Desired Path-Dependent Enemy Placement in
Stealth Video Games

Ivan Miloslavov

April 16, 2018

Abstract

A common intention amongst game developers is to make the players take
a path that traverses the level in a way that the developers intend. This
could be used in making a long, compact path in a small level, encourage
collectibles discovery, or encourage obtaining stealth or no-kill achievements
for the level, such as the Ghost and Shadow achievements in Dishonored|[1].
So far, such a desired path could only be forced by static obstacles (such as
physical objects or camera-like static enemies) or carefully engineered using
game testers. We propose a novel idea that would be able to place dynamic
enemies, i.e. guards in strategic locations across the level to permit the
proposed path as a safe one, without restricting it to be the only path. This
approach relies on two stages: first, the level is divided into zones using circle
packing, whose approximate intersection graph is taken; then, a grammar-
based approach is used on the graph to create guard routes. The result is
analyzed using the GRAM’s Stealth Tool[2] to verify that the intended path
is in fact taken by theoretical players.

Contents

Abstract 1
1 Introduction 3
2 Background and Previous Work 3
3 Methodology 5
3.1 Level geometry extraction D
3.2 Graph generationo 6
3.2.1 Neighbourhood growth approach 6

3.2.2 Remainder boundary approach 7

3.3 Heuristics-based route generation 8
3.4 Finalizing 8

4 Experiments and Results 9
5 Conclusion 11
References 12

1 Introduction

A stealth video game offers the player a navigational puzzle: the player must
avoid non-player characters, also known as guards, while traversing the level
with all its obstacles in order to reach some location. Those guards are
modeled as points moving along a closed polygonal chain, or polyline, with
a Field of View (FOV) modeled as a circle sector of a set radius and angle.
A victory condition in a discrete-step version of the problem ensues from
finding a path in both space and time (i.e. a point in space for each time
step) such that for each time step, the corresponding position is not inside
an obstacle or an enemy’s FOV, the distance between two points is upper-
bounded by the player’s maximum velocity divided by the time step, and
the sequence of points starts at the player’s start position and ends at the
intended destination.

While the original problem relies on finding said path given a full level
layout, the game developers face a different challenge in coming up with a
layout that allows the existence of such a path. They thus must plan out the
enemies in a way that does not completely block the player, but that remains
challenging and interesting to the player. Currently, finding a selection of
enemies to follow this relies on iterative subjective placement followed by
tests using play testers or developed automatic testers such as the GRAM’s
UnityTool [2]. As such, a tool that could create enemy placements would be
convenient; even better so, the tool presented in this paper attempts to do so
while taking into account a path intended by the developer to be accessible
to the player.

2 Background and Previous Work

Procedural content generation is a very popular technique in modern
video games, with applications from Borderlands’ equipment and weapons
selection to No Man’s Sky’s entire universe. In general, PCG in games is used
throughout the development process as well as the end result; for example,
level generation reduces the developer’s costs by not requiring as many level
designers that would fix the tiny details of level geometry. Also, asset gener-
ation such as the work of the company Speedtree that was used in Witcher 3
and the Star Wars movies provides an easy interface for developers to place
trees in their simulated environments.|3]

Some research already exists on PCG within the video game development
setting, such as Qihan Xu’s approach to guard and camera placement[5].
While not path-dependent, it serves as an introduction to the topic of pro-

Figure 1: Randomly generated flora as assets for the Witcher 3 video game[4]

cedurally generated enemies. Two entirely different approaches for guard
generation were proposed in that paper. The first one produced single seg-
ment paths that would be created inside each region of a Voronoi tessellation,
a geometrical partitioning of the surface based on proximity to a set of node
points. As such, this approach lacked diversity by making all paths straight,
as well as made enemies sparse and unable to interact with each other, as
exactly one would be located in each partitioned region of the surface. The
second proposal relied on a grammar system, which replaced with multiple
iterations parts of the path - such as some stationary waypoint - by a more
complicated path - such as a small, back and forth detour. This approach
gave more interesting enemy paths, but did not have a guarantee of covering
the level with enemies nor a guarantee on their lengths, as all nodes were
random points on the walkable surface.

Both it and the present paper extend the existing Stealth tool, an API
for developers on the Unity game engine developed by McGill University’s
GRAM lab[2]. It provides a testing framework that can simulate players
navigating a level populated with enemies using a Rapidly exploring Random
Tree, which is a tree whose nodes are random points in the spacetime of the
level progression, created randomly in space and always increasing in time.

To analyze results, a comparison metric is required between the intended
and generated paths. This experiment uses the Frechet distance [6] as the
metric between the polygonal curves, or line strings, that both types of paths
are. However, the original algorithm was not found to be precise enough. An

edge case that makes this algorithm fail any approximation factor can be
created by drawing an isosceles triangle with a base length of a and a height
of €, then using the base as one path and the two congruent segments as
the second path. The true Frechet distance of this setup is of course €, but
the algorithm described in the paper would return va2 + €2. As such, a
preprocessing step that adds vertices onto segments closest to verticies of the
other path allows the precise value to be computed for line strings.

3 Methodology

Since enemy FOV’s are represented as circular sectors in this model of the
stealth video game, a geometrical representation of the level’s accessible sur-
face was generated using circle packing. Given such a packing, each circle’s
center represents a potential vertex of an enemy’s path, with segments be-
tween different circle centers being edges in the enemy’s path. While the
concept of intersection graphs exists for circle packings, we do not necessarily
obtain perfect circle packings with touching circles using a greedy algorithm;
as such, a pseudo-intersection graph is taken from a given circle packing by
drawing edges between any two circle centers that can "see” each other.

The outline of the generation process is as follows. First, the intended
level’s geometry as well as the intended path is extracted as two-dimensional
geometrical data from the Unity editor. Then, a Python script imports
the data and generates a circle packing pseudo-intersection graph. Another
Python script then generates enemies over the graph and save their paths
as two-dimensional geometrical data. Finally, the Unity editor imports the
results and places the enemies per the specification.

An overview of the methodology flow is presented as a flowchart in Ap-
pendix 1[Figure 6.

3.1 Level geometry extraction

Since the core part of the project was written in Python, an import-export
system within Unity had to be created to accomodate it. In particular, the
Geometry Recovery Toolkit[7] was partially used for this task. It allows to
create a tree of two-dimensional boundaries representing the level bounds
as well as its obstacles and any further nested polygons. To fit with the
GeoJSON format, the resulting tree is parsed by taking every polygon that
represents the true level - whether the level’s exterior or any holes within it,
which can be selected by the Unity user and saved under the MultiPolygon
GeoJSON type, which represents a list of holed polygons. In addition to

that, a user-defined path is also extracted into a GeoJSON format under the
LineString type.

3.2 Graph generation

A common stage to any path within a particular level is preprocessing the
level’s accessible terrain to create the graph on which the next stage will rely.
Two distinct methods were devised for the project, of which one ultimately
trumped the other. Both relied on an observation of the long-term enemy
field of view (FOV). Since the FOV tends to have a particular maximum view
distance, a circle with that distance as the radius represents the potentially
visible field for a stationary, rotating enemy. However, while the enemy
moves, the effective view can be modeled by lower-radius circles, with lower
sizes representing the navigation speed of the enemy, as at higher speed the
edges of the FOV cone were seen only for fractions of seconds. A certain
lower bound could be imposed as the ”passive perception” radius, one at
which the enemy will detect the player no matter the direction. As such, the
problem was reduced to a complex circle packing problem, with the intent of
retracting a pseudo-intersection graph.

Figure 2: Draft of the NG approach on a random level

3.2.1 Neighbourhood growth approach

The first method relies on a desired guarantee of graph connectivity for
the next stage. This algorithm starts by placing a fixed number of seed circles

at random location in the level. Once they are generated, each new circle is
generated close to some previous circle by looking for the available space to
place the center of the new circle a radius r away from the former circle. This
available space would be a set of intervals obtained by removing all points r
or closer to an obstacle, level bound or another circle. Of them, a random
point was selected which served as the center of the new circle.

This was a custom-devised method that was not relying on any other
software. It also allowed exact circle calculations and relatively fast execu-
tion. However, some drawbacks were in the requirement of a number of seed
circles, the inability to precisely find the set of points r and closer to a con-
cave polygon, as well as loss of precision and speed when allowing a range of
circle radii instead of only the two extreme radii.

3.2.2 Remainder boundary approach

Figure 3: Different resolutions of the RB approach on the Metal Gear Solid
Docks level

One of the research projects using the GRAM Stealth Tool has referenced
the usage of geometrical algorithms in Python[8]. In particular, the project
was using the Shapely package[9], a library of functions on polygons and 2D
geometry. As such, the use of Shapely provided a new approach based on
the iterative remaining level area.

At each iteration, a random radius r from the allowed range is picked. The
boundary of the remaining level area (after removing obstacles and previously
placed circles) would then be extended said radius away to create a new
boundary on which all points are exactly r away from all obstacles, previous
circles and level bounds. If this boundary is non-empty, a random point
from it becomes the center of a new circle with radius r. Else, the range is
reduced to make r the maximum radius allowed for following circles. If the
range becomes too small, the algorithm terminates.

Since this method uses an external package to its extents, it ends up be-
ing slower and requires additional installation but provides more robust and

extendable functionality with minimal (and thus, more likely to be correct)
custom code. This was the selected method for proceeding.

3.3 Heuristics-based route generation

The biggest question of the project is the generation of the enemies given

a graph representing the level structure. Due to the complexity and certain
subjectivity as to what set of enemy paths constitutes an interesting layout
for the player, a heuristics approach was selected to generate the paths.
In particular, the enemy paths are generated as random closed walks on
a weighted undirected graph. Iteratively, a vertex v is selected from the
neighbourhood of the previous vertex u in the walk W such that

S wle) +w((u,v) + da(s.v) < C,

ecW

where s is the starting vertex and C, the maximum cost. This ensures
that the walk is closed and always under the maximum cost. Only after
generating the full path that its total cost is compared to the minimum cost,
discarding the path if it does not reach it.

The heuristic function selected was based on two factors, which are the
Euclidean distance between the nodes as well as the Euclidean distance of the
edge to the path. While the first factor provides a direct and deterministic
cost value, the cost based on the distance is more complicated. Increasing
significantly the cost of edges close to or crossing the path would enforce a
guarantee of having the requested path free of guards, but not increasing
it enough could potentially create a single-edge path for a guard effectively
blocking the path.

3.4 Finalizing

Once the paths have been created, they are placed into a file that the
Stealth Tool[2] can load to place enemies in the level and test the results
using the RRT /Mapper scripts devised by the GRAM. The resulting paths
- if any are in fact found - can then be analyzed to modify the arguments
of the route generation and fuel successive attempts. That analysis comes
from compiling the Frechet distance between the generated and the intended
routes, selecting a few whose distances fall under a certain set threshold and
saving them separately. As such, quantifying the fraction of those close paths
to all generated paths, as well as their individual Frechet distances gives us
specific results for the experiment.

4 Experiments and Results

The experiments were conducted by repeatedly creating enemies using the
algorithm described above, then generating player paths using the GRAM’s
Unity tool, and compiling the Frechet distances between those paths and the
intended one. Given the lack of an automated, or batch, testing framework
as well as time limitations, the results were gathered by fixing all but one
variable and testing different values of the remaining variable, for different
variables.

Most of the testing was executed on the Smith corridor level[10]. The
level is a straight corridor with alternating alcoves; it has been chosen as it
was shown in the Unity Tool’s presentation paper that the players do not
pass through the alcoves with the single straight-path guard, and thus a set
of guards forcing the players to pass through the alcoves is an important
result to obtain.

The original values were picked randomly until a decent solution was
found. As such, most of the Unity tool’s settings were left as defaults, except
for fixing the number of attempts to 10000, the number of iterations to 60,
and fixing the random seed 9481.

Frechet distances depending on intended path heuristics

W Atempt 1 B Attempt2 B Attempt 3

4 s : . 5 — H T $!
. : g . . L
Cost=0 Cost =10 Cost =20 Cost =30 Cost =40 Cost = 50

Figure 4: Comparison of path heuristic costs on the Corridor level

As one of the most important variables in the algorithm, the heuristic cost
to pass close to the intended path was one of the variables tested[Figure 4].
Intuitively, an extremely high cost would forbid the guards to pass through
the intended path. Given enough guards or long enough paths, the remainder
of the level is covered and the players are forced onto the intended path. A
low, but non-zero cost however could be an issue given the randomness of

placing enemies. If the random walk goes along or across the intended path
with a segment cost approximately equal to half the maximum path cost, the
only way that enemy can complete its cyclic behaviour is by coming back on
that same segment. This makes an enemy fixed on top of the intended path,
which goes against the wanted result of allowing players to take the intended
path exactly.

The number of guards can further restrict the players’ movement on the
level, but is also subject to a certain randomness|Figure 5]. From the exper-
iments taken, we can see that a low number of guards can indeed give paths
that are very far from the intended path. However, a high number of guards
does not necessarily raise the coverage of the level by enemies, leading to
similar results with a slightly lower number of guards. As such, a heuristic
cost can be added to each guard’s walk for ensuing ones, to distribute the
guards further across the level, but it is not very effective in very granular
packings. In those, each node may have a higher number of neighbors, and
as such a higher number of incident edges; adding guard costs to some edges
still leaves multiple ones for another guard to take.

Frechet Analysis depending on guard count

W Attempt 1 [l Attempt 2 [l Attempt 2

: $. i S +
" g + - ==
4 Guards 5 Guards 6 Guards 7 Guards

Figure 5: Comparison of the number of guards on the Corridor level

10

5 Conclusion

This paper presented a solution for the problem of procedural genera-
tion of enemies in a stealth video game design setting. In particular, an
algorithm intended for 2D levels was devised and written as a Python ad-
don to the GRAM’s Unity Stealth tool, then tested with said tool. The
algorithm generates a circle packing over the level’s surface, then uses a
pseudo-intersection graph of those circles to create enemy paths from ran-
dom weighted walks. Analysis of the Frechet distances between the intended
path and the generated paths revealed that the current algorithm is perhaps
too random, as it treats each enemy independently and thus might not cover
the level entirely, even when introducing additional heuristic costs to disperse
the enemies across the level. However, given a strong guarantee of lacking
enemies on the intended path (by increasing the cost of enemy walks through
the intended path to a high value), the players can in fact both pass close to
the intended path and find paths of their own.

A lot of optimization can still be beneficial for this exact approach. In
particular, normalizing all variables with respect to either the level surface or
the surface gathered by the circle packing may lead to more intuitive variable
selection, as well as a higher probability that a set of variables optimized for
some level can give good solutions for a level with less or more surface.
Linking the enemies’ FOV to the size of the maximum circle was motivated
by the fact that an enemy would then definitely see its sector of any circle
in the packing; however, the FOV angle was not taken into account and
thus results may vary greatly for narrow or wide FOV angles. Additionally,
computing added guard heuristic costs in the same way as the intended path
heuristic costs - that is, using a linear dropoff depending on the distance of
a graph segment to the path in question - could also benefit the distribution
of guards across the level.

Future work for the first stage may include trying other surface parti-
tioning algorithms, like Voronoi tesselations or generalized circle packing, or
perhaps an entirely different approach that creates a (not necessarily planar)
graph covering the level’s accessible surface. Furthermore, grammar-based
approaches to encourage particular guard behaviours could be researched to
develop the enemy generation stage further. Finally, the addition of enemy
archetypes or unique enemies that would influence the size of their FOV,
addition of combat encounters and the application of this approach on sur-
faces of a 3D level are research topics that would lead to a more enjoyable
experience as a player.

11

References

[1] Bethesda Softworks. Dishonored, 2012.

[2] Jonathan Tremblay, Pedro Andrade Torres, Nir Rikovitch, and Clark
Verbrugge. An exploration tool for predicting stealthy behaviour. In

The Second Workshop on Artificial Intelligence in the Game Design
Process, 2013.

[3] Noor Shaker, Julian Togelius, and Mark J. Nelson. Procedural Content
Generation in Games: A Textbook and an Overview of Current Research.
Springer, 2016.

[4] CD Project Red. The Witcher 3: Wild Hunt, 2015.

[5] Qihan Xu. Procedural guard placement and behaviour generation. Mas-
ter’s thesis, McGill University, Montréal, Canada, April 2015.

[6] Thomas Eiter and Heikki Mannila. Computing discrete Frechet dis-
tance. 05 1994.

[7] Luke Jones. GRTK : Geometry Recovery toolkit, 2017.

[8] Muntasir Chowdhury and Clark Verbrugge. Exhaustive exploration
strategies for NPCs. In Proceedings of the 1st International Joint Con-
ference of DiGRA and FDG: Tth Workshop on Procedural Content Gen-

eration, August 2016.
[9] Sean Gillies. Shapely - Python software library, January 2018.

[10] Randy Smith. Level building for stealth gameplay. In Game Developer
Conference, 2006.

12

Software

Game World

Editor

Python

Create Level floor with
the Floor, Start and
End secripts

r

Surround the floor in
obstacles with the
EBoundary Script,
children of a Level

script

r

Place the intended
path 3z a series of |
linked Waypoinis

/

View resulis play out
and adjust parameters

Fill im arguments for
fhe graph generation

Fill im arguments for
the enemy generation

|

(automatically)
Generates Enemy
objects from paths

r

Use the Mapper editor
to generate potential
player paths

x\

Generates the circle
packing and resulting
graph

_

Generates enemy
paths

Figure 6: Meic?odology flow

