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Current participation rate: 49%.

Please complete the online evaluation for the course on Mercury.
https://go.blueja.io/qLhY92bmaEW4w8hLQ53-LA

Your feedback is very important to us.
Thank you!
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3 / 36



Unsupervised learning

• Instead of having a pair of input and output in the supervised learning tasks
(Lectures 1-3), in unsupervised learning, we seek to find latent patterns from
only the inputs data D = {xn}Nn=1 without any corresponding output yn.

• Unsupervised learning forces the model to “explain” the high-dimensional inputs,
rather than just the low-dimensional outputs (i.e., trying to “make sense of” the
data)

• The reason we need unsupervised learning is that most of the data we have are
unlabelled.

• Quoted from Geoffery Hinton 1996: “When we’re learning to see, nobody’s telling
us what the right answers are – we just look. Every so often, your mother says
“that’s a dog”, but that’s very little information.”
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Clustering
The goal is to partition or cluster the input into regions that contain “similar” points.

K-means

Hierarchical clustering
Sequence similarity among 8 species

2D data for the 149 iris flowers
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Discovering population structure from the genotype data
• It is often useful to reduce the high dimensional data by projecting it to a lower
dimensional subspace to capture the “essence” of the data.
• Each observed high-dimensional data xn ∈ RD was generated by a set of hidden or

unobserved low-dimensional latent factors zn ∈ RK .
• Below illustrates applying Principal Component Analysis (PCA) to 1000
human genomes, each having 1 million SNPs
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K-means clustering algorithm for K=2, D=2
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K-means clustering algorithm
Objective function:

J =
N∑

n=1

||xn −
K∑

k=1

zn,kµk ||2 = ||X− ZM||2F

where each row of Z is hot-encoding for the cluster assignment and M ∈ RK×D are
the K centroids for the D input features.

Algorithm 1 K-means clustering (ϵ)

1: Initialize K cluster centers µ1, . . . ,µK

2: while J(t−1) − J(t) > ϵ do
3: Assign each point xn to the closest center k:

zn,k =

1 if k = argmin
j
||xn − µj ||2

0 if otherwise

4: Update the cluster centroids: µk = 1
Nk

∑
n zn,kxn, where Nk =

∑
n zn,k .

5: end while
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Convergence on the cost function

• Cost function:

J =
N∑

n=1

||xn −
K∑

k=1

zn,kµk ||2

• K-means alternates between clustering and
updating the K centers:

1. Clustering:

zn,k =

1 if k = argmin
j
||xn − µj ||2

0 if otherwise

2. Updating:

µk =
1

Nk

∑
n

znkxk , where Nk =
∑
n

znk

J

1 2 3 4
0

500

1000

K-means minimize the
reconstruction loss? (pop quiz:
why?).
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K-means clustering of the time-series yeast gene expression data
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Evaluation metrics in choosing K
Validation error Bayesian info criterion ASW

-B
IC

J(K ) =

Nval∑
n=1

||x(val)n −
K∑

k=1

z
(val)
n,k µ̂k ||2

BIC (K ) = log p(D|µ)− DK

2
log(N)

ASW (K ) =
1

N

N∑
i=1

b(i)− a(i)

max{a(i), b(i)}

• Reconstruction error on the validation set
is not informative as it always decreases
with increasing K . But it’s inflection
point is a good heuristic to choosing
K (called the Elbow or Hockey Stick
Method).

• Bayesian information criteria (BIC) score
penalizes more complex model besides the
reconstruction loss and is informative of
the best K (i.e., K=5)

• ASW suggests the best K at 3 or 7. 12 / 36
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Principal Component Analysis

PCA main idea: find the directions which encode most of the difference
(variance) between datapoints.
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Principal Component Analysis
• Suppose we have an unlabelled dataset X ∈ RD×N for D features and N examples.
• We would like to approximate each data point xn ∈ RD×1 by a low dimensional
representation zn ∈ RK×1 , where K ≤ D.
• The variable zn is known as the latent factor.
• The error produced by this approximation is called reconstruction error:

L(W) =
1

N

N∑
n=1

||xn − decode(encode(xn;W);W)||22

∆
=

1

N

N∑
n=1

||xn −Wzn||22

where in the context of PCA:
• we assume a linear encoder and decoder
• Z ∈ RK×N is also known as the loading matrix.
• W ∈ RD×K is called the basis matrix. It is orthogonal matrix: W⊤W = I, which

means that w⊤
k wk′ = 1 for k = k ′ or 0 for k ̸= k ′.
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PCA derivation

In what follows we assume E[x] = 0, if it is not true, we can simply redefine
xn = x̂n − E[x̂], where x̂n is the original data whose mean is not zero.
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PCA derivation for the first PC
Let z1 ∈ RN×1 and w1 ∈ RD×1 be the loading and basis vector of the first PC. The
reconstruction error is

L(w1, z1) =
1

N

N∑
n=1

||xn − z1,nw1||2 =
1

N

N∑
n=1

(xn − z1,nw1)
⊤(xn − z1,nw1)

=
1

N

N∑
n=1

(x⊤n xn − 2z1,nw
⊤
1 xn + z21,n w

⊤
1 w1︸ ︷︷ ︸
1

) =
1

N

N∑
n=1

(x⊤n xn − 2z1,nw
⊤
1 xn + z21,n)

∂L(z1)
∂z1,n

=
1

N
(−2w⊤

1 xn + 2z1,n)
∆
= 0 ⇒ z1,n = w⊤

1 xn

L(w1) =
1

N

N∑
n=1

(x⊤n xn − 2z1,nw
⊤
1 xn + z21,n) =

1

N

N∑
n=1

(x⊤n xn − 2z21,n + z21,n) =
1

N

N∑
n=1

(x⊤n xn − z21,n)

∝ − 1

N

N∑
n=1

z21,n = − 1

N

N∑
n=1

w⊤
1 xnx

⊤
n w1 = −w⊤

1 Σ̂w1 where Σ̂ =
1

N
XX⊤

We see that minimizing the reconstruction error is equivalent to maximizing the variance of the
latent representation w.r.t. w1 (since Var[z] = E[z2]− E2[z] = E[z2], where E[z] = w⊤

1 E[x]n = 0).
17 / 36



The first PC is the eigenvector of Σ̂ with the largest eigenvalue
Because we want the projection to be orthonormal such that w⊤

1 w = 1, we introduce
the following constraint with the Lagrange multiplier λ1 to the loss function:

L̃(w1) = −w⊤
1 Σ̂w1 + λ1(w

⊤
1 w1 − 1) (1)

∂L̃(w1)

∂w1
= −2Σ̂w1 + 2λ1w1

∆
= 0 ⇒ Σ̂w1 = λ1w1

Therefore, the optimal solution for w1 is an eigenvector of Σ̂ and λ1 corresponds to
the eigenvalue. Multiplying w⊤

1 on both side, we have

Σ̂w1 = λ1w1 ⇒ w⊤
1 Σ̂w1 = λ1w

⊤
1 w1 ⇒ w⊤

1 Σ̂w1 = λ1

Since we want to maximize w⊤
1 Σ̂w1 (i.e., minimizing the loss in Eq (1)), we pick the

eigenvector that corresponds to the largest eigenvalue:

w∗
1 ← argmax

w1

w⊤
1 Σ̂w1 = argmax

w1

Var[z1] = argmin
w1

L(w1)
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Computing the second PC
We can find the second PC to further minimize the reconstruction error:

L(w2) =
1

N

N∑
n=1

||xn − z1,nŵ1 − z2,nw2||2 =
1

N

N∑
n=1

||x̃n − z2,nw2||2

=
1

N

N∑
n=1

x̃⊤n x̃n −w⊤
2
ˆ̃Σw2 where

ˆ̃Σ =
1

N
X̃X̃⊤ =

1

N

N∑
n=1

(xn − z1,nŵ1)(xn − z1,nŵ1)
⊤

=
1

N

N∑
n=1

xnx
⊤
n︸ ︷︷ ︸

Σ̂

− ŵ1
1

N

N∑
n=1

z1,nx
⊤
n −

(
1

N

N∑
n=1

z1,nxn

)
ŵ⊤

1 +

(
1

N

N∑
n=1

z21,n

)
ŵ1ŵ

⊤
1

Therefore
w⊤

2
ˆ̃Σw2 = w⊤

2 Σ̂w2 −w⊤
2 ŵ1︸ ︷︷ ︸
0

1

N

N∑
n=1

z1,nx
⊤
n w2 −w⊤

2

(
1

N

N∑
n=1

z1,nxn

)
ŵ⊤

1 w2︸ ︷︷ ︸
0

+

(
1

N

N∑
n=1

z21,n

)
w⊤

2 ŵ1︸ ︷︷ ︸
0

ŵ⊤
1 w2︸ ︷︷ ︸
0

= w⊤
2 Σ̂w2

Adding the orthogonal constraints w⊤
1 w2 = 0 and orthonormal constraint w⊤

2 w2 = 1:

L̃(w2) = −w⊤
2 Σ̂w2 + λ2(w

⊤
2 w2 − 1) + λ12w

⊤
2 w1

∂L̃(w2)

∂w2
= −2Σ̂w2 + 2λ2w2 + λ12w1

∆
= 0

Solving for w2:

2Σ̂w2 = 2λ2w2 + λ12w1 ⇒ 2w⊤
2 Σ̂w2 = 2λ2w

⊤
2 w2 + λ12w

⊤
2 w1

⇒ w⊤
2 Σ̂w2 = λ2 ⇒ Σ̂w2 = λ2w2

Therefore, the solution for w2 for the second PC is the second largest eigenvector.
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Computing the second PC
We can find the second PC to further minimize the reconstruction error:

L(w2) =
1

N

N∑
n=1

||xn − z1,nŵ1 − z2,nw2||2 =
1

N

N∑
n=1

||x̃n − z2,nw2||2

=
1

N

N∑
n=1

x̃⊤n x̃n −w⊤
2
ˆ̃Σw2 =

1

N

N∑
n=1

x̃⊤n x̃n −w⊤
2 Σ̂w2

Adding the orthogonal constraints w⊤
1 w2 = 0 and orthonormal constraint w⊤

2 w2 = 1:

L̃(w2) = −w⊤
2 Σ̂w2 + λ2(w

⊤
2 w2 − 1) + λ12w

⊤
2 w1

∂L̃(w2)

∂w2
= −2Σ̂w2 + 2λ2w2 + λ12w1

∆
= 0

Solving for w2:

2Σ̂w2 = 2λ2w2 + λ12w1

w⊤
1 ·︷︸︸︷⇒ 2

λ1w⊤
1︷ ︸︸ ︷

w⊤
1 Σ̂w2 = 2λ2

0︷ ︸︸ ︷
w⊤

1 w2+λ12

1︷ ︸︸ ︷
w⊤

1 w1 ⇒ 0 = λ12

⇒ Σ̂w2 = λ2w2 ⇒ w⊤
2 Σ̂w2 = λ2

Therefore, the solution for w2 for the second PC is the second largest eigenvector. 20 / 36



Generalizing to computing all K PCs
Find the kth PC can be done in the same way

L(wk) =
1

N

N∑
n=1

||xn −
k−1∑
s=1

zs,nws − zk,nwk ||2 =
1

N

N∑
n=1

||x̃n − zk,nwk ||2

Iteratively computing the kth eigenvector is slow.
For N << D (e.g., N = 100 samples versus D = 20, 000 genes), we can efficiently
compute all eigenvectors by solving the eigendecomposition of the square and
symmetric covariance matrix:

X⊤X︸ ︷︷ ︸
N×N

= UΛU−1

where U contains all of the N eigenvectors and Λ is the diagonal matrix with the
diagonal elements being the eigenvalues. Because U is a orthogonal matrix, U⊤U = I
and U⊤ = U−1.
More efficiently, we can compute the truncated Singular Vector Decomposition (SVD)
to get only the first K < min(N,D) PCs by X = USV⊤ (details omitted).
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Eigen faces (Murphy22 Chapter 20.1)

PCA were performed on 64× 64 pxiel images from the Olivetti face database (panel
a). Mean and the first 3 PCA components w1,w2,w3 are displayed in panel b.
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Autoencoders

AE main idea: same goal as PCA to describe data with as few parameters as
possible, but allow for complex non-linear relationship between those parameters

and the input data.
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MLP autoencoder

encoding z
n
  

o
ri
g

in
a

l 
in

p
u

t 
fe

a
tu

re
s
 (

x
n
)

scRNA-seq data

Features

S
a

m
p

le
s

Reconstructed data

Features

S
a

m
p

le
s

Reconstruction loss:
Encoder layers Decoder layers

Encoding by a 3-layer feedforward network (i.e., encoder):

zn = f (f (xnW
(0)
E )W

(1)
E )W

(2)
E

Decoding by another 3-layer feedforward network (i.e., decoder):

x̂d = f (f (znW
(0)
D )W

(1)
D )W

(2)
D

Loss: L = 1
N

∑
n ||x− x̂n||2; Backpropagation: W(ℓ)

. ←W(ℓ)
. − ϵ∇L(W(ℓ)

. )
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Discovering cell types from single-cell gene expression data

• When dealing with high-dimensional data, it is useful to reduce the dimensionality
to a lower dimensional subspace to capture the “essence” of the data.

• Below is an example of applying Autoencoder followed by t-distributed
stochastic neighbour embedding (t-SNE) to thousands of cells, each having
the expression of 20,000 genes

Genes t-SNE

C
e
ll
s

Autoencoder
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PCA vs Autoencoder

https://towardsdatascience.com/deep-learning-for-single-cell-biology-935d45064438
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Denoising autoencoder (DAE) (?)

DAE takes the original input with added Gaussian or Bernoulli noise (for binary image):

x̃ ∼ N (x, σ2I), or x̃ ∼ xB(p, 1− p)

DAE are an extension of simple autoencoders to help:

• The hidden layers of the autoencoder learn more robust filters

• Reduce the risk of overfitting in the autoencoder

• Prevent the autoencoder from learning a simple identify function
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Reconstructed Fashion MNIST images from validation set by DAE

 with Gaussian noise  with Bernoulli dropout noise 

(Murphy22 Chapter 20.3 Figure 20.19)
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Convolutional neural network for classification on images (Lecture 3)

CAR

TRUCK

VAN

BICYCLE

FLATTENPOOLINGCONVOLUTION + RELUPOOLINGCONVOLUTION + RELUINPUT SOFTMAX
FULLY

CONNECTED

CLASSIFICATIONFEATURE LEARNING

+BN +BN

We can use CNN architectures in our autoencoders!
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Transposed convolutional aka Deconvolution layer

• Instead of sliding the kernel over the
input pixels and performing
element-wise multiplication and
summation, a transposed
convolutional layer slides the input
pixel over the kernel and performs
element-wise multiplication and
summation.

• This results in an output that is larger
than the input, and the size of the
output can be controlled by the stride
and padding parameters of the layer.

(source)
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CNN autoencoder

source
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MLP AE vs CNN AE on Fashion MNIST (Murphy22 Fig 20.17 & 18)

MLP AE (784-100-30)
3x3 Conv (16), MaxPool (2x2), Conv (32, 3x3), 

MaxPool (2x2), Conv (64, 3x3), MaxPool (2x2)

CNN AE 
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Summary of Autoencoder

• Using network encoder and network decoder, we can train non-linear function that
can project high-dimensional data onto low-dimensional latent space by
minimizing the reconstruction loss via stochastic gradient decent.

• AE can have MLP or CNN architectures. When applied to images, CNN
architecture works better because it benefits from the same induction bias as in
the CNN classifiers.

• Denoising autoencoder learns more robust representation of the data than the
vanilla autoencoder

• VAE can generate new samples by inferring the distribution of the latent
embedding.
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Summary of Unsupervised Learning

Goal: Find the regularities in the Data. That often means finding a compressed way to
represent the data.

• Clustering: represent all data as a few different clusters.
• PCA & AE: represent the data as a low dimensional manifold of the main
directions of variation.
• PCA: linear submanifold, can find optimal sub-manifold analytically.
• AE: non-linear, optimality not guaranteed.
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Congratulations!
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