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Learning objectives

e intuition for model complexity and overfitting
e regularization penalty (L1 & L2)
e probabilistic interpretation



Linear regression

model: ’g f ( ):’wa RD%R
furf(c)tsiton: J — N Zn 2(y(n o ?;( )2 — %Hy - Xw||2

how to find w*? closed form solution: ™ = (XTX)_ley

o (n)\..(7)
. partial derivatives: awd w N Z ( )a’;d
gr;dlisﬁt gradient (all partial derivatives): VJ( ) = N Zn( — ))ag(n) — %XT (g — y)
descent repeat until stopping criterion:

optimization with gradient descent: ,w{t—l—l} — ,w{t} _ aVJ(w{t})

what if linear fit is not the best?
how to increase the model's expressiveness?
= use nonlinear basis to create new nonlinear features from the existing ones



Nonlinear basis functions

replace original features in  fu () = D, waxq
with nonlinear bases fu(z) =), waq da(x)
linear least squares solution ((I)Tq)),w* _ (I)Ty
replacing X with P

a (nonlinear) feature

(@), ga(@®), -, @p(a)
¢1(€I3(2)), ¢2(w(2)), cee ¢D(CI3(2)) one instance

1@™), dal@®), -, gp(a™)]



Nonlinear basis functions

original input is scalar & € R
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Example: Gaussian bases k(@) =

—— 3y =sin(2(™) 4 cos(y/]z(M]) + €

our fit to data using 10 Gaussian bases

prediction for a new instance

f(@') =) (2 ) @y

|, W found using LLS
new Instance

features evaluated for the new point



Example: Gaussian bases k(@) =

» our fit to data using 10 Gaussian bases

why not more?




Example: Gaussian bases k(@) =€

why not more?

using 50 bases!




Example: Gaussian bases L ) =

cost J(w) is zero and we have a "perfect" fit!

using 200, thinner bases (s=.1)




Generalization?

D..:5
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| |Ower training error —

which one of these models performs better at test time?
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Overfitting

which one of these models performs better at test time?
|

predictions of 4 models for the same input f(z')

B b-5 underfitting

pD=10 @ lowest test error
N
B o-s0

B D=200 overfitting
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An observation

when overfitting, we sometimes see large weights

| dashed lines are
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idea: penalize large parameter values

fu(z) = Zd wq Pa(T)
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Ridge regression

also known as

L2 regularized linear least squares regression:
J(w) = 31| Xw —y|[5 + 3 [[wl]|3

sum of squared error squared L2 norm of w

1 (n) T ..\2 T,y — 2

3 2, (Y™ —w z) ww =)W
regularization parameter X > 0 controls the strength of regularization

a good practice is to not penalize the intercept  A(||w||5 — wj)

)\ IS a hyper-pa rameter (use a validation set or cross-validation to pick the best value)
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Ridge regression

Visualizing the effect of regularization on the cost function

is the new cost function convex? 55 Yooyen (¥ — w'2)? + 5 lwl3

cost function J(w) L2 reg. ||wll3




Ridge regression

set the derivative to zero J(w) = . > eyep(y —w'x)? + Sw T w
VJ(’LU) — Zx,yep x(wa o y) T Aw
= X' (Xw—y)+Aw =0

when using gradient descent, this term reduces the

linear system of equations (X'X + A X)w= X"y BRI i Ce e SEp EIEEit C B

w=(X'"X+ 1) tX"y

the only part different due to regularization

Al makes it invertible, adds a small value to the diagonals X X

we can have linearly dependent features
the solution will be unique!
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Example: polynomial bases

Without regularization:

® using D=10 we can perfectly fit the data (high test error)

7))| polynomial bases

or(z) = "

degree 2 (D=3)

degree 4 (D=5)

degree 9 (D=10)
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Example: polynomial bases

polynomial bases

| L bi(z) = z*
with regularization:
® fixed D=10, changing the amount of regularization
A=0 A=

1
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Probabilistic interpretation

linear regression & logistic regression maximize log-likelihood

wMl? = argmax,, p(y| X, w)

linear regression  w'*¥ = argmax, [[, ,cp N (y|lw ', 0?)

logistic regression  w"** = argmax, [[, . Bernoulli(y; o(w'z))

can we do Bayesian inference instead of maximum likelihood?

p(wly, X) « p(w)p(y|lw, X)
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Maximum a Posteriori (MAP)

can we do Bayesian inference instead of maximum likelihood?

p(wly, X) x p(w)p(y|lw, X)

in general, this is expensive, but there's a cheap compromise:

MAP estimate  wMAP = arg max,, p(w)p(y|X,w)

= arg max,, log p(y| X, w) + log p(w)

likelihood: original objective

all that is changing is the additional penalty on w
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Gaussian Prior

MAP estimate w™4P = arg max,, log p(y| X, w) + log p(w)

assume independent zero-mean Gaussians

log p(w) = log H(?:l N(wg|0,72) = =", % + const.

does not depend onw
so it doesn't affect the optimization

lets call %2 — A
then we get the L2 regularization penalty 2||w||3

smaller variance of the prior 7 gives larger regularization A 1T\




Laplace prior

another notable choice of prior is the Laplace distribution
minimizing negative log-likelihood 9 > qlogp(wg) ==, %lwd| — —%H’le

izati L1 f
L1 regularization: J(w) < J(w) + also called lasso norm otw

(least absolute shrinkage and selection operator)

0¥

. S :
Copiscs p(w; B) = 56€ 7 notice the peak around zero
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https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions

L, vs Ly regularization

regularization path shows how {w,} change as we change )\
Lasso produces sparse Weights (many are zero, rather than small)

Lasso e Ridge regression fcavo

D=3 Wy
*
D =28
Wq

see the code here

decreasing regularization coef. \————3)

red-line is the optimal A from cross-validation, for lasso the model uses only 3 of the 8 features

= lasso results in sparse models
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https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/lassoPathProstate.ipynb

L; vs Ly regularization

min,, J(w) + Aljw|[)

is equivalent to min,, J(w) subject to ||w|[} < X for an appropriate choice of A
figures below show the constraint and the isocontours of J(w)

optimal solution with L1-regularization is more likely to have zero components
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Subset selection

p-norms with Y4 Z ]. are convex (easier to optimize)

p-norms withp < 1 induces sparsity
|

SRR

(Zd d)1/4 (Zd wczl)% 2. |wal (Zd ‘wd‘i) (Zd "wd‘l_l(’)lo

closer to 0-norm = g le)u:s!

penalizes the number of features with non-zero weights

J(w) + Awllo = J(w) + A 224 I(wg # 0)
enforces a penalty of A for each feature to be included in

the model = performs feature selection
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Subset selection

p-norms with p > 1 are convex (easier to optimize)

p-norms with p S linduces sparsity

(Zdwd ) Zdwd % Zd|wd| Zd |wa|? ) (Zd |’wd|10)

closer to 0-NOrM =———p IR BT} 511!

P : optimizing [, regularization
L1 regularization is is a difficult combinatorial

a viable alternative problem: search over all 2P

to LO regularization subsets
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Subgderivatives
w L1 penalty is no longer smooth or differentiable (at 0)

| extend the notion of derivative to non-smooth functions

sub-differential is the set of all sub-derivatives at a point

8f(uA}) — [limw—mi) f(wfu),_{(w)alimw%w* 7w f(w)}

wW—W

if fis differentiable at 20 then sub-differential has one member - f (1)
A

another expression for sub-differential

0f () = {9 € R| f(w) > f(@) + g(w — )}
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Subgradient
subdifferential for f(w) = |w]

8f(0) = [-1,1]
. Of(w#0) = {sign(w)}

recall, gradient was the vector of partial derivatives

subgradient is a vector of sub-derivatives

subdifferential for functions of multiple variables
0f(w) = {g € R”|f(w) > f(@) +g' (w— )}

we can use sub-gradient with diminishing step-size for optimization

28
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Regularization serves many purposes
w* = (XTX)'XTy

whatif X ' X is not invertible?
add a small value to the diagonals, a.k.a. regularize

what if linear fit is not the best?
use nonlinear basis
How to avoid overfitting then? regularize
what if we want a sparse model?
do feature selection and only keep important parameters with regularizing
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Data normalization

what if we scale the input features, using different factors ;M = ydwg”)Vd, n

. L ~ 1
if we have no regularization: wg = —-wgVd

everything remains the same because: || Xw — | |§ — HX’@ — 9 ’%

with regularization: ||@|]2 # ||wl||3 so the optimal w will be different!
features of different mean and variance will be penalized differently

1 ,.(7)
. . d = nv<
normalization {“’2 N
94

— m(«”fén) — pa)®

(n)
. n T, —lqg
makes sure all features have the same mean and variance a:g ) ¢ a —H

we saw that this also helps with the optimization! 31



Summary

e complex models can overfit to training data
e regularization avoids this by penalizing model complexity

m L1 & L2 regularization
= probabilistic interpretation: different priors on weights
m |1 produces sparse solutions (useful for feature selection)
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