Applied Machine Learning

Gradient Descent Methods

Reihaneh Rabbany

COMP 551 (Fall 2024)

1

Learning objectives

Basic idea of

- gradient descent
- stochastic gradient descent
- method of momentum
- using an adaptive learning rate
- sub-gradient

Application to

• linear regression and classification

Optimization in ML

The core problem in ML is parameter estimation (aka model fitting), which requires solving an optimization problem of the loss/cost function

Optimization is a huge field

- discrete (combinatorial) vs continuous variables
- constrained vs unconstrained
- for continuous optimization in ML:
- **bold** marks the settings we consider in this class
 - convex Vs non-convex
 - Iooking for Iocal vs global optima?
 - analytic gradient?
 - analytic Hessian?
 - stochastic vs batch
 - smooth vs non-smooth

Optimization in ML

The core problem in ML is parameter estimation (aka model fitting), which requires solving an optimization problem of the loss/cost function

Recall

	Linear Regression):	Logistic Regression:		
model:	$\hat{y} = f_w(x) = w^ op x$	$c \ : \mathbb{R}^D o \mathbb{R}$	$\hat{y} = f_w(x) = \sigma(w^ op x)$	$: \mathbb{R}^D o \{0,1\}$	
cost function:	$J_w = rac{1}{N}\sum_n rac{1}{2}(y^{(n)})$	$(\hat{y}^{(n)})^2$	$J_w = rac{1}{N}\sum_n -y\log(\hat{y}^0)$	$^{(n)}) - (1-y^{(n)})\log(1-y^{(n)}))$	– $\hat{y}^{(n)})$
	partial derivatives:				
∂w_d		$\partial w_d = N$	$ n (9 9) w_d $	how to find w^*	
gradier	nt: vector of all partial derivatives:	$ abla J(w) = rac{1}{N}$	$\sum_n (\hat{y}^{(n)} - y^{(n)}) x^{(n)}$	given $\nabla J(w)$?	
		Dx1		_	4

 $J(w) = rac{1}{N} \sum_{n=1}^{N} l(y^{(n)}, f(x^{(n)}; w))$

 $w^* = rgmin_w J(w)$

Gradient Recall

for a multivariate function $J(w_0, w_1)$ partial derivatives instead of derivative

= derivative when other vars. are fixed

$$rac{\partial}{\partial w_1} J(w_0,w_1) riangleq \lim_{\epsilon o 0} rac{J(w_0,w_1+\epsilon) - J(w_0,w_1)}{\epsilon}$$

we can estimate this numerically if needed (use small epsilon in the formula above)

gradient: vector of all partial derivatives

$$abla J(w) = [rac{\partial}{\partial w_1} J(w), \cdots rac{\partial}{\partial w_D} J(w)]^T$$

 w_1

 w_0

Gradient descent

an iterative algorithm for optimization

- starts from some $w^{\{0\}}$ new notation!
- update using gradient $w^{\{t+1\}} \leftarrow w^{\{t\}} \alpha \nabla J(w^{\{t\}})$ steepest descent direction

learning rate

converges to a local minima

cost function (for maximization : objective function)

$$abla J(w) = [rac{\partial}{\partial w_1} J(w), \cdots rac{\partial}{\partial w_D} J(w)]^T$$

Convex function

a **convex** subset of \mathbb{R}^N intersects any line in at most one line segment

a **convex function** is a function for which the *epigraph* is a **convex set**

Minimum of a convex function

Convex functions are easier to minimize:

- critical points are global minimum
- gradient descent can find it

$$w^{\{t+1\}} \leftarrow w^{\{t\}} - lpha
abla J(w^{\{t\}})$$

a constant function is convex f(x) = ca linear function is convex $f(x) = w^{\top}x$

convex if second derivative is positive everywhere $\frac{d^2}{x^2}f \ge 0 \quad orall x$

maximum of convex functions is convex

is the logistic regression cost function convex in model parameters (w)?

$$J(w) = rac{1}{N} \sum_{n=1}^{N} y^{(n)} \log \left(1 + e^{-w^{ op}x}
ight) + \left(1 - y^{(n)}
ight) \log \left(1 + e^{w^{ op}x}
ight)$$
same argument
checking second derivative
 $rac{\partial^2}{\partial z^2} \log(1 + e^z) = rac{e^{-z}}{(1 + e^{-z})^2} \ge 0$

sum of convex functions

Gradient for linear and logistic regression

in both cases: $abla J(w) = rac{1}{N}\sum_n x^{(n)}(\hat{y}^{(n)}-y^{(n)}) = rac{1}{N} X^ op (\hat{y}-y)$

1 def gradient(x, y, w): 2 N,D = x.shape

return grad

yh = logistic(np.dot(x, w))
grad = np.dot(x.T, yh - y) / N

3

5

linear regression: $\hat{y} = w^ op x$ logistic regression: $\hat{y} = \sigma(w^ op x)$

time complexity:
$$\mathcal{O}(ND)$$

(two matrix multiplications)

compared to the direct solution for linear regression: $\mathcal{O}(ND^2 + D^3)$ gradient descent can be much faster for large $_D$

recall

Gradient Descent

implementing gradient descent is easy!

early stopping (one way to avoid overfitting) 14

example GD for linear regression

example GD for linear regression

After 22 steps $w^{\{t+1\}} \leftarrow w^{\{t\}} - .01
abla J(w^{\{t\}})$

Learning rate α

Learning rate has a significant effect on GD

do a grid search usually between 0.001 to .1 to find the right value, look at the training curves

Stochastic Gradient Descent

we can write the cost function as an average over instances

 $J(w) = rac{1}{N} \sum_{n=1}^{N} J_n(w)$ cost for a single data-point *e.g. for linear regression*

$$J_n(w) = rac{1}{2} (w^T x^{(n)} - y^{(n)})^2$$

the same is true for the partial derivatives

$$rac{\partial}{\partial w_j}J(w) = rac{1}{N}\sum_{n=1}^N rac{\partial}{\partial w_j}J_n(w)$$

therefore $abla J(w) = \mathbb{E}_{\mathcal{D}}[
abla J_n(w)]$

Stochastic Gradient Descent

Idea: use stochastic approximations $\nabla J_n(w)$ in gradient descent

stochastic gradient update

 $w \leftarrow w - \alpha
abla J_{n}(w)$

the steps are "on average" in the right direction

each step is using gradient of a different cost, $J_n(w)$

each update is (1/N) of the cost of batch gradient

e.g., for linear regression $\mathcal{O}(D)$ $abla J_n(w) = x^{(n)}(w^ op x^{(n)} - y^{(n)})$ batch gradient update

 $w \leftarrow w - lpha
abla J(w)$

with small learning rate: guaranteed improvement at each step

 w_0

contour plot of the cost function

SGD for logistic regression example

logistic regression for Iris dataset (D=2 , $\, lpha = .1$)

stochastic gradient

Convergence of SGD

stochastic gradients are not zero even at the optimum w how to guarantee convergence?

idea: schedule to have a smaller learning rate over time

Robbins Monro

the sequence we use should satisfy: $\sum_{t=0}^{\infty} \alpha^{\{t\}} = \infty$ & otherwise for large $||w^{\{0\}} - w^*||$ we can't reach the minimum the steps should go to zero $\sum_{t=0}^{\infty} (\alpha^{\{t\}})^2 < \infty$

example
$$lpha^{\{t\}}=rac{10}{t}, lpha^{\{t\}}=t^{-.51}$$
 .

Minibatch SGD

use a minibatch to produce gradient estimates

Oscillations

gradient descent can oscillate a lot!

each grac

each gradient step is prependicular to isocontours

in SGD this is worsened due to noisy gradient estimate

Momentum

to help with oscillations:

- use a **running average** of gradients
- more recent gradients should have higher weights

$$\Delta w^{\{t\}} \leftarrow eta \Delta w^{\{t-1\}} + (1-eta)
abla J_{\mathbb{B}}(w^{\{t-1\}})$$

 $w^{\{t\}} \leftarrow w^{\{t-1\}} - \alpha \Delta w^{\{t\}}$

momentum of 0 reduces to SGD common value > .9

is effectively an exponential moving average

$$\Delta w^{\{T\}} = \sum_{t=1}^{T} \beta^{T-t} (1-\beta) \nabla J_{\mathbb{B}}(w^{\{t\}})$$

there are other variations of momentum with similar idea

weight for the **most recent** gradient $(1 - \beta)$

Momentum

see the beautiful demo at Distill https://distill.pub/2017/momentum/

Adagrad (Adaptive gradient)

use different learning rate for each parameter w_d also make the learning rate **adaptive**

$$S_d^{\{t\}} \leftarrow S_d^{\{t-1\}} + rac{\partial}{\partial w_d} J(w^{\{t-1\}})^2$$

sum of squares of derivatives over all iterations so far (for individual parameter)

$$w_d^{\{t\}} \leftarrow w_d^{\{t-1\}} - rac{lpha}{\sqrt{S_d^{\{t\}} + \epsilon}} rac{\partial}{\partial w_d} J(w^{\{t-1\}})$$

the learning rate is adapted to previous updates $\boldsymbol{\epsilon}$ is to avoid numerical issues

useful when parameters are updated at different rates

(e.g., sparse data when some features are often zero when using SGD)

Adagrad (Adaptive gradient)

different learning rate for each parameter $\,w_d\,$ make the learning rate adaptive

problem: the learning rate goes to zero too quickly

RMSprop (Root Mean Squared propagation)

solve the problem of diminishing step-size with Adagrad

• use exponential moving average instead of sum (similar to momentum)

instead of Adagrad: $S_d^{\{t\}} \leftarrow S_d^{\{t-1\}} + rac{\partial}{\partial w_d} J(w^{\{t-1\}})^2$

$$egin{aligned} S^{\{t\}} &\leftarrow \gamma S^{\{t-1\}} + (1-\gamma)
abla J(w^{\{t-1\}})^2 \ w^{\{t\}} &\leftarrow w_{\{t-1\}} - rac{lpha}{\sqrt{S^{\{t\}} + \epsilon}}
abla J(w^{\{t-1\}}) \end{aligned}$$
 ic

identical to Adagrad

note that $S^{\{t\}}$ here is a vector and with the square root is element-wise

Adam (Adaptive Moment Estimation)

two ideas so far:

- 1. use momentum to smooth out the oscillations
- 2. adaptive per-parameter learning rate

Adam combines the two:

both use exponential moving averages

 $\left| \begin{array}{l} M^{\{t\}} \leftarrow \beta_1 M^{\{t-1\}} + (1-\beta_1) \nabla J(w^{\{t-1\}}) & \text{identical to method of momentum} \\ S^{\{t\}} \leftarrow \beta_2 S^{\{t-1\}} + (1-\beta_2) \nabla J(w^{\{t-1\}})^2 & \text{identical to RMSProp} \\ w^{\{t\}} \leftarrow w^{\{t-1\}} - \frac{\alpha}{\sqrt{\hat{S}^{\{t\}}} + \epsilon} \hat{M}^{\{t\}} \end{array} \right|$

since M and S are initialized to be zero, at early stages they are biased towards zero

$$\hat{M}^{\{t\}} \gets rac{M^{\{t\}}}{1-eta_1^t} \qquad \hat{S}^{\{t\}} \gets rac{S^{\{t\}}}{1-eta_2^t}$$

for large time-steps it has no effect for small t, it scales up numerator

In practice

the list of methods is growing ...

they have recommended range of parameters

• *learning rate, momentum etc.* still may need some hyper-parameter tuning

these are all first order methods

- they only need the first derivative
- 2nd order methods can be much more effective, but also much more expensive

Summary

learning: optimizing the model parameters (minimizing a cost function) use **gradient descent** to find local minimum

- easy to implement (esp. using automated differentiation)
- for **convex functions** gives global minimum

Stochastic GD: for large data-sets use mini-batch for a noisy-fast estimate of gradient

- **Robbins Monro** condition: reduce the learning rate to help with the noise better (stochastic) gradient optimization
- **Momentum:** exponential running average to help with the noise
- Adagrad & RMSProp: per parameter adaptive learning rate
- Adam: combining these two ideas