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Model fitting

input 9 MLaIgorlthmé Y output
labels

features with parameters 6
f(z™;6)

the process of estimating the model parameters 8 from given data D, is the
core of training ML models which often boils down into optimization of an

loss function £(0) 1N () ().
LO) = § 2n=a Ly™, (2™ 0))
0* = arg miny £(6)




Model fitting
input 9 MLaIgorlthmé Yy output

labels
features with parameters 6

the process of estimating the model parameters 6 from given data D, is the core of training ML
models which often boils down into optimization of an loss function £(6)

A common approach is to use negative log probability as our

loss function: l(y, f(w,é’)) — —logp(y]f($;9))



Objectives

learn common parameter estimation methods and understand what it
means to learn a probabilistic model of the data

e using maximum likelihood principle

e using Bayesian inference
= prior, posterior, posterior predictive
= MAP inference
= Beta-Bernoulli conjugate pairs



Parameter estimation

a coin's head/tail outcome has a Bernoulli distribtion { é
. . reminder: Bernoulli random _
Bernoulh(w‘@) = 033(1 — 9)(1 z) variable takes values of 0 or 1, p(z|0) = o v
e.g. head/tail in a coin toss 1-60 z=0

IID is short for independent and identically distributed
this is our probabilistic model of some head/tail IID data D = {0,0,1,1,0,0,1,0,0,1}

Objective: learn the model parameter 0

since we are only interested in the counts, we can also use Binomial distribution

Binomial(NN, N |0) = (J]\\’;)HNh(l — g)N-—N

|
‘ # heads N, = > ep T

D Ne



Maximum likelihood

a coin's head/tail outcome has a Bernoulli distribtion (

W e 0 e

Bernoulli(y|f) = 6Y(1 — §)(1~¥)
this is our probabilistic model of some head/tail 11D data D = {0,0,1,1,0,0,1,0,0,1}

Objective: learn the model parameter @ Max-likelihood assignment

Idea: find the parameter @ that maximizes the probability of observing D

likelihood function Bernoulli{f0 0110010 0 1]|6)

Likelihood L(6;D) =[], ., Bernoulli(y|6) = 6*(1 — 6)® is a function of @ -

0.0008

0.0006

Likelihood L(8)

0.0004

pick the parameters that assign the highest note that this is not a probability density!
probability to the training data 00000 { -
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Maximizing log-likelihood
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likelihood L(6;D) =[], p(y;0)

Likelihood L(8)
o — —
I o n
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using product here creates extreme values

0.0 02 04 06 08 10

for 100 samples in our example, the likelihood shrinks below 1e-30

log-likelihood has the same maximum but it is well-behaved
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Log-Likelihood log(L(8))

-200

£(6; D) = log(L(6; D)) = 3, log(p(y; 9))

-250

how do we find the max-likelihood parameter? g* — arg maxy £(0; D)

for some simple models we can get the closed form solution

for complex models we need to use numerical optimization



Maximizing log-likelihood

log-likelihood £(6; D) = log(L(6; D)) = >_, . log(Bernoulli(y; 6))

Log-Likelihood log(L(8))

observation: at maximum, the derivative of £(6; D)is zero

-250

idea: set the the derivative to zero and solve for 6

max-likelihood for Bernoulli
%K(G; D) = % Zyep log (99(1 — 0)(1_3/))
= % Zyyloge + (1 —y)log(1 — 0)

1—
=%, 4~ =0

which gives gMLE _— 2yen Y is simply the portion of heads in our dataset

D
what is 6L when D = {0,0,1,1,0,0,1,0,0,1}?
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Parameter estimation

]
head '
eads :

D ={0,0,1,1,0,0,1,0,0,1}

Likelihood L(9;D) = p(D|6) = [1,.p f(,0), = 6*(1 —6)°



Parameter estimation
heads (

0 y:1 G {eeeeeeee
0) =
p(z[0) {1_9 y=0 19'....'

D =4{0,0,1,1,0,0,1,0,0,1}

/’""‘%/Oo

Likelihood L(9;D) = p(D|0) = [1,.p f(,0),, = 6*(1 —6)°
Not the same!

i D|0)p(0
Posterior p(0|D) = ff;(zgfeﬁ;()a)




Parameter estimation
heads

0 y=1
p(w|9)={1_9 =0

D ={0,0,1,1,0,0,1,0,0,1}

B which maximizes this is Maximum Likelihood Estimate (MLE)

Likelihood L(6;D) = p(D\m})% = 6*(1-0)°

Not the same!

i D|0)p(0
Posterior p(0|D) = %
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Parameter estimation

&
7% TN ”ly

\ 0 =1
70=1,%) .

D ={0,0,1,1,0,0,1,0,0,1}

B which maximizes this is Maximum Likelihood Estimate (MLE)

Likelihood L(6;D) = p(D\m})% = 6*(1-0)°

B which maximizes this is Maximum A Posteriori (MAP) Not the same!

i D|0)p(0
Posterior p(0|D) = %
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0 y=1
p(w|0):{1—9 y =0

D ={0,0,1,1,0,0,1,0,0,1}

B which maximizes this is Maximum Likelihood Estimate (MLE)

Likelihood L(6;D) = p(D\m})m = 6*(1-0)°

Not the same!

B8 which maximizes this is Maximum A Posteriori (MAP)

p(D|9)p(6)

Posterior p(0|D) = T o000
ot the same!
p(heads|D) = p(y = 1|D) = [, p(heads|0)p(6|D)d0

= J, 6p(0|D)do 13

Posterior Predictive: probability of getting heads taking into account model uncertainty



Bayesian approach

max-likelihood estimate does not reflect our uncertainty:

e e.g,OMLE — 1 if we observe only one head, predicts all future tosses are head!
e e.g,OMLE — 2for both 1/5 heads and 1000/5000 heads

® in which case are we more certain of the predicted 6?

ML solution with increasing data

: , — =4
How can we quantify our uncertainty — 16

. . 10° 4 =
about our prediction? s
n=1024
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Bayesian approach

How can we quantify our uncertainty about our prediction?
capture it using a conditional probability distribution instead of a single best guess

Using the Bayesian inference approach
e we maintain a distribution over parameters p(0)
e after observing D we update this distribution p(6|D)

how to update degree of certainty given data? using Bayes rule

hidden prior likelihood of the data
p(@)p(D ‘ 9) previously denoted by L(6; D)
p(0|D) =

observed

We can get a point estimate by collapsing this posterior
distribution to a single point, i.e. the best guess

15



Bayes rule: example reminder

c= {yes, no} patient having cancer?

x € {—, +}observed test results, a single binary feature

likelihood: p(+|yes) = .9 TP rate of the test (90%)

c=1vyes | +)= pltle=yes)
p( Y ‘ ) p(+) FP rate of the test (5%)

posterior: p(yes|+) = .0177 T T

p(+) = p(yes)p(+|yes) + p(no)p(+|no) = .001 x .9 + .999 x .05 = .05

16
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Conjugate Priors K
L€

proportional

p(0)? posterior fod_priorFd likelihood

p(0|D)? p(0:d') xp(@:a)xp(D|h)
likelihood p(D|0) = | ],.p Bernoulli(z; 0) = oMt (1 — 9)Ne

in our coin example, we know the form of likelihood:

Conjugate

To simplify the computation we want prior and posterior to have the same form (s, that we can easil
update our belief wi%/h

new observations, i.e.

this gives us the following form  p(f|a,b) o< #%(1 — 4)° Closed under Bayasian
updating)

distribution of this form has a name, Beta distribution

we say Beta distribution is a conjugate prior to the Bernoulli likelihood

17
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Beta distribution

Beta distribution has the following density

a—1
a+p—2

| T
€=5@=1 ——
KO\EES Beta(6los ) = fiiho" ! (10"
a,B >0
-------------- ====p Beta(fla=p=1) isuniform
mean of the distributionis E[0] = aaTB
H : : : for «,8>1 the dist. is unimodal; its mode is

0 0.2 0.4 0.6 0.8 1
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Beta distribution: more examples
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p(o)
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] ]
Beta(2,2) Beta(10,10)

p(a)

p(a)

T T

Beta(3,2)

=
02 04 06 08 1 0 02 04 06 08 1
g g
Beta(15,10) Beta(0.5,0.5)



Beta-Bernoulli conjugate pair :

y
how to model probability of heads when we toss a coin N times /‘ fé
2

proportional

od prior g likelihood

p(6) o 6°71(1 — 9)°~! p(6) = Beta(6la, )
TN »(D|6) = 6™ (1 — §)N L(6; D) = ]| Bernoulli(Ny, NV [6)
product of Bernoulli likelihoods
equivalent to Binomial likelihood
p(|D) o g*+Ni-1(1 — g)F+Ni1 p(6|D) = Beta(8la + Ni, B + Ny)

a, B are called pseudo-counts

their effect is similar to imaginary observation of heads ( « ) and tails ( 8)

20



Effect of more data

with few observations, prior has a high influence

as we increase the number of observations N = |D| the effect of prior diminishes
the likelihood term dominates the posterior

prior Beta(#|10,10)

plot of the posterior density with n observations

p(@"D) X 09+H(1 _ 9)9+N—H

P
n=256 —
n=16 —— prior — pnotr _ 75
= postenor 12 A F:Js _erlor
—— likelihood A = likelihood
— 8" 10 | — 20
51 15 |
6 4
10 A
2
2 1 5 -
o1, : : : : . D
00 02 04 06 08 10 0. 0.2 0.4 06 04 1o 0.0 02 0.4



Posterior predictive

our goal was to estimate the parameters ( @ ) so that we can make predictions

what if we use the maximum likelihood estimate for the best parameter, 6%¥, and plug it in
the p(x|0) to make the prediction?

Example:

if we see four heads in a row, what is the probability of seeing a tail next?
if D={1,1,1,1}, what is M£¥? 1.0

t J = 1-0ME = 0.0
p(0[0) =6°(1 -1 =1-9

Next, let's use the posterior distribution we learn through Bayesian inference

22



Posterior predictive

our goal was to estimate the parameters ( @ ) so that we can make predictions

now we have a (posterior) distribution over parameters, p(6|D), rather than a single §MZE

6MLE only gives a single best guess based on that parameter, p(z|6)

To make predictions, we calculate the average prediction over all possible values of 6

p(z|D) = [, p(6|D) de

a=10, B=10

pricr
—— posterior
""" pl1]8)

p(1D)

for each possible g, weight the prediction by the 35
posterior probability of that parameter being true 30

Posterior

0.0 0z 0.4 0.6 na 10
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Posterior predictive

our goal was to estimate the parameters ( @ ) so that we can make predictions

now we have a (posterior) distribution over parameters, p(6|D)

To make predictions, we calculate the average prediction over all possible values of 6

if we see four heads in a row, what is the probability of seeing a tail next?

if D=1{1,1,1,1}, what is p(0|D)? depends on our prior belief

a=10, =10

a=1,8=1

prior
—— posteri

pil|g)
pI0|g)
pil|m)
= p(o|D)

or

0.0

0.2

0.4 0.6 0.8

when the strenght of prior gets close to zero the prediction becomes similar to MLE

10

Posterior

'

w

[

-

prior

—— posterior

pil|8)
pl0]8)
pi1|m)

S pl0|p)

0o

0.2

Posterior

I T T I ]

a=01 =01
prior
—— posterior
P18
pl0]8)
pi1o)
B p(0)D)
0.0 0z 04 06 0s 10

g

Posterior

a=1,4=10

prior
—— posterior
pil|8)
pio|g)
pil|o)
= pio|o)

0.0

0.2

08 10
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Posterior predictive for Beta-Bernoulli

start from a Beta prior p(6) = Beta(f|a, 3)
observe N, heads and N; tails, the posterior is p(6|D) = Beta(f|a + Ny, 5+ Ny)

Given this estimate of the parameters from training data,

how can we predict the future?
what is the probability that the next coin flip is head?

marginalize over 6

p(z = 1|D) = [, Bernoulli(z = 1|6)Beta(f|a + Ny, 8 + N;)do
= [, 0Beta(f|a + Ny, 8+ N;)dO = %

if we see four heads in a row, what is the probability of seeing a tail next?
if D=1{1,1,1,1}, what is p(1|D)? 1 24, p(0D)? ! 10
when we assume the prior is Beta(a = 10,8 = 10)

compare with prediction of maximum-likelihood: p(z =1D) = f+ =1, p(x =1|D) =0 4



Posterior predictive for Beta-Bernoulli

start from a Beta prior p(6) = Beta(f|a, 3)
observe N, heads and N; tails, the posterioris p(6|D) = Beta(f|a + Ny, 5+ Ny)

Given this estimate of the parameters from training data, how can we predict the future?
Oé—|—Nh

p(z = 1|D) = [, Bernoulli(z = 1|§)Beta(f|a + Ny, 5 + N;)do = BN
Example:
compare with prediction of maximum-likelihood: p(z = 1|D) = & sequential Baysian
updating

if we assume a uniform prior, the posterior predictive is p(z = 1|D) = f&5  with uniform prior

Laplace smoothing (Nf;]Nt)

(0,0)

Ll Ll

(1, 0) (0, 1)

/(2 0) /(11 (02
P 0) @, 1) (1,2) / (0,3)
_ (3 D ,0(2 2) Aas

a.k.a. add-one smoothing

to avoid ruling out unseen
cases with zero counts




Strength of the prior

with a strong prior we need many samples to really change the posterior
for Beta distribution a + 8 decides how strong the prior is: how confident we are in our prior

example as our dataset grows our estimate becomes more accurate

true value 3

p(z =1/D)

0.6

0.5

0.2

different prior mean

o

0.4

03F\"

posterior estimates

0.1/

60 80 100

0.6

0.5¢

1|D

different prior strength o -+ /8

posterior estimates
0 20 40 60 80 100
[\ = # samples

example: PGM book by Koller & Friedman, figure 17.5



Maximum a Posteriori (MAP)

sometimes it is difficult to work with the posterior dist. over parameters

alternative: use the parameter with the highest posterior probability p(6|D)

64" = arg maxy p(6|D) = arg maxy p(6)p(D|6)

compare with max-likelihood estimate (the only difference is in the prior term)

OMLE — arg maxy p(D|6)

for the posterior p(0|D) = Beta(f|a + Ny, 8 + Ny)

HMAP — a+Np—1
a+B+Np+N;—2

MAP estimate is the mode of posterior

compare with MLE  0M5F = N,ﬁNt

they are equal for uniform prior a=8=1

D={1,1,1,1}

a=10, =10

28



Categorical distribution

what if we have more than two categories (e.g., loaded dice instead of coin)

instead of Bernoulli we have multinoulli or categorical dist.

Bernoulli(z|0) = #*(1 — §)1—2)

1—6
6
once;
n times:

Bernoulli distribution
binomial distribution

Cat(x[0) = [Ti, 6,

--------------

1 2 3 4 5 6

categorical distribution
multinomial distribution

29



Categorical distribution

what if we have more than two categories (e.g., loaded dice instead of coin)
instead of Bernoulli we have multinoulli or categorical dist.

Cat(z|0) = [T, 61"

I
where Z L 9k =1
(0,0,1)
@ belongs to probability simplex
’91 T =
by == < >
03 - 3
0) =
p(z|0) 6, o= . :
0 z—5 j (0,1,0) 8y
0 z=6 P l 0,0
K =3

S0, =1 !

0, +6,+63 =1

30



Maximum likelihood for categorical dist.
likelihood  p(DI8) = [T,cp Cat(el6) = [Loep Iliy 6,77 =TIy 0 Ni = Epep Lz = )
log-likelihood  £(6,D) =, 3, Iz = k) log(6;) = 3, Ny log(6x)
we need to solve  gg-£(6, D) = 0 subject to 370k =1  usingLagrange multipliers

similar to the binary case, max-likelihood estimate is given by data-frequencies 9, ™¥ — %

Distribution of coronavirus (COVID-19) cases in Canada as of September 15,2020, by
age group

categorical distribution with K=8

example

frequencies are max-likelihood parameter estimates

OMEE = 149

Proportion of cases
Addttional Information:



Dirichlet distribution

is a distribution over the parameters @bf a Categorical dist.
is a generalization of Beta distribution to K categories
= " this should be a dist. over prob. simplex >, 0r =1
(1,1,1) (3,3.3)
. ag) or—1

A A Dir(0|c) = Z’f 0.

(1,7.7) (5,2,2) ( ’ ) Hk Hk
A A vector of psedo-counts for K categories (aka concentration parameters)

(5.5.2) (0.2,0.2,0.2) a > 0VEk

A A

Dir(6, [.2,.2,.2])

for a = [1,..., 1], we get uniform distribution

for K=2, it reduces to Beta distribution

32



Dirichlet-Categorical conjugate pair

Dirichlet dist. Dir(f|a) = H(ka ) [1, 6+~ is a conjugate prior for Categorical dist. Cat(z|0) = [], 0,{( B

od prior P likelihood

p(6) = Dir(8]a) o [, 6+~
n

S N,
MEAMEEE  p(D|0) =[1,0," weobserve Ni,...,Nxvalues from each category

p(8|D) = Dir(fla + 1) o [, 65" ™' again, we add the real counts to pseudo-counts

N,
S plz=kD) = =T

OMAP o+ N, —1
(Zk, akl+Nkl) K

33



Summary

in ML we often build a probabilistic model of the data p(z;0)
learning a good model could mean maximizing the likelihood of the data

sometimes closed form solution
for more complex p, we use numerical methods

maxy log p(D|6) |

an alternative is a Bayesian approach:

maintain a distribution over model parameters

can specify our prior knowledge p(6)

we can use Bayes rule to update our belief after new oabservation p(6|D)
we can make predictions using posterior predictive p(z|D)

can be computationally expensive (not in our examples so far)

a middle path is MAP estimate: maxg log p(D|0)p(6)

models our prior belief
use a single point estimate and picks the model with highest posterior probability
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