

Relevance Effect: Exploiting Bayesian Networks to Improve Supervised Learning

Ardavan S. Nobandegani[†]

ardavan.salehinobandegani@mail.mcgill.ca

Jad Kabbara[†]

jad@cs.mcgill.ca

† Co-primary authors

Ioannis N. Psaromiligkos

yannis@ece.mcgill.ca

Introduction

We introduce the notion of relevance effect which bears on exploiting BNs to generate realizations of relevant variables to be used for potentially improving the performance of a learning model on a

Motivating Examples

Experiments

Experiment 1.

- Input: *i*, *d*
- Output: *l* Letter • Rule: $P(\boldsymbol{s}|\boldsymbol{i})$ i^1 0.2 0.8 i^0, d^1 0.05 0.25 0.7 ✓ 7.53% improvement i^1, d^0 0.9 0.08 0.02 $i^1. d^1$ 0.5 0.3 0 **Experiment 2.** BN defined over x_1, \ldots, x_{10} . $x_1 \sim \mathcal{N}(0,1),$ $x_2 \sim \mathcal{U}(0,1)$ w.p. $p \& x_2 \sim \mathcal{U}(-1,0)$ o/w $(x_{i+1}|x_i, x_{i-1}) \sim \begin{cases} \mathcal{U}(0,1) \ if \ \psi(x_{i+1}) > \gamma \\ \mathcal{U}(-1,0) \ if \ \psi(x_{i+1}) < \gamma \end{cases}$ $\psi(\mathbf{x_{i+1}}) \coloneqq \frac{1}{2}(\mathbf{x_i} + \mathbf{x_{i-1}})$ Input: x_4, x_5 • Output: $x_{10} \ge 0$ • Rule: $P(x_6|x_4, x_5)$ \checkmark 22% improvement

supervised task.

- We explore the use of the relevance effect in Deep Belief Networks (DBNs) with a focus on relational domains.
- Despite being at odds with the non-monotonicity of probability, we attain improvements in learning performance on tasks involving both synthetic and real-world data.
 - > This suggests that relevance effect has the potential to be practiced for improving the performance of supervised learning methods in general.

Relevance Effect

Consider a classification task involving input variables e_1, \ldots, e_n and output variable o.

- **Classification task:**
 - Input: x, Output: z
 - P(y|x) known, P(z|x, y) unknown
 - x does not d-separate y from z.
 - z is observed (training set)
- \succ Relevance effect \rightarrow use P(y|x) as a rule.

Sparsely-known complex network

Experiment 3.

KEGG Metabolic Relation Network Dataset

- Variables are part of a domain modeled by some (partially known) BN \mathcal{B} .
 - \succ How to use \mathcal{B} to improve classification performance on output variable *o*?

Rule:

- Mapping that acts on variables e_1, \ldots, e_n .
- Probabilistic or deterministic.

Sampling in the "wrong" way:

- In general, to correctly generate samples of an draw samples from CPD $P(\boldsymbol{s}|\boldsymbol{e}_1, \dots, \boldsymbol{e}_n, \boldsymbol{o})$.
- the observed variables.

Deep Learning Framework

- Output: predicting whether enzymes/genes are interacting with more than 3 other neighbors
- Two rules: clustering coefficient and betweenness centrality of enzymes/genes
- Rules obtained using LS-regression (trained on about half of the features , 10% of training set) \checkmark 10.47% improvement

	RDNN	DBN
Student BN	$\frac{737\pm3.51}{2000}$ (36.85%)	$\frac{797}{2000}$ (39.85%)
10-Node BN	$\frac{41.33\pm1.80}{2000}$ (2.07%)	$\frac{53}{2000}$ (2.65%)
Metabolic Network	$\frac{231}{8000}$ (2.89%)	$\frac{258}{8000}$ (3.23%)

Performance of RDNN and DBN in terms of number of misclassifications. The notation is as follows: number of misclassifications (Percentage).

Using BNs to improve learning performance of Deep Neural Nets. A step towards incorporating relational knowledge into Deep Learning paradigm. Applicable to all supervised learning models.