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Abstract

Activity recognition based on data from mobile wearable de-
vices is becoming an important application area for machine
learning. We propose a novel approach based on a combina-
tion of feature extraction using time-delay embedding and su-
pervised learning. The computational requirements are con-
siderably lower than existing approaches, so the processing
can be done in real time on a low-powered portable device
such as a mobile phone. We evaluate the performance of our
algorithm on a large, noisy data set comprising over 50 hours
of data from six different subjects, including activities such as
running and walking up or down stairs. We also demonstrate
the ability of the system to accurately classify an individual
from a set of 25 people, based only on the characteristics of
their walking gait. The system requires very little parameter
tuning, and can be trained with small amounts of data.

Introduction
Mobile devices are ubiquitous in modern society. Many
of these devices come equipped with sensors such as ac-
celerometers and Global Positioning Systems (GPS) that can
collect data about the movements of a user. This creates the
potential of intelligent applications that recognize the user’s
activity and take appropriate action. For example, a device
might notice that a user is in distress and alert a care giver, or
it might make decisions regarding whether incoming phone
calls should be put through or saved in a message box.

Applications for recognizing activities from sensor data
have been developed in a wide range of fields such as health
care (Kang et al. 2006), fitness (Lester, Choudhury, and
Borriello 2006), and security (Kale, Cuntoor, and Chel-
lappa 2002). Different types of sensors have been used,
e.g., accelerometer data for recognizing physical activities
(Lester, Choudhury, and Borriello 2006) and both mobile
phone usage data (Farrahi and Gatica-Perez 2008) and GPS
data (Krumm and Horvitz 2006; Liao, Fox, and Kautz 2007)
for analyzing human mobility and other higher-level, tem-
porally extended activities (Eagle and Pentland 2006).

Our focus is on detecting primitive physical activities
(e.g., walking, running, biking, etc.) from data collected us-
ing accelerometers built into wearable sensing devices. Pre-
vious work on this problem has shown recognition accuracy
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above 85% on large, complex data sets (Subramanya et al.
2006; Lester, Choudhury, and Borriello 2006). These exist-
ing approaches use standard (mostly linear) signal process-
ing methods, through which hundreds of signal statistics are
computed. Heavy-duty feature extraction tools are then used
to determine which of these features are useful for classifi-
cation. While these approaches work well, they require a lot
of computing power, so they are not well suited for real-time
detection of activities on low-powered devices.

In this work, we propose an alternative method for rep-
resenting time series data that greatly reduces the memory
and computational complexity of performing activity recog-
nition. We adopt techniques from nonlinear time series anal-
ysis (Kantz and Schreiber 2004) to extract features from the
time series, and use these features as inputs to an off-the-
shelf classifier. Additionally, we present a novel approach
for classifying time series data using nonparametric nonlin-
ear models that can be built from small data sets. This al-
gorithm has been implemented and is able to perform clas-
sification of activities in real time on an HTC G1 c© (also
known as Dream in some countries) mobile phone.

We will focus in particular on accelerometer data; intu-
itively, the acceleration recorded by the device is the result
of a measurement performed on a non-linear dynamical sys-
tem, consisting of the hips and legs, with their joints, actu-
ations and interaction with the ground. Time-delay embed-
ding methods, e.g., (Sauer, Yorke, and Casdagli 1991), pro-
vide approaches for reconstructing the essential dynamics
of the underlying system using a short sequence of measure-
ments, evenly spaced in time. Assuming that the dynamics
of the underlying system are noticeably different when a per-
son is performing different activities, the parameters of the
different time-delay embedding models can be used to clas-
sify new data. Our approach achieves very good classifica-
tion performance, comparable to the state-of-art approaches,
but extracts fewer than a dozen features from the time series
data, instead of hundreds. The memory and computational
savings are crucial, given that for many applications, activity
recognition would have to run in real time as a small com-
ponent of larger system on a low-powered mobile device.

The main contributions of this paper are twofold. First,
we propose the use of the reconstructed coordinates in a
time-delay embedding of a time series as input to a super-
vised learning algorithm for time series classification. While



time-delay values have been used as input to neural networks
(Waibel et al. 1989), the novelty of our approach is in the in-
corporation of noise-reduction and the explicit treatment of
the dynamics. Second, we propose a lightweight classifica-
tion algorithm based on time-delay embeddings that is effi-
cient enough to run in real time on a low-powered device.
Both methods are empirically validated on noisy real-world
data.

Time-Delay Embeddings
In this section we present a brief overview of time-delay em-
beddings. We refer the reader to the standard text by Kantz
and Schreiber (Kantz and Schreiber 2004) for further de-
tails. The purpose of time-delay embeddings is to recon-
struct the state and dynamics of an unknown dynamical sys-
tem from measurements or observations of that system taken
over time. The state of the dynamical system at time t is
a point xt ∈ Rk containing all the information necessary to
compute the future of the system at all times following t.
The set of all states is called the phase space. Of course, the
state of the system cannot be measured directly, and even the
true dimension of the phase space k is typically unknown.
However, we assume access to a time series 〈ot = ω(xt)〉
generated by a measurement function ω : Rk → R, which
is a smooth map from the phase space to a scalar value.
Throughout this paper, we use “smooth” to mean contin-
uously differentiable. In general, it is hard to reconstruct
the state just by looking at the current observation. How-
ever, by considering several past observations taken at times
t, t − δ1, . . . t − δm−1, the reconstruction should be easier to
perform. These m measurements can be considered as points
in Rm, which is called the reconstruction space. The key
problem is to determine how many measurements m have to
be considered (i.e., what is the dimension of the reconstruc-
tion space), and at what times they should be taken (i.e.,
what are the values of δi), in order to capture well the sys-
tem dynamics. In particular, if we consider the map from Rk

to Rm (corresponding to taking the measurements and then
projecting the time series data into the reconstruction space)
we would like this map to be one-to-one and to preserve lo-
cal structure. If this were the case, by looking at the time
series in Rm, one would essentially have all the information
from the true system state and dynamics.

We consider the time-delay reconstruction in m dimen-
sions with time delay τ, which is formed by the vectors
ot ∈ Rm, defined as: ot = (ot ,ot+τ,ot+2τ, . . . ,ot+(m−1)τ). We
assume that the true state of the system xt lies on an attrac-
tor A ⊂ Rk in an unknown phase space of dimension k. We
use the term “attractor”, as in dynamical system theory, to
mean a closed subset of states towards which the system
will evolve from many different initial conditions. Once the
state of the system reaches an attractor, it will typically re-
main inside it indefinitely (in the absence of external pertur-
bations). An embedding is a map from the attractor A into
reconstruction space Rm that is one-to-one and preserves lo-
cal differential structure. Takens (1981) showed that if A is
a d-dimensional smooth compact manifold, then provided
that m > 2d, τ > 0, and the attractor contains no periodic or-
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Figure 1: Example of time-delay embedding for accelerometer
data from biking activity. Left: raw accelerometer data. Right:
time-delay embedding with m = 6,τ = 11, p = 3. The coloured
points in the left diagram are mapped to the same coloured points
in the embedding.

bits of length τ or 2τ and only finitely many periodic orbits
of length 3τ,4τ, . . . ,mτ, then for almost every smooth func-
tion ω, the map from Rk to the time-delay reconstruction is
an embedding. In other words, any time-delay reconstruc-
tion will accurately preserve the dynamics of the underly-
ing dynamical system, provided that m is large enough and
τ does not conflict with any periodic orbits in the system.
However, from the point of view of activity recognition, we
would like m to be as small as possible, as it determines the
minimum time interval after which an activity can be recog-
nized. More precisely, if the data is sampled at a rate of r
measurements per second, then the time window needed for
the time-delay reconstruction is ((m−1)τ+1)/r seconds.

Takens’ theorem only holds when the measurement func-
tion ω is deterministic, but in practice all measurements are
corrupted by noise from a variety of sources, ranging from
the measurement apparatus to rounding errors due to finite
precision. In the presence of noise, the choice of m and τ

becomes very important. There are a number of techniques
for choosing good values for m and τ based on geometrical
and spectral properties of the data (Buzug and Pfister 1992).
However, in our experiments, we found that grid search over
a small parameter space, using a small validation data set
and optimizing classification accuracy on it, suffices to find
good parameters.

Methods developed for nonlinear time series analysis
have not been widely used in the machine learning commu-
nity1, but are quite popular in other areas of research. In the
following section, we explain how we use time-delay em-
beddings for the purpose of classifying time series data.

Proposed Approach
The main idea of our approach is to extract features using
time-delay embeddings, followed by a noise-reduction step.
Then we use these features as input to a classifier. Define
the time-delay embedding function T (o,m,τ) which takes
as parameters a time series o = 〈oi〉Ni=1, and the time-delay
embedding parameters m and τ. Let M = N− (m−1)τ. The
function T returns an m×M, matrix O whose ith column is
the ith time-delay vector (oi,oi+τ,oi+2τ, . . . ,oi+(m−1)τ).

1The obvious exception is the time-delay neural network re-
search. However these methods do not consider noise reduction,
or other transformations on these models, they simply use lagged
time sequences as inputs to a network.



For the noise reduction step, principal component analysis
(PCA) is performed on the embedding of a short segment of
the training data (Jolliffe 2002). PCA computes a projection
matrix P from the time-delay embedding space to a space of
lower dimension p, which we will call model space. Once
the projection matrix P has been computed, any sequence
of observations can be projected into the model space by
computing the time delay embedding , centering the data by
subtracting its mean, then multiplying by P.

Figure 1 illustrates the concept of time-delay embedding
using accelerometer data collected from a subject riding a
stationary bicycle. On the top is a short segment that was
used to find the projection P. The parameters used, m = 6,
τ = 11, and p = 3, were chosen based on previous experi-
ments. On the bottom is the result of embedding the entire
data set and then projecting onto the basis specified by P.
Observe that the system evolves along a set of tightly clus-
tered trajectories, in a periodic fashion. This is quite intu-
itive, considering that cycling involves a periodic, roughly
two-dimensional leg movement. However, it is remarkable
that this structure can be reconstructed automatically from
the time series on the top, especially since the data is non-
stationary (i.e., the peaks do not have the same magnitude,
and the period varies over time). Note that the colours are
only used as a visual aid, to show where different regions
from the time series get mapped in the final model space.

Given a sequence of observations, the computation de-
scribed above will produce a matrix whose columns form
a sequence of points in the p-dimensional Euclidean model
space, representing the states of the dynamical system. We
call this sequence of points a model. The coordinates of
these points can be used as input features to a learning al-
gorithm. However, we can also treat subsequent pairs of
points as Euclidean vectors, and look for richer information
on the dynamics of the system. In the next section, we de-
scribe a novel learning algorithm that exploits this aspect to
our advantage.

Geometric Template Matching Algorithm
The geometric template matching (GTM) algorithm is an ef-
ficient algorithm for assessing how well a given time series
matches a particular model. The time series is projected into
model space, then short segments of the projected data are
compared geometrically against their nearest neighbours in
the model. We treat subsequent pairs of points in model
space as vectors. Segments of the projected data set that
are geometrically similar to nearby vectors in the model
are given higher scores, while segments that differ from the
model are given low scores.

The algorithm, presented in Algorithm 1, takes as input a
time series and a model, and computes nearest-neighbours
for the time series based on Euclidean distance. A set of
scores for each segment of the time series is returned as a
result. In the algorithm, we denote the Euclidean norm by
|u|, and the dot product of two vectors u · v. For notational
convenience we write the vector going from point a to point
b as [a,b].

For classification purposes, one can simply assign to the
sequence the class label associated with the model that ob-

Algorithm 1 Geometric Template Matching

Input: Model u = 〈ui〉Ni=1, parameters (m,τ, p,P), sequence
length s, neighbourhood size n, and the sequence to score,
o = 〈oi〉Ti=1.
Output: A set of scores, r1, . . . ,rT−(m−1)τ−s ∈ [−s,s].

1. Initialize the score, ri = 0 for i = 1, . . . ,(M− s).
2. Compute matrix V that represents the model for sequence o,

whose columns form the sequence 〈vi〉Mi=1, where M = T −
(m−1)τ.

3. Repeat for i = 1, . . . ,(M− s):
Repeat for j = i, . . . ,(i+ s−1):
a. Let w1, . . . ,wn be the indices of the n nearest neighbours

of v j in u.
b. Let u be the mean of the vectors

[uw1 ,uw1+1], . . . , [uwn ,uwn+1].
c. Let v be the vector [v j,v j+1].
d. Update the score, ri = ri +(u ·v)/max(|u|, |v|).

4. Return the scores, r1, . . . ,rT−(m−1)τ−s.

tains the highest average score. In order to perform classifi-
cation in real-time, as opposed to using batch input, a buffer
of the most recent (m− 1)τ+ s samples is maintained, and
the GTM algorithm is run on the buffered data (which will
result in one iteration of the outer loop, and thus one score)
as new data become available. In our experiments, we are
able to compute a score for 8 models twice per second using
the embedding parameters m = 12,τ = 2, p = 6, s = 32, and
n = 4, with no noticeable impact on the performance of the
phone.

Experiments
We demonstrate our approach in two experiments focusing
on identifying activities and users, respectively.

Activity Recognition
The data set used for the activity recognition experiment was
collected using the Intel Mobile Sensing Platform (MSP)
(Choudhury et al. 2008) that contains a number of sensors
including a 3-axis accelerometer and a barometric pressure
sensor; these are the only sensors we will use. Six partic-
ipants were outfitted with the MSP units, which clip onto
a belt at the side of the hip, and data was collected from
a series of 36 two-hour excursions (6 per user) which took
place over a period of three weeks. The participants were
accompanied by an observer who recorded the labels as the
activities were being performed. The labels were: walking,
lingering, running, up stairs, downstairs, and riding in a ve-
hicle. We omitted the vehicle activity for now (because we
are not processing GPS signal). Taking into account equip-
ment failures and data with obvious errors in the labelling,
the working data set consists of 50 hours of labeled data,
roughly equally distributed among the six participants.

The accelerometer data is sampled at 512Hz, which we
decimate to 32Hz. The accelerometer data consists of three
measurements at each time step, corresponding to the accel-
eration along each of the three axes, x, y, and z. We combine
these three measurements to form a single measure of the
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Figure 2: Classification results on a segment of the data from user
6 using a classifier trained on user 4. The top coloured bar above
the data shows the labels assigned by a human labeller and the bot-
tom coloured bar shows labels assigned by the classifier. The black
line shows the magnitude of the accelerometer data and the red line
is the gradient of the barometric pressure.

magnitude of the acceleration vector a =
√

x2 + y2 + z2−g,
where g = 9.8m/s2 is the Earth’s gravity. Subtracting g
causes the acceleration when the device is at rest or mov-
ing at a constant velocity to be 0. The barometric pressure is
sampled at 7.1Hz, smoothed, and then upsampled to 32Hz.
The gradient of the signal is used as an additional feature.

For the experiment, we split the data set up into six parts,
each containing the data from a specific participant. We
began by projecting all of the accelerometer data into a
time-delay reconstruction space with parameters τ = 3 and
m = 16. For each user, we constructed a training set by se-
lecting randomly 25% of these embedded data points. This
corresponds to approximately 2 hours of data, or 230,000
samples for each participant. Next, we performed PCA on
the data points in the training set. We then projected all the
reconstructed accelerometer data onto the principal compo-
nents corresponding to the 9 largest eigenvalues from the
training data. This produces 9 features for each data point
in the original time series, and we combined these features
with the barometric pressure to form the input features for
a Support Vector Machine (SVM) classifier (Cristianini and
Shawe-Taylor 2000). As a basis for comparison, we also
trained an SVM just using the raw accelerometer value and
gradient of the barometric pressure as inputs at each time
step.

We tested each classifier on the entire data set for each
user. The results are shown in Table 1. The first row con-
tains the results when training using only the single raw ac-
celerometer value and the gradient of the barometric pres-
sure, trained on data from User 1, and testing on all of the
users. It is clear that using features obtained by time-delay
embeddings significantly improves classifier performance.
Figure 2 shows the result of using the SVM trained on User
3 to label a segment of the data for User 6.

The classifier performs well across all users, regardless
of the user on which it was trained. The average accuracy
for the experiments using the time-delay embedding on the
entire data set is 85.48±0.30%. This result demonstrates
that these features are useful for activity recognition devices,
because the system can be calibrated on one user, then de-
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Figure 3: An example segment of the accelerometer data.

ployed to other users, and the performance is very similar
(the accuracy loss, as can be seen from the table, is 1-5%).

Gait Recognition
Gait recognition is the problem of identifying a person by
their manner of walking, or carriage. The problem of gait
recognition has been studied in depth in the computer vision
and biomechanics communities, where the goal is to identify
an individual based on a sequence of images or silhouettes
captured while the individual is walking (Nixon, Tan, and
Chellappa 2006). Recent work has considered gait recogni-
tion using wearable sensors as a means for biometric iden-
tification (Gafurov, Snekkenes, and Bours 2007). For our
experiment, we implemented a data collection and analysis
tool for the Google Android operating system, which runs on
the HTC G1 c© mobile phone. In our experiments, the phone
was placed in the front trouser pocket of an individual, and
collected data from the 3-axis accelerometer in the device at
a rate of 25Hz2 as the subject walked. We collected a set of
25 traces, each containing between 12 and 120 seconds of
continuous walking data from one of 25 individuals.

The data was trimmed to remove the time before and af-
ter the walk, and the first and last few steps, but no other
post-processing was performed. Figure 3 contains a short
sequence from one of the data sets. As we can see, the data
is noisy, and there is a substantial amount of variability in
the signature for each cycle of the walk. In addition, the
subjects were asked to walk to one end of a hall and back,
which required them to turn 180◦. This leads to a few cycles
of the walk that are substantially different than the others (as
seen in samples 120–160 in Figure 3).

Each data set was split into a training and test set. Since
the data is sequential, a single block of data of a fixed length
was chosen for the test set, and the remaining data was used
as the training set. While this adds a single point of dis-
continuity in the training set when the test set is not at the
very beginning or end of the data set, this does not have
a noticeable effect on our results. Time-delay embedding
models were constructed for each of the training sets with
dimension m = 12, delay time τ = 2 and projected dimen-
sion p = 6. The number of nearest neighbours considered in
each model was 4. All of the parameters were chosen based
on previous experiments, before this data set was collected.

Each test set was then compared to each model. For each
test set S and model T , we project S into the model-space
for T , and then every segment of length 32 was compared to
the model T as described in the previous section. The scores

2The sampling rate on the phone is inconsistent, and ranges
from 17Hz to 30Hz depending on the processor load, which is an
additional source of noise.



Testing
User 1 User 2 User 3 User 4 User 5 User 6 Total

Tr
ai

ni
ng

User 1, simple 77.26% 75.61% 76.94% 77.86% 78.55% 75.90% 77.11%
User 1 87.89% 82.6% 84.29% 86.73% 85.76% 84.67% 85.27%
User 2 85.95% 84.35% 84.04% 86.59% 86.04% 85.50% 85.49%
User 3 86.28% 82.98% 85.08% 87.03% 85.99% 85.07% 85.44%
User 4 86.00% 82.69% 84.11% 89.41% 85.56% 86.12% 85.79%
User 5 86.15% 82.89% 84.06% 86.24% 86.61% 83.83% 85.04%
User 6 86.29% 83.48% 83.85% 87.56% 85.56% 87.75% 85.83%

Average: 85.48±0.30%
Table 1: Results for activity recognition task. Each row corresponds to the results of training on the participant given in the first column, and
the values indicate the classification accuracy on the data set for the user specified by the column header. The last column gives the results
on the entire data set. The first row corresponds to using only the raw accelerometer and barometric pressure gradient data, without using
time-delay embedding.

for each segment were then averaged to give a score for how
well model T matched the data in S.

We used 5-fold cross-validation, and so the above proce-
dure was repeated 5 times with 5 different test and training
sets. The scores were then averaged across the 5 runs. Re-
markably, our algorithms achieved 100% accuracy on the
test set: every test set was associated with the correct user
model.

Discussion
The results we obtain for both experiments have high accu-
racy, despite the fact that we use significantly fewer features
than are generally used for time series analysis based on sig-
nal processing techniques. For the gait recognition task, our
method requires a time window of 22 samples. The aver-
age walking cycle has a period of approximately one second,
and so for a 1Hz signal to be detected confidently using any
method that computes the spectrum of the data, hundreds of
samples must be considered.

Our activity recognition results use significantly fewer
features than current approaches, but achieve similar results.
To provide some perspective, we note that a similar data set
was considered by Subramanya et al. (2006), who applied
the methods proposed by Lester, Choudhury, and Borriello
(2006) and achieved an accuracy of 82.1% on the same set
of activities we consider. Their system used 650 features
of the time series, composed of cepstral coefficients, FFT
frequency coefficients, spectral entropy, band-pass filter co-
efficients, correlations, and a number of other features that
require a nontrivial amount of computation. A modified ver-
sion of AdaBoost was then used to select the top 50 features
for classification. Comparatively, we used 16 samples of the
raw signal, corresponding to a window of 48 samples, or one
and a half seconds, and then computed a linear projection to
get the 9 features that are used to train the classifier. We em-
phasize that existing results are obtained on different data
sets, and we only report their results because their work is
the closest in nature to our own. We make no claim that our
method obtains better results, only that the features that we
use are considerably easier to compute, while the classifica-
tion accuracy is similar.

The accuracy figures could be improved with further post-
processing, because as can be seen in Figure 2, most of
the mislabeled segments are short. State of the art activity
recognition systems routinely perform temporal smoothing,
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Figure 4: Scores for the gait recognition task. Rows represent
test sets and columns represent models. The shading represents
the difference between the score and the maximum score for the
row in terms of empirical standard deviations. White represents
no difference (i.e., the maximum score for the row), and darker
shading represents larger differences.

which reduces such errors. As a simple test, we aggregated
sequences of 8 predictions and took a majority vote at 1/4
second intervals (instead of making 32 separate predictions
every second), matching the rate of existing activity recogni-
tion systems (Lester, Choudhury, and Borriello 2006). With
this approach, the error rate decreased by 2-4%, depending
on the experiment. However, in this paper we want to fo-
cus on the power of the representation, and not try to use
other methods to mitigate errors. Better performance could
also be achieved using other classification methods, such as
the decision stumps classifiers used by Lester, Choudhury,
and Borriello (2006) or the semi-supervised CRFs used by
Mahdaviani and Choudhury (2007). We chose SVMs simply
because of the ease of using off-the-shelf code.

For the gait recognition task, we were able to perfectly
classify the 25 individuals. While this result is very encour-
aging, the difference in scores between the top two models
is usually small. In terms of the empirical standard devia-
tion over the 5 cross validation runs, the average difference
between the top two scores is only 0.76, which is not sig-
nificant. The average difference between the top score and
the fifth score is 1.34 empirical standard deviations, still not
very significant.

Figure 4 shows scores for each test set when compared to
each model. The shading in the ith row and jth column de-
picts the difference between the average score for test set i
with model j and the maximum average score for any of the
test sets under model j, in terms of empirical standard devi-



ations. The white squares represent the maximum average
scores. Although the maximum scores lie on the diagonal,
for many of the test sets a large number of the models obtain
scores that are close to the maximum score. For example,
the difference between the highest and lowest average score
for test set 6 is only 1.05 empirical standard deviations. On
the other hand, for some test sets, such as test sets 10 and
22, the classifier clearly identifies the correct model.

Other authors have considered using wearable sensors to
perform gait recognition. Due to the personal nature of
these data sets, they are not publicly available, so we can
only offer a qualitative comparison. Gafurov, Snekkenes,
and Bours (2007) analyzed a data set consisting of data col-
lected from 50 individuals. They reported a recognition rate
of 86.3% using features that were hand-crafted for the gait
recognition task. We also note that the sensors that they used
were special-purpose motion sensors, and have both a higher
sampling rate and less noise than the sensors that we em-
ployed. Our method appears to offer better performance,
despite not being designed for this particular task.

Conclusion and Future Work
In this paper, we demonstrated that time-delay embeddings
provide a powerful substitute for the representations that
are typically used in the activity recognition literature, es-
pecially given the need for small memory and process-
ing requirements. Our results show that with few, easy-
to-compute features, we can obtain classification accuracy
comparable to state-of-the-art activity recognizers, without
any tuning of the classifier, or any post-processing of the la-
bels assigned by the classifier. Other existing approaches use
much more complicated features and specially tuned classi-
fiers. In the gait recognition task, our proposed classification
algorithm achieves 100% test set accuracy on a noisy data
set consisting of 25 individuals. Not only is the accuracy
high, the algorithm is efficient enough that it can classify in
real time, on a mobile phone.

While we focus on the problem of activity recognition, we
would like to emphasize the usefulness of these methods for
reconstructing a state representation for any data generated
by a nonlinear dynamical system. This includes modelling
of state spaces and dynamics for partially observable sys-
tems, often considered in reinforcement learning.

There are some obvious steps to produce an industrial-
strength activity recognition system. Using additional meth-
ods such as hidden Markov models to perform temporal
smoothing of the classifier output, and testing other types of
discriminative classifiers are obvious next steps in this pro-
cess. We are also working on incorporating other types of
sensors, such as GPS, audio, and video, to provide further
context for detecting more interesting activities. Ultimately,
the goal of this work is to move beyond recognizing primi-
tive activities, in order to build a system that will recognize
higher-level activities such as going for a walk to the store,
or driving to work.
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