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Abstract

In this paper, we will investigate two partial orders on classical states ∆n that induce

a domain theoretic structure. In particular, we will look at the Bayesian order presented

by Coecke and Martin (2002) and the implicative order presented by Martin (2004).

For both of the domains that arise from these orderings on the classical states, Shannon

entropy is a measurement in the domain theoretic sense. We will then investigate the

behaviour of a simple learning algorithm for stochastic learning automata, which has

previously been studied using domain theory (Edalat, 1995), in terms of how the states

of the system change with respect to the domains induced by these partial orders.

1 Introduction

The classical states are a natural way of representing the state of many systems in

many domains, from learning systems to quantum computing systems, but not a lot

of work has been done to study the domain theoretic properties of classical states. In

this paper, we will give an overview of some of the work that has been done by a few

authors to assign order to the states. This is an interesting idea, assigning order to

states that are commonly used to represent disorder, and we will look at the structures

that arise from these orders. What is interesting is that in both of the orders that we

look at, Shannon entropy, a standard measure for the uncertainty in a state, provides

a quantitative expression of the qualitative notion of a state being more informative

than another state (ie. a state being greater than another state in the given order). We

will assume that the reader is familiar with the basic de�nitions from Domain theory

that would be covered in a basic introductory course on the subject, and for the sake

of brevity we will not reproduce them here.

We will begin by introducing the classical states, and then discuss the notion of

measurement in terms of domain theory. Then we will look at two partial orders on

classical states, the Bayesian order and the implicative order, and we will discuss the

motivation behind the two, and the domain theoretic structure that arises when we

apply the order to the classical states. We then analyze a simple learning algorithm for

stochastic learning automata, the linear reward-penalty scheme, in terms of how the
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states progress with respect to the two orders, as the system learns. We end with a

brief conclusion, and a discussion of future directions for study.

2 Domains of classical states

In this section, we will discuss two partial orders on the set of classical states, both of

which induce a domain theoretic structure. First we will de�ne what we mean by the

classical states and what we mean by a measurement on a domain, thus setting up the

following sections which will de�ne �rst the Bayesian order from Coecke and Martin

(2002), followed by the implicative order from Martin (2004).

2.1 Classical states

If we have an event in which one of n di�erent outcomes is possible, then we can

represent the information an observer would have about the result of the event by an

n-tuple (x1, . . . , xn), where xi represents the belief, or probability, that outcome i will
occur. We call these the classical states, which we de�ne formally as

∆n := {(x1, . . . , xn) ∈ [0, 1]n :
n∑

i=1

xi = 1},

for n ≥ 2. The set of classical states is equivalent to the n-simplex.

For notational convenience, we de�ne

x+ = max1≤i≤nxi

and

x− = max1≤i≤nxi.

Supposing that we have no knowledge at all about the system, and no reason to

believe a priori that any outcome is more likely than any other. This would be repre-

sented as the unique state x ∈ ∆n such that x+ = x− = 1/n, which is referred to as

the completely mixed state, or ⊥. We call a state x ∈ ∆n pure if x+ = 1, and ∆n has

exactly n pure states which we denote {ei : 1 ≤ i ≤ n}, and these correspond to the

vertices of the n-simplex.

We also consider a special subset of the classical states, Λn ⊆ ∆n, the monotone

decreasing states, also referred to as just the monotone states, de�ned as

Λn := {x ∈ ∆n : (∀i < n)xi ≥ xi+1}.

We will be looking at �nite states, that is states with a �nite number of elements,

though the case of in�nite states is presented by Mashburn (2006). Mashburn de�nes

an order relation on in�nite states, but the structure that is induced does not have a

bottom element nor does it have Shannon entropy as a measurement, and so we will not

discuss it any further. In Martin (2006), an order on the monotone states is given which

is equivalent to majorization, but as there is no clear way how to extend this ordering

from Λn to ∆n while retaining some of the important domain theoretic properties such
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as continuity, we simply remark that Λn with majorization as the order relation is a

continuous dcpo with a least element, and so does have some remarkable properties,

but since only want to focus on orders on ∆n, it lies outside of the scope of this paper.

An ideal order on the classical states would have the completely mixed state as the

bottom element, and the pure states as the maximal elements. Shannon entropy

µx = −
n∑

i=1

xi log xi

gives us a quantitative measure of the amount of uncertainty that a state possesses.

Similarly, if we have two states x, y in a domain with an order relation v, then asserting

that x v y translates to the statement that y is more informative than x. Therefore it
would also be ideal if the order relation that we de�ne on the classical states would sub-

mit to Shannon entropy as a measurement in the domain theoretic sense. In particular,

as states become more informative, uncertainty should decrease:

x v y =⇒ µx ≥ µy.

It is clear from the equation for uncertainty that the pure states, or the maximal

elements, will have Shannon entropy 0, and the completely mixed state, or bottom

element, will have the highest possible Shannon entropy, log n.
Finally, we would like our order relation to respect the mixing law :

x v y & p ∈ [0, 1] =⇒ x v (1− p)x + py v y.

The mixing law says that if y is more informative than x, then any mixture of the two

states should be more informative than x, but less informative than y.

2.2 Measurement in Domain Theory

The notion of a measurement in the context of domain theory is introduced by Martin

(2000). Since one of the desired properties of our domain on classical states is to

have Shannon entropy as a measurement, we will need to cover what is meant by a

measurement in domain theory.

We use the set [0,∞)∗ to denote the nonnegative reals in their opposite order, and

we make use of the following two de�nitions from Martin (2000).

De�nition 2.1. A Scott continuous map µ : D → [0,∞)∗ on a continuous dcpo D
induces the Scott topology near X ⊆ D if for all Scott open sets U ⊆ D and for any

x ∈ X,

x ∈ U =⇒ (∃ε > 0) x ∈ µε(x) ⊆ U,

where µε(x) = {y ∈ D : y v x & |µx− µy| < ε}. This is written µ→ σX .

De�nition 2.2. A measurement on a domain D is a Scott continuous mapping µ :
D → [0,∞)∗ with µ→ σker µ where ker µ = {x ∈ D : µx = 0}.

Measurement, then, is a process by which we can express the qualitative notion

captured by a domain (D,v) in a quantitative expression. Martin gives a number of

extra properties of measurements, and uses the idea of measurement to prove two very

interesting �xed point theorems, but for the purpose of this paper we will only be using

these two de�nitions.
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2.3 Bayesian order

The �rst order on classical states that we will look at is the Bayesian order presented

by Coecke and Martin (2002). The Bayesian order is developed for use with both

classical and quantum states, but we will be focusing on just the classical states. The

important de�nitions, theorems, and lemmas from Coecke and Martin (2002) have

been transcribed in Appendix A in order to provide a more concise overview of the

contributions from this rather lengthy, but extremely well written, paper.

The authors introduce the order using an amusing example to explain the rationale

behind the Bayesian order, which we will modify slightly for our purposes. A grad

student is trying to �nd an interesting topic to write a term paper about, and his

supervisor hands him a stack of n papers to read. In fact, only one of the papers

actually contains a topic that would be interesting enough to write a paper on. Based

on the titles, the grad student can represent his belief in the probability that each paper

will be interesting as a classical state x ∈ ∆n. Now, after the student reads paper i
and discovers that it contains nothing of interest, he can update his belief in two ways:

he can set the value xi = 0 and add a small value to each of the other xj 's to keep the

sum equal to 1, or he can form a new classical state x′ ∈ ∆n−1, completely removing

the entry for paper i. Once the student discovers that a paper is not interesting, there

is no chance that he will later come back to that paper, and so we will choose the latter

method because it removes the entry that we will no longer need to consider, forming

a simpler representation. We can de�ne a projection that incorporates this idea of

collapsing the ith outcome by the partial map pi : ∆n ⇀ ∆n−1 given by

pi(x) =
1

1− xi
(x1, . . . , x̂i, . . . , xn)

for 1 ≤ i ≤ n and 0 ≤ xi < 1, where the ·̂ operator denotes the removal of an element

from the state. This projection can only represent the notion of �nding out that a

certain event is not the correct one, and so it is only de�ned on dom(pi) = ∆n \ {ei}.
The case where the student reads the interesting paper is not interesting to us, since it

essentially ends the whole process.

The authors begin by de�ning an order relation v on the classical two states, ∆2

such that for x, y ∈ ∆2,

(x1, x2) v (y1, y2) ⇐⇒ (y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1).

The authors then go onto prove that the given order is the unique partial order on

∆2 that both satis�es the mixing law and has a bottom element ⊥ = (1/2, 1/2). The
authors then go on to de�ne the order on ∆n recursively, such that for n ≥ 2, x, y ∈ ∆n

x v y ⇐⇒ (∀i)(x, y ∈ dom(pi) =⇒ pi(x) v pi(y)),

where i ranges over the set {1, . . . , n}. This essentially says that if observer A has more

information than observer B about the true outcome of an event, then after learning

that any single outcome is not the correct one, A should still have more information than

B. Though it is not explicitly stated in the paper, we believe that this order is called

the Bayesian order because it is loosely based on the idea of conditional probability in
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that an state x is more informative than a state y if and only x is still more informative

than y given any possible single observation.

Next, the authors prove that with the Bayesian order, the classical states ∆n are

a dcpo, and moreover they prove an interesting property of the classical states, that

every directed subset contains an increasing sequence with the same supremum, and so

we can always replace directed sets with increasing sequences, which greatly simpli�es

any argument that involves directed sets.

The problem with how we've de�ned the Bayesian order is that it involves both

a recursive quanti�er as well as recursion, and so it makes the process of determin-

ing whether two states are related a fairly involved process. In order to simplify the

de�nition of the ordering relation, the authors introduce the symmetric group

S(n) = {σ|σ : {1, . . . , n} ' {1, . . . , n}}

of bijections on the set {1, . . . , n}, referred to as permutations or symmetries. For any

state x ∈ ∆n, there exists a permutation σ such that x · σ ∈ Λn, that is to say that for

any state, there is a permutation that makes the state monotone. With this in mind,

we can then we can rede�ne our ordering relation v such that for x, y ∈ ∆n, we have

x v y i� there is a permutation σ of {1, . . . , n} such that x · σ and y · σ are monotone

and

(x · σ)i(y · σ)i+1 ≤ (x · σ)i+1(y · σ)i

for all i with 1 ≤ i < n.
This new de�nition gives us an easier way to determine the relation between two

states. First we need to determine if there exists a permutation σ that we can apply

to both x and y to make them monotone, and then if there is, then we simply compare

each pair of subsequent elements as described above. This highlights the fact that for

two states x, y ∈ ∆n to be comparable, the indices i such that xi = x+ must be the

same as the indices j such that yj = y+, and similarly the indices i such that xi = x−

must be the same as the indices j such that yj = y−, otherwise we would not be able

to �nd a permutation σ such that x · σ and y · σ are both monotone.

The authors proceed to discuss what they call symmetric functions, which are func-

tions f : ∆n → E where E is a dcpo and for all σ ∈ S(n), f(x · σ) = f(x). It just so
happens that Shannon entropy is a symmetric function. More importantly, the natural

retraction r : ∆n → Λn is symmetric, and so for problems that involve classical states,

we can �rst focus on solving the problem for Λn with the knowledge that the solution

will naturally extend to ∆n in general.

Now that we have established that the classical states with the Bayesian order is

a dcpo, we look at the notion of approximation. It is at this point that the authors

deviate from the standard de�nitions used in domain theory. The de�nition for the

�way below� relation is slightly di�erent, and for the purpose of this paper we will call

this relation �weakly way below�, which we denote as �w and de�ne as follows: Let D
be a dcpo. For x, y ∈ D, we write x�w y i� for all directed sets S ⊆ D,

y =
⊔

S =⇒ (∃s ∈ S) x v s.

Note that this di�ers from the usual de�nition of way below in that it has an equality

rather than an inequality. The standard de�nition is that for a dcpo D, for x, y ∈ D

5



we write x� y i� for all directed sets S ⊆ D,

y ≤
⊔

S =⇒ (∃s ∈ S) x v s.

While the di�erence between the two de�nitions seems minute, it actually has quite a

drastic e�ect on the approximations of an element x of a dcpo D, which we de�ne as

�

wx := {y ∈ D : y �w x},

which is again similar to the standard de�nition of

�

x which uses the standard way

below relation instead of the weak version. We will delve further into the di�erence in

a moment, but we need a few more de�nitions in our arsenal.

Similar to the de�nition of a continuous dcpo, where
�

x is directed with supremum

x for all x ∈ D, we call a dcpo exact if

�

wx is directed with supremum x for all x ∈ D.

Clearly a continuous dcpo is also an exact dcpo, since x � y =⇒ x �w y, and the

two notions also coincide on maximal elements, since if e ∈ D is a maximal element,

and S is a directed set S with supremum
⊔

S ≥ e, then
⊔

S = e, and so

�

we =

�

e.
The straight line path from x to y is

πxy(t) = (1− t)x + ty,

where t is in the range 0 ≤ t ≤ 1. It is clear that πxy(0) = x and πxy(1) = y, and the

authors show that πxy is Scott continuous i� x v y. The authors then show that for

any x ∈ ∆n, π⊥x(t)�w x for t < 1. Therefore, for every x ∈ ∆n, the set

�

wx contains

a directed set with supremum x. Now, for any dcpo D, for each x ∈ D, the set

�

x
is directed with supremum x i� it contains a directed set with supremum x, and so it

follows that ∆n is exact.

Next, the authors prove a proposition that brings to light the reason why they use

the modi�ed version of the way below relation. The proposition is that for n ≥ 2, for
all x ∈ ∆n, x�w ei i� x = π⊥ei

(t) for some t < 1. This means that any element that

is weakly way below a maximal element ei must lie on the straight line path between

⊥ and ei. The authors do not go into much more detail as to how this restricts the

domain, but for the purpose of this paper we will investigate a bit further.

The main di�erence between an exact dcpo and a continuous dcpo is embodied in

the idea of context. In a continuous domain D with order relation ≤ and elements

x, y, z ∈ D, we have that x� y ≤ z =⇒ x� z. In an exact domain, this relationship

only holds if the statements y ≤ z and x� y are being made in the same context. The

authors show that if x, y, and z are all regarded as necessary for a single state, that is

if �z 6= ∅, then we can say that x� z, but otherwise it may not necessarily be true.

Considering this, it becomes apparent why the modi�ed de�nition of the way below

relation is used. If the authors had used the standard way below de�nition, then

most states would not have approximations. For example, suppose we have the state

y = (1/2, 1/2, 0) ∈ ∆3, and suppose that ⊥ 6= x � y. We have that y v ei, and so

x � ei which means that x �w ei. Therefore, from the proposition above, we have

that x must lie on the straight line path between ⊥ and ei. But the Bayesian order

has a degenerative property, that is that if x v y, then yi = yj > 0 =⇒ xi = xj , and

so since x v y and y1 = y2 = 1/2 > 0, we must have that x1 = x2. The only state
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with x1 = x2 that is on the straight line path between ⊥ and e1 is ⊥, which contradicts

our assumption that x 6= ⊥. Therefore the only element that is way below y by the

standard de�nition is ⊥.
Simply having one example is not enough to claim that most states do not have

approximations, and towards making this paper more than just a summary of other

peoples' work, we will now prove that the classical states with the Bayesian order is

not continuous. First we need a trivial proposition. We cannot recall whether it was

covered in the course, but since it is so simple, we will include it here.

Proposition 2.3. Let D be a dcpo. For x, y, z ∈ D, if x� y and y ≤ z, then x� z.

Proof. Since x� y, every directed set S ⊆ D with
⊔

S ≥ y has an element s ∈ S such

that x ≤ s. Then any directed set S ⊆ D with
⊔

S ≥ z ≥ y must have an element

s ∈ S such that x ≤ s, and so x� z.1

We are now ready to prove our claim, noting that since we included the pertinent

results from Coecke and Martin (2002) in Appendix A, we will be making reference to

the results as they are indexed in the Appendix, and not in the original paper.

Proposition 2.4. Let ∆n denote the classical states with the Bayesian order. ∆n is

not a continuous dcpo.

Proof. We will prove that for any element x ∈ ∆n such that x does not lie on a straight

line path between ⊥ and some maximal element ei,
⊔ �

x 6= x. Since most elements of

∆n do not lie on one of these paths, it follows that ∆n is not continuous.

Let x ∈ ∆n be an element that does not lie on a straight line path between ⊥
and any maximal element. Let ei ∈ ∆n be a maximal element such that x ≤ ei,

and let a ∈ ∆n be an element such that that a � x. By Proposition 2.3, we have

that a � ei. Now, since ei is a maximal element, a � ei ⇐⇒ a �w ei, and so

Proposition A.34(i) tells us that a must lie on the straight line path between ⊥ and

ei. This straight line path is closed under directed suprema, and so the sup of any

elements that are on the line must also be on the line. Therefore, since x is not on the

line, x 6=
⊔
{a ∈ ∆n : a� x} =

⊔ �

x.

In a private correspondence, Keye Martin informed us that it was in fact possible

to prove that if we remove the boundary states B ⊆ ∆n, that is those states that

have elements equal to 0, such as the maximal elements or y in the previous example,

then the result is in fact a continuous dcpo, but time constraints prevented us from

investigating this further, other than noting that a dcpo D is continuous if it is exact

and x� y v z =⇒ x� z for all x, y, z ∈ D. Since this implication will hold provided

�z 6= ∅, we could probably show that ∆n is still an exact dcpo if we remove the boundary

states, and any element z ∈ ∆n \ B will approximate some element z′ ∈ ∆n \ B (ie.

z � z′, and so �z 6= ∅).
Finally, the authors show that Shannon entropy µ on classical states is Scott contin-

uous on ∆n, and is a measurement in the domain theoretic sense. Since it is monotone,

it must be the case that for x, y ∈ ∆n, x v y =⇒ µx ≥ µy, and so Shannon entropy

gives us a quantitative expression of what we mean by the qualitative statement x v y.

1This probably should have just been described as being obvious.
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2.4 Implicative order

Given the shortcomings of the Bayesian order, namely that the induced dcpo is not

continuous, and so not a domain in the technical sense, it was only a matter of time

that an order on the classical states was found that would give a continuous domain.

This order is called the implicative order, and is presented by Martin (2004). In this

section, the relation v will represent the implicative order, which we de�ne as follows:

For x, y ∈ ∆n, x v y i� for all i ∈ {1, . . . , n}, xi ≥ yi or xi = x+. The authors then

show that ∆n with the implicative order is a continuous dcpo.

According to the authors, it is important to understand why this order is called the

implicative order, and so we will now discuss this matter. We say that an element x of

a dcpo D is irreducible when ∧
(↑ x ∩max(D)) = x

and we denote the set of all irreducible elements in D as Ir(D). The authors then show

that for any n ≥ 2, the set of irreducible elements of ∆n is isomorphic to P{1, . . . , n} \
{∅} ordered by reverse inclusion. This means that the power set of {1, . . . , n} sits nicely
in ∆n, and each A ∈ P{1, . . . , n}\{∅} corresponds to a classical state x ∈ Ir(∆n) given
by

xi :=

{
x+ if i ∈ A,

0 otherwise.

The authors then go on to explain how ∆n is actually a continuous extension

of P{1, . . . , n}. For a set A ∈ P{1, . . . , n}, we have a characteristic function χA :
{1, . . . , n} → {0, 1} de�ned by

χA(i) :=

{
1 if i ∈ A,

0 otherwise.

Then if we take ≤ to be the pointwise order on function of the type {1, . . . , n} → {0, 1},
then we have

A ⊇ B ⇐⇒ χA ≤ χB.

Now we assign to a state x ∈ ∆n a characteristic function χx : {1, . . . , n} → [0, 1]
given by

χx(i) :=

{
1 if xi = x+,

xi otherwise.

These functions χx then extend our notion of the characteristic functions on elements

of the power set to the elements of our continuous domain ∆n, and they agree on the

elements Ir(∆n). The authors then prove that for x, y ∈ ∆n, x v y ⇐⇒ χx ≥ χy,

thus justifying the use of the term implication for this order. Finally, the authors prove

that ∆n is an ω-continuous dcpo with Shannon entropy as a measurement.
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3 Stochastic Learning Automata

Stochastic learning automata, sometimes referred to as cellular automata, are learning

systems that were originally studied in the �eld of mathematical psychology (Tsetlin,

1973), but later had a large impact in the �eld of control theory (Narendra and

Thathachar, 1989). The standard framework is we have an automaton that exists

in an unknown, random environment in which the automaton can issue one of a �nite

number of actions to the environment, which will respond with a signal indicating suc-

cess or failure. The goal of the automaton is to choose actions that have the highest

probability of success, and the automaton is said to learn when if it tends to increase

its chance of success as it proceeds. Formally, we de�ne the framework as the tuple

(A,S, π,B,F) where

• A is the set of r actions

A = {1, . . . , r}.

• S is the set of internal states of the automaton where s ∈ S is a probability vector

s = (s1, . . . , sr),
r∑

i=1

si = 1

where si denotes the estimate of the success probability of action i.

• π is the environment, and is also a probability vector

π = (π1, . . . , πr),
r∑

i=1

πi = 1

where πi represents the actual probability of action i succeeding. For the purpose
of this paper, we will assume that the environment is stationary, and so the

probabilities do not change over time.

• B = {0, 1} is the set of signals that the environment will issue in response to an

action. Here 1 indicates success and 0 indicates failure.

• F is the set of continuous maps representing the learning functions

F = {fe : S → S|e ∈ E}

where E = A × B is the set of pairs (i, b) representing an event in which the

automaton issued action i ∈ A and received the response b ∈ B.

It can easily be seen then, that if the automaton is in the state s, then the probability
of an event e = (i, b) ∈ E is given by

pe(s) = si(πib + (1− πi)(1− b)).

If an automaton is in state s and the event e = (i, b) ∈ E occurs, then the automaton

updates its state to be fe(s). The dynamics of the system can then be described as

follows: The automaton starts the iteration in state s, observes the event e = (i, b) ∈ E
with probability pe(s), and updates its state

s← fe(s).
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3.1 Linear reward-penalty scheme

A very basic learning algorithm for stochastic learning automata is the linear reward-

penalty scheme. In this scheme, the automata observes an event e = (i, b), and updates

the state using the learning function

fe(s))j =

{
sj + λ(1− sj) if j = i,

(1− λ)sj if j 6= i

if b = 1, or the learning function

fe(s))j =

{
(1− λ)sj if j = i,

(1− λ)sj + λ/(r − 1) if j 6= i

if b = 0, for 0 ≤ j ≤ r in both cases. λ ∈ (0, 1) is the learning rate of the system.

The linear reward-penalty scheme for a binary-state automaton is modeled in terms

of an iterated function system (IFS) on a probabilistic power domain by Edalat (1995).

In the paper, the author shows that the limiting distribution of the states, that is

the distribution that the states will eventually converge to, can be calculated as a

generalized Riemann sum. This is an interesting result, and it is neat to see that the

results of the domain theoretic analysis of the problem agree with the well-known results

about the binary-state automaton, which employ classical measure theory.

Instead of focusing on the binary-state automaton, as so many others do, we will

look at the behaviour of the linear reward-penalty scheme for an r-state automaton. It

is clear that the set of states, S, of the automaton are in fact our classical states, ∆n,

and so we will now look at the behaviour of the states of the automaton using the two

orders on ∆n that we studied in the previous section.

3.2 Analysis

When we set out to study the behaviour of the linear reward-penalty scheme with

respect to the orders on classical states, we had hoped that the results would be far more

interesting than those we actually ended up with. The problem is that if we consider the

states as discrete probability distributions, then for two states to be comparable, they

have to have their peaks at the same point. This restriction makes it di�cult to analyze

density estimation processes, and the linear reward-penalty scheme can legitimately

been seen as a density estimation process, because during the estimation process, the

peaks in the estimates tend to move around a bit. We do not start with knowledge of

which of the actions is going to be the most likely, that would defeat the purpose of the

learning algorithm, and if we incorrectly posit that one action is the most likely, and

then later learn that another action is actually more likely, then the set of states that

we move through is no longer directed.

The problem lies in the fact that the learning function that is used to update the

states depend on the response signal, which is generated through a probabilistic process.

Therefore, in general, the same action will not always generate the same response.

Therefore even for a single event e, we cannot say anything about the relationship
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between s and fe(s). For example, if we pick action i where in our current state s we

have si = s+, and we observe the event e = (i, 1), then s v fe(s) in both the Bayesian

and implicative order. However, if we observe the event e = (i, 0), which we will observe

with probability 1−πi, then it may be the case that fe(s) v s, but it might also be the

case that s and fe(s) are not even comparable in either order, because we are decreasing

the value of si and increasing the value of all of the other sj 's, and so if we end up with

fe(s)j ≥ fe(s)i for some j 6= i, then we have now changed the index of our maximal

element, thus making the two states incomparable. Similarly, if we have si ≤ s+, then

we cannot say anything about s and fe(s) for either of the possible response signals

that we might see.

We had hoped that we would be able to prove something interesting, such as that

fe was Scott continuous, even if just for certain restricted environments, such as when

π ∈ max(∆n), but unfortunately this just simply is not true, since fe is not necessarily

monotone for any environment, except for one very contrived situation. The only case

where either of the orders is actually interesting is when the environment is a maximal

element, and we start with the initial state s = ⊥. This means that one action will

always succeed, and all other actions will always fail, and when this is the case, we get

something worth writing about. Since the environment is no longer stochastic, calling

this a stochastic learning automata is a bit of a stretch, but this really is the only

situation in which we have any interesting results, and so we will just go with it.

Our main result is that if π = ei ∈ max(∆n) for some i ∈ {1, . . . , n}, then for all

s, t ∈ {u ∈ ∆n : u v π} and for all e ∈ E, we have that s v t =⇒ fe(s) v fe(t)
and s v fe(s) with s = fe(s) ⇐⇒ s = π and so fe is monotone and increasing. This

result holds for both the Bayesian and implicative order. Also, for This means that for

limited set of states and this restricted environment, fix(fe) = π, that is if we iterate

fe starting from any state s v π, then we will end up converging to π in the limit. In

fact, if we start from any state, we will converge to π in the limit, but we can only

prove this using our orders on classical states if we start from a states that is less than

π. The proofs of these claims are trivial, and follow straight from the de�nitions, and

so we will not include them here for the sake of not insulting our readers.

4 Conclusion

In this paper, we looked at two di�erent orders on the classical states, and analyzed

the domain theoretic properties of the structure that emerged. The �rst order, the

Bayesian order, induces an exact dcpo, which di�ers from a continuous dcpo in how

approximations of elements are de�ned. This di�erence causes some of our domain

theoretic notions, such as the interpolative property of the way below relation to break

down in certain situations. The Bayesian order can induce a continuous dcpo if we

remove the boundary states, those with 0 elements, from the classical states, but this

removes very important states, such as the maximal elements, from the set, and so

this is not a very reasonable restriction. The implicative order, which is a continuous

form of logical implication, does in fact induce a continuous dcpo when applied to the

classical states, and also has a very simple, intuitive interpretation. A state is more

informative than another if it places a higher weight on its maximal element, and a

11



lower weight on all other elements.

We also looked at learning system, the stochastic learning automata, equipped with

a very simple learning scheme, and analyzed how the states change as the system learns,

but we found that both of the orders were too restrictive to allow for much to be said

about the progression of the states. The main problem is that the maximal element in

two states must be the same in order for them to be comparable, and so any learning

system that can place the highest belief on one element, but then shift the weights such

that the highest belief is a di�erent element produces states that are not comparable.

If we add in randomness to the system, then essentially nothing can be asserted about

the progression of the states, except in some very restricted situations.

It would be interesting to try to �nd a learning algorithm such that the states

progress in a meaningful way in terms of the orders on classical states that we've looked

at, but we were unable to do so. There are some major barriers, namely those men-

tioned in the previous paragraph, that could actually make �nding such an algorithm

an impossible task. There are certain domains, such as searching or sorting, in which

algorithms tend to always progress directly towards the correct solution, and in fact in

Martin (2004), a quantum search algorithm, Grover's algorithm, is studied and the al-

gorithm is shown to progress monotonically in the implicative order towards the correct

solution. It is likely that the stochastic manner in which learning algorithms proceed

may make assigning an order to the progression of the states a fruitless endeavor.

Appendix

A The Bayesian order on Classical States

This section contains the theorems, lemmas, de�nitions, and propositions from Coecke

and Martin (2002) pertaining to the Bayesian order on classical states. As they have

been transcribed here, the numbers do not match those in the original paper. The titles

of the sections are taken from the paper. We had previously prepared this section in

order to summarize the 91 page paper into just a few pages for our own convenience,

and so we felt it would be appropriate to include it in this document.

A.1 Two states and the parabola

De�nition A.1. The classical n-states are

∆n := {x ∈ [0, 1]n :
n∑

i=1

xi = 1},

where x = (x1, . . . , xn) and n ≥ 1.
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A.2 A partial order on classical states

De�nition A.2. Let n ≥ 2. The projection which collapses the ith outcome is the

partial map pi : ∆n+1 ⇀ ∆n given by

pi(x) =
1

1− xi
(x1, . . . , x̂i, . . . , xn+1)

for 1 ≤ i ≤ n + 1 and 0 ≤ xi < 1. It is de�ned on dom(pi) = ∆n+1 \ {ei}.

De�nition A.3. For x, y ∈ ∆2, we order classical two states by

(x1, x2) v (y1, y2)⇔ (y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1)

and for n ≥ 2, for x, y ∈ ∆n+1 we de�ne

x v y ⇔ (∀i)(xi, yi < 1 =⇒ pi(x) v pi(y)),

where i ranges over the set {1, . . . , n + 1}.

De�nition A.4. Let n ≥ 2. For x ∈ ∆n, we set

x+ := max
1≤i≤n

xi and x− := min
1≤i≤n

xi.

We have x− ∈ [0, 1/n] and x+ ∈ [1/n, 1].

Proposition A.5. Let x, y ∈ ∆n and ei be the pure states in ∆n.

(i) If x v y, then there is an index i such that xi = x+ ≤ y+ = yi.

(ii) For any i, xi = x+ if and only if x v ei.

(iii) If x v y and x+ = y+, then x = y.

Theorem A.6. ∆n is a partially ordered set for each n ≥ 2. Its maximal elements are

the pure states,

max(∆n) = {x ∈ ∆n : x+ = 1},

and its least element is the completely mixed state ⊥ := (1/n, . . . , 1/n).

Lemma A.7 (Degeneration). If x v y in ∆n, then

(xi = 0 =⇒ yi = 0) & (yi = yj > 0 =⇒ xi = xj)

for all 1 ≤ i, j ≤ n.

De�nition A.8. The standard projections πk : ∆n → [0, 1] are πk(x) = xk for 1 ≤
k ≤ n.

Lemma A.9. If (xi) is an increasing sequence in ∆n, then

(i) There is an index k with πk(xi) = x−i for all i.

(ii) There is an index k with πk(xi) = x+
i for all i.
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De�nition A.10. A subset S of a poset is directed if it is nonempty and

(∀x, y ∈ S)(∃z ∈ S)x, y v z.

A directed-complete partial order, or dcpo, is a poset in which every directed subset

has a supremum.

Proposition A.11. The classical states ∆n are a dcpo. In more detail,

(i) If (xi) is an increasing sequence, then⊔
i≥1

xi = ( lim
i→∞

π1(xi), . . . , lim
i→∞

πn(xi)).

(ii) Every directed subset of ∆n contains an increasing sequence with the same supre-

mum.

De�nition A.12. A map f : D → E between dcpo's is Scott continuous if it is

monotone

x v y =⇒ f(x) v f(y)

and it preserves directed suprema:

f(
⊔

S) =
⊔

f(S)

for any directed set S ⊂ D.

Corollary A.13. A monotone map f : ∆n → E into a dcpo E is Scott continuous i�

for each increasing sequence (xi) in ∆n, f(
⊔

xi) =
⊔

f(xi).

Corollary A.14. The map s : ∆n → [0,∞)∗ given by s(x) = − log x+ is Scott contin-

uous. It has the following properties:

(i) For all x, y ∈ ∆n, if x v y and s(x) = s(y), then x = y.

(ii) For all x ∈ ∆n, we have s(x) = 0 i� x ∈ max(∆n).

(iii) For all x ∈ ∆n, we have s(x) = log n i� x = ⊥.

A.3 Symmetries for classical states

De�nition A.15. The set of permutations or symmetries, S(n) is the symmetric group

S(n) = {σ|σ : {1, . . . , n} ' {1, . . . , n}}

of bijections on the set {1, . . . , n}. The composition of x ∈ ∆n and σ ∈ S(n) is written
x · σ.

De�nition A.16. A state x ∈ ∆n is monotone if xi ≥ xi+1 for all i < n.

Lemma A.17. For states x, y ∈ ∆2, we have x v y i� there is a σ ∈ S(n) of {1, 2}
such that x · σ = (x+, x−), y · σ = (y+, y−), and x+y− ≤ x−y+.
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Theorem A.18. For x, y ∈ ∆n, we have x v y i� there is a σ ∈ S(n) of {1, . . . , n}
such that x · σ and y · σ are monotone and

(x · σ)i(y · σ)i+1 ≤ (x · σ)i+1(y · σ)i

for all i with 1 ≤ i < n.

Lemma A.19. The map x 7→ x · σ is an order isomorphism of ∆n for each σ ∈ S(n).

Proposition A.20. For n ≥ 1, we have an order isomorphism

∆n ' {x ∈ ∆n+1 : πi(x) = 0},

for any of the standard projections πi : ∆n+1 → [0, 1] with 1 ≤ i ≤ n + 1.

De�nition A.21. The monotone classical states are denoted

Λn := {x ∈ ∆n : (∀i < n)xi ≥ xi+1}.

For any permutation σ
∆n

σ := {x ∈ ∆n : x · σ ∈ Λn}.

Lemma A.22. For x, y ∈ Λn, x v y i� (∀1 ≤ i < n)xiyi+1 ≤ yixi+1.

Proposition A.23. Let n ≥ 2.

(i) For each permutation σ, ∆n
σ is closed under directed suprema in ∆n.

(ii) For an increasing sequence (xi) in ∆n, there is a σ ∈ S(n) with xi ∈ ∆n
σ for all i.

(iii) The natural map r : ∆n → Λn is a Scott continuous retraction whose restriction

to ∆n
σ is an order isomorphism ∆n

σ ' Λn for each σ ∈ S(n).

De�nition A.24. A function f : ∆n → E is symmetric if for all σ ∈ S(n), we have

f(x · σ) = f(x).

Lemma A.25. Let E be a dcpo. Then

(i) Every function f : Λn → E determines a unique symmetric extension f̂ : ∆n → E
given by f̂ = f ◦ r where r is the natural retraction.

(ii) Monotonicity, strict monotonicity, and Scott continuity are inherited by f̂ when-

ever they are possessed by f .

A.4 Approximation of classical states

De�nition A.26. Let D be a dcpo. For x, y ∈ D, we write x � y i� for all directed

sets S ⊆ D,

y =
⊔

S =⇒ (∃s ∈ S)x v s.

The approximations of x ∈ D are

�

x := {y ∈ D : y � x},

and D is called exact if

�

x is directed with supremum x for all x ∈ D.

A continuous dcpo is exact, and in that case, the �way below� relation and our notion

of approximation are equivalent. In addition, the two notions coincide on maximal

elements.

15



Lemma A.27. Let D be a dcpo. For each x ∈ D, the set

�

x is directed with supremum

x i� it contains a directed set with supremum x.

Proposition A.28 (The mixing law). If x v y in ∆n, then

x v (1− p)x + py v y

for all p ∈ [0, 1].

Remark A.29. A path from x to y in a space X is a continuous map p : [0, 1] → X
with p(0) = x and p(1) = y. A segment of a path p is p[a, b] for b > a. Any monotone

path into ∆n with its Euclidean topology is Scott continuous. For instance, by the

mixing law (Prop A.28), the straight line path from x to y,

πxy(t) = (1− t)x + ty

is Scott continuous i� x v y.

Lemma A.30. Let x v y with x ∈ ∆n and y ∈ Λn. Then

(i) If yi > 0 for all i, then x ∈ Λn.

(ii) If x� y, then x ∈ Λn.

Proposition A.31. Let r : ∆n → Λn be the natural retraction.

(i) If x, y ∈ ∆n
σ and x v y, then πxy(t) ∈ ∆n

σ for all t ∈ [0, 1].

(ii) For x, y ∈ ∆n, we have x� y i�

(∀σ ∈ S(n))(y ∈ ∆n
σ =⇒ x ∈ ∆n

σ) and (r(x)� r(y) in Λn).

Theorem A.32. The classical states ∆n are exact.

(i) For every x ∈ ∆n, π⊥x(t)� x for all t < 1.

(ii) The approximation relation � is interpolative: If x � y in ∆n, then there is

z ∈ ∆n with x� z � y.

Lemma A.33 (Partiality). For each x ∈ ∆n, the set �x is nonempty i� xi > 0 for

all i.

Proposition A.34 (Approximation of pure states). Let n ≥ 2.

(i) For all x ∈ ∆n, x� ei i� x = π⊥ei
(t) for some t < 1.

(ii) For all x ∈ ∆n, �x is an upper set (ie. (∀y, z)y ∈ �x and y v z =⇒ z ∈ �x) i�

it is empty, all of ∆n, or contains a unique pure state.

Remark A.35. An approximation a of a pure state x de�nes a region �a of ∆n known

in domain theory as a Scott open set.

De�nition A.36. A subset U of a dcpo D is Scott open if

• U is an upper set : (∀x ∈ U)(∀y ∈ D)x v y =⇒ y ∈ U , and
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• U is inaccessible by directed suprema: For any directed set S ⊆ D,⊔
S ∈ U =⇒ S ∩ U 6= .

The collection of all Scott open subsets of D is σD.

Lemma A.37. For all x ∈ ∆n, �x is an upper set i� it is Scott open.

Remark A.38. The relationship between approximation, partiality, and purity can

now be summarized as follows:

(i) The partial elements are those x ∈ ∆n with �x 6= ∅.
(ii) For a partial element x ∈ ∆n, �x is Scott open i� x = π⊥ei

(t) for some i and some

t < 1 i� (x = ⊥ or x approximates a unique pure state).

Thus, the `totality' of a pure state x is largely explained by the fact that �a is Scott

open whenever a� x.

Lemma A.39. A subset U ⊆ ∆n is Scott open i�

• Any monotone path from x ∈ U to a pure state lies in U , and

• The line from ⊥ to x ∈ U has a segment contained in U ,

and for pure states x, there is an equivalence between `approximation of x' and `Scott

open set containing x': Given any a � x, the set �a is Scott open, while given any

Scott open U with x ∈ U , we can (by exactness) �nd an approximation a ∈ U of x with

x ∈ �a ⊆ U .

A.5 Entropy, content, and partiality

De�nition A.40. A Scott continuous map µ : D → [0,∞)∗ on a dcpo is said to

measure the content of x ∈ D if

x ∈ U =⇒ (∃ε > 0)x ∈ µε(x) ⊆ U,

whenever U ∈ σD is Scott open and

µε(x) := {y ∈ D : y v x & |µx− µy| < ε}

are the elements ε close to x in content. The map µ measures X if it measures the

content of each x ∈ X.

De�nition A.41. A measurement is a Scott continuous map µ : D → [0,∞)∗ on a

dcpo that measures ker µ := {x ∈ D : µx = 0}.

De�nition A.42. A Scott continuous map µ : D → E between dcpo's is said to

measure the content of x ∈ D if

x ∈ U =⇒ (∃ε ∈ σE)x ∈ µε(x) ⊆ U,

whenever U ∈ σD is Scott open and

µε(x) := µ−1(ε)∩ ↓ x

are the elements ε close to x in content. The map µ measures X if it measures the

content of each x ∈ X.
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De�nition A.43. A measurement is a Scott continuous map µ : D → E between

dcpo's that measures ker µ := {x ∈ D : µx ∈ max(E)}.

Proposition A.44. Let µ : D → E be a measurement and x an object that it measures.

(i) If µx ∈ max(E), then x ∈ max(D).

(ii) If µx = ⊥, then x = ⊥, provided ⊥ ∈ D exists.

(iii) If y v x and µx = µy, then x = y.

(iv) If xn v x and (µxn) is directed with supremum µx, then
⊔

xn = x.

In addition, the composition of measurements is again a measurement.

Proposition A.45. The natural retraction r : ∆n → Λn is a measurement.

Lemma A.46. Let x v y be monotone classical states in ∆n. Then there is k ∈
{1, . . . , n} such that

(i) (∀i < k)xi ≤ yi, and

(ii) (∀i ≥ k)xi ≥ yi.

Theorem A.47. Let µ : ∆n → [0,∞)∗ be the Shannon entropy on classical states

µx = −
n∑

i=1

xi log xi

where the logarithm is natural. Then µ is a measurement. In addition,

(i) For all x, y ∈ ∆n, if x v y and µ(x) = µ(y), then x = y.

(ii) For all x ∈ ∆n, we have µ(x) = 0 i� x ∈ max(∆n).

(iii) For all x ∈ ∆n, we have µ(x) = log n i� x = ⊥.
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