Ensemble Learning part |: Bagging
COMP 551 Applied Machine Learning

Isabeau Prémont-Schwarz
School of Computer Science
McGill University

Fall 2024

‘%g T McGill

School of Computer Science

Please complete the online evaluation for the course on Mercury.
https://go.blueja.io/qLhY92bmaEW4w8hLQ53-LA
Your feedback is very important to us.

Thank you!

2/32

https://go.blueja.io/qLhY92bmaEW4w8hLQ53-LA

Outline

: L Random Forest
Learning objectives

_ Boosting
Ensemble learning Least square additive boosting
Bagging Gradient boosting

Acknowledgement

® The slides are adapted from Prof. Yue Li's slides which are based on Chapter 18.2 from
the Murphy 2022 complemented by Bishop06 Chapter 14.3 and Prof. Reihaneh
Rabbany's slides.

3/32

Most commonly used ML algorithms in Kaggle 2022 survey

Lect. 3,4 & Linear or Logistic Regression

Lect. 19,20,2%Z2 pecision Trees or Random Forests

Lect. 13 &4 convolutional Neural Networks 37.9
@Iéregﬁerg 1Boosting Machines (xgboost, lightgbm, etc)
Lect. 2, 16 &2 Bayesian Approaches 23.1 Today and next lecture
Lect. 10 {2 pense Neural Networks (MLPs, etc)

Lect. 14 & Recurrent Neural Networks 21.8
Lect. 15 & ransformer Networks (BERT, gpt—3, etc)m

Graph Neural Networksn

vone]

Autoencoder Networks (DAE, VAE, etc)

Generative Adversarial Networks v
Evolutionary Approaches- 5.2

other[fl] 3.4
0 20 40 60

% of respondents 4/32

https://www.kaggle.com/code/paultimothymooney/kaggle-survey-2022-all-results

Learning objectives

Advantages of ensemble learning
Bootstrap aggregation (Bagging)
Random Forest

Boosting

P Least square additive boosting
» GradientBoosting

5/32

Recall Generalization Lectures and A2 : bias-variance trade-off

Increasing variance

Bias-variance trade-off
Ep [(F(6 D)~ y)?] = Eo | (folx) ~ Eolfo(al) | +Eo | (Bolfotx)] - 1) | + 20 [¢]

——

Variance

N InA=26

seiq buiseanu|

0.15

Bias noise

0.12

0.09

0.06

0.03

(bias)?
variance

(bias)? + variance
test error
_

-2 -1 0 1 2
InA

More regularized

6/32

Outline

Bagging

7/32

Decision trees are sensitive to the change of training data

Fit to the same data but omit a
single data point (shown by star)

DT (tree depth = 2) for Iris flower Decision surface of the DT

petal length (cm) <= 2.45

setosa
versicolor
25- A virginica

© setosa
W versicolor
A virginica

204

§ &
£ 1549 £
2 2
2 104 z
k-] 8
B :
0.0 X
-05- “054
_—
1 2 0 1 2 3 4 5 6 7
petal length (cm) petal lenath (cm)

Decision trees are unstable: small changes to the input data can have large effects on
the structure of the tree, due to the greedy and hierarchical nature of the tree-growing
process.

8/32

Recall Generalization Lectures & A2: model averaging reduces variance

Emhwwe&mmmdeadmmdeQﬂu) mmm@dWMMMnWaHmmasy=Lﬁa)

true function

model average

X

Ep [(F(xi D) = y)?| = 5o | (o) ~ Eolio(e)]) | +E» | (Ealiota] - 7(9) | +E0 []
——

noise

Variance Bias

9/32

Main Idea of Bagging

Bagging: average many models sensitive* training dataset to reduce variance.

* Related to overfitting.

10/32

Ensemble learning reduces variance by M times for independent models
Assuming f(x) = zy, for m=1,..., B. Variance of the two random variables z; and z is:

Var[z; + z] = E[(z1 + 22)2] —E[zn + 22]2
=E[z? + 22 + 2212] — (E[z1] + E[z])?
= E[z}] + E[Z3] + E[2z122] — E[z1]? — E[2]? — 2E[z1]E[2)]
= (E[#] - E[21]*) + (E[23] — E[2]%) + 2(E[z122] — E[z1]E[2])
= Var[z] 4+ Var[z] + 2 Cov|z, 23]
~——
0ifzy L =

Variance of the sum of B independent variables (the last equality assumes equal variance ?):

M M
Var[z Zm| = Z Var([zp) 2 Mo?
m=1 m=1

Variance of the average over M independent variables is M times smaller than their individual
variances:

M
1 1
Var[ME zZm| = M2Var[§ zZm]| = —/\/IU fMUZ
m=1

11/32

N

Bootstrap sampling
Suppose we have a single dataset D of size N (e.g., N coin tosses).
Sample with replacement to create M sets of datasets D™ each of size N.
For each dataset D(™), train a model to obtain model parameter #(™ (e.g., the
MLE of the Bernoulli rate from N coin tosses in D(™) is §(™) = % SN y,(,m)).
Average over the model parameters 6(™ to approximate Epl6].
Histograms based on B = 10K bootstraps each with N=10 samples (true
0= 07) Notebook: https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb.

Bootstrap: Number of data points = 10 True independent population sampling: Number of data points = 10

-———) 1 -
3000 MLE (6) e ME®) :
2500 1

2500
2000

2000
1500
1500
1000
1000

500

500

04
0.0 .. X X . 1.0

o 12/32

https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb
https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb
https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb

N

Bootstrap sampling

. Suppose we have a single dataset D of size N (e.g., N coin tosses).

Sample with replacement to create M sets of datasets D(™) each of size N.

. For each dataset D(™), train a model to obtain model parameter #(™ (e.g., the
MLE of the Bernoulli rate from N coin tosses in D(™) is §(™) = % ZnN:1 y,(,m)).
. Average over the model parameters #(™) to approximate Epl[6].

. Histograms based on B = 10K bootstraps each with N=100 samples (true

0= 07) Notebook: https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb.

Bootstrap: Number of data points = 100

True independent population sampling: Number of data points = 100

-—- MLE (6] 1 5
@ 3500 —=- MLE () \
2500

3000

2000 A
2500

1500 4 2000

1500
1000
1000

500 q
500

0
10 0.0 0.2 0.4 0.6 0.8 1.0

o 13/32

0.0 0.2 0.4

https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb
https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb
https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb

Bagging: BOOtStrap aggregation (L. Breiman. Bagging predictors. In: Machine Learning 24 (1996))
Bagging training procedure is simple:
1. Suppose we have a labelled dataset D = {x,, y,}N=1.
2. Sample with replacement from D to get M datasets plm) — {xs,m),y,(,m) ,’}’:1.
3. Train M base models on the M datasets.
4. During testing, average the model predictions: y = % Zgzl Vm-
5

NI

. Bagging also estimates of model uncertainty: Ay = (ﬁ Zn’\f:l()?m —)7)2> .

T*
D, \\ﬁ/ 2
e \
A s
D D (1) Vi y=MZ9,

L X* H
N

f Yu

N oM 14 /32

Properties of ensemble models trained by the bagging algorithm

® Each model is trained on average, 63% of the unique examples:
» The chance that a single data point will not be selected from the set of size
N in any of the N draws is (1 — 1/N)N
» In the limit for large N, limy_o0(1 — 1/N)V — exp(—1) ~ 0.37
® The 37% of the training instances that are not used by a given base model are
called out-of-bag (OOB) instances, which can be used as validation set for the
base model (e.g., choosing tree depth).
® Bagging prevents the ensemble from relying too much on any individual training
example, which improves robustness and generalization
® However, bagging does not always improve performance. The base model needs
to be an unstable estimator (i.e. have high variance / be prone to overfitting) so
that omitting some data changes the model fit.
e Also, the more independent the learners the better (pop quiz: why?).
¢ Classification and regression trees (CARTs) satisfy both conditions above but
not other methods like KNN, SVM or linear regression.

15/32

@ setosa
301 m versicolor
254 A viginica
T 204
s
£ 154
3
Z 10
S
-
o
0.04
~
-05- y
1 3 4 5 6 7
petal length (cm)
£
s
s
3
z
g
3
g
~

o setosa
| versicolor
A viginica

petal width (cm)

T
3 4 5
petal length (cm)

Ensemble of two decision trees fit to

4 a virginica

the Iris flower dataset

Ensemble of DT1 and DT2

© setosa
| versicolor

16 /32

Outline

Random Forest

17/32

Main ldea of Random Forest

Random Forest: bagging of Decision Trees + restricting to a Random subset of
Features® at each node.

* Some people call Random Features " Feature Bagging” even though it is unrelated to Bootstrapping.

18/32

Random Forest (RF) [L. Brieman Machine Learning 45.1 (2001), pp. 5-32]

® Bagging learns diverse base models on subsets of bootstrap-sampled training examples.

RF seeks to further decorrelate the base models (i.e., decision tree).

® An RF learns K decision or regression trees, where each tree is trained based on

1. a bootstrap sample of N training data points and

2. a randomly chosen subset of v/D (by default) input features at each tree node
® QOut of bag (OOB) samples for each tree are used as validation to determine tree depth.

Tree 1

X<t
X<ty

Training X, s X}
sampled D’ features
L] X%y
D’I
. XX
/ P
N {X51 Xgr Xo}
|E| Dn
Bootstrap : X o X}
) X4, Xy X5}

Testing

Tree 1 x*
|

Classification
(maijority votes):
y = mode(y,, ...,

Regression:
y=mean(y,, ...,

19/32

Spam detection using hand-crafted tabular data of 57 features
4601 email messages labelled with spam (y = 1) or non-spam (y = 0). The data was
made available by George Forman from Hewlett-Packard. The 57 input features are:

® 48 keyword frequencies (e.g., business, address, internet, George (user name)),
® 6 special characters (;. [$ #),
e 3 features corresponding to average, max, total length of capital letters.

0.0625 — —&— RF
—»— Boosting
0.0600 — Bagging
0.0575
£ 0.0550 - RF performs much better than
B 00525 Bagging but worse than Boosting
005257 .
(discussed shortly).
0.0500
0.0475
0.0450 —
T T T T T T
0 100 200 300 400 500

Number of trees 20/32

Computing feature importance from RF

® Trees are popular because they are interpretable.
® Ensemble of trees such as RF lose that property
® To extract feature importance from a trained RF, we can follow these steps:
1. Compute feature importance score for each feature d from a single decision
tree classifier m by summing over all non-leaf nodes where feature d is used
weighted by the reduction of cost (e.g., gini-index):

J
Ri(Tm) = Gillv; = d]
j=1
2. Average over all trees in the RF:
1M
Ra =11 mz_:l Ra(Tm)

3. Normalize the score: Ry = 100 x Ry4/ max(R) so that the most important

score is 100%
21/32

Feature importance scores for spam detection and MNIST classification
Feature importance of spam detection Feature importance of MNIST classification

Very important

=

Not important

CAPTOT
CAPMAX

free
CAPAVE
edu

eeeeee

N[0
QP 4/~
NI
NS =)N
LY adlAN|aY

22/32

Ensemble Learning part |l: Boosting
COMP 551 Applied Machine Learning

Isabeau Prémont-Schwarz
School of Computer Science
McGill University

Fall 2024

tg T McGill

School of Computer Science

Please complete the online evaluation for the course on Mercury.
https://go.blueja.io/qLhY92bmaEW4w8hLQ53-LA
Your feedback is very important to us.

Thank you!

2/15

https://go.blueja.io/qLhY92bmaEW4w8hLQ53-LA

Recall Generalization Lectures & A2: model averaging reduces variance

Emhwwe&mmmdeadmmdeQﬂu) mmm@dWMMMnWaHmmasy=Lﬁa)

true function

model average

X

Ep [(F(xi D) = y)?| = 5o | (o) ~ Eolio(e)]) | +E» | (Ealiota] - 7(9) | +E0 []
——

noise

Variance Bias

3/15

Outline

Boosting
Least square additive boosting
Gradient boosting

4/15

Main Idea of Boosting

Boosting: sequentially adding many weak models to create a powerful model.

(pop quiz: linear models, trees, single feature linear models?)

5/15

Boosting is a sequential fitting algorithm

Model fp, is a sum of weak learners F;: fi,(x) = >, BiFi(x), where §; € R™.

® Regression tasks: y = fi,(x)

1

® Binary classification tasks y = p(y = 1|x) = o(fm(x)) = Tl)"

® Multi-class classification: (pop quiz: 7)

AR A

Fit function F; on the original training data

Fit model F,,’s parameters 6, to solve the residual errors of f,,_1.
Find the weight 8., of F, which will minimize the original loss.
Repeat 2 and 3 until we have the desired M models F, ..., Fp.

The final ensemble model prediction is

f(X, @) = ZBM:lFm(X; em)

6/15

Forward stagewise additive modelling
Goal: minimize the prediction loss on N training data points w.r.t. the function:

N
L(F) =y, F(x7))
n=1

Strategy: sequentially minimize the loss at each iteration m:
1. Obtain optimal parameters for the base model function F(x,0) (weak learner)
and its weight:

N
B, Om < argmin > _ £(y\", £, 1 (x(7) + BF(x("; 0))
5.8 n=1

2. Set the ensemble function (strong learner) at the iteration m to be:
fm(x) = m—l(x) + BmF(X; em)
Note: the detailed boosting algorithm depends on the loss function £. The most

intuitive loss function in this context is the quadratic loss and the fitting algorithm is

called least squares boosting (L2Boosting) (next).
7/15

Quadratic loss and least squares boosting (L2Boosting)*
Squared error loss:

W™, fra () + F(x(;0)) = (/1) = fira (x() = F(x("); 0))2
(r = F(x{"); 0))?

° r,(n") = y(M — £ _1(x(M) is the current residual error on the n’th training example.
® Therefore, F(x(");0) further reduces the residual error made by f,,_1(x(").
e Qverall fitting algorithm of least squares boosting then becomes:

N
Om < argmin Z(r,(n") — F(x("); 9))?
0 n=1

fin(x) = 1 (X)) + F(x("; 0,,)

* Note: the function F(x(");8) does not need to be differentiable. For example, we
can use regression tree as the base model.
* For simplicity we give here the algorithm using fixed 8 = 1 because in L2Boost the 3’s are redundant

if the parameters of 6 of F can scale F by a multiplicative constant as is almost always the case.
8/15

Least square boosting using regression trees when

Residuals and tree predictions

Ensemble predictions

08 08
+ « Training set . * + Training set .
013 Fx) Al %1 — A =Fila)
y 044
0.2
0.04
044 + Residuals
—
5 02 o —— Falx)
~ S B "
[P EE o +
\ Fa Bt
> 02 +¥ T
-0.44
r r T T
-04 -0.2 0.0 0.2
08 T ul
049 — Fs(x1) = f3(x1) = F1(x1) + Fa(x1) + F3(x1)
— 064 .1° &

T
0.0 02 04

T
-0.2 0.0 02 0.

[fixed to 1

9/15

Spam detection using hand-crafted tabular data of 57 features
4601 email messages labelled with spam (y = 1) or non-spam (y = 0). The data was
made available by George Forman from Hewlett-Packard. The 57 input features are:

® 48 keyword frequencies (e.g., business, address, internet, George (user name)),
® 6 special characters (;. [$ #),
e 3 features corresponding to average, max, total length of capital letters.

0.0625 - RF
—»— Boosting
0.0600 Bagging
0.0575
§ 0.0550
s RF performs much better than
(23 . .
& 0.0525 Bagging but worse than Boosting.
0.0500
0.0475 —
0.0450 —
T T T T T T
0 100 200 300 400 500

Number of trees 10/15

Gradient Boosting applied to different £'s gives most Boosting Algos

Name l y f
L2Boost %(y -)7)2 R y = f(x)
AdaBoost exp(—yf) = (1;4) : (1,1} | 9= ply = 1) = 0(2F(x))
LogitBoost | —(ylog(y) + (1 —y)log(1—y)) | {0,1} | y=p(y =1)=o0(f(x))

LogitBoost example:
Uy, f) = —(ylog(y) + (1 — y)log(1 - 7))

1 1
m) + (1 —y)log(1l — W(—f(x))))

= (v log(1 + exp(—f(x))) + (1 — y) log(1 + exp(f(x))))

= —(ylog(

11/15

Gradient Boosting: The General Case
Goal: minimize £(f) = Z,Iyzl oy, £(x(M))
Algorithm: sequentially minimize the loss at each iteration m:
e Step 1(initialization m = 1): Fit f; = F; by 01 < argmin ZnN:1 oy, F(x(M: 9))
)

12/15

Gradient Boosting: The General Case
Goal: minimize £(f) = Z,Iyzl oy, £(x(M))
Algorithm: sequentially minimize the loss at each iteration m:
e Step 1(initialization m = 1): Fit f{ = F; by 01 < arg mlnz Ly F(x(M: 9))

e Step 2(calculate functional gradients/residuals): r,(n") =— %

f=Fm(x(")

12/15

Gradient Boosting: The General Case
Goal: minimize £(f) = Z,Iyzl oy, £(x(M))
Algorithm: sequentially minimize the loss at each iteration m:
e Step 1(initialization m = 1): Fit f{ = F; by 01 < arg mlnz Ly F(x(M: 9))

e Step 2(calculate functional gradients/residuals): r,(n") =— %)
=fm(x\"

e Step 3(fit Fp, to residual):

N
: (n) (n). 2
O, < argmin 'm F(x\"’: 0
ge ;_1(()

12/15

Gradient Boosting: The General Case
Goal: minimize £(f) = Z,’yzl oy, £(x(M))
Algorithm: sequentially minimize the loss at each iteration m:
e Step 1(initialization m = 1): Fit f{ = F; by 01 < arg mlnz Ly F(x(M: 9))

e Step 2(calculate functional gradients/residuals): r,(n") =— %

f=Fm(x(")
e Step 3(fit Fp, to residual):

N
Om < arg min Z(r,(,,n) — F(x(M; 0))2

© a1
e Step 4(line search p,):

ﬁm%argmanK , frn_ 1(x())—i—ﬁF (n). 10m))
B n=1

12/15

Gradient Boosting: The General Case
Goal: minimize £(f) = Z,’yzl oy, £(x(M))
Algorithm: sequentially minimize the loss at each iteration m:
e Step 1(initialization m = 1): Fit f{ = F; by 01 < arg mlnz Ly F(x(M: 9))

e Step 2(calculate functional gradients/residuals): r,(n") =— %

f=Fm(x(")
e Step 3(fit Fp, to residual):

N
O, < argmin r,(,,n) — F(x("; 9))2
gl ;(()
e Step 4(line search Sp,):

ﬁm%argmanK , frn_ 1(x())—i—ﬁF (n). 10m))
B n=1

e Step 5(update f): fn(x) = fm—1(X) + BmF(x; Om)

12/15

Gradient Boosting: The General Case
Goal: minimize £(f) = Z,’yzl oy, £(x(M))
Algorithm: sequentially minimize the loss at each iteration m:
e Step 1(initialization m = 1): Fit f{ = F; by 01 < arg mlnz Ly F(x(M: 9))

e Step 2(calculate functional gradients/residuals): r,(n") =— %

f=Fm(x(")

Step 3(fit Fp, to residual):

N
: (n) (n). 2
O, < argmin 'm F(x\"’: 0
ge ;_1(()

Step 4(line search p,):

ﬁm%argmanK , frn_ 1(x())—i—ﬁF (n). 10m))
B n=1

Step 5(update f): fin(x) = fn—1(X) + BmF(x; Om)
Step 6(iterate): m+ =1, goto step 2.

12/15

Gradient Boosting: The General Case
Goal: minimize £(f) = Z,’yzl oy, £(x(M))
Algorithm: sequentially minimize the loss at each iteration m:
e Step 1(initialization m = 1): Fit f{ = F; by 01 < arg mlnz Ly F(x(M: 9))

e Step 2(calculate functional gradients/residuals): r,(n") =— %f)

f=Fm(x(")

Step 3(fit Fp, to residual):

N
: (n) (n). 2
O, < argmin 'm F(x\"’: 0
ge ;_1(()

Step 4(line search p,):

ﬁm%argmanK , frn_ 1(x())—i—ﬁF (n). 10m))
B n=1

Step 5(update f): fin(X) = fim—1(x) + BmF(X; Om)
Step 6(iterate): m+ = 1, goto step 2.

12/15

Gradient Boosting + L2 loss = L2Boosting
Goal: minimize £(f) = Z,’yzl oy, £(x(M))
Algorithm: sequentially minimize the loss at each iteration m:
e Step 1(initialization m = 1): Fit fi = F; by 81 < argmin Z,’Yzl oy, F(x(": 9))

0
e Step 2(calculate functional gradients/residuals): = %)
=fm(x\"

Step 3(fit Fp, to residual):

N
: (n) (n). 2
O, < argmin 'm F(x\"’: 0
ge ;_1(()

Step 4(line search ,):

N
Bm argmin Zé(y("), fn_1(x() + BF(x(");0,,))
n=1
Step 5(update f): fin(x) = fn—1(X) + BmF(x; Om)
Step 6(iterate): m+ = 1, goto step 2.

13/15

Gradient Boosting + L2 loss = L2Boosting
Goal: minimize L(f) = Z,’y:l £y, f(x(M)Y)
Algorithm: sequentially minimize the loss at each iteration m:
e Step 1(init. m=1): Fit f = Fy by 87 +argmin >, 1 (y(") — F(x("); 0))
0

Step 2(calculate functional gradients/residuals): r,(n") = — y(n f)’

2

n))

Step 3(fit Fp, to residual):

N
Om < arg min Z(r,(,,") — F(x("; 9))?
o

Step 4(line search ,):

N
Bm < arg min Zf(y(”), fn1(x(") + BFm(x(M: 0,,))

e Step 5(update f): f(x) = fin—1(X) + BmF(X; Om)
Step 6(iterate): m+ = 1, goto step 2.

13/15

Gradient Boosting + L2 loss = L2Boosting
Goal: minimize L(f) = Z,’y:l £y, f(x(M)Y)
Algorithm: sequentially minimize the loss at each iteration m:
* Step 1(init. m=1): Fit fy = Fy by 81 < argmin>_h_ 1 (y<") — F(x(";0))
0

Step 2(calculate functional gradients/residuals): i = - y G f)’

2

n))

Step 3(fit Fp, to residual):

N
Om < arg min Z(r,(,,") — F(x("; 9))?
o

Step 4(line search ,):

N
B < argmin > Uy, frr_1 (x(7) + BF(x(7); 0,))
B

e Step 5(update f): f(x) = fin—1(X) + BmF(X; Om)
Step 6(iterate): m+ = 1, goto step 2.

13/15

Gradient Boosting + L2 loss = L2Boosting
Goal: minimize L(f) = Z,’y:l oy, £(x(M))
Algorithm: sequentially minimize the loss at each iteration m:

* Step 1(init. m=1): Fit fy = Fy by 81 < argmin > h_ 1 (y(") — F(x("; e))2
0

Step 2(gradients/residuals): r,(,,") = — % o) = —(fm(X(")) - y(”))

Step 3(fit Fp, to residual):

N
Om < arg min Z(r,(,,") — F(x("; 9))?
© iz

Step 4(line search ,):

N
Bm < arg min Zf(y(”), fn1(x() + BFm(x(M: 0,,))
n=1

e Step 5(update f): f(x) = fin—1(X) + BmF(X; Om)
Step 6(iterate): m+ = 1, goto step 2.

13/15

Gradient Boosting + L2 loss = L2Boosting
Goal: minimize L(f) = Z,’y:l oy, £(x(M))
Algorithm: sequentially minimize the loss at each iteration m:

e Step 1(init. m=1): Fit fy = Fy by 87 + argmin >, 1 (y(") — F(x("); 9))
0

Step 2(calculate gradients/residuals): = — % o) Y — £ (x(7)

2

Step 3(fit Fp, to residual):

N
Om < arg min Z(r,(,,") — F(x("; 9))?
© iz

Step 4(line search ,):

N
Bm < arg min Zf(y(”), fn1(x() + BFm(x(M: 0,,))
n=1

e Step 5(update f): f(x) = fin—1(X) + BmF(X; Om)
Step 6(iterate): m+ = 1, goto step 2.

13/15

Gradient Boosting + L2 loss = L2Boosting
Goal: minimize L(f) = Z,’y:l oy, £(x(M))
Algorithm: sequentially minimize the loss at each iteration m:

e Step 1(init. m=1): Fit fy = Fy by 87 + argmin >, 1 (y(") — F(x("); 9))
0

Step 2(calculate gradients/residuals): = — % o) Y — £ (x(7)

2

Step 3(fit Fp, to residual):

N
Om < arg min Z(r,(,,") — F(x("; 9))?
© iz

Step 4(line search ,):

N
Bm < arg min Zf(y(”), fn1(x() + BFm(x(M: 0,,))
n=1

e Step 5(update f): f(x) = fin—1(X) + BmF(X; Om)
Step 6(iterate): m+ = 1, goto step 2.

13/15

Gradient Boosting + L2 loss = L2Boosting
Goal: minimize L(f) = Z,’y:l oy, £(x(M))
Algorithm: sequentially minimize the loss at each iteration m:

e Step 1(init. m=1): Fit fy = Fy by 87 + argmin >, 1 (y(") — F(x("); 9))
0

Step 2(calculate gradients/residuals): = — % o) Y — £ (x(7)

2

Step 3(fit Fp, to residual):

N
Om < arg min Z(r,(,,") — F(x("; 9))?
© iz

Step 4(line search ,):

N
Bm < arg min Zf(y(”), fn1(x() + BFm(x(M: 0,,))
n=1

e Step 5(update f): f(x) = fin—1(X) + BmF(X; Om)
Step 6(iterate): m+ = 1, goto step 2.

13/15

Gradient Boosting + L2 loss = L2Boosting
Goal: minimize L(f) = Z,’y:l oy, £(x(M))
Algorithm: sequentially minimize the loss at each iteration m:

e Step 1(init. m=1): Fit fy = Fy by 87 + argmin >, 1 (y(") — F(x("); 9))
0

Step 2(calculate gradients/residuals): = — % o) Y — £ (x(7)

2

Step 3(fit Fp, to residual):

N
Om < arg min Z(r,(,,") — F(x("; 9))?
© iz

Step 4(line search ,):

N
Bm < arg min Zf(y(”), fn1(x() + BFm(x(M: 0,,))
n=1

e Step 5(update f): f(x) = fin—1(X) + BmF(X; Om)
Step 6(iterate): m+ = 1, goto step 2.

13/15

Gradient Boosting + L2 loss = L2Boosting
Goal: minimize L(f) = Z,’y:l oy, £(x(M))
Algorithm: sequentially minimize the loss at each iteration m:

e Step 1(init. m=1): Fit fy = Fy by 87 + argmin >, 1 (y(") — F(x("); 9))
0

Step 2(calculate gradients/residuals): = — % o) Y — £ (x(7)

2

Step 3(fit Fp, to residual):

N
Om < arg min Z(r,(,,") — F(x("; 9))?
© iz

Step 4(line search ,):

N
Bm < arg min Zé(y(”), fn1(x() + BFm(x(M: 0,,))
n=1

e Step 5(update f): f(x) = fin—1(X) + BmF(X; Om)
Step 6(iterate): m+ = 1, goto step 2.

13/15

Extreme Gradient Boosting (XGBoost)

® F's are Decision Trees.
® 2nd order Taylor expansion (as opposed to 1st order only for Gradient Boosting).

® Adds regularization terms.

14/15

Boosting versus Bagging/RF

® While bagging and RF reduce the variance by fitting independent trees, boosting
reduces the bias by sequentially fitting classifiers that depend on each other.

® While boosting is slower than bagging and RF because of its sequential fitting
algorithm, in practice it often produces better performance as we saw in the
earlier spam detection application.

® In Bagging 8, = 1/M but in Boosting the f3,,'s are fitted.

15/15

