COMP251: Greedy algorithms

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC) & (goodrich & Tamassia, 2009)
Overview

• Algorithm design technique to solve optimization problems.
• Problems exhibit optimal substructure.
• Idea (the greedy choice):
 – When we have a choice to make, make the one that looks best right now.
 – Make a locally optimal choice in hope of getting a globally optimal solution.
Greedy Strategy

The choice that seems best at the moment is the one we go with.

– Prove that when there is a choice to make, one of the optimal choices is the greedy choice. Therefore, it is always safe to make the greedy choice.

– Show that all but one of the sub-problems resulting from the greedy choice are empty.
Activity-selection Problem

• **Input:** Set S of n activities, $a_1, a_2, ..., a_n$.
 - $s_i = \text{start time of activity } i$.
 - $f_i = \text{finish time of activity } i$.

• **Output:** Subset A of maximum **number** of compatible activities.
 - 2 activities are compatible, if their intervals do not overlap.

Example:

```
0   1   2   3   4   5   6   7   8   9   10
```

Activities in each line are compatible.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.

Optimal compatible set: \{ a_1, a_3, a_5 \}
Optimal Substructure

• Assume activities are sorted by finishing times.

• Suppose an optimal solution includes activity a_k. This solution is obtained from:
 – An optimal selection of $a_1, ..., a_{k-1}$ activities compatible with one another, and that finish before a_k starts.
 – An optimal solution of $a_{k+1}, ..., a_n$ activities compatible with one another, and that start after a_k finishes.
Optimal Substructure

• Let $S_{ij} =$ subset of activities in S that start after a_i finishes and finish before a_j starts.

$$S_{ij} = \left\{ a_k \in S : \forall i, j \quad f_i \leq s_k < f_k \leq s_j \right\}$$

• $A_{ij} =$ optimal solution to S_{ij}

• $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$
Recursive Solution

• Subproblem: Selecting the maximum number of mutually compatible activities from S_{ij}.
• Let $c[i, j] =$ size of maximum-size subset of mutually compatible activities in S_{ij}.

Recursive solution: $c[i, j] = \begin{cases}
0 & \text{if } S_{ij} = \emptyset \\
\max_{k} \left\{ c[i, k] + c[k, j] + 1 \right\} & \text{if } S_{ij} \neq \emptyset \end{cases}$

Note: We do not know (yet) which k to use for the optimal solution.
Greedy choice

Theorem:

Let $S_{ij} \neq \emptyset$, and let a_m be the activity in S_{ij} with the earliest finish time $f_m = \min\{f_k : a_k \in S_{ij}\}$. Then:

1. a_m is used in some maximum-size subset of mutually compatible activities of S_{ij}.
2. $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as the only nonempty subproblem.
Greedy choice

Proof:
(1) a_m is used in some maximum-size subset of mutually compatible activities of S_{ij}.

- Let A_{ij} be a maximum-size subset of mutually compatible activities in S_{ij} (i.e. an optimal solution of S_{ij}).
- Order activities in A_{ij} in monotonically increasing order of finish time, and let a_k be the first activity in A_{ij}.
- If $a_k = a_m \Rightarrow$ done.
- Otherwise, let $A'_{ij} = A_{ij} - \{ a_k \} \cup \{ a_m \}$
- A'_{ij} is valid because a_m finishes before a_k
- Since $|A_{ij}| = |A'_{ij}|$ and A_{ij} maximal $\Rightarrow A'_{ij}$ maximal too.
Greedy choice

Proof:
(2) $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as the only nonempty subproblem.

If there is $a_k \in S_{im}$ then $f_i \leq s_k < f_k \leq s_m < f_m \Rightarrow f_k < f_m$ which contradicts the hypothesis that a_m has the earliest finishing time.
Greedy choice

<table>
<thead>
<tr>
<th></th>
<th>Before theorem</th>
<th>After theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td># subproblems in optimal solution</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td># choices to consider</td>
<td>j-i-1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}\]

\[A_{ij} = \{a_m\} \cup A_{mj}\]

We can now solve the problem \(S_{ij}\) top-down:

- Choose \(a_m \in S_{ij}\) with the earliest finish time (greedy choice).
- Solve \(S_{mj}\).
Activity-selection Problem

\[
\begin{array}{cccccccc}
 i & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 s_i & 0 & 1 & 2 & 4 & 5 & 6 & 8 \\
 f_i & 2 & 3 & 5 & 6 & 9 & 9 & 10 \\
\end{array}
\]

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Recursive Algorithm

Recursive-Activity-Selector \((s, f, i, n)\)

1. \(m \leftarrow i+1\)
2. while \(m \leq n\) and \(s_m < f_i\) \hspace{1em} // \text{Find first activity in } S_{i,n+1}
3. do \(m \leftarrow m+1\)
4. if \(m \leq n\)
5. then return \(\{a_m\} \cup\)
6. Recursive-Activity-Selector\((s, f, m, n)\)
6. else return \(\emptyset\)

Initial Call: Recursive-Activity-Selector \((s, f, 0, n+1)\)
Complexity: \(\Theta(n)\)

Note 1: We assume activities are already ordered by finishing time.
Note 2: Straightforward to convert the algorithm to an iterative one.
Typical Steps

• Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.

• Prove that there is always an optimal solution that makes the greedy choice (greedy choice is safe).

• Show that greedy choice and optimal solution to subproblem \Rightarrow optimal solution to the problem.

• Make the greedy choice and solve top-down.

• You may have to preprocess input to put it into greedy order (e.g. sorting activities by finish time).
Elements of Greedy Algorithms

No general way to tell if a greedy algorithm is optimal, but two key ingredients are:

• Greedy-choice Property.
 – We can build a globally optimal solution by making a locally optimal (greedy) choice.

• Optimal Substructure.
Text Compression

• Given a string X, efficiently encode X into a smaller string Y (Saves memory and/or bandwidth)

 A → 0; B → 10; C → 110; D → 1110
 DDCB → 1110 1110 110 10 (13 bits)

 A → 1110; B → 110; C → 10; D → 0
 DDCB → 0 0 10 110 (7 bits)

• A good approach: **Huffman encoding**
 – Compute frequency f(c) for each character c.
 – Encode high-frequency characters with short code words
 – No code word is a prefix for another code
 – Use an optimal encoding tree to determine the code words
Encoding Tree Example

- A **code** is a mapping of each character of an alphabet to a binary code-word
- A **prefix code** is a binary code such that no code-word is the prefix of another code-word
- An **encoding tree** represents a prefix code
 - Each external node (leaf) stores a character
 - The code word of a character is given by the path from the root to the external node storing the character (0 for a left child and 1 for a right child)

<table>
<thead>
<tr>
<th>00</th>
<th>010</th>
<th>011</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

```
 0 1 0 0 1
 a b c d e
```
Encoding Example

Initial string: $X = \text{acda}$

Encoded string: $Y = 00 \ 011 \ 10 \ 00$
Encoding Tree Optimization

- Given a text string X, we want to find a prefix code for the characters of X that yields a small encoding for X
 - Rare characters should have long code-words
 - Frequent characters should have short code-words
- Example
 - $X = \text{abracadabra}$
 - T_1 encodes X into 29 bits
 - T_2 encodes X into 24 bits
Example

\[X = \text{abracadabra} \]

Frequencies

\[
\begin{array}{cccccc}
 a & b & c & d & r \\
 5 & 2 & 1 & 1 & 2 \\
\end{array}
\]
Extended Huffman Tree Example

String: *a fast runner need never be afraid of the dark*

<table>
<thead>
<tr>
<th>Character</th>
<th>a</th>
<th>b</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>h</th>
<th>i</th>
<th>k</th>
<th>n</th>
<th>o</th>
<th>r</th>
<th>s</th>
<th>t</th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Huffman tree
Huffman’s Algorithm

• Given a string X, Huffman’s algorithm constructs a prefix code that minimizes the size of the encoding of X.
• It runs in time $O(n + d \log d)$, where n is the size of X and d is the number of distinct characters of X.
• A heap-based priority queue is used as an auxiliary structure.

Algorithm $\text{HuffmanEncoding}(X)$

Input: string X of size n
Output: optimal encoding trie for X

1. $C \leftarrow \text{distinctCharacters}(X)$
2. $\text{computeFrequencies}(C, X)$
3. $Q \leftarrow \text{new empty heap}$
4. For all $c \in C$
 1. $T \leftarrow \text{new single-node tree storing } c$
 2. $Q.\text{insert}(\text{getFrequency}(c), T)$
5. While $Q.\text{size()} > 1$
 1. $f_1 \leftarrow Q.\text{minKey}()$
 2. $T_1 \leftarrow Q.\text{removeMin}()$
 3. $f_2 \leftarrow Q.\text{minKey}()$
 4. $T_2 \leftarrow Q.\text{removeMin}()$
 5. $T \leftarrow \text{join}(T_1, T_2)$
 6. $Q.\text{insert}(f_1 + f_2, T)$
6. Return $Q.\text{removeMin}()$