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Sometimes all you need is a linear

regression ...

from 2020 Kaggle's survey on the state of
Machine Learning and Data Science,

you can read the full version here

METHODS AND ALGORITHMS USAGE

Linear or Logistic
Regression

Decision Trees or
Random Forests

Gradient Boosting
Machines (xgboost,
lightgbm, etc.)

Convolutional Neural
Networks

Bayesian Approaches

Recurrent Neural
Networks

Neural Networks
(MLPs, etc.)

Transformer Networks
(BERT, gpt-3, etc.)

Generative Adversial
MNetworks

Evolutionary
Approaches

Other

None
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https://www.kaggle.com/kaggle-survey-2020

Learning objectives

linear mode|

evaluation criteria

how to find the best fit

geometric interpretation
maximum likelihood interpretation



output

|nput ML algorithm y
featu res with parameters 6

labels
Notation f(z;0)
. . -D R denotes set of real numbers
each instance: r € R
y 6 R ) ) R
x1 | afeature
L9 T
vectors are assume to be column vectors * = . = [ml, Lo, ..., xp}
LD

example i

<tumorsize, texture, perimeter> = <18.2, 27.6, 117.5> 9 growth = +2

— [18.2, 27.6, 117.5] y =2

L = [1131, L2, wS]T


https://en.wikipedia.org/wiki/Real_number

output
labels

|nput ML algorithm
features 9 with parameters 6 9 y
Notation f(z;6)

training: parameter estimation

instance number
D — a;(n), y(n) 'fzv—
each instance: x(n) c RD {( ) —

we assume N instances in the dataset D = {(z™,y™}

each instance has D features indexed by d

for example, xfi”) € R is the feature d of instance n



Notation

design matrix: concatenate all instances D = {(z™,y™)} |
each row is a datapoint, each column is a feature
RO [ 1 1 1 7 . [ (1) ]
zEQ;T wg )’ wg ), cee wg)) one instance :Z(z)
X = : — E : E E RNXD Y = : E RNX].
P I P AR AU |y

one feature

Example:

Micro array data (X), contains
it is puppy Gt pen a this gene expression levels

1150 0 S g labels (y) can be {cancer/no

Example:
instances: 5 documents
features: 7 words

itis a puppy

itis a kitten

itisa cat

thatis a dog and thisis a pen
itis a matrix

—|lo|=|=]|-

1
1
1
1

ole|eo|e

0
1
0
0

ol|l=|o|o|e

cancer classification} label for
each patient, or how fast it is
growing (regression)

patient (n




Regression: examples e

*  How fast is it growing? 1.5

predicted observed
blind top ranked crystal structure

Protein folding.
input: sequences
output: 3D structure

Age-estimating.
input: face
output: age

image from Microsoft
age estimator here

Image from Marks et al. link

Colourization.
input: gray scale image
output: colour image

Image from Zhang et al. link



https://techxplore.com/news/2015-05-microsoft-age-estimate-tool-unleashed-real-time.html
https://techxplore.com/news/2015-05-microsoft-age-estimate-tool-unleashed-real-time.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233603/
https://arxiv.org/abs/1603.08511

Origin of Regression

Method of least squares was invented by Legendre and Gauss (1800's)
Gauss used it to predict the future location of Ceres (largest asteroid in the asteroid belt)

Gauss
used it

Legendre
published it

Pearson
named it regression

ocean navigation
image from wiki history of navigation
find more here


https://priceonomics.com/the-discovery-of-statistical-regression/

Linear model of regression

mput ML algorithm y
featu res with parameters w
f(z;w)

output
labels

fw(r) = wy +wizy + ... +wpxp

model parameters or weights (fve also called them 6 before)

[wo, wy, ... wp) bias or intercept

assuming a scalar output ~ f, : RP 5 R



Linear model of regression: example D = 1

forms a linein 1 dimension

fa(T) = wo + wiz
\
model parameters or weights Yy
[’lU(), wl] 1A

9

D

fw(O) . bias or intercept ¢— : i i
0 3 iz 15 &




Linear model of regression

fw(xr) = wy +wizy + ... +wpzp
J

model parameters or weights l

bias or intercept

simplification

concatenatealtox —— =z =|[l,z1,...,zp]

fo(lz) =w'z w = [wo, w1, ..., wp]

T

T



Linear regression: objective

objective: find parameters to fit the data

model: f,(z) = w'x

example D =1

w = [w07 wl]
Which line is better?

Y,




Linear regression: objective

objective: find parameters to fit the data

true: y(l) p—
predicted: :(;(1) — f(aj(l)) i

residual: y(l) — fw(iv(l))

difference between
predicted (model output)
and true (observation)




Linear regression: objective

objective: find parameters to fit the data

how to consider all
observations? sum all
residuals?

square error loss
(a.k.a. L2 loss)

L(ya g) = (y - g)z




Linear regression: cost function

objective: find parameters to fit the data

minimize a measure of difference between §™ = f, () and y™

square error loss (a.k.a. L2loss) L(y,§) = :(y — 9)*

for a single instance (a function of labels)

for future convenience
versus

for the whole dataset

sum of squared errors cost function

2
J(w) = 5 Y0 (y(") - ’wTa:("))

w* = argmin,, J(w)

:_. 'Thf*l

gt




> T = ||

2
Linear Least Squares solution: w* = argmin,, Y, 3 (y(”> - wT:z;<"))
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Minimizing the cost
Simple case:

model: fw (m) = W

both scalar

cost function J(w) = %Zn(y(n) _ wa}(n))Z

% _ Zn CB(n) (ww(n) o y(n)) oo N

BT 0>, et ¥, 20y

(n),, (n)
setting the derivative to zero qp* — 2T Y

Zn ;[3(”)2
global minimum because the cost function is smooth and convex

more on convexity later

I
10



Minimizing the cost

model: f, (z) = wy + w1z

cost: a multivariate function J(wg, w:)

1 (with intercept)

data space

the cost function is a
smooth function of w

find minimum by setting
partial derivatives to zero




Minimizing the cgst

for a multivariate function J(wq, wy)

0 - AN

partial derivatives instead of derivative

%J(wo, wy) = lim,

J('wo —|—e,'w1)—J('w0 ,wl)
€

<>
RS
critical point: all partial derivatives are zero i%o .
=i
S e

77777
\\\\\‘ ’I/!”{l"
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/7
7
A l’,,;f;,g;
<
7

VJ(’I_,U) — [%’wl J(w), .. LJ(w)]T . 45—_: :;‘/\\\\4‘245 .

gradient: vector of all partial derivatives
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Minimizing the cost
for general case

find the critical point by setting %J(w) =0

23, 5™ — fu(™))? =0

using chain rule: % = 51]:’] g{u’z

cost is a smooth and convex function of w

weget >, (w'zl® — y(”))x&n) =0 Vde{l,...,D}  iemen

term here, with the bias
term, it would be D+1
equations and D+1

D equations with D unknowns unknown for d in [0,0]



Linear regression: Matrix form

instead of — fwT

Note: D is in fact dimensions of the
input +1 due to the simplification
and adding the bias/intercept term

use design matrix to write

|
S

N 4 I PR g
a A(SN) . 1 ng) :E(]:V) x(:N) :
g ’ 2 ’ D wp
Linear least squares arg min,, 1|y — Xwl|f3 = 3 (y — Xw) ' (y — Xw)

squared L2 norm of the residual vector



Minimizing the cost: Matrix form

Linear least squares
J(w) = 3lly — Xw|]* = 3(y — Xw)" (y — Xw)

W) — 0 [yTy + wT XT Xw — 2y Xw]

y' Xw =wT XTy

85(10 XT

w

Using matrix differentiation 8w8 Xw _ 9 X
w

0J (w)

st =04+ XTXw — X'y = XT(Xw — y)


https://en.wikipedia.org/wiki/Matrix_calculus

Minimizing the cost: Matrix form

Linear least squares —

J(w) = 3lly — Xw|]* = 3(y — Xw)" (y — Xw)
8;1(;:)) — %aiwi[yTy + wl XT Xw ZyTXw]



Minimizing the cost: Matrix form

Linear least squares —

J(w) = 3lly — Xwl||* = 3(y — Xw)" (y — Xw)

O 1yTy + wl XT Xw — 2yT Xw]

w;

1
2
dw; %aa [Zg Yi1Y1 + Zj,k,m wleijkmwml — Zj,k 2yj1Xjkwk1]

W

QD

w



Minimizing the cost: Matrix form

Linear least squares

J(w) = 3lly — Xwl||* = 3(y — Xw)" (y — Xw)

8J

3'501:]) = %3?02. [yly + wl X1 Xw — 29T Xw]

0J O

az(;f) = 3 120 YYDk Wit X Xem Wit — 2 2451 X wia
8J

850?) — %agil [yjlyjl + wleijkmwml - zylejkwkl]

w



Minimizing the cost: Matrix form

Linear least squares — w
J(w) = 3lly — Xw|]* = 3(y — Xw)" (y — Xw)
agf;,u) = %azi [y'y + wl X1 Xw — 29T Xw]
T = 550 [0 V¥t + 2 sm Wit Xig XimWma — 2255, 290 X pwpa]
= 512 kom0 X Xkm Wi + 25 4 Wit X XiomOmi — 205 1, 2051 X ji O



Minimizing the cost: Matrix form

Linear least squares — w

J(w) = 3lly — Xwl||* = 3(y — Xw)" (y — Xw)

0J (w)
Gwi

agﬂ [Z] YY1 T Zj,k,m W1 Xj X pm Win1 — Zj,k 2yj1 X jrwpa |

Zj,k,m 03 X j X om W1 + Zj,k,m W1 X kj X Omi — Zj,k 2yj1Xjk5kz’]
— %[Zk,m inkawml + Zj,k wjlxijki — Zj zyleji] = (%XT (Xw — y))z]

D= D=



Minimizing the cost: Matrix form
= Xw

Linear least squares
J(w) = 3lly — Xw|]* = 3(y — Xw)" (y — Xw)

oJ(w
—gz(uz-) = %afuz [yly + wl X1 Xw — 29! Xw]

%[Zj,k,m 5inijkmwm1 T Zj,k,m wleijkm mi Z] k 2y]1 jk(skz]
- %[ka X i Xkm W1 + Zj,k Wj1 X Xhi — Zj 2yn Xji| = (§XT (Xw — y))i]

0= —8‘((]),(5) = X1 (Xw —vy)



Minimizing the cost: Matrix form

Linear least squares — w

0= 8‘((]95:)”) = X1 (Xw —vy)

0=X"Xw—- Xy = XTXw=X"y
— w = (XTX)_1 X1y




Closed form solution

vdl X 0
(y —_ w ) p— O matrix form (using the design matrix)

X" Xw= X"y systemofD linear equations (Aw = b)

similar to non-matrix form: optimal weights w* satisfy

> (Y™ — wTa:(”)):c((in) =0 Vd

w* — (XTX)_lXTy D equations with D unknowns

closed form solution



Unigueness of the solution

we can get a closed form solution! w* = (XTX)—lXTy

unless D > N
or when the X " X matrix is not invertible
this matrix is not invertible when some of eigenvalues are zero!

that is, if features are completely correlated

... or more generally if features are not linearly independent

having a binary feature @1 as well as its negation o = (1 — x1)



Time complexity

w' = (XTX) 1XTy
|

O(ND) D elements, each using N ops.

O(D?N) D x D elements, each requiring N multiplications

total complexity foris O(ND? + D*) which becomes O(ND?) for N > D

in practice we don't directly use matrix inversion (unstable)

however, other more stable solutions (e.g, Gaussian elimination) have similar complexity



Multiple targets

instead of Y € RY wehave Y € RNVXD

a different weight vectors for each target

A
L) .
o gy ) W ) o W2
g(2) g(z) Ty Ty, » Tp w1 w12
Y = 1 2| = : W  Wao
(™) (V) ()
L(N) () Ty, T o, Tp .
Y1 Y wWD,1 WD,2
(1) (1)

Z)gl) = wop,1 + xgl)wm + Xy w21+ + 2 wp

W* — (XTX)_lXTY Qél) = Wo,2 +mg1)w1,g +mgl)w272 +---+:1:%)wD72



Fitting non-linear data

so far we learned a linear function f, = Zd WL

sometimes this may be too simplistic - — cormect model

linear fit

example
Synthetic data when we generated data
from a function y* _ Sin(w) + COS(\/E)

D — {(az("’),y* (x(n)) + 6}711\7:1 N 'N T

we see linear fit is not close to correct model that
the data is generated from, can we get a better fit?

small
noise

m create new more useful features out of initial set of given features

e.g., o3, z1x2,log(x), how about &} + 2z3 ?



Nonlinear basis functions

so far we learned a linear function fu, = ), WqZ4q

let's denote the set of all features by ¢4 (x)Vd
the problem of linear regression doesn't change fw = Zd wq ¢q(x)
solution simply becomes (®'®)w* = &'y da(z) is the new x

replacing X with ®
a (nonlinear) feature

¢1(CI3(1)), ¢2($(1))7 T ¢D($(1))-

$1(z?), [ a(z®), -, ¢p(z?) one instance

1@ ™), dal@®), -, gp(a™)]



Nonlinear basis functions

EIIEl original input is scalar = € R

1 1
\ VYA
0.75 ! 0.75
0.5 . 0.5
0.25 - 0.25 j
0 0
1 0

-1 0 I - |

polynomial bases Gaussian bases Sigmoid bases

(z—pg)

dr(z) = z* or(z) =€ 7 2 (@) = — o

1+e




Linear regression with nonlinear bases: example

Gaussian bases Sigmoid bases
. (m—/ﬁk)z 1
qbk (w) = e 52 qbk (CIZ) = g
1+e s

we are using a fixed standard deviation of s=1

9 = w4+ 3, widn (@)

we are using a fixed standard deviation of s=1

curve-fitting using nonlinear Gaussian bases curve-fitting using nonlinear Sigmoid bases
3 2
2
14
1
0 Y o
_1_ .
the green curve (our fit) -1 1
-2 _is the sum of these
= 7 scaled Gaussian bases -2 1
= ground truth >4 p|US the intercept Each = ground truth
M fit I . ) — our fit
- intercept basis is scaled by the -3 1 intercept
. - - . - - corresponding weight : : . : . .
0 2 4 6 8 10 0 2 4 6 8 10



Probailistic interpretation

BN siven the dataset D = {(zV),yW),..., (™), y™M)}

learn a probabilistic model p(y|z;w)

consider p(y|z;w) with the following form

puly | z) = Ny |w'z,o?) = Lie 5

assume a fixed variance, say o% =1

Q: how to fit the model?
A: maximize the conditional likelihood!

image from here



http://http//blog.nguyenvq.com/blog/2009/05/12/linear-regression-plot-with-normal-curves-for-error-sideways/

Maximum likelihood & linear regression

T .32

e (y—w ' z)
oy | ) = Ny | wT2,0%) = e~ 25

vV 2mo?

Y e w!z NI L(w) = [1p(™ | 2™);w)

kg T ((w) = Y, — 5 (y™ — w' 2(™)2 + constants

AL R e
&

> e 578 :
AN E I w* = arg max, £(w) = argmin,, 1 > (y™ —wz™)?
: | | linear least squares!

_,335

image from here

whenever we use square loss, we are assuming Gaussian noise!


http://http//blog.nguyenvq.com/blog/2009/05/12/linear-regression-plot-with-normal-curves-for-error-sideways/

Summary

linear regression:

e models targets as a linear function of features

e fit the model by minimizing the sum of squared errors
e has a direct solution with o(~nD? + D3) complexity

e probabilistic interpretation

we can build more expressive models:

e using any number of non-linear features



