. 34 The following bound can be seen to

be tight by looking at the unweighted
vertex cover for a star.Proof. GMatching is a 2-approximation algorithm if,

1. It outputs a feasible vertex cover C

2. It runs in polynomial time

3. Its cost is at most 2 · OPT

GMatching runs in polynomial time because we can find a maximal
matching and its endpoints in polynomial time. Moreover, GMatching

comp362: honours algorithm design 52

Algorithm 11: 2-Approximation Vertex Cover

1 function GMatching(G, c)
// Find a maximal cardinality matching M in G

2 M← MaxMatching(G)

// Output C, the end vertices of edges in M
3 C ← V(M)

4 return C

outputs a feasible solution because the maximality of M guarantees
that C is a vertex cover of G. Since Cc := V − C is an independent set,
adding any edge (i, j) ∈ E(G− C) to M creates a bigger matching.

We need to show that |C| ≤ 2 · OPT. Let C∗ be the minimum vertex
cover in G, so that |C∗| = OPT. Then OPT ≥ |M|, where M is the
maximal matching in G. This is because C∗ must contain at least one
endpoint of each edge in M. But, |C| = 2 · |M|, so,

|C| = 2 · |M| ≤ 2|C∗| = 2 · OPT

Recall: A basic solution to a linear
program is a feasible solution that is
not a convex combination of two other
feasible solutions.

Recall: A convex combination is a
linear combination of points where
all coefficients are non-negative and
sum to 1. Moreover, there is always an
optimal solution that is basic.

Theorem 133. The Rounding algorithm is a 2-approximation algorithm
for the weighted Vertex Cover Problem. The integer program is,

minimize ∑i∈V(G) ci · xi

subject to xi + xj ≥ 1 ∀(i, j) ∈ E(G)

xi ∈ {0, 1} ∀i ∈ V(G)

but it requires exponential time to solve. Relaxing to a linear program,

minimize ∑i∈V(G) ci · xi

subject to xi + xj ≥ 1 ∀(i, j) ∈ E(G)

xi ∈ [0, 1] ∀i ∈ V(G)

we output C := {i ∈ V | xi ≥ 1
2}.

Proof. Rounding is a 2-approximation algorithm if,

1. It outputs a feasible vertex cover C

2. It runs in polynomial time

3. Its cost is at most 2 · OPT

Rounding clearly runs in polynomial time since we have applied
relaxation. We need to show that the algorithm outputs a feasible

comp362: honours algorithm design 53

vertex cover. Consider any edge (i, j) ∈ E(G). By the linear program-
ming constraints, xi + xj ≥ 1, so,

max
{

xi, xj
}
≥ 1

2
(

xi + xj
)
= µ

and at least one endpoint of (i, j) is in C.
To find the approximation guarantee, let C∗ be the minimum cost

vertex cover in G. x̂ is a feasible linear programming solution if35, 35 The optimal solution is feasible.

x̂i =

1 i ∈ C∗

0 i 6∈ C∗

The optimal relaxed linear programming solution x satisfies,

c (x) = ∑
i∈V

cixi ≤ ∑
i∈V

cix∗i = OPT

This gives that,

c(C) = ∑
i:xi≥1/2

ci

≤ ∑
i:xi≥1/2

ci(2xi) since 2xi ≥ 1

≤ 2 · ∑
i∈V

cixi

= 2 · OPT

Theorem 134. The linear program for Vertex Cover is 1/2-integral. That
is, any basic solution ~x satisfies that xi ∈ {0, 1/2, 1}.

Proof. Let ~x be a basic solution to our linear program. We can assume
that ~x is fractional, i.e., 0 < xi < 1. Suppose not. Then,

1. xi = 1 for some i ∈ V. Select i ∈ C and consider G− i.

2. xi = 0 for some i ∈ V. Discard i ∈ C and consider G− i36 36 Any edge with xi satisfies that its
other endpoint is assigned a value of 1.
This follows from the constraints of our
integer program, i.e., xi + xj ≥ 1.

We need to prove that any xi with a fractional value is 1/2.

V+ := {i | xi > 1/2}
V− := {i | xi < 1/2}

V1/2 := {i | xi = 1/2}

Observe that ~x = 1
2 (~y +~z), where yi and zi are defined as follows,

yi =

xi i ∈ V1/2

xi + δ i ∈ V+

xi − δ i ∈ V−
zi =

xi i ∈ V1/2

xi − δ i ∈ V+

xi + δ i ∈ V−

comp362: honours algorithm design 54

so ~x is a convex combination of ~y and ~z. We will show that ~y and ~z
are feasible solutions to obtain a contradiction. There can be no edges
within V− or between V− and V1/2 since the constraint x1 + xj ≥ 1
would not be satisfied. The only edges that we can have are,

1. E1, between V− and V+

2. E2, between V+ and V1/2

3. E3, within V+

4. E4, within V1/2

This implies that ~y is feasible for the linear program,

1. (i, j) ∈ E1, then yi + yj = (xi + δ) + (xi − δ) = xi + xj ≥ 1

2. (i, j) ∈ E4, then yi + yj = xi + xj ≥ 1

3. (i, j) ∈ E2, then yi + yj = xi + (xj − δ) = xi + xj − δ ≥ 1

4. (i, j) ∈ E3, then yi + yj = (xi − δ) + (xj − δ) = xi + xj − 2δ ≥ 1

since edges in E2 and E3 are such that xi + xj > 1. Hence, we can
choose δ so that yi + yj ≥ 1. The case for the feasibility of ~z is analo-
gous. Thus, ~x = 1

2 (~y +~z), where ~y and ~z are feasible. This is a contra-
diction unless ~y = ~z, but then V− = V+ = ∅ so xi ∈ {0, 1/2, 1}.

Corollary 135. Every basic solution is integral for a bipartite graph.

Proof. Take a basic solution ~x. We proved that xi ∈ {0, 1/2, 1}, and
we can reduce to the case where ~x is all-fractional. Defining ~x =
1
2 (~y +~z), where yi and zi and L, R are the bipartitions of G,

yi =

{
xi + δ i ∈ L
xi − δ i ∈ R

zi =

{
xi − δ i ∈ R
xi + δ i ∈ L

Every edge has one endpoint in L and the other in R,

1. yi + yj = (xi + δ) + (xj − δ) = xi + xj ≥ 1

2. zi + zj = (xi − δ) + (xj + δ) = xi + xj ≥ 1

implying that L = R = ∅. Hence, there are no vertices with xi = 1/2.
This implies that ~x is integral, that is, xi ∈ {0, 1}.

Corollary 136. Vertex cover is polynomial for a bipartite graph37. 37 We have a 1-approximation algorithm
for bipartite graphs.

Theorem 137. There is a 3/2-approximation algorithm for the Vertex
Cover Problem in a planar graph.

comp362: honours algorithm design 55

Proof. Solve the linear program relaxation to obtain a solution ~x that
is 1/2-integral. Let V1 := {i | xi = 1} and V1/2 := {i | xi = 1/2}.
The subgraph of G with vertex set V1/2 is planar. By the Four Color
Theorem, it can be partitioned into four stable sets, Q1, Q2, Q3, Q4.

V1 ∪Q1 ∪Q2 ∪Q3

is a vertex cover38. The linear programming solution is ∑i∈V ci · xi. 38 This effectively takes everything
except V0 and Q4, but no edges bridge
them by the linear program constraints.

Without loss of generality, assume that,

∑
i∈Q4

cixi ≥ ∑
i∈Ql

cixi ∀l = {1, 2, 3}

But xi = 1/2 for all i ∈ ∪iQi. Hence,

∑
i∈Q4

ci ≥ ∑
i∈Ql

ci ∀l = {1, 2, 3}

This makes the cost of the algorithm,

c(A) = ∑
i∈V1

ci + ∑
i∈Q1∪Q2∪Q3

ci

≤ ∑
i∈V1

ci · xi +
3
4
· ∑

i∈Q1∪Q2∪Q3∪Q4

ci

≤ 3
2
· ∑

i=V
cixi

≤ 3
2
· OPT

Thus, we have a 3/2-approximation algorithm for planar graphs39. 39 The second last inequality follows
because the cost of the relaxed program
is less than the cost of integer one.

Application 4: Set Cover

We are given n elements V = {v1, · · · , vn} and m sets S1, · · · , Sm ⊆ V
with costs c1, · · · , cm. The goal is to find a minimum cost collection of
sets that cover every element in V. This problem is NP-Complete.

Theorem 138 (Greedy Set Cover). GreedySet is a O(log n)-approximation
algorithm for the Set Cover Problem. The algorithm is greedy.

comp362: honours algorithm design 56

Algorithm 12: Greedy Algorithm for Set Cover

1 function GreedySet(X, S)
// U stores the uncovered elements

2 U ← X
// C stores the sets of the cover

3 C ← ∅
4 while U 6= ∅ do

// Select the set S∗j which covers the remaining

uncovered elements at a minimum average cost

5 Sj ← S∗j
6 C ← C ∪ Sj

7 U ← U − S∗j

8 return C

Figure 4: Illustration of GreedySet. Sets
are sorted by average cost, where the
average is taken over cardinality.

Proof. The algorithm clearly runs in polynomial time and outputs a
feasible set cover. We need to prove that α = O(log n). Let,

OPT := {S∗1 , · · · , S∗k} C := {S1, · · · , Sr}︸ ︷︷ ︸
r possibly 6=k

and C as the output of GreedySet. We want to prove that,

r

∑
j=1

c(Sj) ≤ log n ·
k

∑
j=1

c(S∗j)

Label the elements of V by {1, 2, · · · , n}, based on the order that
they are covered by GreedySet. Let Ut be the set of uncovered ele-
ments at the start of step t40. If St is the set selected by GreedySet at 40 U1 = V and Ut ⊂ Ut−1.

t, then nt = |St ∩Ut| is the number of new elements covered at t.
If i ∈ St ∩Ut, then i was covered at step t. Then,

αi =
c(St)

nt

is the cost of covering i. Hence, ∑k
t=1 c(St) = ∑n

i=1 αi. To see this,

r

∑
t=1

c(St) =
r

∑
t=1

αi · nt

=
n

∑
i=1

αi (where |V| = n)

comp362: honours algorithm design 57

To analyze the cost of GreedySet, it suffices to bound αi. When i
was covered, there were at least n − i + 1 uncovered elements. OPT
can cover all of these elements for an average cost of,

1
n− i + 1

·
(

k

∑
i=1

c(S∗i)

)
=

1
n− i + 1

· OPT

Since St must do at least as well as this, αi ≤ 1
n−i+1 · OPT,

n

∑
i=1

αi ≤
n

∑
i=1

1
n− i + 1

· OPT

= OPT ·
n

∑
i=1

1
n− i + 1

= OPT ·
n

∑
l=1

1
l

= OPT · Hn

where Hn ≈ log n is the nth partial sum of a Harmonic series. Thus,

c({S1, · · · , Sr}) ≤ O(log n) · OPT

Example 36: Proof of Tighteness

Suppose that all sets have cost $1. Then,

c(OPT) = c({S∗1 , S∗2}) = 2

c(C) = c({S1, · · · , Sr}) = r

But, r = Ω (log n) so n = 2 + ∑r−1
j=1 2j.

Remark 139. There is no α-approximation for the Set Cover Problem with
α = c · log n and c < 1 unless P = NP. We will not see the proof of this.

Application 5: Hitting Set

We are given m elements E = {1, 2, · · · , m} with respective costs
c1, c2, · · · , cm and sets T1, T2, · · · Tn ⊆ E. The goal is to find a mini-
mum cost set of elements that "hit" every set T1, · · · , Tn.

Remark 140. Since the Hitting Set Problem is equivalent to the Set Cover
Problem, we can use GreedySet to solve it.

comp362: honours algorithm design 58

Definition 141 (Randomized Rounding). Let Tj be the indices of the
sets Sj that cover element i. The integer problem to solve Hitting Set uses a
randomized rounding algorithm,

minimize ∑m
j=1 ci · xi

subject to ∑j∈Ti
xj ≥ 1 ∀Ti

xi ∈ {0, 1} ∀i ∈ V(G)

and it can be relaxed as follows,

minimize ∑m
j=1 ci · xi

subject to ∑j∈Ti
xj ≥ 1 ∀Ti

xi ∈ [0, 1] ∀i ∈ V(G)

where element j is selected with probability xj.

Remark 142. The expected cost of the randomized algorithm is,

m

∑
j=1

cjxj = LP ≤ OPT

where LP is the value of our linear program. While the algorithm is polyno-
mial, it may not output a feasible solution.

Arithmetic-Mean Inequality:
For any α1 · · · αk ≥ 0,

∑i αi

k
≥ k
√

παiRemark 143. If Xi be the event that Ti is hit, then P(Xi) ≥ 1− 1
e .

Proof. Put Ti := {1, 2, · · · , k}. By the linear programming constraints,
∑k

j=1 xj ≥ 1. Hence, the probability that Ti is missed is,

P(Xc
i) =

k

∏
j=1

(1− xj)

=
k

∏
j=1

αj

≤
(

1
k
· (α1 + · · ·+ αk

)k

= (1− 1
k
·∑ xj)

k

≤ (1− 1
k
)k since ∑ xj ≥ 1

But, (1− 1
k)

k ≤ 1
e = limn→∞

(
1− 1

n

)n
. Thus, the probability that Ti is

hit is strictly bigger than 1
2 .

Corollary 144. Our solution may miss half the sets. If the algorithm is run
` = 2 log n times, then the probability of missing a set is reduced to 1

n
41. 41 Consequently, with high probability,

randomized rounding gives a hitting set
with cost ≤ 2 log n · OPT.

comp362: honours algorithm design 59

Application 6: Maximum Satisfiability

Let x1, x2, · · · , xn be boolean variables. Recall that,

1. A positive literal is a variable xi

2. A negative literal is a negation x̄i.

3. A clause is a disjunction of literals

The goal is to assign the variables True and False while satisfying as
many as clauses possible.

Theorem 145. Independently assigning each variable xi to be True with
probability 1/2 is a 1/2-approximation algorithm.

Proof. Take a clause Cj with k literals. Cj is not satisfied with proba-
bility 1

2k . Therefore, Cj is satisfied with probability 1− 1
2k . The worst

case occurs when k = 1, but 1− 1
2k ≥ 1

2 . This means that each clause
is satisfied with a probability of at least 1

2 . Let m be the total num-
ber of clauses. By linearity of expectation, the expected number of
satisfied clauses is at least 1

2 ·m ≥
1
2 · OPT.

Remark 146. This is a 7/8-approximation algorithm for Maximum 3-SAT
because each clause is satisfied with probability 1− 1

23 = 7
8

42. 42 In fact, unless P = NP, there is no
better approximation algorithm.

Theorem 147 (Randomized Satisfiability). The following integer pro-
gram solves the Maximum Satisfiability Problem,

maximize ∑m
j=1 zi

subject to ∑xi∈Cj
yj + ∑xi∈Cj

(1− yi) ≥ zj ∀j
yi, zj ∈ {0, 1} ∀i, j

where clauses are indexed by j, variables are indexed by i, and each clause Cj

corresponds to zj. To see that this works43, let, 43 The clause constraint is satisfied if
and only if at least one of the literals are
assigned correctly.

yi =

 1 if xi = True

0 if xi = False
zj =

1 if Cj satisfied

0 if Cj not satisfied

We solve the linear program relaxation in polynomial time with 0 ≤ yi ≤ 1
and 0 ≤ zi ≤ 1 for all i, j. To do this, set xi = True with probability yi. Recall: If f (x) is concave on [0, 1] with

f (0) = t and f (1) = a + b, then,

f (x) ≥ ax + b
Proof. Since Cj has k literals, it is satisfied with minimum probability,(

1 +
(

1 +
1
k

)k
)
· zj

comp362: honours algorithm design 60

We will prove this using the Arithmetic Mean Inequality. Without
loss of generality, let Cj x1 ∨ x2 ∨ · · · ∨ xk. Then,

k

∏
j=1

(1− yi) ≤
(

∑(1− yi)

k

)k
by the Arithmetic Mean Inequality

=

(
1− ∑ yi

k

)k

≤
(

1−
zj

k

)k
by the constraint ∑

xi∈Cj

yi ≥ zj

is the probability that Cj is not satisfied. Note that g(x) =
(
1− x

k
)k is

convex, and consequently f (x) = 1− g(x) is concave. Thus,

1. f (0) = (1− 0)k = 0 = b

2. f (1) = (1− 1
k)

k = a + b = a since b = 0

Hence, the probability that Cj is satisfied is greater than,

a · zj =

(
1− 1

k

)k
· zj

but we have seen that this gives a guarantee of 1
e . Thus,

≥
(

1− 1
e

)
︸ ︷︷ ︸
≈0.632

·zk

The expected number of clauses satisfied is greater than or equal to,

∑
j

0.632 · zj ≥ 0.632 ·∑
j

zj ≥ 0.632 ·∑
j
OPT

since ∑j zj is our objective function.

Theorem 148. Taking the best out of the previous two approximation
algorithms, R1 and R2, gives a 3/4-approximation algorithm.

Proof. Let N1 and N2 be the number of clauses satisfied by R1 and
R2, respectively. Simplifying and applying induction with,

E[max{N1, N2}] ≥ E

[
1
2
· (N1 + N2)

]
since max ≥ µ

=
1
2
·E[N1] + E[N2] by linearity of expectation

gives the result. The complete proof is not shown.

Remark 149. In fact, we can get a 3/4 guarantee using non-linear ran-
domized rounding. We solve the linear program to find yi and zi, and set
xi = True with probability f (yi). This works if the function f satisfies,

1− 1
4y ≤ f (y) ≤ f y−1

comp362: honours algorithm design 61

Proof. The probability that Cj is satisfied is,

1− ∏
xi∈Cj

(1− f (yi)) · ∏
x̄i∈Cj

f (yi) ≥ 1− ∏
xi∈Cj

(
1−

(
1− 1

4yi

))
· ∏

x̄i∈Cj

4yi−1

= 1− ∏
xi∈Cj

1
4yi
· ∏

x̄i∈Cj

4yi−1

= 1− 4
−∑xi∈Cj

yi+∑x̄i∈Cj
(yi−1)

= 1− 4
−
(

∑xi∈Cj
yi+∑x̄i∈Cj

(1−yi)
)

≥ 1− 42j by our constraints

Using concavity, f (zj) ≥ 3
4 · zj.

Example 37: Proof of Tightness

This analysis is tight with respect to the upper bound,

1. C1 = x1 ∨ x2

2. C2 = x1 ∨ x̄2

3. C3 = x̄1 ∨ x2

4. C4 = x̄1 ∨ x̄2

Moreover, it is tight with respect to OPT,

1. C1 = x1 ∨ x2

2. C2 = x1 ∨ x̄2

3. C3 = x̄1 ∨ x2

4. C4 = x̄1 ∨ x̄3

Application 7: Steiner-Tree Problem

Definition 150 (Steiner-Tree Problem). Suppose that we are given a
graph G = (V, E) with edge costs ce ≥ 0 and a set R ⊆ V of terminals. The
goal is to find a minimum cost subgraph T that connects all the terminals.
This subgraph is called a Steiner tree. The non-terminals are called Steiner
nodes, and they are only used if they reduce the cost of the tree44. 44 Remark that the leaves of a Steiner

tree are necessarily terminals.
Corollary 151. If R = V(G), then this is the minimum spanning tree
problem. If R ⊂ V(G), then the problem is NP-Complete.

Theorem 152. SteinerApprox is a 2-approximation algorithm.

Proof. SteinerApprox is a 2-approximation algorithm if,

comp362: honours algorithm design 62

Algorithm 13: 2-Approximation Algorithm for Steiner Trees

1 function SteinerApprox(X, S)
// For terminals r1, r2, let Pij be the shortest path

between them. Denote its length by `ij

2 Pij ← δ(i, j)
// Construct an auxiliary graph H that is a

complete graph on the set of terminals. Let

(i, j) ∈ H have cost `ij

3 T ← Prim(H, `)

4 return
⋃
(i,j)∈T Pij

1. It outputs a feasible vertex cover C

2. It runs in polynomial time

3. Its cost is at most 2 · OPT

SteinerApprox is polynomial, and it outputs a feasible solution. Let
T∗ be the optimal Steiner tree. We can walk around the outside of T∗

to create a circuit C. This circuit can be divided into paths,

C = Q1 ∪Q2 ∪ · · · ∪Qk

where Qi is the path from ri to ri+1. Thus,

c(C) = 2 · c(T∗) =
k

∑
i=1

c(Qi)

but the path P = {r1, · · · , rk} is a spanning tree in H. Thus,

c(F) ≤ c(P)

=
k−1

∑
i=1

`i,i+1

≤
k−1

∑
i=1

Qi

≤
k

∑
i=1

c(Qi)

= 2 · OPT

Since we return T′ =
⋃
(i,j)∈T Pij, we have,

C(T′) ≤ c(F) ≤ 2 · OPT

comp362: honours algorithm design 63

Application 8: Knapsack Problem

Suppose that we are given a bag with capacities w and n objects,
where each object i has weight wi and value vi. The goal is to find the
subset of items of maximum value that fit in the Knapsack. We saw
that this can be formulated as an integer program,

maximize ∑n
i=1 vi · xi

subject to ∑n
i=1 wi · xi ≤W

xi ∈ {0, 1} ∀i ∈ [n]

Lemma 153. For a basic solution ~x, there is at most one item with,

0 < xi < 1

Proof. Recall the Greedy Algorithm for the Knapsack Problem,

1. Compute the value per weight Vi := vi/wi for each item

v1

w1
≥ v2

w2
≥ · · · ≥ vn

wn

2. Iterating through the sorted list, put,

xG
i =

1 if i fits completely

0 if the knapsack is full
W−∑i−1

l=1 wl
wi

otherwise

After the first fractional item 0 < xG
k < 1, the bag is full. Thus,

~xG =
(

xG
1 , · · · , xG

k−1, xG
k , xG

k+1, · · · xG
n

)
=
(

1, · · · , 1, 1, xG
k , · · · 0, · · · , 0

)
An exchange argument shows that ~xG is the optimal solution. As-
sume for a contradiction that it is not. Then some items before k are
used below 1. Re-assign weight from xj to xi, where i < k ≤ j by
setting,

xj ← xj − δ

xi ← xi +
δ · wj

wi

to save δ · wj in weight. The change in value is,

−δ · vj + δ ·
wj

wj
· vi = δ · wj ·

(
vi
wi
− vi

wj

)
≥ 0

as i has a better "bang-for-buck" than j. We can repeat this until we
obtain ~xG, but this means that ~xG is an optimal basic solution45. 45 The solution is basic because it only

has one fractional value.

comp362: honours algorithm design 64

Remark 154. This gives the following polynomial BestOfTwo algorithm,

1. Solve the linear programming relaxation

2. Output the maximum value subset between,

I1 := {i | xi = 1} I2 := {i | 0 < xi < 1}

where I1 and I2 are both feasible solutions,

1. I1 is feasible since it has weight ≤W

2. I2 is feasible since each weight is less than the size of the bag46 46 If not, then we can remove this item
and recurse to obtain a solution with
the same properties.Proof. BestOfTwo is a 2-approximation algorithm because,

max{v(I1), v(I2)} ≥
1
2
· (v(I1) + v(I2))

=
1
2

n

∑
i=1

vi

≥ 1
2

n

∑
i=1

vi · xi

≥ 1
2
· OPT

Definition 155 (Approximation Scheme). An algorithm A is a fully
polynomial time approximation scheme for a maximization problem if,

1. A outputs a solution of value ≥ (1− ε) · OPT

2. A runs in time polynomial in |I| and 1
ε

for any instance I and ε > 0.

Theorem 156. There is a fully polynomial time approximation scheme for
the Knapsack Problem. It is based on dynamic programming.

Proof. Let w(i, V) be the minimum weight of a subset of the items
[i] of value ≥ V. This is by convention infinite if the value of [i]
is less than V. The dynamic program can be solved recursively as
w(i, V) = min{w(i − 1, V), wi + w(i − 1, V − vi)} with base cases
w(i, V) = 0 for all V ≤ 0. Let Vmax := maxi vi. Then there are n
choices for i and at most n ·Vmax choices for V. This means that there
are O(n2 ·Vmax) subproblems, solvable in O(2).

Since Vmax can be exponential in the number of bits, this is a
pseudo-polynomial time algorithm. We can resolve this by scaling
down each value without substantially losing accuracy.

comp362: honours algorithm design 65

Parameterized Complexity

Definition 157 (Fixed-Parameter Tractable). A problem is fixed pa-
rameter tractable if it has an algorithm to solve it that runs in time
f (k) · poly(n), where n is the problem input size, k is the size of the opti-
mal solution, and f need not be a polynomial function.

Example 38: Vertex Cover

If we are given that the optimal solution C∗ to the Ver-
tex Cover Problem has k vertices, then we can check in
O
(
m · (n

k)
)
= O(m · nk) if a subset C is a vertex cover.

This running time is exponential in the size of the optimal so-
lution, not in the input size. It serves as a motivating example
for the question: Can we separate the time dependency on n and k
completely? Specifically, we want an algorithm in,

O(poly(n) · f (k))

where f (k) is exponential, or worse, in k. If we can do this,
then the problem is called fixed parameter tractable.

Lemma 158. Let M∗ be a maximum matching and C∗ be a minimum
vertex cover in a non-bipartite graph. Then,

|M∗| ≤ |C∗| ≤ 2 · |M∗|

Proof. Let M∗ := {e1, e2, · · · , el}, where ei = (ui, vi). Then V −V(M∗)
is an independent set in G47. Moreover, V(M∗) is a vertex cover. This 47 If not, then we could construct a

larger matching than M∗.means that the minimum vertex cover C∗ is at most the size of C,

|C∗| ≤ |C| = 2 · l = 2 · |M∗|

Theorem 159. Let G be a non-bipartite graph with minimum vertex cover
C∗ of size k. Then, C∗ can be found in time 3k · poly(n).

Proof. Find a maximum matching M∗ = {e1, · · · , el} in polynomial
time. Observe that l ≤ k, or else |C∗| ≥ k. At least one endpoint
ei = (ui, vi) is in C∗, so there are three possibilities for ei,

ui ∈ C∗ ∧ vi /∈ C∗

ui /∈ C∗ ∧ vi ∈ C∗

ui ∈ C∗ ∧ vi ∈ C∗

This gives 3l possibilities, producing subsets C1, · · · , C3l . Moreover,
we know that there exists j such that Cj = C∗ ∩ V(M∗). To find the
correct index j, we can try every possibility. There are two cases,

comp362: honours algorithm design 66

1. There is an edge e whose endpoints are both in V(M∗)− Cj. Then
it cannot be covered by adding vertices of V −M∗ to Cj. Thus, this
is not the correct choice and we can reject it.

2. There are no edges whose endpoints are both in V(M∗) − Cj.
Any edge e incident to a vertex in Cj is already covered. Since
V −M∗ is an independent set, any other edge f has one endpoint
in V(M∗)− Cj and the other in V − V(M∗). To cover these edges,
we select a vertex in V − V(M∗) as Cj are the only vertices in
V(M∗) that touch at least one edge uncovered by Cj. Let Wj be the
set of vertices in V−V(M∗) that touch at least one edge uncovered
by Cj. Thus, Ĉj = Cj ∪Wj is the smallest vertex cover C such that,

Ĉj = Cj ∪Wj

We output the smallest Ĉj, which is the minimum vertex cover.

We conclude that the total running time is at most,

3l · poly(n) ≤ 3k · poly(n)

We can repeat the same procedure for the Longest Path Problem.

Theorem 160. Suppose that the longest path P∗ contains exactly k vertices,

P∗ = {v1, v2, · · · , vk}

We can find P∗ exhaustively in O(k · nk) by,

1. Taking every possible sequence P of k vertices

2. Testing if P is a path

In fact, we can do better. A useful technique in the design of fixed
parameter tractable algorithms is the color coding method.

Definition 161 (Color Coding). The color coding method colors each
object in the search space, so that the algorithm can refine its search for
monochromatic or panchromatic solutions.

Remark 162. The color coding method applies to the Longest Path Problem.

Proof. Assume the longest path is P∗ = {v1, v2, · · · , vk}. Randomly
color the vertices of G with k colors. If col(vi) = i for all 1 ≤ i ≤ k,
then we can find P∗ in linear time by Breadth-First Search:

1. Begin with vertices of color 1, and search for neighbors in color 2

2. From these neighbors, search for neighbors of neighbors of color 3

comp362: honours algorithm design 67

3. Repeat this procedure until color k

The probability that vi is given color i is 1
k , so the probability that

every vertex in P∗ is given the correct color is,(
1
k

)k

Suppose that the color coding algorithm is run t times. Each run is
independent, so the probability of failure every time is at most,(

1−
(

1
k

)k
)t

=

(
1− 1

kk

)t

Using the fact that 1− x < e−x ∀x 6= 0,(
1− 1

kk

)t
≤
(

e−
1

kk

)t
= e−

t
kk

If we try this t = kk · log n times, then the probability is at most,

e−
t

kk = e− log n =
1
n

So at least one of the trials succeeds with probability at least 1 −
1
n . Moreover, the algorithm runs in time kk · poly(n), making the
problem fixed parameter tractable.

	Network Flow
	Linear Programming
	Computational Complexity
	Heuristic Algorithms
	Approximation Algorithms

