
Recognizers: A study in learning how to model
temporally extended behaviors

Jordan Frank
jordan.frank@cs.mcgill.ca

McGill University
Montreal, QC, Canada

Doina Precup
dprecup@cs.mcgill.ca

McGill University
Montreal, QC, Canada

1 Introduction
Using a hierarchy of behaviors often requires learning models of these behaviors in an
efficient way from one stream of experience. In this paper we are concerned with comput-
ing the reward model of a behavior, when this model has to be represented using function
approximation. Off-policy learning methods have been proposed for this goal, but their ef-
ficiency when using function approximation has been limited(Precup, Sutton & Dasgupta,
2001). One of the sources of this problem is the fact that existing off-policy methods rely on
importance sampling corrections to estimate models for different behaviors from the same
stream of experience. These corrections can have very high variance if the policy gener-
ating the behavior is very different from the behavior that we want to model. Moreover,
the behavior policy has to be known and fixed, otherwise thesecorrections are not well
defined. In order to address these problems, Precup et al. (2006) introduced the notion of
recognizers. Rather than specifying an explicit policy for a behavior about which we want
to make predictions, a recognizer specifies a condition on the actions that are selected. For
example, a recognizer for the temporally extended action ofpicking up a cup would not
specify which hand is to be used, or what the motion should be at all different positions
of the cup. The recognizer would recognize a whole variety ofdirections of motion and
poses as part of picking the cup. The advantage of this approach is that the behavior may
be based on a variety of different strategies, all of which are relevant, and we would like
to learn from any of them. In general, a recognizer is a function that recognizes or accepts
a range of different policies. Recognizers have two advantages over direct specification of
a target policy: 1) they are a natural and easy way to specify atarget policy for which im-
portance sampling will be well conditioned, and 2) they do not require the behavior policy
to be known. The latter is important because in many cases we may have little knowledge
of the behavior policy, or a stationary behavior policy may not even exist. In Precup et
al.(2006), the authors show that if the model is representedusing state aggregation, even if
the behavior policy is unknown, convergence to a good model is achieved. Here, we gener-
alize this to the case of general linear function approximation, and show that this approach
works very well empirically. We also discuss how recognizers might be learned from data.

2 Recognizers
We use the standard framework in which an agent interacts with a stochastic environment.
At each time stept, the agent receives a statest , chooses an actionat , obtains a numerical
rewardrt+1 and transitions stochastically to a new statest+1. Assume for the moment that
actions are selected according to a fixed behavior policy,b : S ×A → [0,1] whereb(s,a)
is the probability of selecting actiona in states. The behavior policy is used to generate a
sequence of experience (observations, actions and rewards). The goal is to learn, from this



data, predictions about different ways of behaving. We assume that the state space is large
or continuous, and function approximation must be used to compute any values of interest.
In particular, we assume a space of feature vectorsΦ and a mappingφ : S → Φ. We denote
by φs the feature vector associated with states.

An option (Sutton, Precup & Singh, 1999) is defined as a tripleo = 〈I ,π,β〉 whereI ⊆ S is
the set of states in which the option can be initiated,π is the internal policy of the option
andβ : S→ [0,1] is a stochastic termination condition. In the options work (Sutton, Precup
& Singh, 1999), each of these elements has to be explicitly specified and fixed in order
for an option to be well defined. Here, we will instead define options implicitly, using the
notion of a recognizer.

A recognizer is defined as a functionc : S×A → [0,1], wherec(s,a) indicates to what
extent the recognizer allows actiona in states. An important special case (the only one
we addressed so far) is that of binary recognizers. In this case,c is an indicator function,
specifying a subset of actions that are allowed, or recognized, given a particular state.
Note that recognizers do not specify policies; instead, they merely give restrictions on the
policies that are allowed or recognized.

A recognizerc together with a behavior policyb generates atarget policyπ, where:

π(s,a) =
b(s,a)c(s,a)

∑x b(s,x)c(s,x)
=

b(s,a)c(s,a)

µ(s)
(1)

The denominator of this fraction,µ(s) = ∑x b(s,x)c(s,x), is therecognition probabilityats,
i.e., the probability that an action will be accepted atswhen behavior is generated according
to b. The policyπ is only defined at states for whichµ(s) > 0. The numerator gives the
probability that actiona is produced by the behavior and recognized ins. Note that if the
recognizer accepts all state-action pairs, i.e.c(s,a) = 1,∀s,a, thenπ is the same asb.

Since a recognizer and a behavior policy can specify together a target policy, we can use
recognizers as a way to specify policies for options, using (1). An option can only be
initiated at a state for which at least one action is recognized, soµ(s) > 0,∀s∈ I . Similarly,
the termination condition of such an option,β, is defined asβ(s) = 1 if µ(s) = 0. In other
words, the option must terminate if no actions are recognized at a given state. At all other
states,β can be defined between 0 and 1 as desired.

In this paper, we focus on computing the reward model of an option o, i.e., the expected
sum of rewards obtained while executing the option:

Eo{R(s)} = E{r1 + r2+ . . .+ rT |s0 = s,π,β}
wheres∈ I , experience is generated according to the policy of the option,π, andT denotes
the random variable representing the time step at which the option terminates according to
β. We assume that linear function approximation is used to represent these values, i.e.

Eo{R(s)} ≈ θT φs

whereθ is a vector of parameters.

The algorithm for learning such models, presented in Precupet al (2006), is based on using
importance sampling weights at each step of the trajectory,to correct for the difference
between the behavior policyb and the target policyπ. Because of the way in whichπ is
defined, the importance sampling correction can be re-written as:

ρ(s,a) =
π(s,a)

b(s,a)
=

c(s,a)

µ(s)

Of course,µ(s) depends onb. If b is unknown, instead ofµ(s), we will use a maximum
likelihood estimate ˆµ : S→ [0,1]. The structure used to compute ˆµ will have to be com-
patible with the feature space used to represent the reward model. More precisely, in the



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−25

−20

−15

−10

−5

0

5

10

15

20

25

Figure 1: Puddleworld environment (left) and learned reward model (right)

case of linear function approximation, we can use logistic regression, with the same feature
mappingφ, in order to estimateµ.

On every time stept, the learning algorithm performs the following updates:

Compute recognition probability:µ(st) =
1

1+e−wT
t φst

Compute importance sampling correction:ρ(st ,at) = c(st ,at)/µ(st)

Compute TD-error:δt = ρt(rt+1 +(1−βt+1θT
t φst+1)−θT

t φst

Update reward model parameters:θt+1 = θt + αδtet

Update eligibility trace increment, based on restarting:kt+1 = ρtkt(1−βt+1)+gt+1

Update eligibility trace:et+1 = λρt(1−βt+1)et +kt+1φst+1

Update recognition probability parameters:wt+1 = wt + α′(c(st ,at)−µ(st))φst

Here, we also use a restart functiong in order to prevent the eligibility traces from decaying
to 0 too quickly (see (Precup, Sutton & Dasgupta, 2001) for details).

3 Illustration
In order to illustrate this approach we use the puddle world environment from the RL-Glue
library (University of Alberta). The environment is presented in Figure 1. Stepping in the
puddle generates a negative reward which goes from 0 at the edges to -100 at the center
of the puddle. When the agent is in the goal state, it is given areward of 100. Otherwise,
if the agent is not in the puddle or the goal region, it receives a reward of -1. The task is
continuing, and does not have a terminal state, and so the agent may remain in the goal state
for a number of time steps, generating a reward of 100 at each step. The dimension of the
world is 1 in each direction and there are 16 possible actions, moving the agent a distance of
0.05 in one of 16 directions. After an action, the agent is also moved in a random direction
by an amount drawn from a normal distribution with mean 0 and standard deviation 0.01.

We use standard tile coding to provide state features. We usefour overlapping tilings, each
of dimension 4×4. The behaviour policy is uniformly random. We have a deterministic,
binary recognizer that recognizes all actions that move theagent up and to the right, which
would generally move the agent towards the goal region from most states. Since four
actions are recognized, and the actions are generated uniformly randomly, the recognition
probability should be exactly 0.25. The values of the parameters areλ = 0.6, β = g0 =
0.05, α = 0.001,α′ = 0.005. We use a decreasing schedule for the learning rates, where
we halve the learning rates after time stepsT,2T,4T,8T,16T,32T,64T, and 128T, where
T = 100,000. The experiment runs for 256T time steps.

The reward model for the recognizer is shown in Figure 1. Figure 2 shows the recogni-



0 0.5 1 1.5 2 2.5 3
0.2

0.25

0.3

0.35

0.4

0.45

0.5
Recognition Probability Estimates at (0.10,0.10)

Number of Steps

R
ec

og
ni

tio
n 

P
ro

ba
bi

lit
y

Estimated Value
True Value

0 0.5 1 1.5 2 2.5 3
−7

−6

−5

−4

−3

−2

−1

0
Expected Reward Estimates at (0.10,0.10)

Number of Steps

E
xp

ec
te

d 
R

ew
ar

d

With Estimated Recognition Probability
With Exact Recognition Probability

Figure 2: Recognition probabilities at a given state in the PuddleWorld experiment (left).
Reward estimates for the same state (right)

tion probabilities and reward model for a particular given state. As seen in the figure, the
recognition probabilities are learned correctly very quickly. More importantly, the impre-
cise recognition probabilities have almost no effect on learning the reward estimates: the
reward estimate using the exact recognition probability isnearly identical to the reward
estimate using the learned recognition probability.

These results are consistent over different states and different behavior policies. We have
also experimented with this method in the Ship steering task(also included in the RL
repository). The results are almost identical to those described here, and are omitted for the
moment due to lack of space.

4 Recognizer improvement
So far, we have assumed that both the recognition function and the termination condition
have to be specified in advance. However, these can be learnedfrom data as well. In order
to learn the recognition function for good recognizers, we can use the action elimination
approach proposed by Even-Dar et al (2003). Learning the termination probabilities is
more complicated. The basic idea we have been experimentingso far is tuning these in
order to keep the importance sampling ratios well behaved. Hence, trajectories are cut
when ratios that are too large or too small are encountered.

References

Even-Dar, E., Mannor, S. & Mansour, Y. (2003). “Action Elimination and Stopping Con-
ditions for Reinforcement Learning”. InProceedings of the 20th International Conference
on Machine Learning, pp. 162–169. Morgan Kaufmann.

Precup, D., Sutton, R.S. & Dasgupta, S. (2001) “Off-policy temporal-difference learning
with function approximation ”. InProceedings of the 18th International Conference on
Machine Learning, pp.417–424. Morgan Kaufmann.

Precup, D., Sutton, R.S., Paduraru, C., Koop, A. & Singh, S. (2006). “Off-policy Learning
with Options and Recognizers”. InAdvances in Neural Information Processing Systems
18, pp. 1097–1104. MIT Press.

Sutton, R.S., Precup D.& Singh, S. (1999). “Between MDPs andsemi-MDPs: A Frame-
work for Temporal Abstraction in Reinforcement Learning”.In Artificial Intelligence, vol.
112, pp.181–211.


