

Let's do it "again": A First Computational Approach to Detecting Adverbial Presupposition Triggers

ANDRE CIANFLONE*, YULAN FENG*, JAD KABBARA* & JACKIE CK CHEUNG

(* EQUAL CONTRIBUTION)

"Again"

Heard on the campaign trail:

Hillary Clinton

Make the middle class mean something *again*, with rising incomes and broader horizons.

Donald Trump

Make America great again.

What is presupposition?

- **Presuppositions**: assumptions shared by discourse participants in an utterance (Frege 1892, Strawson 1950, Stalnaker 1973, Stalnaker1998).
- **Presupposition triggers**: expressions that indicate the presence of presuppositions.
- Example:
- Oops! I did it *again* ← Trigger
- Presupposes Britney did it before

Linguistic Analysis

- Presuppositions are preconditions for statements to be true or false (Kaplan 1970; Strawson, 1950).
- Classes of construction that can trigger presupposition (Zare et al., 2012):
 - Definite descriptions (Kabbara et al., 2016), e.g.: "The queen of the United Kingdom".
 - Stressed constituents (Krifka, 1998), e.g.: "Yes, Peter did eat pasta."
 - Factive verbs, e.g.: "Michael regrets eating his mother's cookies."
 - Implicative verbs, e.g.: "She managed to make it to the airport on time."
 - Relations between verbs (Tremper and Frank, 2013; Bos, 2003), e.g.: won >> played.

Motivation & Applications

- Interesting testbed for pragmatic reasoning: investigating presupposition triggers requires understanding preceding context.
- Presupposition triggers influencing political discourse:
 - The abundant use of presupposition triggers helps to better communicate political messages and consequently persuade the audience (Liang and Liu, 2016).
- To improve the readability and coherence in language generation applications (e.g., summarization, dialogue systems).

Adverbial Presupposition Triggers

- Adverbial presupposition triggers such as again, also, and still.
- Indicate the recurrence, continuation, or termination of an event in the discourse context, or the presence of a similar event.
- The **most commonly occurring** presupposition triggers (after existential triggers) (Khaleel, 2010).
- Little work has been done on these triggers in the computational literature from a statistical, corpus-driven perspective.

- Existential
- All others (lexical and structural)
- Adverbial clauses

This Work

- **Computational approach** to detecting presupposition triggers.
- Create new datasets for the task of detecting adverbial presupposition triggers.
- **Control for potential confounding factors** such as class balance and syntactic governor of the triggering adverb.
- Present a new weighted pooling attention mechanism for the task.

Outline

Task Definition

Learning Model

Experiments & Results

Task

- Detect contexts in which adverbial presupposition triggers can be used.
- Requires detecting recurring or similar events in the discourse context.
- Five triggers of interest: too, again, also, still, yet.
- Frame the learning problem as a binary classification for predicting the presence of an adverbial presupposition (as opposed to the identity of the adverb).

- 3-tuple: label, list of tokens, list of POS tags.
- Back to our example:

Make America great again.

- 3-tuple: label, list of tokens, list of POS tags.
- Back to our example:

Make America great again. ---- Trigger

- 3-tuple: label, list of tokens, list of POS tags.
- Back to our example:

```
Make America great again. ← Trigger

Headword

(aka governor of "again")
```


- 3-tuple: label, list of tokens, list of POS tags.
- Back to our example:

 Special token: to identify the candidate context in the passage to the model.

- 3-tuple: label, list of tokens, list of POS tags.
- Back to our example: REMOVE ADVERBS

- 3-tuple: label, list of tokens, list of POS tags.
- Back to our example:

Positive vs Negative Samples

- Negative samples
 - Same governors as in the positive cases but without triggering presupposition.
- Example of positive sample:
 - Juan is coming to the event too.
- Example of negative sample:
 - Whitney is coming tomorrow.

Extracting Positive Samples

- Scan through all the documents to search for target adverbs.
- For each occurrence of a target adverb:
 - Store the location and the governor of the adverb.
 - Extract 50 unlemmatized tokens preceding the governor, together with the tokens right after it up to the end of the sentence (where the adverb is).
 - Remove adverb.

Extracting Negative Samples

- Extract sentences containing the same governors (as in the positive cases) but not any of the target adverbs.
 - Number of samples in the positive and negative classes roughly balanced.
- Negative samples are extracted/constructed in the same manner as the positive examples.

Position-Related Confounding Factors

We try to control position-related confounding factors by two randomization approaches:

- 1. Randomize the order of documents to be scanned.
- 2. Within each document, start scanning from a random location in the document.

Learning Model

- Presupposition involves reasoning over multiple spans of text.
- At a high level, our model extends a bidirectional LSTM model by:
 - **1**. Computing correlations between the hidden states at each timestep.
 - 2. Applying an attention mechanism over these correlations.
- No new parameters compared to standard bidirectional LSTM.

Learning Model: Overview

Learning Model: Input

- Embed input.
- Optionally concatenate with **POS tags.**

Learning Model: RNN

• **Bidirectional LSTM**: Matrix $H = [h_1 || h_2 || ... || h_T]$ concatenates all hidden states.

• E.g.:

We continue to feel that the stock market is the @@@@ place to be for long-term appreciation.

Learning Model: Matching Matrix

Pair-wise matching matrix M

Learning Model: Softmax

• **Column-wise** softmax: Learn how to aggregate.

Learning Model: Softmax

- **Column-wise** softmax: Learn how to aggregate.
- **Row-wise** softmax: Attention distribution over words.

Learning Model: Attention Score

• The columns of M^r are then **averaged**, forming vector β .

Learning Model: Attention Score

- The columns of M^r are then **averaged**, forming vector β .
- Final **attention vector** *α*:

 $\alpha = M^c \beta$

based on (Cui et al., 2017).

Learning Model: Attend

• Attend:

$$c = \sum_{t=1}^{T} \alpha_t h_t$$

• A form of **self-attention** (Paulus 2017, Vaswani 2017).

Learning Model: Predict

Column-wise softmax

- Predict:
 - Dense layer:
 - $z = \sigma(W_z c + b_z).$
 - Softmax:
 - $y = s(W_o z + b_o).$

Row-wise softmax

Datasets

New datasets extracted from:

- The English Gigaword corpus:
 - Individual sub-datasets (i.e., presence of each adverb vs. absence).
 - ALL (i.e., presence of one of the 5 adverbs vs. absence).
- The Penn Tree Bank (PTB) corpus:
 - ALL.

Corpus	Training	Test	
PTB	5,175	482	
Gigaword yet	63,843	15840	
Gigaword too	85,745	21501	
Gigaword again	85,944	21762	
Gigaword still	194,661	48741	
Gigaword also	537,626	132928	

Results Overview

- Our model outperforms all other models in **10 out of 14 scenarios** (combinations of datasets and whether or not POS tags are used).
- WP outperforms regular LSTM without introducing additional parameters.
- For all models, we find that **including POS tags benefits** the detection of adverbial presupposition triggers in Gigaword and PTB datasets.

Results – WSJ

- WP best on WSJ.
- **RNNs** outperform baselines by large margin.

		WSJ - Accuracy		
Models	Variants	All adverbs		
MFC	-	51.66		
	+ POS	52.81		
LOGREG	- POS	54.47		
CNINI	+ POS	58.84		
CININ	- POS	62.16		
	+ POS	74.23		
LSTIVI	- POS	73.18		
	+ POS	76.09		
	- POS	74.84		

MFC: Most Frequent Class

LogReg: Logistic Regression

LSTM: bidirectional LSTM

CNN: Convolutional Network based on (Kim 2014)

Results – Gigaword

• Baselines

		Gigaword - Accuracy					
Models	Variants	All adverbs	Again	Still	Тоо	Yet	Also
MFC	-	50.24	50.25	50.29	65.06	50.19	50.32
LogReg	+ POS	53.65	59.49	56.36	69.77	61.05	52.00
	- POS	52.86	58.60	55.29	67.60	58.60	56.07
CNN	+ POS	59.12	60.26	59.54	67.53	59.69	61.53
	- POS	57.21	57.28	56.95	67.84	56.53	59.76

Results – Gigaword

 LSTM and LSTM with Attention (WP)

		Gigaword - Accuracy						
Models	Variants	All adverbs	Again	Still	Тоо	Yet	Also	
MFC	-	50.24	50.25	50.29	65.06	50.19	50.32	
	+ POS	53.65	59.49	56.36	69.77	61.05	52.00	
LOGREG	- POS	52.86	58.60	55.29	67.60	58.60	56.07	
CNN	+ POS	59.12	60.26	59.54	67.53	59.69	61.53	
	- POS	57.21	57.28	56.95	67.84	56.53	59.76	
LSTM	+ POS	60.58	61.81	60.72	69.70	59.13	81.48	
	- POS	58.86	59.93	58.97	68.32	55.71	81.16	
WP	+ POS	60.62	61.59	61.00	69.38	57.68	82.42	
	- POS	58.87	58.49	59.03	68.37	56.68	81.64	

Results – Gigaword

• WP outperforms in 10 out of 14 cases.

 Better performance with **POS.**

		Gigaword - Accuracy					
Models	Variants	All adverbs	Again	Still	Тоо	Yet	Also
MFC	-	50.24	50.25	50.29	65.06	50.19	50.32
	+ POS	53.65	59.49	56.36	69.77	61.05	52.00
LOGNES	- POS	52.86	58.60	55.29	67.60	58.60	56.07
	+ POS	59.12	60.26	59.54	67.53	59.69	61.53
CININ	- POS	57.21	57.28	56.95	67.84	56.53	59.76
	+ POS	60.58	61.81	60.72	69.70	59.13	81.48
LSTIVI	- POS	58.86	59.93	58.97	68.32	55.71	81.16
	+ POS	60.62	61.59	61.00	69.38	57.68	82.42
VVP	- POS	58.87	58.49	59.03	68.37	56.68	81.64

Qualitative Analysis

• Positive sample:

... We **continue** to feel that the stock market is the @@@@ place to be for long-term appreciation.

• Negative sample:

... Careers count most for the well-to-do. Many affluent people @@@@ place personal success and money above family.

Conclusion

- New task, detection of adverbial presupposition triggers
- New datasets for the task.
- New attention model tailored for the task.
- Our model outperforms other strong baselines without additional parameters over the standard LSTM model.

Future Directions

- Incorporate such a system in an NLG pipeline (e.g., dialogue or summarization with text rewriting).
- Discourse analysis with presupposition (e.g., political speech).
- Investigate other types of presupposition.

Thank you! ③

Thank you to our co-authors:

Thank you to our sponsors:

Yulan Feng

Prof. Jackie CK Cheung

