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ABSTRACT
Creating software tutorials involves developing accurate code ex-
amples and explanatory text that engages and informs the reader.
Large Language Models (LLMs) demonstrate a strong capacity to
generate both text and code, but their potential to assist tutorial writ-
ing is unknown. By interviewing and observing seven experienced
writers using OpenAI playground as an exploration environment,
we uncover design opportunities for leveraging LLMs in software
tutorial writing. Our findings reveal background research, resource
creation, and maintaining quality standards as critical areas where
LLMs could significantly assist writers. We observe how tutorial
writers generated tutorial content while exploring LLMs’ capabili-
ties, formulating prompts, verifying LLM outputs, and reflecting on
interaction goals and strategies. Our observation highlights that the
unpredictability of LLM outputs and unintuitive interface design
contributed to skepticism about LLM’s utility. Informed by these
results, we contribute recommendations for designing LLM-based
tutorial writing tools to mitigate usability challenges and harness
LLMs’ full potential.

CCS CONCEPTS
• Human-centered computing→ User studies; User interface
design; • Software and its engineering → Software notations
and tools.
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1 INTRODUCTION
Software tutorials refer to the instructional documentation intended
to guide the readers progressively through tasks concerning soft-
ware features. Due to their accessible and engaging style and task-
oriented focus, tutorials are indispensable tools for readers learning

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DIS ’24, July 1–5, 2024, IT University of Copenhagen, Denmark
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0583-0/24/07.
https://doi.org/10.1145/3643834.3660692

a new technology [40]. A study by Aghajani et al. [1] reveals that
practitioners perceive tutorials as invaluable for numerous soft-
ware engineering tasks. Beyond supporting software users, tutorial
creation significantly benefits its writers, including professional
growth and learning [3, 50]. However, creating software tutorials in-
volves a complex interplay of many challenging aspects, including
building sufficient technical background of the target technology,
writing the reference programs, identifying relevant code snippets
to include in the tutorial, clearly presenting and explaining code
snippets, and formatting tutorials as incremental stages to facilitate
learning [24, 25, 66]. Addressing these aspects insufficiently can
result in misleading or faulty content, resulting in poor tutorial
quality [2].

Meanwhile, recent advances in language technology have at-
tracted notable attention for their potential in developing effective
writing tools. In particular, Large Language Models (LLMs), ma-
chine learning models trained with textual data on massive scales
to predict and generate language, are increasingly being used to
support various aspects of creative writing such as ideation [34],
text generation [12], and draft revision [14]. Nevertheless, their po-
tential in software tutorial writing is unexplored. Tutorial writing
involves creating instructional content that is engaging, clear and
factually accurate across both code and natural language. When
trainedwith large-scale corpora of both natural language and source
code, LLMs can generate content across a broad range of topics
and predict text and code across multiple natural and programming
languages. Such a capacity makes LLMs a suitable candidate for the
tutorial writers’ toolkit. Moreover, interacting with LLMs is typi-
cally through textual prompts, a paradigm that is versatile while
requiring minimal effort to learn.

Despite LLMs’ potential to be a capable tool, the actual user
experience with LLMs can sometimes be filled with uncertainty
and dissatisfaction [35]. Notable issues are inconsistencies in model
output [19, 68], lack of trustworthiness [21], questions about con-
tent ownership [7], and outdated information [28]. The extent to
which these issues impact the utility of supporting the tutorial writ-
ing process remains uncertain. The non-deterministic nature and
sensitivity to changes in prompts [39] also present a significant chal-
lenge for tool designers in creating appropriate interactions that
can effectively use their capabilities [13, 69]. Moreover, a smooth
integration of LLMs into existing processes and tools of the target
tasks is far from intuitive [65]. To provide essential support for
software tutorial writers with the LLMs, it is, therefore, essential to
carefully examine the needs of tutorial writers, how the capacities
of LLMs might meet their needs, and how to align such capacities
with writers’ existing practices and workflows.
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Figure 1: An overview of our key findings, including relevant areas for adopting LLMs in tutorial writing context (derived from
interviewing tutorial writers) and aspects during direct interaction (derived from observing writers using LLM for writing
tasks). Our proposed Design Recommendations (DRs) for building LLM-based tutorial writing tools are indicated next to the
relevant interaction aspects.

In our work, we investigate how LLMs might be effective in
meeting the needs of tutorial writers through a user study with
seven technical writers with extensive experience in writing and
publishing tutorials. Instead of solely focusing on how LLMs can
solve tutorial writers’ challenges in their existing practice, we also
examine novel use cases and interaction patterns of tutorial writers
when provided with advanced technology like LLMs. In particu-
lar, we started with an interview with the writers to understand
their activities and concerns related to tutorial writing and how
those activities might benefit from the assistance of LLMs (Research
Question 1). Subsequently, we gave them a brief introduction to
LLMs’ capabilities and limitations and observed their expectations,
strategies, and challenges when using an LLM for tutorial writ-
ing (Research Question 2). The LLM used in the user study was
Codex [47], an LLM specifically trained on both natural language
and source code. The interaction was through a web application
called playground, offered by OpenAI to enable users to prompt
Codex and other models.1. We finally discuss our observations to in-
form potential opportunities and practicalities in designing AI tools
for tutorial development. By combining user-centred design with
technology-driven inquiries, we contextualize the tutorial writers’
values in the expanded innovation space of tutorial tools afforded
by LLMs [69, 70].

The interview study results surface three areas that are most
relevant to the capabilities of the LLMs in generating code and
natural language for tutorial writers: (a) performing research on
background concepts, (b) resource creation, and (c) meeting writing
quality standards. By observing how writers interact with the LLM,

1https://platform.openai.com/playground

we find four aspects concerning their interaction with LLM-based
tools. First, writers approach the interaction process once they
formulate a goal for the interaction based on certain expectations.
These goals involve understanding the model’s technical limits or
directing the model to produce desired tutorial content. Next, they
articulate their intentions to the LLM in the form of prompts. Our
participants employed strategies to elicit relevant content, such as
providing the overall tutorial structure and refining the prompts
with topic-specific keywords.

Once the LLM generates an output to the specified prompt, writ-
ers observe and verify the output in the context of their prompt and
the overall tutorial. Verification involves leveraging their domain
expertise, consulting existing documentation or references online,
and sometimes executing the code generated by the LLM. Finally,
writers reflect and revise their expectations and future interaction
goals based on the usefulness of the output and how well the output
meets their expectations. These aspects are performed continuously
in subsequent interactions until the objective is achieved or the
LLM usage is abandoned. We provide an overview of these stages
and aspects in Figure 1.

While resembling the cognitive processes of writing in previous
literature [17], the LLM-interaction process we observed is more
fine-grained and captures the unique dual objectives of the tutorial
authors when using the LLM – understanding the capacity and
limitations of the tool and achieving the writing goals. Informed by
these findings, we discuss design implications and make recommen-
dations for interface design of LLM-based tools for tutorial writing
that can enhance the interaction of users along the highlighted
dimensions.

In summary, our work makes the following contributions:
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(1) Identifying unique workflows, considerations, and concerns
of software tutorial writing to inform the integration of LLM-
based tutorial writing tools.

(2) Depicting the interaction strategies and corresponding chal-
lenges faced by the tutorial writers while using LLMs.

(3) Proposing design recommendations for LLM-based tutorial
writing tools that address the primary considerations from
both the writers’ existing workflows and characteristics of
their interaction with LLMs.

2 RELATEDWORK
Our work is informed by existing research on tool support for
authoring software tutorials and interactions for code and natural
language generation using LLMs.

2.1 Tool Support for Authoring Software
Tutorials

The research landscape for software tutorial creation addresses
challenges such as selecting and maintaining consistency in the
code examples [20, 24, 25, 66], simplifying the capture of screen-
shots and other resources to be included in the tutorial [38, 45, 72],
and orchestrating capture of crowdsourced information like com-
munity annotations for their reader’s understanding [15, 22, 32].
The solutions proposed in these studies facilitate integration and
maintenance of supporting resources in the tutorial to add context
while expecting the writer to manually perform aspects such as de-
veloping code implementations, selecting and editing relevant code
snippets to include in the tutorial, and crafting high-quality expla-
nations. An interview study by Head et al. [25] highlights the need
for support in selecting programming tutorial topics, producing
accurate and engaging content, and integrating code snippets with
textual explanations. Our work expands this inquiry beyond pro-
gramming tutorials to include general software technology. We are
particularly interested in the applicability and challenges of using
LLMs in these workflows – how the software tutorial writer might
leverage the LLM’s generative capabilities in both code [10, 65]
and detailed explanation [36] using natural language statements
or prompts [39] to accelerate the tutorial authoring and resource
generation process with minimal human intervention. Our work
examines user interaction with LLMs for writing tutorials focusing
on unique benefits like generating coherent code from natural lan-
guage and summarizing or explaining code. This approach differs
from prior studies, which concentrate on editing tutorials with
either reference solutions or expect humans to perform the edits
manually.

2.2 Intelligent and Interactive Assistants for
Generating Code and Text

While LLMs excel in generating code and natural language, their
usability in complex programming and writing tasks is often lim-
ited because of the mainstream design of human-LLM interac-
tion. Vaithilingam et al. [65] reported that existing LLM-based tools
used for code generation like Copilot2 generate large blocks of code,
making it difficult for humans to debug and refactor code effectively.

2https://github.com/features/copilot

Barke et al. [4] identified two user interaction patterns while using
Copilot: acceleration, where programmers use the tool for rapid
completion of known tasks, and exploration, employed for explor-
ing alternate programming solutions. They used these findings to
advocate for better usability of programming assistants, such as
providing users with greater control over the code generation and
capabilities to validate the generated code. More recently, Ross et al.
[54] explored a conversational assistant for general assistance dur-
ing programming tasks, including code generation, and observed
that the conversational paradigm improves the co-creation aspect
in code generation. These works highlight the importance of study-
ing human interaction strategies to inform the design of LLM-based
tools.

Human-LLM interactions for text generation have been studied
across several dimensions, such as needs and values of users [7,
18, 27, 31, 53], writing domains [9, 43, 58], and writing stages [17].
However, existing work on designing tools to support writing activ-
ities lacks a discussion on tutorial authoring [17, 33]. For example,
by analyzing 33 systems from the literature, Gero et al. [17] map the
design space based on the Cognitive Process Theory ofWriting [16].
Their work identifies a lack of support in planning and reviewing
stages of writing for highly constrained tasks due to the poor capa-
bilities of language technologies at the time. Our work builds upon
their result to study the task of tutorial writing in-depth, where we
identify the specific writing processes where LLM can be promising.
Tutorial writers have open-ended pedagogical goals [30] involving
the dual modalities of code and natural language. At the same time,
they are tightly constrained by the various aspects of the targeting
software, such as the programming language, the underpinning
technology, the software version, etc. We investigate strategies and
challenges faced by the tutorial writers as they interact with Codex,
an LLM capable of generating both code and natural language,
aiming to make design recommendations for this open-ended and
constrained task. Furthermore, our findings are pertinent to the
needs during LLM interactions rather than the general thought
process outlined in the Cognitive Process Theory of Writing.

3 STUDY DESIGN
To investigate how tutorial writers interact with an LLM, we con-
ducted an exploratory study with seven highly experienced tutorial
writers from diverse backgrounds. Specifically, the goal of the study
was to draw out 1) the current workflows and challenges of writers
in their tutorial creation process to inform areas where the use of
LLMs can be beneficial, 2) the writers’ perceptions and expectations
when using LLMs, as well as the strategies writers employ to utilize
LLMs effectively for their specific needs and expectations. In this
section, we discuss the study design to meet our goal. Our study is
approved by the research ethics board of the authors’ university.

3.1 Participants and Recruitment
We aimed to engage diverse individuals with extensive experience
in writing and publishing technical tutorials, ensuring they could
provide insights into the challenges, strategies, and opportunities in
this area. During the recruitment stage, each potential participant
was asked to share at least one of their published technical tutorials;
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one author manually validated the tutorials to ensure their exper-
tise. Validation involved checking for sufficient length and depth in
the subject matter and the inclusion of instructional resources such
as code snippets or screenshots. We had 33 sign-ups for the study
from technical writing communities on Slack, Reddit, and LinkedIn,
of which 19 were excluded for not sharing links to a published
tutorial. Of the 14 who shared the links, four were excluded based
on the quality of the tutorial, and three did not proceed with the
interview scheduling process. Finally, we recruited seven partici-
pants (henceforth referred to as 𝑃1-𝑃7). Table 1 provides relevant
demographic and professional information of all the participants
in our study. As a token of appreciation for participating in the
study, each participant was compensated with an Amazon gift card
valued at $20 CAD or an equivalent amount in their local currency.

Recruiting participants with specialized expertise is difficult to
carry out effectively at a large scale. The rigorous recruitment strat-
egy we followed ensures the expertise of the selected participants.
Upon inspection, our participants demonstrate sufficient diversity,
representing several facets of the software engineering discipline.
They provide insights into the documentation practice for open-
source communities, startups, and established companies. Their
instructional materials are disseminated across multiple platforms,
including company websites, community blogging platforms (e.g.,
Medium), and GitHub. The participant group comprised junior and
senior experts in software development and technical writing in
terms of years of experience and writing frequency. Given the scope
of this work, we deem our study sample is appropriate [23, 46, 61];
input from our participants can provide a rich account of the possi-
bilities and limitations of using LLMs to aid tutorial writers with
the generation of software tutorial content and resources in various
context.

3.2 User Study Procedure
The study consisted of a semi-structured interview about existing
tutorial writing practices and an observation component where we
examined how participants used LLMs for tutorial creation. The
complete study for each participant lasted around one hour and
was screen-recorded.
Semi-structured interview. The initial part of the study involved
interviewing participants [56] to understand their current practices
and workflows in tutorial writing. We focused on their experiences,
tools used, and techniques for writing, organizing, and maintaining
tutorials. We asked the participants to contextualize this discussion
using (but not limited to) the tutorials they submitted during the
recruitment to understand their practices with concrete examples.
Participant Observation.We performed direct observation [41,
51, 56] to get an accurate understanding of the nuanced interactions
with the LLMs, especially in the context of writing software tutori-
als. Since the LLMs were not prevalent in tutorial writing practice
during the study period (August and September 2022), any retro-
spective account would be insufficient to understand the individual
contexts in which the users interacted with the LLM. Instead, we
asked the participants to mimic the scenario of writing a tutorial on
a topic they were familiar with while being assisted by Codex, one
of the most capable models trained on both code and natural lan-
guage at the time of the study. Participants interacted with Codex

through the OpenAI playground [48], a web application for easy ac-
cess to the OpenAI LLMs. The playground presents a large text area
along with a panel where the users can choose the LLM settings,
notably, mode of interaction (one of Complete, Edit, or Instruct),
model from different model families such as Codex3, maximum
length token (default value of 256), which indicates the number of
tokens generated by the LLM per request, and temperature (default
value 1). Since most of the participants had not used the tool prior
to this study, we provided a brief introduction and introduced the
playground settings. Participants were free to modify the settings
at any point during the exploration. We asked participants to follow
the ‘think aloud’ protocol [29, 60] during the exploration, encour-
aging them to voice their thoughts, actions, and expectations as
they interacted with the tool. The interviewer occasionally asked
participants about their actions and impressions of the interaction
with the tool. While the study protocol might result in participants
behaving differently due to being observed, we wanted to gain rich
insights into the participants’ thinking process and perspectives
as they used the tool, which is difficult to obtain from other study
formats [52].

During the observation phase, we chose to leverage a general-
purpose model like Codex over fine-tuned tutorial writing models
for two reasons. Firstly, given the open-ended nature of tutorial
writing, it was uncertain which specific features of the LLMs the
writers might engage with. Opting for a fine-tuned model targeted
at a particular task could potentially limit our understanding of
the broader applications of LLMs in the context of assisting tu-
torial writers. Additionally, fine-tuning a model without precise
direction could lead to premature optimization for specific tasks,
which could possibly skew the user’s perceptions towards believing
that LLMs are only suitable for those particular aspects. Using a
general-purpose model like Codex enabled us to study the diverse
aspects of tutorial writing, which could be later used to fine-tune the
LLMs for specific objectives targeted at the most desired use cases.
Secondly, our objective was to investigate the usability aspects
of human-LLM interaction in tutorial writing and derive design
considerations. Considering this objective, we design our study
methods to post minimal constraints on the model itself and to be
applicable amidst the advancements in language technologies.
Reflection. We concluded the study by asking the participants
to reflect on their interactions with the LLM for writing tutorials,
including its perceived usefulness, advantages or challenges, or
any other relevant aspects. We also asked the participants about
potential features they expected to have for an LLM-based tutorial
writing tool.

3.3 Data Analysis
We performed a qualitative analysis of the audio transcripts of the
interview study extracted using Microsoft Teams. We analyzed the
participants’ reflections about their existing writing practises in-
volving text production or code snippet generation, where LLMs
could be leveraged to add value to the writing workflows. In addi-
tion, we used screen recordings to observe participants’ interactions
with the LLM in the playground. Here, we leveraged a hybrid the-
matic analysis approach to make reflective observations [63]. First,

3Codex is discontinued in March 2023 [49].
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Table 1: Background of the Study Participants. English proficiency is based on Interagency Language Roundtable Scale [55].

Participant
Years in
Software

Engineering

Tutorial Authoring
Frequency (Past 3 Yrs)

Tutorials
Written

Experience with AI
tools Current Occupation English Proficiency

𝑃1 <5 years Weekly/biweekly 5 Not used previously Lead, technical
documentation Professional Working

𝑃2 <5 years Once a month 2 VS Code IntelliSense University Student
(Computer Engineering) Native/Bilingual

𝑃3 11-15 years Once a month 20 Not used previously Technical Writer Professional Working

𝑃4 11-15 years 2-3 times a week 50 GPT-3 based tools
(Jasper AI)

CEO (Technical writing
agency) Native/Bilingual

𝑃5 1-2 years Once in several months 20 VS Code IntelliSense Student, Technical
Writer Native/Bilingual

𝑃6 >15 years Once a month 50 Not used previously Technical Writer Native/Bilingual

𝑃7 11-15 years Once a month 50 VS Code IntelliSense Software Engineer, Site
Reliability Engineer Full Professional

the first author reviewed the audio transcripts and screen record-
ings to annotate the salient themes and generate the initial codes.
Next, the remaining two authors further critiqued and joined the
discussion to ensure robustness. As insights emerged from the in-
terviews, we referred to the literature on writing processes and
employed an abductive and retroductive inference [42] strategy.
We present our results in the subsequent section and draw paral-
lels to the existing theories on interaction design and discussions
regarding tutorial writing.

4 FINDINGS FROM SEMI-STRUCTURED
INTERVIEW

From the interview with the tutorial writers, we distill the crucial
workflows, considerations and challenges they face to answer:RQ1:
What aspects of the tutorial writing are relevant and might
benefit assistance from LLMs? Specifically, we describe how
the writers undertake thorough background research prior to the
writing, their development of content along with resources such as
code snippets and notes, and the refinement of developed content
while adhering to self-imposed quality standards. We also discuss
participants’ reflections on how LLMs can support them in these
workflows after they interact with themodels (code-davinci-002 and
davinci [49]) available in the playground interface for the writing
tasks in our study.

4.1 Assisting with Research of Background
Concepts

4.1.1 Existing Practice. Before writing a tutorial, writers perform
a thorough research of the existing background information about
the topic. Their research typically involves investigating existing
resources through various channels, including existing documenta-
tion and online platforms like YouTube, internet forums, and Reddit.
Through research, they identify gaps in the publicly available con-
tent and gauge potential information that the learners might seek
regarding the subject. Such a process facilitates their own learn-
ing and mastery, especially when dealing with new technology

or unique applications of familiar technology. In instances where
existing resources do not cover certain information, they lever-
age their access to developers, if available, for further insights and
clarifications.

Participants highlighted two challenges related to the interaction
with developers. First, developers often presume that the writers
possess a foundational understanding of background concepts dur-
ing technical discussions (e.g., “[Developers] expect us to understand
certain things in the development area. They don’t know that we are
totally new to this” [𝑃3]). This expectation leaves writers, espe-
cially those new to the technology, with a difficult task to quickly
grasp complex background concepts. The second challenge is when
writers are blocked due to developers being unavailable for such
discussions (e.g., “Getting a developer’s time is sometimes difficult, es-
pecially during the sprint or a deadline” [𝑃6]). Participants acknowl-
edged that the recent shifts towards remote work had facilitated
convenient and productive collaborations, with tools like Slack and
Zoom ensuring quicker responses by the developers.

4.1.2 Opportunities. The conventional approach to gathering in-
formation for tutorial writing is cumbersome since it involves sift-
ing through scattered documentation or consulting with busy de-
velopers. Participants acknowledged the potential of using LLMs to
streamline this process. For instance, 𝑃4 identifies LLMs as a poten-
tial stand-in, stating “It would be like a replacement for a developer
to ask technical questions. So, if I can’t find a developer then I could
ask the model, what does this piece of code, module, or web page do?
What is it for?”. Echoing this sentiment, 𝑃3 observed, “Even when
not probing developers, we have to get definitions and details from
the Internet, for which this is extremely helpful.” While collaborating
with developers can be insightful for acquiring information not
readily available in the documentation, there is an opportunity to
leverage LLMs more effectively in this context. For example, 𝑃6
suggests enhancing LLMs by training them on the design documen-
tation, “The design documentation, which is usually internal, often
explains the rationales for projects. If you could somehow train them,
that’d be valuable to explain the rationales and the intentions”.
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4.2 Creating Instructional Code and Text
Content

4.2.1 Existing Practice. Writers create a range of content during
the tutorial writing process. Content like illustrative code examples
and outputs or screenshots (e.g., a tutorial for using software with
a graphical interface) enhance the tutorial’s instructional value and,
therefore, are developed to integrate into the tutorials. However,
they lack sufficient tooling support to tutorial writing specific tasks.
While developing programming tutorials, writers first implement
and execute the complete code. Having a working implementation
adds credibility to the tutorials and facilitates the capture of relevant
code snippets and outputs, which offers context and clarity for the
readers (e.g., “You have to rely on [code examples] to make sure [the
readers] follow the intentions of the API, and not abuse the API. Then
I’ll throw in the explanatory content around the logical chunks and
explain each chunk and the rationale” [𝑃6]). Participants reported
using IDEs, text editors, and, in one case, even traditional pen and
paper to develop the implementations.

When it comes to working with code, they needed to “involve the
support and collaborate with developers as well” [𝑃3] which required
adapting tools like GitHub (e.g., “Developers are more familiar with
the GitHub so it’s easier for both of us. But for some technical writ-
ers, there will be a learning curve to get used to this” [𝑃3]). This
collaboration tends to benefit the developers as it allows them to
identify and rectify previously unidentified issues in the existing
documentation (e.g., “Sometimes the client has never actually done
what they’re asking before, and it might not actually work the way
they think it should. That’s what they’re looking for partly, somebody
to help catch those kinds of issues and errors in their documentation.
But that can be very frustrating as a writer” [𝑃4]).

Writers execute and verify the code implementation in the tu-
torial at multiple stages, starting from the initial development and
again while adding textual explanations. This ensures the final tu-
torials are free from errors which arise when adding additional
content and narratives (e.g., “I usually make edits to make the con-
tent more human readable. It’s easy to introduce syntax errors while
doing that, so I copy it back to the command line to make sure that
I didn’t break anything” [𝑃7]). Participants reported inadequate
support towards supplementary tasks like managing references
to successful and unsuccessful code implementations or capturing
complex screenshots requiring extensive setup (e.g.,“Software devel-
opers have amazing tools because they are software developers. They
can make their own tools. Technical writers have unmet needs because
we’re not software developers for the most part, and we can’t make
tools, so we have to rely on developers to make tools for us” [𝑃6]).

Resources like notes or writing templates are often intended as
personal reference material to assist the writing process, though
they may not be included in the final tutorial. Participants stated
that these resources are useful when they encounter challenges like
writer’s block, which poses challenges in coherently articulating
ideas (e.g.,“Writer’s block wasmore frustrating than other [challenges]
because I have written something which doesn’t make sense, but I don’t
know what to do” [𝑃5]). Writers construct notes by documenting
their everyday work and recording their solutions to problems they
reckon the readers might encounter. Writing templates consist of
instructions, checklists, or good practices which are either sourced

from public repositories like TheGoodDocs Project4 or are based on
the writers’ own prior experiences in tutorial creation. Participants
also reported turning to AI-powered tools such as QuillBot5, which
assist with paraphrasing or restructuring the content to get past
writer’s block.

4.2.2 Opportunities. The capability of LLMs to generate both text
and code can allow writers to avoid constantly switching between
various IDEs, text editors, and reference materials. 𝑃6 illustrated the
possibility of transforming the traditional tutorial creation work-
flow, “It flips the workflow around because instead of first making sure
the [tutorial steps] work and then retracing your steps and putting
them in [tutorial], here can start with the goal and put something out
and then you start to test it out.” 𝑃7 emphasized the efficiency of
this approach, mentioning that what took mere seconds with the
LLMs, traditionally “would have taken easily 30 minutes to put out.”
Such a shift in the creation process allows writers to focus more on
refining the content and ensuring it connects well with the target
audience.

4.3 Meeting Tutorial Quality Standards and the
Needs of Readers

4.3.1 Existing Practice. Writers adhere to self-imposed quality stan-
dards such as clarity, readability, completeness, and being up-to-
date, prioritizing the information needs of their audience while
aiming to maintain the tutorial’s accuracy and relevance. This fo-
cus significantly influences their decisions regarding the tutorial’s
scope, writing style, and the choice of resources to include in the
tutorial.

Given the rapid pace of technological updates, keeping the tu-
torial up-to-date is a critical challenge in ensuring tutorial quality.
Writers either keep track of code changes themselves or rely on de-
velopers for updates (e.g., “Most of the time, [developers] inform us if
there are any changes in the code or there is a new release. Sometimes
they forget, and when users point out that the tutorial seems obsolete,
we update” [𝑃3]). In cases of minor updates, developers modify
the tutorials despite being less experienced in writing, which in
turn necessitates further editing (e.g., “We look for technically strong
developers to write tutorials. Then, we find editors who can read their
tutorials, clean them up, and improve the writing without breaking
the technical accuracy” [𝑃4]). When significant changes need to be
made quickly in fast-evolving fields like machine learning, writers
prefer to create new tutorials rather than revisit existing ones (e.g.,
“In 8-9 months, there are new versions of tools with new features. You
can’t go back to your tutorial and change everything. The only way
is not to update the tutorial but to write new ones” [𝑃5]). A proactive
strategy discussed by the participants is to design tutorials with a
focused scope, covering select features to reduce the extent of nec-
essary updates (e.g., “A tutorial usually touches lightly on a handful
of features, and unless those features change drastically, there’s not
much maintenance” [𝑃6]).

Writers greatly value clarity and readability (e.g., “I edit con-
tent to make it more human-readable, pretty, and easily digestible.
Like breaking up commands into multiple lines” [𝑃7]). They aim to

4https://thegooddocsproject.dev/
5https://quillbot.com/



Do LLMs Meet the Needs of Software Tutorial Writers? Opportunities and Design Implications DIS ’24, July 1–5, 2024, IT University of Copenhagen, Denmark

provide the necessary context within the tutorial to minimize the
need for any external references (e.g., “I don’t like sending people to
[external] links. I rather synthesize the content, reword it and make
it more clear” [𝑃7]). However, achieving the balance in providing
the right amount of details can be challenging since writers need
to anticipate and tailor the content based on the reader’s technical
level (e.g., “With a very junior-level reader, I might want to include
every step but with a senior person, I might jump right to the things
that are relevant to them” [𝑃4]). This balance is crucial in designing
tutorials that are not only informative but also instill confidence in
users to navigate and explore the system. One strategy is to develop
short and focused multi-stage tutorials that gradually increase in
complexity and scope. Despite existing tools like Confluence that
are used to organize and structure the tutorials, articulating concise
tutorials remains challenging (e.g., “Trying to condense and be to the
point but also remain very clear and read well is the challenge” [𝑃7]).

4.3.2 Opportunities. Participants acknowledged LLMs’ efficiency
in tasks like translation, which is essential for tutorial content dis-
semination. Translation extends content accessibility and broadens
its reach. Multilingual support is often a requirement posed by the
companies, “In EU, if you have documentation on your site, you have
to have it in the native country’s language as well. The German and
French companies like what we write [in English], but also want to
have it in French and German, their native languages, and that’s a
big deal for them” [𝑃5]. However, the challenge lies in ensuring
that the translated content maintains its technical accuracy and
contextual relevance. Versions in different languages need to main-
tain the same level of accuracy and clarity as the original, often
necessitating human oversight (e.g., “I don’t see how any model, even
if it works, will just write the things. How will it know to maintain
itself?” [𝑃1]).

5 FINDINGS FROM PARTICIPANT
OBSERVATION

To further understand the design considerations for using LLMs
in tutorial writing, we must investigate how the writers might
approach LLM interaction for concrete writing tasks. In this section,
we draw from observations of how participants utilized the LLM
in tutorial creation to answer: RQ2: What are the expectations,
strategies, and challenges when writers use LLMs for tutorial
creation? In particular, we discuss how writers formulate initial
expectations and goals of interaction, articulate their goal through
prompts to LLMs and other parameters, observe and verify the
generated content, and eventually reflect and revise their goals and
interaction strategies based on the output.

The prospect of using LLMs for writing a complete tutorial was
new to all our participants, given the lack of established and mature
LLM-based tutorial writing tools in the market; four participants
(𝑃2, 𝑃4, 𝑃5, 𝑃7) had prior experience with using intelligent coding
tools (see Table 1). Therefore, each participant was briefly intro-
duced to the capabilities of individual models (code-davinci-002 and
davinci [49]) before the observation study and the features of the
OpenAI playground that might be relevant to their writing process.
We encouraged the participants to use LLMs for broader tutorial
writing workflows that they discussed in the interview, as described
in the previous section. Examining their interactions within the

context of outlined tasks situates their perceptions, strategies, and
challenges in adapting LLMs to the unique requirements of tutorial
creation. When introducing the quotes from the participants, we
indicate the actual textual prompts our participants typed on the
playground interface by enclosing them in brackets and highlighted
with a [different font] for clarity.

5.1 Formulating Expectations and Goals of
Interaction

Participants possess a mental model of the LLM, i.e., an internal
representation of the LLM’s functionalities, capabilities, and an-
ticipated behaviour. Users form expectations and define the
goals and intentions according to their mental model as they
approach the LLM in each interaction cycle. The objectives of the
interaction might be to update the mental model (e.g., to probe and
understand the capability of LLMs better or to explore the possible
ways to elicit the best responses from it) or to use LLM towards the
overall writing goal (e.g., to complete a section in the tutorial or
to edit a specific step in the tutorial). While working with an LLM,
the interaction goals frequently switch between the two as the user
attempts to decipher the LLM’s capabilities and employ them for
tutorial writing.

Some participants intended to start by replicating the strategies
shown in the initial introduction of the study (e.g., “Just repeating
whatever worked successfully before, as you showed me” [𝑃6]). As
familiarity with LLMs grew, participants began experimenting and
calibrating the workflows (e.g., “Let me use a different input [Ex-
ploring different Embeddings]. I want to see what comes up” [𝑃5]). Such
experimentation was often related to understanding the capacity of
LLM (e.g., “Can we describe something more sophisticated than just
a single function? Say I gave it the source code to an entire program
and see if it understands how a human would use it?” [𝑃6]).

Since tutorials are often written for a particular version of a spe-
cific technology, participants expressed the need to understand
the model’s technical boundaries and the sources of the in-
formation (e.g., “Is the model working from the information they
got from the help content, like the documentation or source code?”
[𝑃6]). However, such information is not readily available or easily
assessed, leading to questions like “How quickly do they update the
model? At one point they indexed a lot of stuff from Google results.
Are they doing that continuously?” [𝑃4]. To obtain this knowledge,
participants intend to leverage circuitous strategies (e.g., 𝑃4 de-
scribed a strategy they employed “Trying to figure out the limit, I
started playing around [tell me about the latest updates to Redis], and see
which version it tells me about because that gives you the decay of
how updated it is” ). Prior experiences and perceptions about the ca-
pabilities of LLMs influenced the participants in their probing (e.g.,
“I’ve seen one example on the Internet about a security issue when you
would ask [the LLM] about API keys, and it will give you someone’s
API keys. What happens if you tell the Playground to generate AWS
keys? [generate AWS keys]” [𝑃1]).

Participants reflected being skeptical and hesitant since they did
not understand the inner workings of the model (e.g., “We don’t
understand what this model does. I don’t know what I’m entering, and
I don’t know what’s happening with it. I don’t wanna use it” [𝑃1]).
While there is interest in understanding the LLMs’ training
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processes, data update cycles, strengths and weaknesses, it
is primarily to gauge the tool’s relevance and utility for tutorial
writing. 𝑃6’s query, “The model knows about [software] due to its
training on documentation. But what about when documentation is
absent?”, pinpoints the desire for clarity on how LLMs acquire and
utilize information.

5.2 Articulating Goals and Intentions into
Prompts

Users communicate their intentions to the LLM through carefully
constructed prompts and sometimes even specific LLM parame-
ters. However, accurately articulating their intentions can be
challenging, leading to ambiguous or misdirected prompts.
The user’s perceptions of the capability of the LLM can skew their
prompts toward either oversimplification or excessive ambition.
Consequently, users found themselves dedicating significant ef-
fort towards refining their prompts to effectively “phrase it for
the machine” [𝑃4]. This task is further complicated by a lack of
transparency in how changes in prompts have impacted the LLM’s
outputs.

As the participants worked to align the LLM’s output with their
writing objectives, they devised multiple strategies to steer the
LLM (e.g., “Everything that I’ve considered valid here, I’ll retain, and
then I’ll guide [the model] in a slightly different direction” [𝑃7]).
Their prompting techniques mirrored traditional manual tu-
torial drafting approaches, such as providing an overarching
structure of the target tutorial. 𝑃5, for example, structured their
tutorial by starting with section titles, noting, “I want to start with
an introduction. I would probably input the title [Searching for Semantic
Similarity - Introduction] and see the [LLM’s] response”. Participants also
frequently edited and reformulated their prompts, such as
adding/removing topic-specific keywords (e.g., “To avoid bias, I
removed NLTK [from the context window], prompting it to explore
GloVe. When I excluded GloVe and added the word choosing, it began
suggesting alternatives. It eventually provided three sensible options”
[𝑃5]). Crafting and tinkering with prompts to achieve the intended
output required considerable time and effort from the participants.
Experienced participants questioned the actual value derived from
using the LLM (e.g. “It takes this art form to get it to actually produce
relevant output. I have to think about what am I actually getting it to
do. When I am a developer who’s done this for many years, it would
be faster for me to do it myself” [𝑃4]).

The usability of an LLM’s interface significantly influences how
users understand its capabilities. While we acknowledge that the
playground’s primary aim is model exploration and not tutorial
writing, we observed that the usability issues led to misconcep-
tions and eventually resulted in underutilization or abandon-
ment of the LLM. Two primary issues of the interface were the
inability to differentiate between prompts and generated text and
unclear indicators of how prompts and model parameters affect
text generation. The playground provides a single text box for both
input and output in the Complete mode, confusing the participants
about what constitutes input for the LLM (e.g., “There’s nothing
related to deployment [in the generated content] because it’s biased
by the multitude of input before deployment” [𝑃5]). This confusion
led to strategies like pruning the existing content in the text box to

manage context. Nevertheless, participants expressed skepticism
about adopting the interface to the actual tutorial writing (e.g., “If
you want to write a blog in continuation, how can you not have the
whole next thing? Is it expected to completely remove content every
time to let this tool do the job?” [𝑃5]). Furthermore, the lack of clear
indicators to illustrate the effect of prompts or model parameters
necessitated the participants to often speculate on the required
prompts and parameters to obtain desired output (e.g., “I’m sure it’s
not gonna be able to create all that in just 256 characters. I guess I can
up [maximum token length] and see what happens” [𝑃4]). Several
participants observed the generation stopping mid-sentence due to
a tool-imposed limitation on the token length “OK, so I ran out of
tokens there” [𝑃6] and resorted to workarounds to continue genera-
tion “I guess if I hit ‘submit’ again, is it gonna keep going or what?
What would it do?” [𝑃4]. However, such strategies were not appar-
ent and resulted in judgments like “fall short, but at least complete
a sentence” [𝑃5]. While the playground offers modes like Complete,
Edit, and Instruct, their utility was not obvious or cumbersome as
the participants had to copy and paste the target content between
the modes manually. Participants attributed the low usability of
features as one of the biggest factors for abandoning such tools for
tutorial writing (“I think there are too many issues for it to be worth
working on it. I have no idea how to make it usable” [𝑃1]).

Regardless, there is a constant disconnect between user intent
and how to prompt the output, as illustrated by 𝑃5’s comment, “for
this [model], you’ll have to find what exactly to tell them. It’s like
communicating in a different language.” Participants also indicated
a need for fine-grained control over content generation and editing.
As 𝑃5 put it, “it should let me provide some basic keywords that I
want to include and not just go on its own spree of doing whatever it
wants.”

5.3 Observing and Verifying the LLM Generated
Output

Users observe the accuracy and relevance of the generated
output concerning their initial prompts and the current con-
text of their writing. The accuracy is verified through domain
expertise, cross-referencing with reputable external sources, or
testing the real-world applicability by executing it. Beyond factual
accuracy, the output must also align with the user’s intentions,
which is ensured by evaluating the generated content against the
user’s original prompt. Other important aspects include verifying
the tone and style of the content and the consistency with the
content created from the previous interaction iterations.

Participants drew upon their domain expertise or general knowl-
edge to verify the generated content in certain instances. Partici-
pants with prior experience in the concerned technology were able
to leverage their knowledge to identify discrepancies in the output
(e.g., 𝑃7 leverages their experience as a developer to identify incor-
rect content about AWS access keys, “I think there are some missing
steps here. Here’s the thing, because we just created the account these
access keys will not exist at this point” ). Common world knowledge
is also used for tasks like translation (e.g., “‘getting started’ doesn’t
translate to ‘à propos de départ.’ It doesn’t mean anything” [𝑃1]).
When domain knowledge was insufficient, participants chose
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strategies such as cross-referencing with existing documen-
tation, internet search, or testing by execution. Minor details
of generated content (e.g., URLs) were checked for authenticity and
correctness by a browser search or against existing documentation.
Aspects that involved complex reasoning (e.g., code snippets or
steps for creating an AWS account as explored by 𝑃7, “let’s actually
go ahead and test all of this” ) were tested through manual execution.

Participants observed the textual quality of the generated con-
tent. As detailed in section 4.3, participants desire specificity and
coherency in the generated content (e.g., “I was hoping that [the
generated content] would be a bit more specific when it says ‘run the
installer.’ I mean, it’s pretty obvious for the end user, but I like to make
it impossible to do the wrong thing” [𝑃7]). Often, they resorted to
manually editing the generated content (e.g., 𝑃7 mentions “I would
remove extra information [from the generated content]. That’s my
style” and proceeded to edit manually) and frequently switched
between using the text box to prompt the LLM and manually make
changes to reach the final outcome.

Participants felt that human oversight and verification remain
indispensable for capturing technical nuances and maintaining
accuracy. The trust in generated content is contingent on having
the control to verify further and edit, as illustrated by 𝑃7, “I would
not say that I have enough trust that I can publish it and call it a
day. I would probably still want to test it, at least go through the
steps.” However, verification has its own challenges, considering
the security implications of LLM-generated content, as illustrated
by 𝑃7’s comment “Considering that an algorithm generated this code,
maybe we need some kind of sandbox so that it doesn’t do any damage
to my system” who later called for such a feature to be implemented
in the interface. Considering the instructional aspect of tutorials,
participants were particularly cautious as any misinformation could
significantly derail the learning experience (e.g., “When I was asking
where the source code for [software] was, it didn’t know, and it gave
an incorrect answer. It’d be cool if it could just touch its shoulders and
say, I don’t know, or give some kind of score about how confident it is
about its answer” [𝑃6]).

5.4 Reflecting on Expectations and Revising
Future Interaction Goals

Users reflect on their latest interaction to revise their mental
models and calibrate interaction strategies with the LLM or
update their writing objectives for the tutorial. Reflection as-
sists the users in comprehending the underlying reasons for any
discrepancies between the expected and the actual output and up-
dates the mental model to manage the expectations. Users accept
the LLM’s output when the discrepancies are minimal. In addition,
they positively update their perception of the LLM’s capabilities
and form an enhanced mental model of the interaction strategies.
Conversely, when users frequently encounter significant discrepan-
cies and continuously need to calibrate their strategies, it signals a
disconnect between their expectations from the LLM, the prompts,
or their reflection process.

We observe that the reflection process is grounded in the user’s
hypothesis of the functioning of the LLM and how it handles the
prompts. For example, 𝑃4 described the working of LLM as “It isn’t
really contextually aware. It’s just pulling text and trying to figure

out what text makes sense around that text” ). However, participants
found it difficult to form these hypotheses due to the absence
of traceability between prompts and their outputs (e.g., “I’ve
modified two things in this latest query, so the output is a little different
than before. I’m not sure what made it different” [𝑃6]). Even when
formed, these hypotheses are not necessarily accurate (e.g., “It needs
‘machine learning’ [as a keyword] in the prompt. It doesn’t work
for any other thing” [𝑃5]). Participants adjusted and refined their
initial hypotheses when the generated content did not align with
their expectations. For example, when the model did not generate
any content about the software they mentioned in the prompt, 𝑃4
mentioned “I think for [software], it’s even more niche. It’s not a well-
known tool. So the problem is it’s probably not much content to pull
from. It probably just ignored [software] as a tool”. Users verified the
hypothesis with a subsequent interaction cycle or by referencing
external material. For example, 𝑃6 refers to the software’s hosted
documentation with “I’m curious to see how it’s actually listed [on the
website]. Is the [generated] text verbatim?”. Eventually, we observed
instances where the participants decided to let the LLM take control
when they were confident in its capabilities (e.g., “There’s some kind
of differences in configuration for different host OS that I know of, but
I’ll let it figure that out for me” [𝑃7]).

Reflecting on the LLM-generated content resulted in revisions to
the writing objectives. The revisions could be towards expanding
the scope (e.g., “Nice, it even added a ‘Clean up’ section. This would
be good to elaborate on” [𝑃7]) or towards enhancing the quality
(e.g., “I will actually verify and edit if I find that there’s things that
are either not working or maybe extra information. Like I mentioned,
I try to be to the point” [𝑃7]). Participants considered the generated
content as the first draft, which they could enhance using their
experience (e.g., “I could use this to help me bootstrap and get started
and get a basic version going. Then I can fill in the gaps” [𝑃4]).

6 DISCUSSION
In sections 4 and 5, we described where LLMs are considered most
relevant in the tutorial writing process and highlighted the chal-
lenges writers encounter while interacting with these novel lan-
guage technologies. Building on these findings, we discuss three
major design implications and provide recommendations for devel-
oping LLM-based tutorial writing systems. We summarize these in
Table 2. We also examine the potential limitations of our study and
propose future research directions in LLM-assisted tutorial writing.

6.1 Implications for Designing LLM-Based
Software Tutorial Writing Tools

In this section, we discuss the design implications derived from our
findings outlined in Sections 4 and 5. We propose recommendations
to enhance the functionality and user experience of LLM-based
tutorial writing tools while focusing on the opportunities in the
existing tutorial writing practises. The recommendations highlight
three key areas: assisting writers in improving their mental models
of LLMs, enhancing the control over content generation and editing,
and verifying the accuracy and relevance of generated content.

6.1.1 Design Implication #1: Assisting Tutorial Writers in Forming
AccurateMentalModels of LLMs. As outlined in Section 5.1, thewrit-
ers’ expectations and approach towards using LLMs for generating
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Table 2: Design Implications and corresponding Design Recommendations distilled from the findings.

Design Implications Evidence Design Recommendations (DRs)

Section 6.1.1:Writers should be able to de-
velop sufficiently accurate mental models to
set realistic expectations from the LLM and
to carry out appropriate evaluation of out-
comes relevant to the tutorial.

Sections: 5.1, 5.4 DR 1.1: Incorporate traceability to map code and natural lan-
guage changes between prompt-output pairs within and across
interaction cycles.
DR 1.2: Capture the provenance of the manually written and
LLM-generated content to better reason the impact of using
LLMs on their writing outcomes.

Section 6.1.2:Writers should possess clear
prompting mechanisms and be able to con-
trol tutorial-specific content generation and
editing precisely.

Sections: 4.1, 4.2,
4.3, 5.2

DR 2.1: Separate and clearly distinguish the interface between
prompting LLM and manually inputting text.
DR2.2: Provide a flexible interface that allows seamless switch-
ing between diegetic and non-diegetic prompting and editing
that happen at different stages of tutorial writing.
DR 2.3: Allow writers to incorporate and flexibly select rele-
vant sections of the current tutorial draft and prior background
research to perform targeted edits of source code or explana-
tions.

Section 6.1.3: Writers should be equipped
with diverse verification features to ensure
the reliability and relevance of tutorial con-
tent generated by LLMs.

Sections: 4.1, 4.2,
4.3, 5.3

DR 3.1: Provide tailored verification mechanisms based on the
source (e.g., incorporating research notes or reference code)
and type (e.g., code interpreters for code snippets and link
checkers for URLs) of the content type used in the tutorial.
DR 3.2: Provide features such as static analysis tools and con-
tinuous integration systems to ensure consistency in syntax
and conventions within individual code snippets and across
the combination of all snippets throughout the tutorial.

tutorials are shaped by factors such as their background research
on the tutorial topic, personal impressions of LLMs formed from
previous experiences, their curiosity to explore LLMs’ capabilities,
and their progress in the current LLM interaction cycles. In Section
5.4, we further described how the writers reflect their interaction
objectives, specified prompts, and the corresponding outputs. The
reflection process contributes to changes in their mental model of
the LLM and leads to adjustments in their strategies to use the LLM
for their writing tasks. However, the mental model is often nascent,
lacking a comprehensive understanding of the underlying technol-
ogy, such as training and fine-tuning of the LLMs, the meaning and
impact of parameters like temperature, as well as effective prompt-
ing strategies [8, 67]. Prior research has observed an existence of
gulf of envisioning resulting from insufficient knowledge of LLM’s
capabilities [62]. In our study, the participants expressed the need
to understand the model’s technical boundaries and the training
data cutoff date to ensure the predictions are accurate and corre-
spond to the latest software versions (Section 4.3). Ensuring better
transparency of the underlying models using model cards [44] or
explainable AI techniques [57] can be useful to address this issue.

However, expecting end users, tutorial writers in our case, to
acquire the relevant LLM-related knowledge may not be practical,
as they might not possess the required technical expertise or simply

may lack the interest to do so (e.g., “I still need to double-check ev-
erything and figure out how to make it actually generate things you
want. Now I have to learn machine learning properly and keep up to
date with all these things. And it’s just, well, maybe I’m not going
to do that” [𝑃1]). The writers need an effective (not necessarily
comprehensive) mental model that can help reason the impact of
their actions and what to do next. Incorporating traceability to
map code and natural language changes across LLM interac-
tions and provenance to record the tutorial’s evolution can
be two actionable design options that can offer two benefits. First,
it assists the writers in forming effective mental models through
self-evaluation, which is hypothesized to improve metacognition
in GenAI systems [64]. Tracing the edit history over a series of
interactions helps writers better understand the effect of individual
prompts over content evolution and assists writers in calibrating
their expectations.

Second, software tutorial writing is often open-ended but con-
strained by coherence across two modalities, i.e., code and natural
language. Design features that support traceability and provenance
can be especially useful in generating both modalities when the
writers lack a clear prompting strategy and evaluation roadmap.
Previous work has demonstrated that traceability between the code
snippets and corresponding documentation attribute to improved
documentation practises [6], and consistency and accuracy of the
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overall tutorial [25]. When part of the code and its natural language
explanations of a tutorial are generated by an LLM, traceability
provides additional value to track consistency between the human-
written and AI-generated content between code and natural lan-
guage and across several interaction cycles, thereby improving the
tutorial’s accuracy.

6.1.2 Design Implication #2: Improving Control over Technical Con-
tent Generation and Editing. Writers struggle to formulate prompts
that accurately reflect their content generation objectives and gener-
alize their prompting strategies across various scenarios [71]. Such
issues lead to the perception of the LLM being unpredictable. Fur-
thermore, the OpenAI playground lacks clear signifiers for prompt-
ing and observing the generated content, thereby adding to the
confusion. As outlined in Section 5.2, using a single text area for
the dual purpose of prompting the LLM to generate content as
well as manually editing tutorial content resulted in the writers
struggling to differentiate between the existing tutorial content,
the new prompts, and their outputs. To find a workaround, writers
formed complex yet mostly unsuccessful strategies to guide the
model, often leading to more frustration.

Given these challenges, it is crucial to explore alternative strate-
gies and interactions that could enhance the control writers have
over tutorial content generation. Previous research by Dang et al.
[11] investigated two prompting interactions – diegetic (i.e., nar-
rative style and current writing context are part of the prompt)
and non-diegetic (i.e., prompts are not part of the narrative and
are instruction-oriented). Their work suggests diegetic and non-
diegetic interactions as effective for inspiration and control, re-
spectively. We observe the benefits of both interactions in different
contexts. Diegetic interactions can be useful for tutorial writers in
leveraging writing templates as a part of the current writing context
(Section 4.2) and expecting the LLM to generate the tutorial accord-
ing to the template. On the other hand, writers edit the content to
meet their standards of tutorial quality. In this case, non-diegetic
prompting can enable the writers to get suitable suggestions based
on their researched material (Section 4.1) or refine specific sections
to meet quality standards (Section 4.3). For instruction-oriented
prompting, separating input fields for LLM prompts and man-
ual text edits is extremely important to distinguish user-provided
context from tutorial content. Furthermore, writers apply a combi-
nation of these prompting strategies and even resort to manual edits
when they consider LLMs too complex to be used. To account for
these editing strategies, the system must offer a flexible interface
that allows seamless switching between diegetic and non-
diegetic prompting and editing, allowing writers to leverage
LLMs across varying contexts.

Understanding the tutorial writing practice offers important
hints to improve the writers’ control further when interacting with
LLMs. Tutorial writing is not a linear process but rather involves
multiple rounds of investigation before and during the tutorial
writing process to develop a better understanding of the target
technology (Section 4.1). In addition, writers include resources such
as code examples, their outputs, screenshots, and explanations to
improve the tutorial’s comprehensibility and credibility, as detailed
in Section 4.2. Allowing LLMs to reference relevant material from
the writer’s investigation, such as the existing tutorial on the same

technology, can facilitate prompting for detailed, topic-specific
content. Therefore, enabling users to incorporate and flexibly
select specific sections of existingmaterial as prompt context
can be useful to create the right prompts.

6.1.3 Design Implication #3: Facilitating Verification to Ensure Tu-
torial’s Accuracy. Participants recognized the potential of LLMs
to assist in researching existing resources and even viewed LLMs
as potential stand-ins for developers (Section 4.1). However, they
expressed reservations about directly using content generated by
LLMs in their tutorials and insisted on verifying the content (Sec-
tion 5.3). The hesitation arises because writers traditionally rely on
resources authored by other human writers, allowing for a clear
judgement of their credibility implicating a sense of control [7].
Qualities like accuracy, clarity and being up-to-date are crucial
to software tutorials (Section 4.3). Therefore, having a verifiable
source is critical to the writers’ confidence when synthesizing exist-
ing resources and creating new content. Despite the advancements
in novel fine-tuning [26] and prompt engineering techniques [37],
which enable LLMs to contextualize and generate more relevant
information, the tangible benefit of manual verification can be in-
dispensable for fostering confidence in the resulting content. Our
participants tend to verify the output against their personal exper-
tise or knowledge (Section 5.3). However, human memory is often
unreliable, subject to evaluator fatigue [5] and complex metacog-
nitive demands [64], which is suboptimal for evaluating tutorials
that demand a rigorous quality.

One way to support writers in ensuring the accuracy of LLM-
generated content is to provide tailored verification strategies
relevant to the source and type of each content type used in
the tutorial. Writers typically verify the LLM-generated content
by cross-referencing it with trusted external sources, leveraging
their domain knowledge, or conducting tests to assess real-world
applicability (Section 5.3). Traditionally, writers create and refer-
ence material, such as code examples and notes (Section 4.2), to
improve the accuracy and credibility of the tutorial. Allowing access
to these resources within the interface has the potential advantage
of minimizing the need for external fact-checking, thereby reduc-
ing the associated cognitive load. Verification techniques can differ
depending on the type of content as well. For instance, verifying
URLs requires confirming their online existence and ensuring the
relevance and accuracy of the information on the linked page. In
addition, the description of the web resource in the LLM-generated
content should accurately reflect the source material. Unlike URLs,
verifying code snippets involves providing a code interpreter into
the interface to execute and ensure accuracy.

A challenge with using LLMs for tutorial writing is maintaining
consistent syntax and conventions within individual code snippets,
as well as functional integration across all the snippets in the tuto-
rial. Software tutorials often include several code snippets, which
may be parts of an individual program interspersed with explana-
tory text (e.g., an introductory Python tutorial explaining function
calls and loops) or a combination of multiple programs (e.g., a tuto-
rial on setting up a website using a web framework and a database).
In both scenarios, ensuring consistency involves two critical steps.
First, each snippet must be checked for consistency. Second, the
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snippets should collectively form a coherent and executable pro-
gram that aligns with the provided explanations. Implementing
static analysis tools and continuous integration systems trig-
gered at every revision of the tutorial content can be useful to
maintain consistency and enhance the overall quality and reliability
of the tutorial.

6.2 Limitations and Future Work
While our study provides valuable insights into using LLMs for tuto-
rial writing, we acknowledge certain limitations that highlight areas
for future work. The first limitation concerns unrealistic expecta-
tions or insufficient AI knowledge among users in user-centred
design processes, which results in poorly built prototypes that fail
to deliver value [69, 70]. While our participants indeed lacked an
in-depth understanding of the recent AI technologies, the observa-
tions and perspectives shared by the tutorial writers while using
the LLM helped us understand their mental models of such tech-
nology and its capabilities, thereby informing their novel needs
when interacting with AI. Yildirim et al. [70] advocate for a similar
approach to enhance user-centred design for AI tools, suggesting
that demonstrating AI’s capabilities and limitations can guide user
interactions more effectively. They recommend leveraging AI ex-
perts to validate the practicality of designs arising from the study
before development. Correspondingly, our findings emphasize the
importance of collaborative efforts between LLM developers and
system designers in the user-centred design process. Users might
be unable to clearly identify and state their requirements or needs.
In such situations, understanding both their existing practises and
how they navigate a new technology can help us identify the gap
in their understanding. Our work further hints at the importance of
scaffolding users’ exploration of technology boundaries and inno-
vations, given the inexhaustible possibilities of novel use of LLMs.
In our study, we found that while the writers lacked specific knowl-
edge about using AI for tutorial writing, they actively explored
and adapted to these gaps. This adaptability might stem from their
professional role as tutorial writers, which requires experimenta-
tion with software to develop functional tutorials. While our design
recommendation of incorporating traceability and provenance is
useful to support such user-initialized experimentation, future work
is needed to investigate the effectiveness of our recommendation
and other means.

Second, the study investigates the writers’ experiences using
the GPT-3.5 (code-davinci-002 and davinci [49]) models available
within the playground interface. Using models fine-tuned for tuto-
rial writing or interfaces tailored specifically for tutorial writing
might result in different experiences for writers than we presented
in the study. However, as far as we know, such interfaces do not
currently exist. The design recommendations discussed in Section
6.1 are intended to guide the development of such novel interfaces
with specialized functionalities that can assist writers. Better tuto-
rial writing experience might also benefit from developing models
fine-tuned on software tutorials, prompt engineering techniques
like introducing code repository-specific knowledge during prompt
design [59] and designing corresponding affordances.

The third limitation is that the writers’ strategies and percep-
tions evolve as they interact with the LLM. The study results have

implications for the usability and learnability of the system in the
short term, contributing to its adoption. However, these results
do not inform any change in perception resulting from long-term
use. Additionally, the study could not account for the influence of
external factors on participants’ perceptions, such as public opinion
on LLMs. A longitudinal study examining the evolution of writers’
interaction strategies and perceptions over extended periods of
LLM use could further confirm the integration of LLMs in tutorial
writing processes.

7 CONCLUSION
In this paper, we describe the opportunities and challenges for
LLMs in tutorial writing. Our findings are based on a user study
of software tutorial writers with diverse backgrounds and exper-
tise using the OpenAI playground as an exploration environment.
From the interviews, we identified performing background research,
resource creation, and meeting writing quality standards as the three
areas that are especially relevant for LLM adoption. We observed
how the writers formulate goals, articulate intentions, observe and
verify outputs, and reflect to revise the subsequent strategies when
interacting with the LLM. Based on our findings, we surface three
design implications, which include 1) effective affordances to de-
velop accurate mental models, 2) clear prompting mechanisms and
control over tutorial content generation and editing, and 3) diverse
verification features that account for content type and self-created
resources. These implications hold potential for better interface
design for LLM-based tutorial creation tools and tools that support
the generation of both natural language and code.
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