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Current participation rate: 49%.

Please complete the online evaluation for the course on Mercury.
https://go.blueja.io/qLhY92bmaEW4w8hLQ53-LA
Your feedback is very important to us.

Thank you!
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Unsupervised learning

Instead of having a pair of input and output in the supervised learning tasks
(Lectures 1-3), in unsupervised learning, we seek to find latent patterns from
only the inputs data D = {x,,},’}’:1 without any corresponding output y,,.

Unsupervised learning forces the model to “explain” the high-dimensional inputs,
rather than just the low-dimensional outputs (i.e., trying to “make sense of” the
data)

The reason we need unsupervised learning is that most of the data we have are
unlabelled.

Quoted from Geoffery Hinton 1996: “When we're learning to see, nobody'’s telling
us what the right answers are — we just look. Every so often, your mother says
“that’s a dog”, but that's very little information.”
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The goal is to partition or cluster the input into regions that contain “similar” points.
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Discovering population structure from the genotype data

® |t is often useful to reduce the high dimensional data by projecting it to a lower
dimensional subspace to capture the “essence” of the data.

e Each observed high-dimensional data x, € RP was generated by a set of hidden or
unobserved low-dimensional latent factors z, € RX.

® Below illustrates applying Principal Component Analysis (PCA) to 1000
human genomes, each having 1 million SNPs

high-dimensional

SNPs First two PCs

PCA
—

1000 individuals

Principal Component 2 (0.08% variance)
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K-means clustering
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K-means clustering algorithm for K=2, D=2
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K-means clustering algorithm
Objective function:
N K
J= k=D zokml* = 11X - ZM||Z
n=1 k=1
where each row of Z is hot-encoding for the cluster assignment and M € RX*D are
the K centroids for the D input features.

Algorithm 1 K-means clustering (¢)

1: Initialize K cluster centers w1, ..., K
2: while J(t71) — J(t) > ¢ do
3 Assign each point x,, to the closest center k:

1 if k = argmin||x, — pj|[?
ka = J
0 if otherwise

4; Update the cluster centroids: py = Nik > ZnkXn, Where N ="z, &
5: end while 0/36




Convergence on the cost function

e Cost function:

N K
I=S 10— > zopiuel P
n=1 k=1

® K-means alternates between clustering and
updating the K centers:

1. Clustering:

500

1 if k= argmin||x, — p;]|? 0
Znk = j 1 2 3 4
0 if otherwise

K-means minimize the
2. Updating: reconstruction loss? (pop quiz:

1 why?).
i = M ;z,,kxk, where N, = ;z,,k
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K-means clustering of the time-series yeast gene expression data
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Evaluation metrics in choosing K

Validation error Bayesian info criterion ASW
6000 2050
° U 120 %m
4000 o 0 g
[

® Reconstruction error on the validation set
is not informative as it always decreases
Noay with increasing K. But it’s inflection

J(K) = Z ||X N ZZ Val 2 point is a good heuristic to choosing
K (called the Elbow or Hockey Stick
DK Method).
BIC(K) = log p(D|p) log(IV) ® Bayesian information criteria (BIC) score
. a(/) penalizes more complex model besides the
ASW(K Z —_— reconstruction loss and is informative of
TN max{a ) b(i)} the best K (i.e., K=5)

o ASW suggests the best K at 3 or 7. 12/36



Outline

Principal component analysis
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Principal Component Analysis

PCA main idea: find the directions which encode most of the difference
(variance) between datapoints.

Variable 2
Variable 2
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Variable 1
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Principal Component Analysis

Suppose we have an unlabelled dataset X € RP*N for D features and N examples.

We would like to approximate each data point x, € RP*! by a low dimensional
representation z, € RK*!  where K < D.

The variable z, is known as the latent factor.

The error produced by this approximation is called reconstruction error:

N
1
L(W) = N Z ||x, — decode(encode(x,; W); W)||3

n=1

>

1 N
N Z |[xn — WZnH%
n=1

where in the context of PCA:
® we assume a linear encoder and decoder
® Z ¢ R¥*N is also known as the loading matrix.
* W c RP*K is called the basis matrix. It is orthogonal matrix: WTW = I, which
means that w, wy = 1 for k = k’ or 0 for k # k'
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PCA derivation

In what follows we assume E[x] = 0, if it is not true, we can simply redefine
X, = X, — E[X], where X, is the original data whose mean is not zero.
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PCA derivation for the first PC

Let z; € RV*1 and wy; € RP*! be the loading and basis vector of the first PC. The
reconstruction error is

1 N N
Lwi,z1) =< Y %y — zowi|P = = — z1.,W1) " (Xp — 21,,W1)
N
n=1 n=1

N
L N
= xx 221wx—|—z wTwl xx 2zlwx+z
N; n nW1 KXp 1,n 11 g n n™Wi1 ~n ln)
0L(z 1
(21) = —(—2w;rx,, +2z1,) 20 = 71, = w;rx,7
8217,7
N N 1N
Lwy) == Z X, Xp — 2217,,w1Tx,7+zl,, = Z X, xn—2zl,,+zl27,,):NZ(anxn—z
= = n=1

1 .1
XTN 2212,,1 - N E W XX, Wi = —w, TSwi where ¥ = NXXT
n=1

We see that minimizing the reconstruction error is equivalent to maximizing the variance of the
latent representation w.r.t. wy (since Var[z] = E[z?] — E?[z] = E[z?], where E[z] = w{ E[x], = 0).

Tn)
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The first PC is the eigenvector of X with the largest eigenvalue
Because we want the projection to be orthonormal such that w w = 1, we introduce

the following constraint with the Lagrange multiplier A1 to the loss function:
L(wi) = —w{ Zwy + A(w] wy — 1) (1)
8£(W1)
8w1

A A A
=-2Yw; +2\w; =0 = YXw; = \w;
Therefore, the optimal solution for wy is an eigenvector of Y and \; corresponds to
the eigenvalue. Multiplying wlT on both side, we have
& TS T TS
Zwl = )\1W1 = Wy Zwl = )\1W1 w1 = Wy Zwl = )\1

Since we want to maximize w; >wj (i.e., minimizing the loss in Eq (1)), we pick the
eigenvector that corresponds to the largest eigenvalue:

w} < arg maxw; Yw; = arg maxVar[z;] = arg minL(wy)
wi wi w1
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Computing the second PC

We can find the second PC to further minimize the reconstruction error:

N
Lw) = Z %0 = 21,001 = 22w [* = Z % — 22,nwal|?
= n=1
1 2
== Z)"(T)"(,, w;Zw2 where

2 1 ~~
Y = fxxT Z(xn—zl,,wl) n—z1,aW1) "

N N
1 1 1 R 1 N
SE D) SEFEE ) oPt TR 6 SE A T
n=1 n=1
—_———

n=1 n=1
b
N ThereforAe 1N 1N 1N
W;FZWQ = w;sz — w2TW1 N Z 217,,XIW2 — sz (N Z 217,,x,,> WlTwQ + (N Z 2127,,> w2TW1 lelTwQ
T —1 —1 \T —1 \\0,—/\\0/—/

=w, ]S W 19/36



Computing the second PC

We can find the second PC to further minimize the reconstruction error:

C(Wz)z Xy — z1.aW1 — 22 oWol|? = ||Xn 22 w2 |2
N N

n=1
N
1 «To T& 1 T Te
:Ng ann_szW2:N§ X, Xn — Wy 2W»
n=1 n=1

Adding the orthogonal constraints wlTW2 = 0 and orthonormal constraint w2Tw2 =1

E(Wz) = —W;£W2 + )\2(W;—W2 — 1) + )\12W;—W1
oL o
OLMW2) 5% wy + 22ows + Apswy 2 0
6W2 T
Solving for wy: wy - ,/\.lzv& ,_/O\\ ,_/1\\

ZiWQ = 20w + A1owy = 2W1 ZW2 =2X Wl Wo +A192 W1 wi = 0= A
= iWQ = )\2W2 = Wy ZWQ = )\2

Therefore, the solution for wy for the second PC is the second largest eigenvector.
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Generalizing to computing all K PCs
Find the k" PC can be done in the same way

1 N k—1 1 N
L(wyg) = N Z [[xn — ZZS,nWs - Zk,anH2 =N Z |[Xn — Zk,an||2
n=1 s=1 n=1

Iteratively computing the k" eigenvector is slow.
For N << D (e.g., N = 100 samples versus D = 20,000 genes), we can efficiently
compute all eigenvectors by solving the eigendecomposition of the square and
symmetric covariance matrix:

X'X =UAU!

—~

NxN
where U contains all of the N eigenvectors and A is the diagonal matrix with the
diagonal elements being the eigenvalues. Because U is a orthogonal matrix, UTU = |
and UT = UL
More efficiently, we can compute the truncated Singular Vector Decomposition (SVD)
to get only the first K < min(N, D) PCs by X = USVT (details omitted).

21/36



Eigen faces (Murphy22 Chapter 20.1)

PCA were performed on 64 x 64 pxiel images from the Olivetti face database (panel
a). Mean and the first 3 PCA components wy, wy, w3 are displayed in panel b.
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Outline

Autoencoders
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Autoencoders

AE main idea: same goal as PCA to describe data with as few parameters as
possible, but allow for complex non-linear relationship between those parameters
and the input data.
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MLP autoencoder

scRNA-seq data Reconstructed data

encoding z

n
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© . Reconstruction loss:
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Encoding by a 3-layer feedforward network (i.e., encoder):
2 = F(F(x,WE)WE WS
Decoding by another 3-layer feedforward network (i.e., decoder):
&g = F(Fz. W WEHw
Loss: L= &, [|x — %a||?; Backpropagation: W) « W) — v (W)
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Discovering cell types from single-cell gene expression data

® When dealing with high-dimensional data, it is useful to reduce the dimensionality
to a lower dimensional subspace to capture the “essence” of the data.

® Below is an example of applying Autoencoder followed by t-distributed
stochastic neighbour embedding (t-SNE) to thousands of cells, each having
the expression of 20,000 genes

®Beta ®Ductal ®Delta ® Endothelial ® Beta_er_stress

Genes Autoencoder t_SN E © Alpha @ Acinar ® Stellate ® Gamma ~ ® Immune

Cells
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PCA vs Autoencoder

Principal Component Analysis (PCA)

https://towardsdatascience.com/deep-learning-for-single-cell-biology-935d45064438

Dimension 2

20

-20

Autoencoder: 8 Layers
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https://towardsdatascience.com/deep-learning-for-single-cell-biology-935d45064438

Denoising autoencoder (DAE) ()

DAE takes the original input with added Gaussian or Bernoulli noise (for binary image):

% ~ N(x,0°1), or %~ xB(p,1-p)

DAE are an extension of simple autoencoders to help:
® The hidden layers of the autoencoder learn more robust filters
® Reduce the risk of overfitting in the autoencoder

® Prevent the autoencoder from learning a simple identify function

Encoder —>E—> Decoder 2

Compressed
representation

Noisiy input

Denoised image
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Reconstructed Fashion MNIST images from validation set by DAE

with Gaussian noise with Bernoulli dropout noise

igi.

(Murphy22 Chapter 20.3 Figure 20.19)
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Convolutional neural network for classification on images (Lecture 3)

—cAR
— TRUCK
— VAN
’ O [ — BicycLe
INPUT CONVOLUTION +RELU +BN  POOLING CONVOLUTION + RELU+BN POOLING FLATTEN FULLY SOFTMAX
CONNECTED
FEATURE LEARNING CLASSIFICATION

We can use CNN architectures in our autoencoders!
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Transposed convolutional aka Deconvolution layer

Input Kernel
0|1 Transposed 4|1
Conv
213 (stride 1) 213
Output
411 041
2(3|+(8]|2 + 12 8116( 6
4|6 6 4112|19
Input Kernel
[o] 1] Transposed [1]4]
(Stride 2)
1|4 o]
2|3 0|02
+ + =
2|8 12 2(8]|3
416 6(9 416(6

® Instead of sliding the kernel over the

input pixels and performing
element-wise multiplication and
summation, a transposed
convolutional layer slides the input
pixel over the kernel and performs
element-wise multiplication and
summation.

This results in an output that is larger
than the input, and the size of the
output can be controlled by the stride
and padding parameters of the layer.

(source)
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https://www.geeksforgeeks.org/what-is-transposed-convolutional-layer/

CNN autoencoder

28x28x1

T4x14x32 T4x14x32

1152 1152
4] i
33128 10115 353128
— -{  —
4
Conv3 * Reshape
Conv2 stride=2 h |} DeConv3
stride=2 « e stride=2
Flatten FC

DeConv2
stride=2

DeConv1
stride=2

source
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https://analyticsindiamag.com/how-to-implement-convolutional-autoencoder-in-pytorch-with-cuda/

MLP AE vs CNN AE on Fashion MNIST (murphy22 Fig 20.17 & 18)

MLP AE (784-100-30) CNN AE
3x3 Conv (16), MaxPool (2x2), Conv (32, 3x3),
MaxPool (2x2), Conv (64, 3x3) MaxPooI (2x2)

R8T o+ BR@T | A
PBT 1A REBTI A
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Summary of Autoencoder

Using network encoder and network decoder, we can train non-linear function that
can project high-dimensional data onto low-dimensional latent space by
minimizing the reconstruction loss via stochastic gradient decent.

AE can have MLP or CNN architectures. When applied to images, CNN
architecture works better because it benefits from the same induction bias as in
the CNN classifiers.

Denoising autoencoder learns more robust representation of the data than the
vanilla autoencoder

VAE can generate new samples by inferring the distribution of the latent
embedding.
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Summary of Unsupervised Learning

Goal: Find the regularities in the Data. That often means finding a compressed way to
represent the data.

e (Clustering: represent all data as a few different clusters.

® PCA & AE: represent the data as a low dimensional manifold of the main
directions of variation.
® PCA: linear submanifold, can find optimal sub-manifold analytically.
® AE: non-linear, optimality not guaranteed.
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Congratulations!
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