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Abstract—Deductive logic and its variants enjoy the common
property of monotonicity. For tasks such as inductive reasoning
and belief revision, this was eventually deemed a serious flaw,
prompting attempts to construct non-monotonic versions of logic.
With the introduction of the idea of probabilistic reasoning to
AI, particularly with the advent of Bayesian networks (BNs), the
aforementioned monotonicity was no longer an issue: Probability
is inherently non-monotonic. In this work, we introduce the
notion of relevance effect which bears on exploiting BNs to gen-
erate realizations of relevant variables to be used for potentially
improving the performance of a learning model on a supervised
classification task. We explore the potential of using the relevance
effect in the context of Deep Belief Networks (DBNs) with a focus
on relational domains. We show that although the idea is at odds
with the non-monotonicity of probabilistic reasoning, we attain
an improvement in learning performance in different simulations
on both synthetic and real-world scenarios. The observation that
adopting this notion has improved the performance of a powerful
model like DBNs hints to its potential to be practiced so as
to enhance the performance of supervised learning methods in
general. We furthermore highlight the connections as well as the
implications of our work to the psychology literature.

I. INTRODUCTION

In the past decade, server farm databases have exploded

with human photos. In September 2013, Facebook reported

storing more than 250 billion photos on its servers with users

uploading an average of 14.5 million photos per day [1],

providing massive training resources for image recognition ap-

plications. At the same time, humans are increasingly relying

on intelligent systems such as smart phones to carry out their

everyday tasks. As a result, speech recognition, which has

arguably seen little use on personal computers, is finding a

burgeoning base of users. Such trends have inevitably pushed

for scalable and highly accurate machine learning algorithms.

The past few years have seen a surge in deep learning research,

fueled by the industry’s interest in using deep neural networks

(DNNs) for applications such as image recognition, speech

recognition and natural language processing.

While the research community in deep learning has focused

on optimizing deep learning training techniques and introduc-

ing improvements for specific applications, it has been noted

that a natural next step for deep learning is to capitalize on the

underlying relational structure of the domains within which

they are employed ([2], [3]). Bayesian networks (BNs) can

be viewed as a universal graphical language through which

the underlying dependency structure governing any domain of

interest can be expressed (yet, not necessarily a perfect map

or, in short, P-map [4]). In this light, BNs can be plausibly

invoked to represent such a relational structure, with nodes

representing the variables of the domain and edges mod-

eling their immediate (potentially probabilistic) interactions

which can be mathematically encoded by some conditional

probability distribution (CPD).1 Furthemore, BNs lie at the

heart of areas such as statistical relational learning where,

for example, Probabilistic Relational Models and Statistical

Relational Models [6] adopt BNs as their building blocks.
Consider a classification task involving input variables

e1, . . . , en and output variable o. Assume further that these

variables are part of a domain whose underlying dependency

structure is modeled by some BN B. In this paper, we explore

how this dependency structure, modeled by B, can be exploited

to generate novel information that complements the learning

process involving the input variables e1, . . . , en such that the

classification performance on output variable o improves. The

key contribution of the paper lies in introducing the notion of

“relevance effect” which goes against the non-monotonicity

of probability as explained in the next section. We explore

the potential behind using the relevance effect in the context

of Deep Belief Networks (DBNs) with a focus on relational

domains, and show that this leads to an improvement in learn-

ing performance in both synthetic and real-world scenarios.

The observation that adopting this notion has improved the

performance of a powerful model such as DBNs hints to its

potential to be practiced for enhancing the performance of

supervised learning methods, in general.

II. ON RULES AND THE RELEVANCE EFFECT

A. Rules

We begin by defining a key term that will be used through-

out the paper. Given variables e1, . . . , en, a rule refers to a

1BNs furthermore due to their causal interpretation are often preferred to its
counterparts (e.g., Markov Nets [4] or Chain Graphs [5]), particularly, when
the domain of study enjoys causal structures.
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mapping that acts on e1, . . . , en. This rule can be of a deter-

ministic or probabilistic nature as will be explained in Section

II-B. The choice of the rule is guided by the structure of the

BN that models the dependency structure of the domain and in-

cludes the said variables. The terms “rule” or “relational rule”

are henceforth used interchangeably. The term “relational” is

due to the fact that a BN represents how variables interact

with each other—i.e., reflects the “relations” between those

variables—and, in essence, captures the relational structure

of the domain. Rules can be of two types: probabilistic or

deterministic. Probabilistic rules are in the form of a CPD

allowing one to generate (through sampling), conditioned on

some variables, an arbitrary number of realizations for the

rule’s output. On the other hand, deterministic rules, for a

fixed realization of the input, lead to a single realization for

the rule’s output.

B. Relevance Effect

Consider again the setting wherein some BN B is modeling

the underlying dependency structure of a domain of interest.

Let e1, . . . , en be the input variables and o the output variable

for a given supervised classification task. Now assume that,

due to some side information in the form of a CPD, we are

able to generate (simply through drawing samples from the

CPD) realizations for some variable s which, according to the

structure of B and the concept of d-separation [7], is relevant

to the output variable o. Then one can plausibly argue that

if, to each input vector, we append its corresponding sample

generated for s, then the learning performance should improve

based on the simple argument that employing more relevant

information cannot hurt. There is nothing surprising about

this—assuming this is done the “right” way. Here, by “right”

way, we refer to the fact that having observed the values for

e1, . . . , en and o in the “training set” dictates the following:

To correctly generate (probabilistically) samples of s, one must

draw samples from the CPD P(s|e1, . . . , en, o). In other words,

in generating samples of s, one cannot, in principle, ignore the

fact that the values for e1, . . . , en and o are all observed.

Now, assume that we intend to adopt the “wrong” way,

that is, to purposefully ignore the fact that the values for

some of the variables e1, . . . , en and o are indeed observed

and, say, to use P(s|e1, . . . , en) or even P(s|e1) instead of

P(s|e1, . . . , en, o). Doing so goes against the non-monotonicity

of probability and, in that respect, is systematically wrong.

Simply put, the non-monotonicity of probability implies the

following: When the value of, say, a is observed and we

are interested in knowing how b behaves probabilistically, we

must adopt P(b|a); that is, we cannot, in principle, ignore

the fact that the state of a is observed. Non-monotonicity of

probability also echoes in the following statement: Let A,B,C
be three events, then, P(A|B),P(A|C), and P(A|B,C) can

be arbitrarily specified [8]. Furthermore, non-monotonicity of

probability is nicely captured in Pearl’s well-known “explain-

ing away” phenomenon [9].

Simulating learning scenarios where we adopted the

“wrong” way of incorporating side information into the learn-

ing process led to a key observation which we term the

relevance effect. In simple terms, this effect can be described

as follows: Finding the value of some relevant variable(s), even
in the wrong way as stated above, and incorporating it into
the training process could improve the learning performance.
Indeed, in different simulation scenarios where we incorporate

side information as described earlier, we show consistent

improvement over the conventional methodology in which the

learning algorithm is solely trained on the inputs and the output

variable (i.e., without any side information). Interestingly, the

key idea captured by the relevance effect is the interplay

between (i) the relevance of a variable (e.g., s) to the output

variable o of a learning task (i.e., the extent to which two

variables are correlated), and (ii) how accurately the value for

a relevant variable (e.g., s) is derived. This key interplay is

simply overlooked in the literature.

At a high level, the relevance effect can be related to

the notion of probably approximately correct (PAC) learning

in computational learning theory. However, PAC learning is

never concerned about finding the solution in the “wrong”

way discussed above. Instead, it is purely concerned about the

computational efficiency of learning. What ties it, however, to

the notion of relevance effect is the key idea that one just needs

to be correct “approximately” for a “good” portion of time in

terms of generating s to see an improvement in learning.

C. The Relevance Effect in the Context of Supervised Learning

Applying the relevance effect in the context of deep learning

models highlights its potential to yield improvement for clas-

sification tasks in relational domains. There are two rationales

behind the choice of DBNs: (i) Deep neural networks, and

DBNs as a variant thereof, have repeatedly yielded state-of-

the-art performance in different applications and it is worth

showing that adopting the introduced notion of relevance effect

has the potential to improve the performance achievable by

such powerful models, and (ii) to promote the idea of taking

advantage of the relevance effect in the deep learning practice.

Accordingly, we present the RDNN model (R standing for

relevance) in which, at the first layer, rules are applied to the

input vector, with the result being appended to the (same)

input vectors and then the new vectors being fed to the

higher standard DBN layers. This corresponds to increasing

the expressive power of the DBN in an appropriate, relevant

and controlled fashion by introducing a useful inductive bias
into the learning process. The use of relational rules in this

manner potentially allows for better feature extraction and

therefore improved classification performance.

The idea of relevance effect has important implications

for supervised learning. It allows one to take advantage of

seemingly “wrong” side information which, based on the

conventional methodology, should not be beneficial and, more

importantly, is perceived to be systematically wrong to be used

for the supervised learning task at hand. In large domains com-

prised of numerous variables and modeled by BNs, scenarios

may arise where we know CPDs associated to only a small

number of edges. In such scenarios, the introduced notion of
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relevance effect would be particularly useful in enabling us to

generate samples of “some” variable(s) in the “wrong” way,

which we then append to the corresponding input vector and

feed the result into the learning algorithm to potentially gain

learning improvement for the classification task of interest.

III. ON THE NATURE OF RULES AND RELATIONS

In this section, we elaborate on the nature of relational

rules and formalize this concept in light of BNs [7]. BNs can

be viewed as a universal graphical language through which

the dependency structure governing any domain of interest

can be expressed—not necessarily a perfect map (a.k.a. P-

map) however [4]. In this context, nodes in a BN represent

the variables/attributes of the domain and an edge signifies

a dependency or interaction between two nodes. A relational

rule simply then refers to the functional form of the interaction

taking place between any two connected nodes. With the BNs

modeling the underlying dependency structure of domains,

a rule can be viewed as a mapping which enables us to

generate, based on a subset of observed variables and thereby

ignoring the non-monotonicity of probability, realizations of

some variable(s) which are deemed relevant to the output

variable according to the notion of d-separation. The relevance

effect comes into play as it suggests that finding the value of

some relevant variable, even in the “wrong” way as stated

above, and incorporating it into the training process could

improve the learning performance. We begin with presenting

a simple yet informative motivating example.

A. Motivating Example

Consider the simple BN depicted in Figure 1 and the

task of deciding on the state of Random Variable (RV) z
(output variable) given the state of RV x (input variable). In

this setting, the edge emanating from x to y represents the

conditional probability distribution P(y|x). We assume that

only the parametrization of the edge between x and y (i.e.,

the CPD corresponding to that edge) is known and that of

the other (dash-dotted) edges are unknown. According to the

graph-theoretic notion of d-separation [9], variable y is deemed

relevant to the output variable z given the input variable x, i.e.,

(z �⊥ y|x), where (a �⊥ b|c) denotes that, given c, RVs a, b
are dependent. Therefore, the CPD P(y|x) corresponding to

the edge pointing from x to y, plays the role of a rule which

enables one to generate (i.e., to sample) the relevant variable

y conditioned on x. It is crucial to notice that, for the training

set, RV z is observed along with the input variable x and, to

accurately generate y, one has to employ P(y|x, z) and not

P(y|x). This is where the key idea of relevance effect comes

into play. That is, the probabilistic rule P(y|x) could be used to

generate a “wrong” but “accurate enough” version of y which

could improve the classification task on z.

B. Rules in the Context of Complex Networks

Oftentimes, the number of variables/attributes in the domain

of interest is enormous and a lot of inter-variable interac-

tions take place altogether described by a large and complex

x

y

z

Fig. 1. Sample Case: Input and output variables for the classification task of
interest are depicted in green and red, respectively. Variable x is observed and
the task is to decide on the state of z. The CPD corresponding to the blue
edge is known and for others is unknown.

network, e.g., protein domain, cell and social networks to

mention a few. Let us model the underlying dependency

structure governing the attributes/variables of the domain by a

BN. We intend here to generalize the idea presented in the

motivating example to the setting of complex networks as

depicted in Figure 2. The main complication often encountered

in these complex domains is that the functional form of many

of the interactions (represented pictorially by edges in the

graph) is either partially or fully unknown. Yet, despite such

an incomplete knowledge of the domain, we need to give

adequate answers to the posed inference problem. The idea

is then to take advantage of some of the known edges and use

them as rules to improve the performance on the task at hand.

It is worth noting that the variables that should be appended

to the training set are those which, according to the graph-

theoretic notion of d-separation, conditioned on the observed

variables, are deemed relevant to the output variable of the

task at hand.

x1 x2

z

y1
y2

Fig. 2. Sparsely-known large/complex network: Input variables x1, x2
(observed) are depicted in green; the output variable for the classification
task, z, is depicted in red. Due to the existence of unblocked trails (depicted
in magenta) between the to-be-appended variables (i.e., y1, y2) and the output
variable for the classification (i.e., z), variables y1, y2 are deemed relevant to
the output variable z conditioned on the input variables x1, x2.

C. Generalization of the Notions of Rules and Relations

We now generalize the notion of rule as follows. In a broader

sense, a relational rule simply refers to an algorithmic form of

a mapping from a number of variables in the domain (input

variables) to some other variable(s) in the domain (intermedi-

ate variable(s)). By algorithmic mapping, we mean a mapping

that is realized by some algorithm (e.g., one implementing an

estimator/regressor) which supersedes the need to specify a

mathematical expression for the rule. A rule relevant to the

classification task at hand, therefore, enables one to get an

estimate of some intermediate variable(s) which are deemed

relevant to the output variable of the classification task at hand

according to the notion of d-separability, in terms of a subset
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of variables in the domain whose states are known (see Figure

3 for an example). The mapping could be of a deterministic or

probabilistic nature. In case of a probabilistic mapping, the act

of deriving the intermediate variables boils down to drawing

samples from the probabilistic mapping. To our knowledge,

this broad interpretation of relational rules as deterministic

or probabilistic mappings and their use to generate features

relevant to the learning task (due to the notion of d-separation)

is novel.

x1 x2

z

y1 y2

y3

Fig. 3. Generalized interpretation of rules: RVs x1, x2 are observed and the
classification task is to decide on the state of z. Only the CPDs associated with
the blue edges are assumed to be known. The link depicted in gold denotes
the existence of a mapping from x1 to y3 which enables one to estimate
y3 given x1. Given that x1, x2 are observed, RVs y1, y2, y3 are all deemed
relevant to the output variable z due to the existence of active trails depicted
in magenta.

IV. THE RELEVANCE EFFECT IN DEEP LEARNING

In this section, we present the framework which we utilize

to validate the potential of the relevance effect in improving

the learning performance of supervised learning methods. The

deep learning model, RDNN, extends DNNs by incorporating

relational information into the learning process to promote

better feature extraction.

In the first layer of RDNN, the input data is fed into a

relational layer where relational rules, as introduced in Section

III, operate on the input data. This layer may consist of

one or more relational rules each providing specific relational

information about the input data. A rule can have a discrete

or continuous output and it may operate on a subset or

all of the components of each input vector. The resulting

side information is then appended to the corresponding input

vector. The output of the relational layer becomes then the

input of the next layer — the first layer of the DNN. Figure 4

shows the RDNN model with the first layer being the relational

layer.

With the additional relational information obtained in the

first layer, a DNN is now potentially able to extract richer

and more meaningful features. The output of the first layer

is thus fed to a DBN which learns a hierarchy of multiple

layers of representative features using Restricted Boltzmann

Machines (RBMs). First, RDNN is pre-trained in a greedy

layer-by-layer fashion: Visible stochastic inputs are connected

to hidden stochastic feature detectors using symmetrically

weighted connections, and learning is done with Contrastive

Divergence [10]. The output of each layer becomes the input

of the next layer of RBMs, and so on. After the pre-training

phase, the weights in RDNN are initialized and the whole

r X

Relational Layer

X

I

hk−1

h1

h2

S

{D
B
N

hk

Fig. 4. RDNN: Input vector X is fed to a relational layer where relational
rules are applied on the input vectors. The resultant vector r is then appended
to X , and this newly-formed vector becomes the input to the standard DBN.
Symbol I indicates identity operator which leaves its input intact. Also, hi

denotes the i-th hidden layer of the employed DBN. S is the softmax unit
responsible for classification. Some of the links are omitted to avoid cluttering
the picture.

network is fine-tuned using back-propagation. At the network’s

highest level, the learned features from the previous layer are

used to solve classification problems using a classifier. We use

a softmax unit as our choice of classifier, however, one could

very well use any other classifier, e.g., SVM.

V. EXPERIMENTS

In this section, we present empirical validation that shows

that RDNNs can outperform standard DNNs in classification

problems in domains of relational nature. In all simulations,

RDNN is compared against a standard DNN based on Hinton

and Salakhutdinov’s DBN implementation [11] (henceforth

simply referred to as DBN). The following apply to all of

the experiments: Each dataset comprises a training set, a

validation set, and a test set. The rows of the data matrix

correspond to samples; the columns correspond to features.

All data values are normalized to the [0, 1] interval (based

on each column vector of the data matrix). Both algorithms

use the same number of hidden layers (specified later in

each experiment) and a softmax output unit to perform the

classification. The hyperparameters for DBN were optimized

to achieve the best performance on the validation set. We

set for RDNN the same hyperparameters that were used

for DBN unless stated otherwise. Following hyperparameter

optimization, both algorithms use an initial momentum of 0.5

and a final momentum of 0.9. For the learning in the RBMs,

1-step constrastive divergence (CD-1) is used. Each hidden

layer was pre-trained for 50 epochs, i.e., passes through the

entire training set, while for the supervised fine-tuning, the

number of epochs was fixed to that number that gives the best

performance (in terms to the number of misclassifications) on

the validation set. Thus, the performance of each algorithm is

measured on the test set at that specified number of epochs.
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Difficulty Intelligence

Grade

Letter

SAT

d0

0.6

i0

0.7

g1 g2

d1

0.4

g3

i0, d0

i0, d1

i1, d0

i1, d1

i1

0.3

s0 s1

i0

i1

l0 l1

s0, g1

s0, g2

s0, g3

s1, g1

s1, g2

s1, g3

0.3 0.4

0.050.25

0.9 0.08

0.5 0.3

0.95

0.2

0.05

0.8
0.3

0.7

0.02

0.2
0.9

0.8

0.8

0.3

0.3

0.05

0.1

0.2

0.7

0.2

0.7

0.95

Fig. 5. Student BN.

A. Student Bayesian Network

This experiment is based on a modified version of the

Student Bayesian Network relational graph provided in [4]

(Fig. 3.4, p. 53). Given two input variables representing the

Intelligence of a student registered in a course having a

certain Difficulty, the classification task consists in predicting

whether the recommendation letter the student will receive

from the course instructor is strong or weak. The same graph

structure and probabilities as in [4] are used, except that

we connect the two variables SAT and Letter and the fol-

lowing CPD is employed: P(l0|g1, s0) = 0.9,P(l0|g1, s1) =
0.8,P(l0|g2, s0) = 0.8,P(l0|g2, s1) = 0.3,P(l0|g3, s0) = 0.3,
and P(l0|g3, s1) = 0.05. The BN is shown in Figure 5. We

generate 9000 samples according to the given BN, with 5000

samples being used as a training set, 2000 as a validation set

and 2000 as a test set. To provide empirical verification for the

idea proposed in Section III, we use the CPD corresponding

to the edge connecting RV SAT to Intelligence as the (non-

deterministic) relational rule to be used in the relational layer

of RDNN.

Two hidden layers of RBMs were used, each with 5 logistic

units. Following hyperparameter optimization, a learning rate

of 0.0001 is used for the weights, biases of visible units

and biases of hidden units, weight cost of 0.00001 and mini-

batch size of 20. Due to the probabilistic nature of the rule

used in this experiment, we repeat the RDNN simulation 15

times (each time appending the result of sampling from the

probabilistic rule to each training sample) and present in Table

1 the average number of misclassifications along with the error

margin (standard deviation). DBN misclassified 797 instances

of the test set versus 737 misclassifications by RDNN. This

shows that incorporating relational rules in this learning task

led to a 7.53% performance improvement. The significance of

this result stems from the fact that an improvement was noted

despite using the “wrong” CPD, namely P(SAT|Intelligence),
as the rule whereas, according to the dependency structure of

the underlying BN and the notion of d-separation, we should

have used P(SAT|Intelligence, Difficulty, Letter), that is, we

should have conditioned on all observed variables.

B. 10-Node Bayesian Network

This experiment is based on a BN where each node (rep-

resenting a variable xi with i being the index of the node)

depends on its two immediate predecessor nodes. For the first

two variables we have: x1 ∼ N (0, 1), and, with probability p,

x2 ∼ U(0, 1) and x2 ∼ U(−1, 0) otherwise. The subsequent

variables are obtained as follows:

(xi+1|xi−1, xi) ∼
{
U(0, 1) if ψ(xi+1) > γ,

U(−1, 0) if ψ(xi+1) < γ,

where ψ(xi+1) :� 1
2 (xi−1 + xi), for some real-valued param-

eter γ.

In this experiment, we simulate a BN having 10 nodes

representing variables x1, x2, . . . , x10. To explore the idea

of learning despite merely having partial knowledge of the

dependency structure of a domain (as discussed in Section

III-B), we assume only RVs x4 and x5 are observed (therefore

comprising the features of the input vectors). We employ the

CPD P(x6|x4, x5) as the probabilistic rule to be employed in

the relational layer of the RDNN. Given this partial knowledge

of the network, the classification task consists in predicting

whether the 10th variable, x10, is larger than 0. The simulation

parameters are set as follows: γ = 0.1 and p = 0.4. We

generate 12000 samples with 8000 samples being used as a

training set, 2000 as a validation set and 2000 as a test set.

Three hidden layers of RBMs were used, each with 10

logistic units. Following hyperparameter optimization, a learn-

ing rate of 0.001 is used for the weights, biases of visible

units and biases of hidden units, weight cost of 0.01 and

mini-batch size of 50. Similarly to the last simulation, we

repeat the RDNN simulation 15 times and present in Table 1

the average number of misclassifications along with the error

margin (standard deviation). DBN misclassified 53 instances

of the test set versus 41.33 misclassifications by RDNN. This

shows that incorporating relational rules in this learning task

led to a 22% performance improvement. The significance of

this result stems from the fact that an improvement was noted

despite using the “wrong” CPD, namely P(x6|x4, x5), as the

rule whereas, according to the dependency structure of the

underlying BN and the notion d-separation, we should have

used P(x6|x4, x5, x10), that is, we should have conditioned on

all observed variables.

C. Metabolic Pathways Relational Network

This experiment is based on the KEGG Metabolic Rela-

tion Network Dataset [12] representing metabolic pathways

that model molecular interactions in the human metabolism.

The classification task consists in predicting whether en-

zymes/genes are interacting with more than 3 other neighbors

(i.e., whether the neighborhood connectivity is larger than 3).

2891



RDNN DBN
797
2000 (39.85%)737±3.51

2000 (36.85%)

41.33±1.80
2000 (2.07%) 53

2000 (2.65%)

Student BN

10-Node BN

Metabolic Network 258
8000 (3.23%)231

8000 (2.89%)

Table 1. Performance of RDNN and DBN in terms of number of misclassifications. The notation is as follows:
misclassifications

size of test size
(Percentage).

Two relational rules are used in the relational layer of RDNN.

The first represents the clustering coefficient of enzymes/genes

which reflects how much the enzymes/genes tend to form

tightly knit groups indicated by a relatively high density of

ties, and is given by:

ci =
|{ejk : vj , vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
,

where ci is the clustering coefficient of enzyme/gene vi, ejk
represents a pathway between enzymes/genes vj and vk, and

ki is the number of neighbors of enzyme/gene vi. The second

rule represents the betweenness centrality of an enzyme/gene

which reflects how central an enzyme/gene is in the network

of metabolic pathways, and is given by:

di =
∑

i�=j �=k

σjk(i)

σjk
,

where di is the betweenness centrality of enzyme/gene vi, σjk

is the total number of shortest paths from node j to node k
and σjk(i) is the number of those paths that pass through i.
In this experiment, we explore the idea presented in Section

III-C. The values of the rules are obtained through least-

squares regression. The input to the least-squares regressor

consists of only the first 10 (out of 18) features of only 10%

(approximately) of the number of samples. We note that these

input features or samples were not chosen in any particular

way to optimize the least-squares estimate.

Three hidden layers of RBMs were used, each with 50

logistic units. Following hyperparameter optimization, a learn-

ing rate of 0.1 is used for the weights, biases of visible

units and biases of hidden units, weight cost of 0.1 and

mini-batch size of 50. Results for this classification task are

shown in Table 1. DBN misclassified 258 instances of the

test set versus 231 misclassifications by RDNN. This shows

that incorporating relational rules in this learning task led to a

10.47% performance improvement. Interestingly, training the

linear LS regressor only on 10% of the training set and about

half of the features still enabled the RDNN to outperform DBN

by a good margin. The significance of the above observation

is three fold: First the output, say v, of the LS regressor

(used to derive the values of the rules) is related by a CPD

to each realization of the input vector, say u. Adopting LS

regression should be perceived, at best, as a single-value

approximation for the target variables v (as opposed to a

distribution). Second, neglecting the fact that almost half of

the features were observed in deriving the rules using LS

regression is systematically wrong based on the notion of non-

monotonicity discussed earlier in the paper. Third, the fact that

the LS regressor is trained on merely a small fraction of the

training set highlights yet another level of approximation.

VI. ON THE CONNECTION OF RULES TO PSYCHOLOGY

The idea of relying on prior knowledge and benefiting from

it when learning a new task has had a long history in the

studies on human cognition [13]. Capacities like one-shot

learning [14] and learning to learn [15] signify the crucial role

a priori knowledge plays in acquiring new concepts. Translated

into our proposed framework, this a priori knowledge available

to the reasoner is captured by the notion of relational rule

which, by being applied to the inputs and producing an

output(s)—a process analogous to the unraveling of a new

task in light of the already available knowledge—will improve

learning.

Knowledge-Based Cascade-Correlation (KBCC) [16] is a

self-organized neural network scheme which in spirit follows

the theme of RDNN (Section IV), at Marr’s implementational

level [17], by recruiting previously-learned neural nets in the

self-construction process of devising a new neural network

for solving the posed task. Translated into our framework,

the to-be-recruited previously-learned neural nets play the role

of the abstract rules—symbolizing the possession of some

relevant prior knowledge—which we are proposing to be

employed in the learning process as discussed in Section

IV. However, in recruitment phases, KBCC has to consider

all the available previously-learned neural nets, as a pool

of candidates, to check whether recruiting any of them may

lead to a performance improvement [16]; hence KBCC has

to struggle with the well-known exhaustive search problem

[18]—this is analogous to performing exhaustive search in the

knowledge base in expert systems. The introduced notion of

relevance effect potentially allows for significantly reducing

the number of candidates that should be considered by KBCC

in recruitment phases (also referred to as input phases),

thereby alleviating the exhaustive search problem that KBCC

has to deal with.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced the relevance effect which,

in simple terms, suggests the following: Finding the value

of some relevant variable(s), even in the “wrong” way and

incorporating it into the training process could improve the

learning performance. Moreover, we formalized the notion of

2892



relational rule, generalized it, and discussed how the rele-

vance of a rule to the classification task should be verified

through the concept of d-separation and the BN modeling

the dependency structure governing the domain at hand. To

explore the potential of the relevance effect, we presented a

deep learning model, RDNN, wherein relevant (deterministic

or probabilistic) relational rules are first applied and then

subsequently appended to every input vector; this extended

input vector is ultimately fed to a DBN. Appending the

relevant relational information to each input vector introduces

a useful inductive bias into the learning process of the DBN,

thereby leading to an improved classification performance.

Through simulations, we provided empirical validation that

supports the proposed relevance effect.

While in this work we were interested in investigating the

potential of the relevance effect in the context of DBNs, it

is worth noting that our method can be generalized to other

deep learning methods (e.g., Convolutional Neural Networks

[19], Deep Boltzmann Machines [20], etc.) as well as learn-

ing techniques beyond those falling under the deep learning

paradigm.

Although in Section II-B we provided one possible ex-

planation as to why the relevance effect might lead to an

improvement in learning, there are two important factors that

may play a role in the emergence as well as the efficacy of

the relevance effect: (1) the size of the training set (small vs

large), and (2) the choice of the learner (e.g., DBN or SVM).

Future work should investigate the significance of these factors

for the success of the relevance effect in improving learning.

Also, for DNNs specifically, it would be interesting to inves-

tigate alternative designs for injecting relational information

into the learning process of DNNs. For example, while in

our model the first layer is the relational layer, that is, the

relational information is added to the network at the beginning,

other designs may add the relational side information at a later

stage.
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